1
|
Li H, Zhao J, Dai J, You D, Zhao Y, Christiani DC, Chen F, Shen S. Multi-ancestry sequencing-based genome-wide association study of C-reactive protein in 513,273 genomes. Nat Commun 2025; 16:3892. [PMID: 40274876 DOI: 10.1038/s41467-025-59155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
C-reactive protein (CRP) serves as a pivotal marker of systemic inflammation, yet its genetic architecture has predominantly been explored within European populations. Our multi-ancestry sequencing-based genome-wide association study (seqGWAS) meta-analysis encompasses 447,369 Europeans, 10,389 Africans, 9685 Asians, and 9200 Hispanics in the discovery set, and 23,521 Europeans, 7160 Africans, 771 Asians, and 5178 Hispanics in the replication set. We identify 113 independent association signals (Pdiscovery ≤ 5 × 10-9 and Preplication ≤ 0.05), including 21 loci that passed the conditional analysis, among which 3 are European-specific. Cross ancestry fine-mapping pinpoints 19 of 113 independent signals within the 95% credible set. Functional annotation reveals significant enrichment in blood tissue, H3K27me3 histone marks, and exonic regions. Leveraging the Polygenic Priority Score (PoPS) and gene-based analyses, we implicate 151 genes as potential regulators of CRP levels, 55 of which have not been previously reported. Among these, 17 genes and four proteins show causal evidence or strong colocalization with CRP-related pathologies.
Collapse
Affiliation(s)
- Hongru Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingyi Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinglan Dai
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, 211166, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing, 211166, China
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
- Pulmonary and Critical Care Division, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, 211166, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Biomedical Big Data of Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
2
|
Jacobs BM, Stow D, Hodgson S, Zöllner J, Samuel M, Kanoni S, Bidi S, Walter K, Langenberg C, Dobson R, Finer S, Morton C, Siddiqui MK, Martin HC, Pietzner M, Mathur R, van Heel DA. Genetic architecture of routinely acquired blood tests in a British South Asian cohort. Nat Commun 2024; 15:8929. [PMID: 39414775 PMCID: PMC11484750 DOI: 10.1038/s41467-024-53091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Understanding the genetic basis of routinely-acquired blood tests can provide insights into several aspects of human physiology. We report a genome-wide association study of 42 quantitative blood test traits defined using Electronic Healthcare Records (EHRs) of ~50,000 British Bangladeshi and British Pakistani adults. We demonstrate a causal variant within the PIEZO1 locus which was associated with alterations in red cell traits and glycated haemoglobin. Conditional analysis and within-ancestry fine mapping confirmed that this signal is driven by a missense variant - chr16-88716656-G-TT - which is common in South Asian ancestries (MAF 3.9%) but ultra-rare in other ancestries. Carriers of the T allele had lower mean HbA1c values, lower HbA1c values for a given level of random or fasting glucose, and delayed diagnosis of Type 2 Diabetes Mellitus. Our results shed light on the genetic basis of clinically-relevant traits in an under-represented population, and emphasise the importance of ancestral diversity in genetic studies.
Collapse
Grants
- 210561/Z/18/Z Wellcome Trust
- WT102627 Wellcome Trust (Wellcome)
- MR/V028766/1 RCUK | Medical Research Council (MRC)
- Wellcome Trust
- M009017 RCUK | Medical Research Council (MRC)
- Genes & Health is/has recently been core-funded by Wellcome (WT102627, WT210561), the Medical Research Council (UK) (M009017, MR/X009777/1, MR/X009920/1), Higher Education Funding Council for England Catalyst, Barts Charity (845/1796), Health Data Research UK (for London substantive site), and research delivery support from the NHS National Institute for Health Research Clinical Research Network (North Thames). Genes & Health is/has recently been funded by Alnylam Pharmaceuticals, Genomics PLC; and a Life Sciences Industry Consortium of Astra Zeneca PLC, Bristol-Myers Squibb Company, GlaxoSmithKline Research and Development Limited, Maze Therapeutics Inc, Merck Sharp & Dohme LLC, Novo Nordisk A/S, Pfizer Inc, Takeda Development Centre Americas Inc.
