1
|
Liu Y, Wang R, Jiang T. RNA-binding proteins as a molecular link between COPD and pulmonary hypertension. Int J Med Sci 2025; 22:1979-1991. [PMID: 40225856 PMCID: PMC11983306 DOI: 10.7150/ijms.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Pulmonary hypertension (PH) is a vascular disease characterized by remodeling of the pulmonary arteries and right heart failure. Chronic obstructive pulmonary disease (COPD) patients often have PH, which can worsen symptoms and raise morbidity and mortality. There are several reasons for increased pulmonary vascular resistance, pulmonary vascular remodeling, and ultimately the development of PH in COPD. These factors include genetics, inflammation caused by chemicals breathed, and changes in the alveoli seen in COPD and its physiology. Genes involved in mRNA conversion, subcellular localization, splicing, and translation are all finely tuned by RBPs in their post-transcriptional regulation. Erythropoietin regulates cytokines, chemokines, proteins, growth factors, and other pro-inflammatory mediators that change the lung microenvironment. Over the past few years, we have learned more about how RBPs act in PH and COPD. Here, we discuss the existing understanding of RBPs' location in the same pathogenic pathways shared by PH and COPD in order to emphasize their potential relevance as disease determinant/biomarker and, consequently, for possible therapeutic targeting.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Ran Wang
- Department of respiratory and critical care medicine, the First Affiliated Hospital of Anhui Medical University, 210 Jixi Road, Hefei, Anhui 230022, China
| | - Tao Jiang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| |
Collapse
|
2
|
Karousi P, Kontos CK, Nikou ST, Carell T, Sideris DC, Scorilas A. Discovery of circular transcripts of the human BCL2-like 12 (BCL2L12) apoptosis-related gene, using targeted nanopore sequencing, provides new insights into circular RNA biology. Funct Integr Genomics 2025; 25:66. [PMID: 40106061 PMCID: PMC11923030 DOI: 10.1007/s10142-025-01578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Circular RNAs (circRNAs) constitute an RNA type formed by back-splicing. BCL2-like 12 (BCL2L12) is an apoptosis-related gene comprising 7 exons. In this study, we used targeted nanopore sequencing to identify circular BCL2L12 transcripts in human colorectal cancer cells and investigated the effect of circRNA silencing on mRNA expression of the parental gene. In brief, nanopore sequencing following nested PCR amplification of cDNAs of BCL2L12 circRNAs from 7 colorectal cancer cell lines unraveled 46 BCL2L12 circRNAs, most of which described for the first time. Interestingly, 40 novel circRNAs are likely to form via back-splicing between non-canonical back-splice sites residing in highly similar regions of the primary transcripts. All back-splice junctions were validated using next-generation sequencing (NGS) after circRNA enrichment. Surprisingly, 2 novel circRNAs also comprised a poly(A) tract after BCL2L12 exon 7; this poly(A) tract was back-spliced to exon 1, in both cases. Furthermore, the selective silencing of a BCL2L12 circRNA resulted in a subsequent decrease of BCL2L12 mRNA levels in HCT 116 cells, thus providing evidence of parental gene expression regulation by circRNAs. In conclusion, our study led to the discovery of many circular transcripts from a single human gene and provided new insights into circRNA biogenesis and mode of action.
