1
|
Bos S, Zambrana JV, Duarte EM, Graber AL, Huffaker J, Montenegro C, Premkumar L, Gordon A, Balmaseda A, Harris E. Serotype-Specific Epidemiological Patterns of Inapparent versus Symptomatic Primary Dengue Virus Infections: A 17-year cohort study in Nicaragua. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305281. [PMID: 38633800 PMCID: PMC11023678 DOI: 10.1101/2024.04.05.24305281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Dengue is the most prevalent mosquito-borne viral disease and a major public health problem worldwide. Most primary infections with the four dengue virus serotypes (DENV1-4) are inapparent; nonetheless, whether the distribution of symptomatic versus inapparent infections by serotype varies remains unknown. Here, we present (1) the evaluation of a multiplex DENV1-4 envelope domain III multiplex microsphere-based assay (EDIII-MMBA) to serotype inapparent primary infections and (2) its application leveraging 17 years of prospective sample collection from the Nicaraguan Pediatric Dengue Cohort Study (PDCS). First, we evaluated the performance of the EDIII-MMBA with samples characterized by RT-PCR or focus reduction neutralization test. Next, we analyzed 46% (N=574) of total inapparent primary DENV infections in the PDCS with the EDIII-MMBA to evaluate the epidemiology of inapparent infections. Remaining infections were inferred using stochastic imputation, taking year and neighborhood into account. Infection incidence and percentage of inapparent, symptomatic, and severe infections were analyzed by serotype. The EDIII-MMBA demonstrated excellent overall accuracy (100%, 95.8-100%) for serotyping symptomatic and inapparent primary DENV infections when evaluated against gold-standard serotyping methods. We found that a significant majority of primary infections were inapparent, with DENV3 exhibiting the highest likelihood of symptomatic and severe primary infections (Pooled OR compared to DENV1 = 2.13, 95% CI 1.28-3.56, and 6.75, 2.01-22.62, respectively), whereas DENV2 was similar to DENV1 in both analyses. Significant within- and between-year variation in serotype distribution between symptomatic and inapparent infections and circulation of serotypes undetected in symptomatic cases were observed in multiple years. Our study indicates that case surveillance skews the perceived epidemiological footprint of DENV. We reveal a more complex and intricate pattern of serotype distribution in inapparent infections. The significant differences in infection outcomes by serotype emphasizes the need for vaccines with balanced immunogenicity and efficacy across serotypes.
Collapse
|
2
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591029. [PMID: 38712102 PMCID: PMC11071485 DOI: 10.1101/2024.04.26.591029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dengue virus (DENV) can hijack non-neutralizing IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR) - a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this non-canonical infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout screens in an in vitro system permissive to infection only in the presence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, both of which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that are required for ADE of DENV infection. Our findings represent a first step towards advancing fundamental knowledge behind the biology of ADE that can ultimately be exploited to inform vaccination and therapeutic approaches.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Mercado-Hernandez R, Myers R, Carillo FB, Zambrana JV, López B, Sanchez N, Gordon A, Balmaseda A, Kuan G, Harris E. Obesity is associated with increased pediatric dengue virus infection and disease: A 9-year cohort study in Managua, Nicaragua. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.02.24305219. [PMID: 38633790 PMCID: PMC11023673 DOI: 10.1101/2024.04.02.24305219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background Obesity is on the rise globally in adults and children, including in tropical areas where diseases such as dengue have a substantial burden, particularly in children. Obesity impacts the risk of severe dengue disease; however, the impact on dengue virus (DENV) infection and dengue cases remains an open question. Methods We used 9 years of data from 5,940 children in the Pediatric Dengue Cohort Study in Nicaragua to examine whether pediatric obesity is associated with increased susceptibility to DENV infection and symptomatic presentation. Analysis was performed using Generalized Estimating Equations adjusted for age, sex, and pre-infection DENV antibody titers. Results From 2011 to 2019, children contributed 26,273 person-years of observation, and we observed an increase in the prevalence of overweight (from 12% to 17%) and obesity (from 7% to 13%). There were 1,682 DENV infections and 476 dengue cases in the study population. Compared to participants with normal weight, participants with obesity had higher odds of DENV infection (Adjusted Odds Ratio [aOR] 1.21, 95% confidence interval [CI] 1.03-1.42) and higher odds of dengue disease given infection (aOR 1.59, 95% CI 1.15-2.19). Children with obesity infected with DENV showed increased odds of presenting fever (aOR 1.46, 95% CI 1.05-2.02), headache (aOR 1.51, 95% CI 1.07-2.14), and rash (aOR 2.26, 95% CI 1.49-3.44) when compared with children with normal weight. Conclusions Our results indicate that obesity is associated with increased susceptibility to DENV infection and dengue cases in children, independently of age, sex, and pre-infection DENV antibody titers.
Collapse
Affiliation(s)
- Reinaldo Mercado-Hernandez
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Rachel Myers
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Fausto Bustos Carillo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - José Victor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Brenda López
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
4
|
Elliott KC, Mattapallil JJ. Zika Virus-A Reemerging Neurotropic Arbovirus Associated with Adverse Pregnancy Outcomes and Neuropathogenesis. Pathogens 2024; 13:177. [PMID: 38392915 PMCID: PMC10892292 DOI: 10.3390/pathogens13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zika virus (ZIKV) is a reemerging flavivirus that is primarily spread through bites from infected mosquitos. It was first discovered in 1947 in sentinel monkeys in Uganda and has since been the cause of several outbreaks, primarily in tropical and subtropical areas. Unlike earlier outbreaks, the 2015-2016 epidemic in Brazil was characterized by the emergence of neurovirulent strains of ZIKV strains that could be sexually and perinatally transmitted, leading to the Congenital Zika Syndrome (CZS) in newborns, and Guillain-Barre Syndrome (GBS) along with encephalitis and meningitis in adults. The immune response elicited by ZIKV infection is highly effective and characterized by the induction of both ZIKV-specific neutralizing antibodies and robust effector CD8+ T cell responses. However, the structural similarities between ZIKV and Dengue virus (DENV) lead to the induction of cross-reactive immune responses that could potentially enhance subsequent DENV infection, which imposes a constraint on the development of a highly efficacious ZIKV vaccine. The isolation and characterization of antibodies capable of cross-neutralizing both ZIKV and DENV along with cross-reactive CD8+ T cell responses suggest that vaccine immunogens can be designed to overcome these constraints. Here we review the structural characteristics of ZIKV along with the evidence of neuropathogenesis associated with ZIKV infection and the complex nature of the immune response that is elicited by ZIKV infection.
Collapse
Affiliation(s)
- Kenneth C. Elliott
- Department of Microbiology & Immunology, The Henry M Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph J. Mattapallil
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|