Collapse
Affiliation(s)
- Benjamin M Jacobs
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Daniel Stow
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Sam Hodgson
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Julia Zöllner
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- University College London, London, UK
| | - Miriam Samuel
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Stavroula Kanoni
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Saeed Bidi
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Claudia Langenberg
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Dobson
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Sarah Finer
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Blizard Institute, Queen Mary University of London, London, UK
| | - Caroline Morton
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Moneeza K Siddiqui
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Maik Pietzner
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rohini Mathur
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - David A van Heel
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
- Blizard Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Koromina M, Ravi A, Panagiotaropoulou G, Schilder BM, Humphrey J, Braun A, Bidgeli T, Chatzinakos C, Coombes B, Kim J, Liu X, Terao C, O.’Connell KS, Adams M, Rolf A, Alda M, Alfredsson L, Andlauer TFM, Andreassen OA, Antoniou A, Baune BT, Bengesser S, Biernacka J, Boehnke M, Bosch R, Cairns MJ, Carr VJ, Casas M, Catts S, Cichon S, Corvin A, Craddock N, Dafnas K, Dalkner N, Dannlowski U, Degenhardt F, Florio AD, Dikeos D, Fellendorf FT, Ferentinos P, Forstner AJ, Forty L, Frye M, Fullerton JM, Gawlik M, Gizer IR, Gordon-Smith K, Green MJ, Grigoroiu-Serbanescu M, Guzman-Parra J, Hahn T, Henskens F, Hillert J, Jablensky AV, Jones L, Jones I, Jonsson L, Kelsoe JR, Kircher T, Kirov G, Kittel-Schneider S, Kogevinas M, Landén M, Leboyer M, Lenger M, Lissowska J, Lochner C, Loughland C, MacIntyre D, Martin NG, Maratou E, Mathews CA, Mayoral F, McElroy SL, McGregor NW, McIntosh A, McQuillin A, Michie P, Mitchell PB, Moutsatsou P, Mowry B, Müller-Myhsok B, Myers RM, Nenadić I, Nievergelt C, Nöthen MM, Nurnberger J, O.’Donovan M, O’Donovan C, Ophoff RA, Owen MJ, Pantelis C, Pato C, Pato MT, Patrinos GP, Pawlak JM, Perlis RH, Porichi E, Posthuma D, Ramos-Quiroga JA, et alKoromina M, Ravi A, Panagiotaropoulou G, Schilder BM, Humphrey J, Braun A, Bidgeli T, Chatzinakos C, Coombes B, Kim J, Liu X, Terao C, O.’Connell KS, Adams M, Rolf A, Alda M, Alfredsson L, Andlauer TFM, Andreassen OA, Antoniou A, Baune BT, Bengesser S, Biernacka J, Boehnke M, Bosch R, Cairns MJ, Carr VJ, Casas M, Catts S, Cichon S, Corvin A, Craddock N, Dafnas K, Dalkner N, Dannlowski U, Degenhardt F, Florio AD, Dikeos D, Fellendorf FT, Ferentinos P, Forstner AJ, Forty L, Frye M, Fullerton JM, Gawlik M, Gizer IR, Gordon-Smith K, Green MJ, Grigoroiu-Serbanescu M, Guzman-Parra J, Hahn T, Henskens F, Hillert J, Jablensky AV, Jones L, Jones I, Jonsson L, Kelsoe JR, Kircher T, Kirov G, Kittel-Schneider S, Kogevinas M, Landén M, Leboyer M, Lenger M, Lissowska J, Lochner C, Loughland C, MacIntyre D, Martin NG, Maratou E, Mathews CA, Mayoral F, McElroy SL, McGregor NW, McIntosh A, McQuillin A, Michie P, Mitchell PB, Moutsatsou P, Mowry B, Müller-Myhsok B, Myers RM, Nenadić I, Nievergelt C, Nöthen MM, Nurnberger J, O.’Donovan M, O’Donovan C, Ophoff RA, Owen MJ, Pantelis C, Pato C, Pato MT, Patrinos GP, Pawlak JM, Perlis RH, Porichi E, Posthuma D, Ramos-Quiroga JA, Reif A, Reininghaus EZ, Ribasés M, Rietschel M, Schall U, Schofield PR, Schulze TG, Scott L, Scott RJ, Serretti A, Weickert CS, Smoller JW, Artigas MS, Stein DJ, Streit F, Toma C, Tooney P, Vawter MP, Vieta E, Vincent JB, Waldman ID, Weickert T, Witt SH, Hong KS, Ikeda M, Iwata N, Świątkowska B, Won HH, Edenberg HJ, Ripke S, Raj T, Coleman JRI, Mullins N. Fine-mapping genomic loci refines bipolar disorder risk genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.12.24302716. [PMID: 38405768 PMCID: PMC10889003 DOI: 10.1101/2024.02.12.24302716] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 17 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of genes involved in neurotransmission and neurodevelopment including SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, CRTC3, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, DPH1, GSDMB, MED24 and THRA in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance of BD polygenic risk scores across diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).