Collapse
Affiliation(s)
- Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | - Stavroula T Nikou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Carell
- Department for Chemistry, Institute for Chemical Epigenetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Tan T, Xu S, Liu J, Ouyang M, Zhang J. A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2025; 14:921. [PMID: 40265857 PMCID: PMC11944589 DOI: 10.3390/plants14060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Chloroplast development is a highly complex process, involving many regulatory mechanisms that remain poorly understood. This study reports a novel PPR protein, RFCD1 (Regulation Factor of Chloroplast Development 1). Fluorescence localization analysis reveals that the N-terminal 60 amino acids of RFCD1 fused with GFP protein specifically direct the protein to the chloroplast. The knockout mutant of RFCD1 is embryo-lethal. RFCD1 RNA interference (RNAi) transgenic lines display chlorosis phenotypes and abnormal chloroplast development. Quantitative real-time PCR (qRT-PCR) showed that the expression levels of the plastid-encoded RNA polymerase (PEP) genes were significantly decreased in the RNAi lines. Furthermore, RNA blotting results and RNA-seq data showed that the processing of plastid rRNA was also affected in the RNAi lines. Taken together, these results indicate that RFCD1 might be involved in chloroplast gene expression and rRNA processing, which is essential for chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Tianming Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shengnan Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiyun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Kolapalli SP, Nielsen TM, Frankel LB. Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer. Cell Death Differ 2025; 32:27-36. [PMID: 37558732 PMCID: PMC11742036 DOI: 10.1038/s41418-023-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Autophagy is an essential recycling and quality control pathway which preserves cellular and organismal homeostasis. As a catabolic process, autophagy degrades damaged and aged intracellular components in response to conditions of stress, including nutrient deprivation, oxidative and genotoxic stress. Autophagy is a highly adaptive and dynamic process which requires an intricately coordinated molecular control. Here we provide an overview of how autophagy is regulated post-transcriptionally, through RNA processing events, epitranscriptomic modifications and non-coding RNAs. We further discuss newly revealed RNA-binding properties of core autophagy machinery proteins and review recent indications of autophagy's ability to impact cellular RNA homeostasis. From a physiological perspective, we examine the biological implications of these emerging regulatory layers of autophagy, particularly in the context of nutrient deprivation and tumorigenesis.
Collapse
Affiliation(s)
| | | | - Lisa B Frankel
- Danish Cancer Institute, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Kopp J, Rovai A, Ott M, Wedemeyer H, Tiede A, Böhmer HJ, Marques T, Langemeier J, Bohne J, Krooss SA. A transposable element prevents severe hemophilia B and provides insights into the evolution of new- and old world primates. PLoS One 2024; 19:e0312303. [PMID: 39423215 PMCID: PMC11488717 DOI: 10.1371/journal.pone.0312303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Alu-elements comprise a large part of the human genome and some insertions have been shown to cause diseases. Here, we illuminate the protective role of an Alu-element in the 3'UTR of the human Factor 9 gene and its ability to ameliorate a poly(A) site mutation in a hemophilia B patient, preventing him from developing a severe disease. Using a minigene, we examined the disease-causing mutation and the modifying effect of the transposon in cellulo. Further, we simulated evolutionary scenarios regarding alternative polyadenylation before and after Alu insertion. A sequence analysis revealed that Old World monkeys displayed a highly conserved polyadenylation sites in this Alu-element, whereas New World monkeys lacked this motif, indicating a selective pressure. We conclude that this transposon has inserted shortly before the separation of Old and New World monkeys and thus also serves as a molecular landmark in primate evolution.
Collapse
Affiliation(s)
- Johannes Kopp
- Institute of Medical Genetics and Human Genetics, Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Alice Rovai
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infection Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infection Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Tomas Marques
- Institut Biologica Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jörg Langemeier
- Institut Biologica Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Simon Alexander Krooss
- Department of Gastroenterology, Hepatology, Infection Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
8
|
Han X, Xing L, Hong Y, Zhang X, Hao B, Lu JY, Huang M, Wang Z, Ma S, Zhan G, Li T, Hao X, Tao Y, Li G, Zhou S, Zheng Z, Shao W, Zeng Y, Ma D, Zhang W, Xie Z, Deng H, Yan J, Deng W, Shen X. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence. Cell Stem Cell 2024; 31:694-716.e11. [PMID: 38631356 DOI: 10.1016/j.stem.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linqing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechun Zhang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Hao
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - J Yuyang Lu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Mengyuan Huang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaoqian Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowen Hao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yibing Tao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwen Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuqin Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Zheng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yitian Zeng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dacheng Ma
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangwei Yan
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaohua Shen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
9
|
Usha Satheesan S, Chowdhury S, Kolthur-Seetharam U. Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs. Life Sci Alliance 2024; 7:e202302180. [PMID: 38408795 PMCID: PMC10897495 DOI: 10.26508/lsa.202302180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.