Collapse
Affiliation(s)
- Maria Koromina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashvin Ravi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Brian M. Schilder
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | | | | | - Brandon Coombes
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jaeyoung Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kevin S. O.’Connell
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Mark Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Adolfsson Rolf
- Department of Clinical Sciences, Psychiatry, Umeå, University Medical Faculty, Umeå, Sweden
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Till F. M. Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ole A. Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Anastasia Antoniou
- National Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
| | - Bernhard T. Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Susanne Bengesser
- Medical University of Graz, Division of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Joanna Biernacka
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michael Boehnke
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Rosa Bosch
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Programa SJD MIND Escoles, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | | | - Vaughan J. Carr
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Miquel Casas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Programa SJD MIND Escoles, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | | | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Dept of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Nicholas Craddock
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Konstantinos Dafnas
- National Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
| | - Nina Dalkner
- Medical University of Graz, Division of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Arianna Di Florio
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Department of Psychiatry, University of North Caroli at Chapel Hill, Chapel Hill, NC, USA
| | - Dimitris Dikeos
- National Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
| | | | - Panagiotis Ferentinos
- National Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, UK
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Liz Forty
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Mark Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Micha Gawlik
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | | | - Melissa J. Green
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | | | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Lisa Jones
- Psychological Medicine, University of Worcester, Worcester, UK
| | - Ian Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lina Jonsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - Mikael Landén
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Leboyer
- University of Paris Est Créteil, INSERM, IMRB, Translatiol Neuropsychiatry, Créteil, France
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Melanie Lenger
- Medical University of Graz, Division of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Dept of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Donald MacIntyre
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Nicholas G. Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Eirini Maratou
- National and Kapodistrian University of Athens, Medical School, Clinical Biochemistry Laboratory, Attikon General Hospital, Athens, Greece
| | - Carol A. Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | | | - Nathaniel W. McGregor
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Andrew McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | | | - Philip B. Mitchell
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Paraskevi Moutsatsou
- National Kapodistrian University of Athens, Medical School, Clinical Biochemistry Laboratory, Attikon General Hospital, Athens, Greece
| | - Bryan Mowry
- University of Queensland, Brisbane, QLD, Australia
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Caroline Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research/Psychiatry, Veterans Affairs San, Diego Healthcare System, San Diego, CA, USA
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - John Nurnberger
- Stark Neurosciences Research Institute, Indiana University School of Medicine
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine
- Indiana University School of Medicine
| | - Michael O.’Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Claire O’Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Roel A. Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael J. Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Carlos Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - Michele T. Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - George P. Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Genetics and Genomics, Al-Ain, United Arab Emirates
- United Arab Emirates University, Zayed Center for Health Sciences, Al-Ain, United Arab Emirates
- Erasmus University Medical Center, Faculty of Medicina and Health Sciences, Department of Pathology, Clinical Bioinformatics Unit, Rotterdam, The Netherlands
| | - Joanna M. Pawlak
- Department of Psychiatry, Departmet of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Roy H. Perlis
- Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, MA, USA
| | - Evgenia Porichi
- tiol and Kapodistrian University of Athens, 2nd Department of Psychiatry, Attikon General Hospital, Athens, Greece
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Josep Antoni Ramos-Quiroga
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelo, Barcelo, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Eva Z. Reininghaus
- Medical University of Graz, Division of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Marta Ribasés