Collapse
Affiliation(s)
- Sandra Usha Satheesan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
10
|
Morimoto T, Nakazawa T, Maeoka R, Matsuda R, Nakamura M, Nishimura F, Yamada S, Nakagawa I, Park YS, Tsujimura T. Bulk RNA sequencing reveals the comprehensive genetic characteristics of human cord blood-derived natural killer cells. Regen Ther 2024; 25:367-376. [PMID: 38405180 PMCID: PMC10891285 DOI: 10.1016/j.reth.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Innate immune cells are important in tumor immunotherapy. Natural killer cells (NKCs) are also categorized as innate immune cells and can control tumor growth and metastatic spread. Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. NKC-based immunotherapy is a promising treatment strategy against GBM. We previously reported a feeder-free expansion system that yielded large-scale highly purified and cytotoxic NKCs derived from human cord blood (CB). In the present study, we performed comprehensive genomic analyses of NKCs generated from human CB (CBNKCs) as compared those from human peripheral blood (PB) (PBNKCs). Methods Frozen T cell-free CB mononuclear cells were cultured with recombinant human interleukin (rhIL)-18 and rhIL-2 in anti-NKp46 and anti-CD16 antibody immobilization settings. After 14-day expansion, the total RNA of the CBNKCs or PBNKCs was extracted and transcriptomic analyses was performed to determine their similarities and differences. We also examined CBNKC and PBNKC activity against a GBM cell line. Results Differential expression gene analysis revealed that some NK activating and inhibitory receptors were significantly downregulated in the CBNKCs compared to PBNKCs. Furthermore, genes related to anti-apoptosis and proliferation were upregulated in the CBNKCs. Enrichment analysis determined that the gene sets related to immune response and cytokines were enriched in the CBNKCs. Gene set enrichment analysis demonstrated that the immune response pathway was upregulated in the CBNKCs. Cytotoxic assays using impedance-based cell analyzer revealed that the CBNKCs enhanced NKC-mediated cytotoxicity on GBM cells as compared to the PBNKCs. Conclusions We demonstrated the characteristics of human CBNKCs. Cell-based therapy using the CBNKCs is promising for treating GBM.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara, 633-2221, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara, 633-2221, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
| |
Collapse
|
11
|
Takada Y, Fierro L, Sato K, Sanada T, Ishii A, Yamamoto T, Kotani T. Mature mRNA processing that deletes 3' end sequences directs translational activation and embryonic development. SCIENCE ADVANCES 2023; 9:eadg6532. [PMID: 38000026 PMCID: PMC10672166 DOI: 10.1126/sciadv.adg6532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Eggs accumulate thousands of translationally repressed mRNAs that are translated into proteins after fertilization to direct diverse developmental processes. However, molecular mechanisms underlying the translation of stored mRNAs after fertilization remain unclear. Here, we report a previously unknown RNA processing of 3' end sequences of mature mRNAs that activates the translation of stored mRNAs. Specifically, 9 to 72 nucleotides at the 3' ends of zebrafish pou5f3 and mouse Pou5f1 mRNAs were deleted in the early stages of development. Reporter assays illustrated the effective translation of the truncated forms of mRNAs. Moreover, promotion and inhibition of the shortening of 3' ends accelerated and attenuated Pou5f3 accumulation, respectively, resulting in defective development. Identification of proteins binding to unprocessed and/or processed mRNAs revealed that mRNA shortening acts as molecular switches. Comprehensive analysis revealed that >250 mRNAs underwent this processing. Therefore, our results provide a molecular principle that triggers the translational activation and directs development.
Collapse
Affiliation(s)
- Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ludivine Fierro
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Sanada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Anna Ishii
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
12
|
Kumari P, Sarovar Bhavesh N. Birth and death view of DNA, RNA, and proteins. Gene 2023; 883:147672. [PMID: 37506987 DOI: 10.1016/j.gene.2023.147672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The potential of cells to guide their genome and configure genes to express at a given time and in response to specific stimuli is pivotal to regulate cellular processes such as tissue differentiation, organogenesis, organismal development, homeostasis, and disease. In this review, we focus on the diverse mechanisms involved in DNA replication and its degradation, mRNA synthesis, and associated regulation such as RNA capping, splicing, tailing, and export. mRNA turnover including Decapping, deadenylation, RNA interference, and Nonsense mediated mRNA decay followed by protein translation, post-translational modification, and protein turnover. We highlight recent advances in understanding the complex series of molecular mechanisms responsible for the remarkable cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Pooja Kumari
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
13
|
Abruzzi KC, Ratner C, Rosbash M. Comparison of TRIBE and STAMP for identifying targets of RNA binding proteins in human and Drosophila cells. RNA (NEW YORK, N.Y.) 2023; 29:1230-1242. [PMID: 37169395 PMCID: PMC10351885 DOI: 10.1261/rna.079608.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
RNA binding proteins (RBPs) perform a myriad of functions and are implicated in numerous neurological diseases. To identify the targets of RBPs in small numbers of cells, we developed TRIBE, in which the catalytic domain of the RNA editing enzyme ADAR (ADARcd) is fused to an RBP. When the RBP binds to an mRNA, ADAR catalyzes A to G modifications in the target mRNA that can be easily identified in standard RNA sequencing. In STAMP, the concept is the same except the ADARcd is replaced by the RNA editing enzyme APOBEC. Here we compared TRIBE and STAMP side-by-side in human and Drosophila cells. The goal is to learn the pros and cons of each method so that researchers can choose the method best suited to their RBP and system. In human cells, TRIBE and STAMP were performed using the RBP TDP-43. Although they both identified TDP-43 target mRNAs, combining the two methods more successfully identified high-confidence targets. In Drosophila cells, RBP-APOBEC fusions generated only low numbers of editing sites, comparable to the level of control editing. This was true for two different RBPs, Hrp48 and Thor (Drosophila EIF4E-BP), indicating that STAMP does not work well in Drosophila.
Collapse
Affiliation(s)
- Katharine C Abruzzi
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Corrie Ratner
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
14
|
Abstract
Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.
Collapse
Affiliation(s)
- Vytautė Boreikaitė
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
15
|
Carico C, Cui J, Acton A, Placzek WJ. Polypyrimidine tract binding protein 1 (PTBP1) contains a novel regulatory sequence, the rBH3, that binds the prosurvival protein MCL1. J Biol Chem 2023; 299:104778. [PMID: 37142223 PMCID: PMC10244698 DOI: 10.1016/j.jbc.2023.104778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The maturation of RNA from its nascent transcription to ultimate utilization (e.g., translation, miR-mediated RNA silencing, etc.) involves an intricately coordinated series of biochemical reactions regulated by RNA-binding proteins (RBPs). Over the past several decades, there has been extensive effort to elucidate the biological factors that control specificity and selectivity of RNA target binding and downstream function. Polypyrimidine tract binding protein 1 (PTBP1) is an RBP that is involved in all steps of RNA maturation and serves as a key regulator of alternative splicing, and therefore, understanding its regulation is of critical biologic importance. While several mechanisms of RBP specificity have been proposed (e.g., cell-specific expression of RBPs and secondary structure of target RNA), recently, protein-protein interactions with individual domains of RBPs have been suggested to be important determinants of downstream function. Here, we demonstrate a novel binding interaction between the first RNA recognition motif 1 (RRM1) of PTBP1 and the prosurvival protein myeloid cell leukemia-1 (MCL1). Using both in silico and in vitro analyses, we demonstrate that MCL1 binds a novel regulatory sequence on RRM1. NMR spectroscopy reveals that this interaction allosterically perturbs key residues in the RNA-binding interface of RRM1 and negatively impacts RRM1 association with target RNA. Furthermore, pulldown of MCL1 by endogenous PTBP1 verifies that these proteins interact in an endogenous cellular environment, establishing the biological relevance of this binding event. Overall, our findings suggest a novel mechanism of regulation of PTBP1 in which a protein-protein interaction with a single RRM can impact RNA association.
Collapse
Affiliation(s)
- Christine Carico
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jia Cui
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
16
|
Wagner RN, Wießner M, Friedrich A, Zandanell J, Breitenbach-Koller H, Bauer JW. Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond. Int J Mol Sci 2023; 24:6101. [PMID: 37047074 PMCID: PMC10093890 DOI: 10.3390/ijms24076101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Andreas Friedrich
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
17
|
Nikolaou N, Gordon PM, Hamid F, Taylor R, Lloyd-Jones J, Makeyev EV, Houart C. Cytoplasmic pool of U1 spliceosome protein SNRNP70 shapes the axonal transcriptome and regulates motor connectivity. Curr Biol 2022; 32:5099-5115.e8. [PMID: 36384140 DOI: 10.1016/j.cub.2022.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Regulation of pre-mRNA splicing and polyadenylation plays a profound role in neurons by diversifying the proteome and modulating gene expression in response to physiological cues. Although most of the pre-mRNA processing is thought to occur in the nucleus, numerous splicing regulators are also found in neurites. Here, we show that U1-70K/SNRNP70, a component of the major spliceosome, localizes in RNA-associated granules in zebrafish axons. We identify the extra-nuclear SNRNP70 as an important regulator of motor axonal growth, nerve-dependent acetylcholine receptor (AChR) clustering, and neuromuscular synaptogenesis. This cytoplasmic pool has a protective role for a limited number of transcripts regulating their abundance and trafficking inside axons. Moreover, non-nuclear SNRNP70 regulates splice variants of transcripts such as agrin, thereby controlling synapse formation. Our results point to an unexpected, yet essential, function of non-nuclear SNRNP70 in axonal development, indicating a role of spliceosome proteins in cytoplasmic RNA metabolism during neuronal connectivity.