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain. Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Thomas G. Schulze
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Cynthia Shannon Weickert
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jordan W. Smoller
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Maria Soler Artigas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelo, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelo, Barcelo, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelo, Barcelo, Spain. Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelo, Barcelo, Catalonia, Spain
| | - Dan J. Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Dept of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Claudio Toma
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and CSIC, Madrid, Spain
| | - Paul Tooney
- University of Newcastle, Newcastle, NSW, Australia
| | - Marquis P. Vawter
- Functional Genomics Laboratory, School of Medicine, University of California, Irvine Canada
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine Canada
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - John B. Vincent
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Thomas Weickert
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kyung Sue Hong
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Howard J. Edenberg
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan R. I. Coleman
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Bigdeli TB, Chatzinakos C, Bendl J, Barr PB, Venkatesh S, Gorman BR, Clarence T, Genovese G, Iyegbe CO, Peterson RE, Kolokotronis SO, Burstein D, Meyers JL, Li Y, Rajeevan N, Sayward F, Cheung KH, DeLisi LE, Kosten TR, Zhao H, Achtyes E, Buckley P, Malaspina D, Lehrer D, Rapaport MH, Braff DL, Pato MT, Fanous AH, Pato CN, Huang GD, Muralidhar S, Michael Gaziano J, Pyarajan S, Girdhar K, Lee D, Hoffman GE, Aslan M, Fullard JF, Voloudakis G, Harvey PD, Roussos P. Biological Insights from Schizophrenia-associated Loci in Ancestral Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312631. [PMID: 39252912 PMCID: PMC11383513 DOI: 10.1101/2024.08.27.24312631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Large-scale genome-wide association studies of schizophrenia have uncovered hundreds of associated loci but with extremely limited representation of African diaspora populations. We surveyed electronic health records of 200,000 individuals of African ancestry in the Million Veteran and All of Us Research Programs, and, coupled with genotype-level data from four case-control studies, realized a combined sample size of 13,012 affected and 54,266 unaffected persons. Three genome-wide significant signals - near PLXNA4, PMAIP1, and TRPA1 - are the first to be independently identified in populations of predominantly African ancestry. Joint analyses of African, European, and East Asian ancestries across 86,981 cases and 303,771 controls, yielded 376 distinct autosomal loci, which were refined to 708 putatively causal variants via multi-ancestry fine-mapping. Utilizing single-cell functional genomic data from human brain tissue and two complementary approaches, transcriptome-wide association studies and enhancer-promoter contact mapping, we identified a consensus set of 94 genes across ancestries and pinpointed the specific cell types in which they act. We identified reproducible associations of schizophrenia polygenic risk scores with schizophrenia diagnoses and a range of other mental and physical health problems. Our study addresses a longstanding gap in the generalizability of research findings for schizophrenia across ancestral populations, underlining shared biological underpinnings of schizophrenia across global populations in the presence of broadly divergent risk allele frequencies.
Collapse
Affiliation(s)
- Tim B. Bigdeli
- VA New York Harbor Healthcare System, Brooklyn, NY
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Chris Chatzinakos
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Peter B. Barr
- VA New York Harbor Healthcare System, Brooklyn, NY
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Sanan Venkatesh
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Bryan R. Gorman
- Massachusetts Area Veterans Epidemiology, Research, and Information Center (MAVERIC), Jamaica Plain, MA
| | - Tereza Clarence
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Conrad O. Iyegbe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
| | - Roseann E. Peterson
- VA New York Harbor Healthcare System, Brooklyn, NY
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Sergios-Orestis Kolokotronis
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - David Burstein
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jacquelyn L. Meyers
- Department of Psychiatry and Behavioral Sciences and SUNY Downstate Health Sciences University, Brooklyn, NY
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Yuli Li
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - Nallakkandi Rajeevan
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - Frederick Sayward
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - Kei-Hoi Cheung
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | | | | | | | - Lynn E. DeLisi
- Department of Psychiatry, Cambridge Health Alliance, Cambridge, MA
| | - Thomas R. Kosten
- Michael E. DeBakey VA Medical Center, Houston, TX
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX
| | - Hongyu Zhao
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - Eric Achtyes
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Peter Buckley
- University of Tennessee Health Science Center in Memphis, TN
| | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Douglas Lehrer
- Department of Psychiatry, Wright State University, Dayton, OH
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Michele T. Pato
- Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Ayman H. Fanous
- Department of Psychiatry, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
- Department of Psychiatry, VA Phoenix Healthcare System, Phoenix, AZ
| | - Carlos N. Pato
- Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | | | | | - Grant D. Huang
- Office of Research and Development, Veterans Health Administration, Washington, DC
| | - Sumitra Muralidhar
- Office of Research and Development, Veterans Health Administration, Washington, DC
| | - J. Michael Gaziano
- Massachusetts Area Veterans Epidemiology, Research, and Information Center (MAVERIC), Jamaica Plain, MA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Saiju Pyarajan
- Massachusetts Area Veterans Epidemiology, Research, and Information Center (MAVERIC), Jamaica Plain, MA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Gabriel E. Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Mihaela Aslan
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT
- Yale University School of Medicine, New Haven, CT
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Philip D. Harvey
- Bruce W. Carter Miami Veterans Affairs (VA) Medical Center, Miami, FL
- University of Miami School of Medicine, Miami, FL
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, NY
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Mental Illness Research, Education and Clinical Center VISN2, James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
5
|
Manipur I, Reales G, Sul JH, Shin MK, Longerich S, Cortes A, Wallace C. CoPheScan: phenome-wide association studies accounting for linkage disequilibrium. Nat Commun 2024; 15:5862. [PMID: 38997278 PMCID: PMC11245513 DOI: 10.1038/s41467-024-49990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Phenome-wide association studies (PheWAS) facilitate the discovery of associations between a single genetic variant with multiple phenotypes. For variants which impact a specific protein, this can help identify additional therapeutic indications or on-target side effects of intervening on that protein. However, PheWAS is restricted by an inability to distinguish confounding due to linkage disequilibrium (LD) from true pleiotropy. Here we describe CoPheScan (Coloc adapted Phenome-wide Scan), a Bayesian approach that enables an intuitive and systematic exploration of causal associations while simultaneously addressing LD confounding. We demonstrate its performance through simulation, showing considerably better control of false positive rates than a conventional approach not accounting for LD. We used CoPheScan to perform PheWAS of protein-truncating variants and fine-mapped variants from disease and pQTL studies, in 2275 disease phenotypes from the UK Biobank. Our results identify the complexity of known pleiotropic genes such as APOE, and suggest a new causal role for TGM3 in skin cancer.
Collapse
Affiliation(s)
- Ichcha Manipur
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK.
| | - Guillermo Reales
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK
| | | | | | | | - Adrian Cortes
- Human Genetics and Genomics, GSK, Heidelberg, 69117, Germany
| | - Chris Wallace
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 2QQ, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Strober BJ, Zhang MJ, Amariuta T, Rossen J, Price AL. Fine-mapping causal tissues and genes at disease-associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.01.23297909. [PMID: 37961337 PMCID: PMC10635248 DOI: 10.1101/2023.11.01.23297909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue's contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5-primarily for autoimmune disease and blood cell traits, including the biologically plausible example of CD52 in classical monocyte cells for Monocyte count. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.
Collapse
Affiliation(s)
- Benjamin J. Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin Jinye Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tiffany Amariuta
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jordan Rossen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Rossen J, Shi H, Strober BJ, Zhang MJ, Kanai M, McCaw ZR, Liang L, Weissbrod O, Price AL. MultiSuSiE improves multi-ancestry fine-mapping in All of Us whole-genome sequencing data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.13.24307291. [PMID: 38798542 PMCID: PMC11118590 DOI: 10.1101/2024.05.13.24307291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Leveraging data from multiple ancestries can greatly improve fine-mapping power due to differences in linkage disequilibrium and allele frequencies. We propose MultiSuSiE, an extension of the sum of single effects model (SuSiE) to multiple ancestries that allows causal effect sizes to vary across ancestries based on a multivariate normal prior informed by empirical data. We evaluated MultiSuSiE via simulations and analyses of 14 quantitative traits leveraging whole-genome sequencing data in 47k African-ancestry and 94k European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr47k+Eur47k was well-calibrated and attained higher power than SuSiE applied to Eur94k; interestingly, higher causal variant PIPs in Afr47k compared to Eur47k were entirely explained by differences in the extent of LD quantified by LD 4th moments. Compared to very recently proposed multi-ancestry fine-mapping methods, MultiSuSiE attained higher power and/or much lower computational costs, making the analysis of large-scale All of Us data feasible. In real trait analyses, MultiSuSiE applied to Afr47k+Eur94k identified 579 fine-mapped variants with PIP > 0.5, and MultiSuSiE applied to Afr47k+Eur47k identified 44% more fine-mapped variants with PIP > 0.5 than SuSiE applied to Eur94k. We validated MultiSuSiE results for real traits via functional enrichment of fine-mapped variants. We highlight several examples where MultiSuSiE implicates well-studied or biologically plausible fine-mapped variants that were not implicated by other methods.