Collapse
Affiliation(s)
- Nikolas Nikolaou
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK; Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| | - Patricia M Gordon
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Richard Taylor
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | - Eugene V Makeyev
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
18
|
Identification of Novel mRNA Isoforms Associated with Acute Heat Stress Response Using RNA Sequencing Data in Sprague Dawley Rats. BIOLOGY 2022; 11:biology11121740. [PMID: 36552250 PMCID: PMC9774719 DOI: 10.3390/biology11121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
The molecular mechanisms underlying heat stress tolerance in animals to high temperatures remain unclear. This study identified the differentially expressed mRNA isoforms which narrowed down the most reliable DEG markers and molecular pathways that underlie the mechanisms of thermoregulation. This experiment was performed on Sprague Dawley rats housed at 22 °C (control group; CT), and three acute heat-stressed groups housed at 42 °C for 30 min (H30), 60 min (H60), and 120 min (H120). Earlier, we demonstrated that acute heat stress increased the rectal temperature of rats, caused abnormal changes in the blood biochemical parameters, as well as induced dramatic changes in the expression levels of genes through epigenetics and post-transcriptional regulation. Transcriptomic analysis using RNA-Sequencing (RNA-Seq) data obtained previously from blood (CT and H120), liver (CT, H30, H60, and H120), and adrenal glands (CT, H30, H60, and H120) was performed. The differentially expressed mRNA isoforms (DEIs) were identified and annotated by the CLC Genomics Workbench. Biological process and metabolic pathway analyses were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A total of 225, 5764, and 4988 DEIs in the blood, liver, and adrenal glands were observed. Furthermore, the number of novel differentially expressed transcript lengths with annotated genes and novel differentially expressed transcript with non-annotated genes were 136 and 8 in blood, 3549 and 120 in the liver, as well as 3078 and 220 in adrenal glands, respectively. About 35 genes were involved in the heat stress response, out of which, Dnaja1, LOC680121, Chordc1, AABR07011951.1, Hsp90aa1, Hspa1b, Cdkn1a, Hmox1, Bag3, and Dnaja4 were commonly identified in the liver and adrenal glands, suggesting that these genes may regulate heat stress response through interactions between the liver and adrenal glands. In conclusion, this study would enhance our understanding of the complex underlying mechanisms of acute heat stress, and the identified mRNA isoforms and genes can be used as potential candidates for thermotolerance selection in mammals.
Collapse
|
19
|
Hu J, Zhao H, Wang G, Sun Y, Wang L. Energy consumption and intestinal microbiome disorders of yellow catfish (Pelteobagrus fulvidraco) under cold stress. Front Physiol 2022; 13:985046. [PMID: 36176772 PMCID: PMC9513240 DOI: 10.3389/fphys.2022.985046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The yellow catfish (P. fulvidraco), as one of the economically-relevant freshwater fish found in China, cannot tolerate cold stress. Understanding the physiological and biochemical mechanisms under cold stress may provide insights for improving yellow catfish management in the cold. Therefore, we investigated the metabolic and intestinal microbiota changes in cold stress in response to induced cold stress. We found that cold stress in yellow catfish lead to a significant increase in the consumption of glucose and triglycerides, as well as increased use of cholesterol as an alternate energy source. Moreover, cold stress also activated several significant biological processes in the fish such as thermogenesis, oxidative phosphorylation, the spliceosome machinery, RNA transport, protein processing that occurs in the ER, and purine and pyrimidine metabolism pathways involved in energy production. On the other hand, many other mechanisms like insulin resistance, starch and sucrose metabolism, and the glyoxylate and dicarboxylate metabolic pathways that also served as energy production pathways were weakened. Furthermore, organic acids and their derivatives as well as the lipids and lipid-like molecules were mainly altered in cold stress; prenol lipids, steroids, and their derivatives were significantly upregulated, while fatty acyls and glycerophospholipids were significantly downregulated. Transcriptomic and metabolomic integrated analysis data revealed that carbohydrate metabolism, lipid metabolism, amino acid metabolism, and nucleotide metabolism were involved in cold stress resistance. In addition, the intestinal microbiota abundance was also reduce and the pathogenic bacteria of plesiomonas was rapidly appreciation, which suggesting that cold stress also impaired intestinal health. This research study could offer insights into winter management or the development of feed to promote cold resistance in yellow catfish.