Collapse
|
8
|
Di Y, Mefford J, Rahmani E, Wang J, Ravi V, Gorla A, Alwan A, Zhu T, Flint J. Genetic association analysis of human median voice pitch identifies a common locus for tonal and non-tonal languages. Commun Biol 2024; 7:540. [PMID: 38714798 PMCID: PMC11076565 DOI: 10.1038/s42003-024-06198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/16/2024] [Indexed: 05/10/2024] Open
Abstract
The genetic influence on human vocal pitch in tonal and non-tonal languages remains largely unknown. In tonal languages, such as Mandarin Chinese, pitch changes differentiate word meanings, whereas in non-tonal languages, such as Icelandic, pitch is used to convey intonation. We addressed this question by searching for genetic associations with interindividual variation in median pitch in a Chinese major depression case-control cohort and compared our results with a genome-wide association study from Iceland. The same genetic variant, rs11046212-T in an intron of the ABCC9 gene, was one of the most strongly associated loci with median pitch in both samples. Our meta-analysis revealed four genome-wide significant hits, including two novel associations. The discovery of genetic variants influencing vocal pitch across both tonal and non-tonal languages suggests the possibility of a common genetic contribution to the human vocal system shared in two distinct populations with languages that differ in tonality (Icelandic and Mandarin).
Collapse
Affiliation(s)
- Yazheng Di
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Joel Mefford
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Elior Rahmani
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jinhan Wang
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Vijay Ravi
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Aditya Gorla
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Abeer Alwan
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tingshao Zhu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Lu Z, Wang X, Carr M, Kim A, Gazal S, Mohammadi P, Wu L, Gusev A, Pirruccello J, Kachuri L, Mancuso N. Improved multi-ancestry fine-mapping identifies cis-regulatory variants underlying molecular traits and disease risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305836. [PMID: 38699369 PMCID: PMC11065034 DOI: 10.1101/2024.04.15.24305836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Multi-ancestry statistical fine-mapping of cis-molecular quantitative trait loci (cis-molQTL) aims to improve the precision of distinguishing causal cis-molQTLs from tagging variants. However, existing approaches fail to reflect shared genetic architectures. To solve this limitation, we present the Sum of Shared Single Effects (SuShiE) model, which leverages LD heterogeneity to improve fine-mapping precision, infer cross-ancestry effect size correlations, and estimate ancestry-specific expression prediction weights. We apply SuShiE to mRNA expression measured in PBMCs (n=956) and LCLs (n=814) together with plasma protein levels (n=854) from individuals of diverse ancestries in the TOPMed MESA and GENOA studies. We find SuShiE fine-maps cis-molQTLs for 16% more genes compared with baselines while prioritizing fewer variants with greater functional enrichment. SuShiE infers highly consistent cis-molQTL architectures across ancestries on average; however, we also find evidence of heterogeneity at genes with predicted loss-of-function intolerance, suggesting that environmental interactions may partially explain differences in cis-molQTL effect sizes across ancestries. Lastly, we leverage estimated cis-molQTL effect-sizes to perform individual-level TWAS and PWAS on six white blood cell-related traits in AOU Biobank individuals (n=86k), and identify 44 more genes compared with baselines, further highlighting its benefits in identifying genes relevant for complex disease risk. Overall, SuShiE provides new insights into the cis-genetic architecture of molecular traits.
Collapse
Affiliation(s)
- Zeyun Lu
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinran Wang
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew Carr
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Artem Kim
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| | - Pejman Mohammadi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaiʻi Cancer Center, University of Hawaiʻi at Mānoa, Honolulu, HI, USA
| | - Alexander Gusev
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, MA, USA
| | - James Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
Hatton AA, Cheng FF, Lin T, Shen RJ, Chen J, Zheng Z, Qu J, Lyu F, Harris SE, Cox SR, Jin ZB, Martin NG, Fan D, Montgomery GW, Yang J, Wray NR, Marioni RE, Visscher PM, McRae AF. Genetic control of DNA methylation is largely shared across European and East Asian populations. Nat Commun 2024; 15:2713. [PMID: 38548728 PMCID: PMC10978881 DOI: 10.1038/s41467-024-47005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
DNA methylation is an ideal trait to study the extent of the shared genetic control across ancestries, effectively providing hundreds of thousands of model molecular traits with large QTL effect sizes. We investigate cis DNAm QTLs in three European (n = 3701) and two East Asian (n = 2099) cohorts to quantify the similarities and differences in the genetic architecture across populations. We observe 80,394 associated mQTLs (62.2% of DNAm probes with significant mQTL) to be significant in both ancestries, while 28,925 mQTLs (22.4%) are identified in only a single ancestry. mQTL effect sizes are highly conserved across populations, with differences in mQTL discovery likely due to differences in allele frequency of associated variants and differing linkage disequilibrium between causal variants and assayed SNPs. This study highlights the overall similarity of genetic control across ancestries and the value of ancestral diversity in increasing the power to detect associations and enhancing fine mapping resolution.
Collapse
Affiliation(s)
- Alesha A Hatton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fei-Fei Cheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Life Sciences, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100008, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jie Chen
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jia Qu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fan Lyu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100008, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Nicholas G Martin
- Queensland Institute of Medical Research Berghofer, Brisbane, QLD, 4006, Australia
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, 100191, Beijing, China
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, 310030, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Chen TT, Kim J, Lam M, Chuang YF, Chiu YL, Lin SC, Jung SH, Kim B, Kim S, Cho C, Shim I, Park S, Ahn Y, Okbay A, Jang H, Kim HJ, Seo SW, Park WY, Ge T, Huang H, Feng YCA, Lin YF, Myung W, Chen CY, Won HH. Shared genetic architectures of educational attainment in East Asian and European populations. Nat Hum Behav 2024; 8:562-575. [PMID: 38182883 PMCID: PMC10963262 DOI: 10.1038/s41562-023-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Educational attainment (EduYears), a heritable trait often used as a proxy for cognitive ability, is associated with various health and social outcomes. Previous genome-wide association studies (GWASs) on EduYears have been focused on samples of European (EUR) genetic ancestries. Here we present the first large-scale GWAS of EduYears in people of East Asian (EAS) ancestry (n = 176,400) and conduct a cross-ancestry meta-analysis with EduYears GWAS in people of EUR ancestry (n = 766,345). EduYears showed a high genetic correlation and power-adjusted transferability ratio between EAS and EUR. We also found similar functional enrichment, gene expression enrichment and cross-trait genetic correlations between two populations. Cross-ancestry fine-mapping identified refined credible sets with a higher posterior inclusion probability than single population fine-mapping. Polygenic prediction analysis in four independent EAS and EUR cohorts demonstrated transferability between populations. Our study supports the need for further research on diverse ancestries to increase our understanding of the genetic basis of educational attainment.
Collapse
Affiliation(s)
- Tzu-Ting Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jaeyoung Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Max Lam
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- Division of Psychiatry Research, the Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Research Division Institute of Mental Health Singapore, Singapore, Singapore
| | - Yi-Fang Chuang
- Institute of Public Health and International Health Program, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Ling Chiu
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beomsu Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Soyeon Kim
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chamlee Cho
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Injeong Shim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Sanghyeon Park
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Yeeun Ahn
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Aysu Okbay
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hyemin Jang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
| | - Hee Jin Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
| | - Sang Won Seo
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tian Ge
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yen-Chen Anne Feng
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei City, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
- Department of Public Health and Medical Humanities, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.
| | | | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea.
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Gao B, Zhou X. MESuSiE enables scalable and powerful multi-ancestry fine-mapping of causal variants in genome-wide association studies. Nat Genet 2024; 56:170-179. [PMID: 38168930 PMCID: PMC11849347 DOI: 10.1038/s41588-023-01604-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Fine-mapping in genome-wide association studies attempts to identify causal SNPs from a set of candidate SNPs in a local genomic region of interest and is commonly performed in one genetic ancestry at a time. Here, we present multi-ancestry sum of the single effects model (MESuSiE), a probabilistic multi-ancestry fine-mapping method, to improve the accuracy and resolution of fine-mapping by leveraging association information across ancestries. MESuSiE uses summary statistics as input, accounts for the diverse linkage disequilibrium pattern observed in different ancestries, explicitly models both shared and ancestry-specific causal SNPs, and relies on a variational inference algorithm for scalable computation. We evaluated the performance of MESuSiE through comprehensive simulations and multi-ancestry fine-mapping of four lipid traits with both European and African samples. In the real data, MESuSiE improves fine-mapping resolution by 19.0% to 72.0% compared to existing approaches, is an order of magnitude faster, and captures and categorizes shared and ancestry-specific causal signals with enhanced functional enrichment.