Collapse
Affiliation(s)
- Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Junru Hu, ; Lei Wang,
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoxia Wang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuping Sun
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lei Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, China
- Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
- *Correspondence: Junru Hu, ; Lei Wang,
| |
Collapse
|
20
|
Comprehensive analysis of the circadian nuclear and cytoplasmic transcriptome in mouse liver. PLoS Genet 2022; 18:e1009903. [PMID: 35921362 PMCID: PMC9377612 DOI: 10.1371/journal.pgen.1009903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/15/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, RNA is synthesised in the nucleus, spliced, and exported to the cytoplasm where it is translated and finally degraded. Any of these steps could be subject to temporal regulation during the circadian cycle, resulting in daily fluctuations of RNA accumulation and affecting the distribution of transcripts in different subcellular compartments. Our study analysed the nuclear and cytoplasmic, poly(A) and total transcriptomes of mouse livers collected over the course of a day. These data provide a genome-wide temporal inventory of enrichment in subcellular RNA, and revealed specific signatures of splicing, nuclear export and cytoplasmic mRNA stability related to transcript and gene lengths. Combined with a mathematical model describing rhythmic RNA profiles, we could test the rhythmicity of export rates and cytoplasmic degradation rates of approximately 1400 genes. With nuclear export times usually much shorter than cytoplasmic half-lives, we found that nuclear export contributes to the modulation and generation of rhythmic profiles of 10% of the cycling nuclear mRNAs. This study contributes to a better understanding of the dynamic regulation of the transcriptome during the day-night cycle.
Collapse
|
21
|
Rodríguez-Molina JB, O'Reilly FJ, Fagarasan H, Sheekey E, Maslen S, Skehel JM, Rappsilber J, Passmore LA. Mpe1 senses the binding of pre-mRNA and controls 3' end processing by CPF. Mol Cell 2022; 82:2490-2504.e12. [PMID: 35584695 PMCID: PMC9380774 DOI: 10.1016/j.molcel.2022.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Most eukaryotic messenger RNAs (mRNAs) are processed at their 3' end by the cleavage and polyadenylation specificity factor (CPF/CPSF). CPF mediates the endonucleolytic cleavage of the pre-mRNA and addition of a polyadenosine (poly(A)) tail, which together define the 3' end of the mature transcript. The activation of CPF is highly regulated to maintain the fidelity of RNA processing. Here, using cryo-EM of yeast CPF, we show that the Mpe1 subunit directly contacts the polyadenylation signal sequence in nascent pre-mRNA. The region of Mpe1 that contacts RNA also promotes the activation of CPF endonuclease activity and controls polyadenylation. The Cft2 subunit of CPF antagonizes the RNA-stabilized configuration of Mpe1. In vivo, the depletion or mutation of Mpe1 leads to widespread defects in transcription termination by RNA polymerase II, resulting in transcription interference on neighboring genes. Together, our data suggest that Mpe1 plays a major role in accurate 3' end processing, activating CPF, and ensuring timely transcription termination.