Collapse
Affiliation(s)
- Boran Gao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Kachuri L, Chatterjee N, Hirbo J, Schaid DJ, Martin I, Kullo IJ, Kenny EE, Pasaniuc B, Witte JS, Ge T. Principles and methods for transferring polygenic risk scores across global populations. Nat Rev Genet 2024; 25:8-25. [PMID: 37620596 PMCID: PMC10961971 DOI: 10.1038/s41576-023-00637-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Polygenic risk scores (PRSs) summarize the genetic predisposition of a complex human trait or disease and may become a valuable tool for advancing precision medicine. However, PRSs that are developed in populations of predominantly European genetic ancestries can increase health disparities due to poor predictive performance in individuals of diverse and complex genetic ancestries. We describe genetic and modifiable risk factors that limit the transferability of PRSs across populations and review the strengths and weaknesses of existing PRS construction methods for diverse ancestries. Developing PRSs that benefit global populations in research and clinical settings provides an opportunity for innovation and is essential for health equity.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jibril Hirbo
- Department of Medicine Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Iman Martin
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bogdan Pasaniuc
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
Chen CY, Chen TT, Feng YCA, Yu M, Lin SC, Longchamps RJ, Wang SH, Hsu YH, Yang HI, Kuo PH, Daly MJ, Chen WJ, Huang H, Ge T, Lin YF. Analysis across Taiwan Biobank, Biobank Japan, and UK Biobank identifies hundreds of novel loci for 36 quantitative traits. CELL GENOMICS 2023; 3:100436. [PMID: 38116116 PMCID: PMC10726425 DOI: 10.1016/j.xgen.2023.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/21/2021] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
Genome-wide association studies (GWASs) have identified tens of thousands of genetic loci associated with human complex traits. However, the majority of GWASs were conducted in individuals of European ancestries. Failure to capture global genetic diversity has limited genomic discovery and has impeded equitable delivery of genomic knowledge to diverse populations. Here we report findings from 102,900 individuals across 36 human quantitative traits in the Taiwan Biobank (TWB), a major biobank effort that broadens the population diversity of genetic studies in East Asia. We identified 968 novel genetic loci, pinpointed novel causal variants through statistical fine-mapping, compared the genetic architecture across TWB, Biobank Japan, and UK Biobank, and evaluated the utility of cross-phenotype, cross-population polygenic risk scores in disease risk prediction. These results demonstrated the potential to advance discovery through diversifying GWAS populations and provided insights into the common genetic basis of human complex traits in East Asia.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Biogen, Cambridge, MA 02142, USA; Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tzu-Ting Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yen-Chen Anne Feng
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei 100025, Taiwan.
| | - Mingrui Yu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ryan J Longchamps
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli 35053, Taiwan; Department of Public Health, College of Public Health, China Medical University, Taichung 40678, Taiwan
| | - Yi-Hsiang Hsu
- Marcus Institute for Aging Research and Harvard Medical School, Boston, MA 02131, USA; Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei 112304, Taiwan; Doctoral Program of Clinical and Experimental Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115021, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei 106319, Taiwan
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00014 Helsinki, Finland
| | - Wei J Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan; Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; Department of Psychiatry, College of Medicine and National Taiwan University Hospital, Taipei 106319, Taiwan
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan; Department of Public Health & Medical Humanities, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
15
|
Cai M, Wang Z, Xiao J, Hu X, Chen G, Yang C. XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias. Nat Commun 2023; 14:6870. [PMID: 37898663 PMCID: PMC10613261 DOI: 10.1038/s41467-023-42614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Fine-mapping prioritizes risk variants identified by genome-wide association studies (GWASs), serving as a critical step to uncover biological mechanisms underlying complex traits. However, several major challenges still remain for existing fine-mapping methods. First, the strong linkage disequilibrium among variants can limit the statistical power and resolution of fine-mapping. Second, it is computationally expensive to simultaneously search for multiple causal variants. Third, the confounding bias hidden in GWAS summary statistics can produce spurious signals. To address these challenges, we develop a statistical method for cross-population fine-mapping (XMAP) by leveraging genetic diversity and accounting for confounding bias. By using cross-population GWAS summary statistics from global biobanks and genomic consortia, we show that XMAP can achieve greater statistical power, better control of false positive rate, and substantially higher computational efficiency for identifying multiple causal signals, compared to existing methods. Importantly, we show that the output of XMAP can be integrated with single-cell datasets, which greatly improves the interpretation of putative causal variants in their cellular context at single-cell resolution.
Collapse
Affiliation(s)
- Mingxuan Cai
- Department of Biostatistics, City University of Hong Kong, Hong Kong SAR, China.
| | - Zhiwei Wang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jiashun Xiao
- Shenzhen Research Institute of Big Data, Shenzhen, 518172, China
| | - Xianghong Hu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gang Chen
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- WeGene, Shenzhen Zaozhidao Technology Co., Ltd, Shenzhen, 518040, China
- Graduate Affairs, Faculty of Medicine, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Can Yang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China.
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|