Collapse
Affiliation(s)
| | - Francis J O'Reilly
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | | | | | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
22
|
Vijayakumar A, Park A, Steitz JA. Modulation of mRNA 3'-End Processing and Transcription Termination in Virus-Infected Cells. Front Immunol 2022; 13:828665. [PMID: 35222412 PMCID: PMC8866245 DOI: 10.3389/fimmu.2022.828665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic mRNA 3´-end processing is a multi-step process beginning with pre-mRNA transcript cleavage followed by poly(A) tail addition. Closely coupled to transcription termination, 3´-end processing is a critical step in the regulation of gene expression, and disruption of 3´-end processing is known to affect mature mRNA levels. Various viral proteins interfere with the 3´-end processing machinery, causing read-through transcription and altered levels of mature transcripts through inhibition of cleavage and polyadenylation. Thus, disruption of 3´-end processing contributes to widespread host shutoff, including suppression of the antiviral response. Additionally, observed features of read-through transcripts such as decreased polyadenylation, nuclear retention, and decreased translation suggest that viruses may utilize these mechanisms to modulate host protein production and dominate cellular machinery. The degree to which the effects of read-through transcript production are harnessed by viruses and host cells remains unclear, but existing research highlights the importance of host 3´-end processing modulation during viral infection.
Collapse
Affiliation(s)
- Aarthi Vijayakumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Annsea Park
- Department of Immunobiology, Yale University, New Haven, CT, United States
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
23
|
Sagae T, Yokogawa M, Sawazaki R, Ishii Y, Hosoda N, Hoshino SI, Imai S, Shimada I, Osawa M. Paip2A inhibits translation by competitively binding to the RNA recognition motifs of PABPC1 and promoting its dissociation from the poly(A) tail. J Biol Chem 2022; 298:101844. [PMID: 35307347 PMCID: PMC9019252 DOI: 10.1016/j.jbc.2022.101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic mRNAs possess a poly(A) tail at their 3′-end, to which poly(A)-binding protein C1 (PABPC1) binds and recruits other proteins that regulate translation. Enhanced poly(A)-dependent translation, which is also PABPC1 dependent, promotes cellular and viral proliferation. PABP-interacting protein 2A (Paip2A) effectively represses poly(A)-dependent translation by causing the dissociation of PABPC1 from the poly(A) tail; however, the underlying mechanism remains unknown. This study was conducted to investigate the functional mechanisms of Paip2A action by characterizing the PABPC1–poly(A) and PABPC1–Paip2A interactions. Isothermal titration calorimetry and NMR analyses indicated that both interactions predominantly occurred at the RNA recognition motif (RRM)2–RRM3 regions of PABPC1, which have comparable affinities for poly(A) and Paip2A (dissociation constant, Kd = 1 nM). However, the Kd values of isolated RRM2 were 200 and 4 μM in their interactions with poly(A) and Paip2A, respectively; Kd values of 5 and 1 μM were observed for the interactions of isolated RRM3 with poly(A) and Paip2A, respectively. NMR analyses also revealed that Paip2A can bind to the poly(A)-binding interfaces of the RRM2 and RRM3 regions of PABPC1. Based on these results, we propose the following functional mechanism for Paip2A: Paip2A initially binds to the RRM2 region of poly(A)-bound PABPC1, and RRM2-anchored Paip2A effectively displaces the RRM3 region from poly(A), resulting in dissociation of the whole PABPC1 molecule. Together, our findings provide insight into the translation repression effect of Paip2A and may aid in the development of novel anticancer and/or antiviral drugs.
Collapse
Affiliation(s)
- Takeru Sagae
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Ryoichi Sawazaki
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Yuichiro Ishii
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Nao Hosoda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Shin-Ichi Hoshino
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Center for Biosystems Dynamics Research, RIKEN, Tsurumi-ku, Yokohama, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Center for Biosystems Dynamics Research, RIKEN, Tsurumi-ku, Yokohama, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan.
| |
Collapse
|
24
|
Tong J, Zhang W, Chen Y, Yuan Q, Qin NN, Qu G. The Emerging Role of RNA Modifications in the Regulation of Antiviral Innate Immunity. Front Microbiol 2022; 13:845625. [PMID: 35185855 PMCID: PMC8851159 DOI: 10.3389/fmicb.2022.845625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Posttranscriptional modifications have been implicated in regulation of nearly all biological aspects of cellular RNAs, from stability, translation, splicing, nuclear export to localization. Chemical modifications also have been revealed for virus derived RNAs several decades before, along with the potential of their regulatory roles in virus infection. Due to the dynamic changes of RNA modifications during virus infection, illustrating the mechanisms of RNA epigenetic regulations remains a challenge. Nevertheless, many studies have indicated that these RNA epigenetic marks may directly regulate virus infection through antiviral innate immune responses. The present review summarizes the impacts of important epigenetic marks on viral RNAs, including N6-methyladenosine (m6A), 5-methylcytidine (m5C), 2ʹ-O-methylation (2ʹ-O-Methyl), and a few uncanonical nucleotides (A-to-I editing, pseudouridine), on antiviral innate immunity and relevant signaling pathways, while highlighting the significance of antiviral innate immune responses during virus infection.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuran Chen
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Qiaoling Yuan
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Ning-Ning Qin
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guosheng Qu
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
25
|
Cabrera-Orefice A, Potter A, Evers F, Hevler JF, Guerrero-Castillo S. Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease. Front Cell Dev Biol 2022; 9:796128. [PMID: 35096826 PMCID: PMC8790184 DOI: 10.3389/fcell.2021.796128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alisa Potter
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, Utrecht, Netherlands.,Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, Netherlands.,Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Boreikaite V, Elliott TS, Chin JW, Passmore LA. RBBP6 activates the pre-mRNA 3' end processing machinery in humans. Genes Dev 2022; 36:210-224. [PMID: 35177536 PMCID: PMC8887125 DOI: 10.1101/gad.349223.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
3' end processing of most human mRNAs is carried out by the cleavage and polyadenylation specificity factor (CPSF; CPF in yeast). Endonucleolytic cleavage of the nascent pre-mRNA defines the 3' end of the mature transcript, which is important for mRNA localization, translation, and stability. Cleavage must therefore be tightly regulated. Here, we reconstituted specific and efficient 3' endonuclease activity of human CPSF with purified proteins. This required the seven-subunit CPSF as well as three additional protein factors: cleavage stimulatory factor (CStF), cleavage factor IIm (CFIIm), and, importantly, the multidomain protein RBBP6. Unlike its yeast homolog Mpe1, which is a stable subunit of CPF, RBBP6 does not copurify with CPSF and is recruited in an RNA-dependent manner. Sequence and mutational analyses suggest that RBBP6 interacts with the WDR33 and CPSF73 subunits of CPSF. Thus, it is likely that the role of RBBP6 is conserved from yeast to humans. Overall, our data are consistent with CPSF endonuclease activation and site-specific pre-mRNA cleavage being highly controlled to maintain fidelity in mRNA processing.
Collapse
Affiliation(s)
- Vytaute Boreikaite
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
27
|
Hindle A, Bose C, Lee J, Palade PT, Peterson CJ, Reddy PH, Awasthi S, Singh SP. Rlip Depletion Alters Oncogene Transcription at Multiple Distinct Regulatory Levels. Cancers (Basel) 2022; 14:cancers14030527. [PMID: 35158795 PMCID: PMC8833773 DOI: 10.3390/cancers14030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Rlip76 is a multifunctional membrane protein that facilitates cancer growth, and its depletion kills cancer cells. We recently found that Rlip depletion also results in broad changes to oncogene and tumor suppressor transcription. The present studies were designed to decipher the unknown downstream signaling pathways and transcriptional regulatory mechanisms driving the effect. Building on prior findings that Rlip depletion induces broad methylomic changes, we found using bioluminescence reporter assays that depletion of Rlip also exerts transcriptional control over several cancer genes through methylation-independent changes in transcription factor-mediated activation of their promoter regions and through additional as yet unidentified mechanisms. These findings have important implications for Rlip-targeted cancer therapy. Abstract Rlip76 (Rlip) is a multifunctional membrane protein that facilitates the high metabolic rates of cancer cells through the efflux of toxic metabolites and other functions. Rlip inhibition or depletion results in broad-spectrum anti-cancer effects in vitro and in vivo. Rlip depletion effectively suppresses malignancy and causes global reversion of characteristic CpG island methylomic and transcriptomic aberrations in the p53-null mouse model of spontaneous carcinogenesis through incompletely defined signaling and transcriptomic mechanisms. The methylome and transcriptome are normally regulated by the concerted actions of several mechanisms that include chromatin remodeling, promoter methylation, transcription factor interactions, and miRNAs. The present studies investigated the interaction of Rlip depletion or inhibition with the promoter methylation and transcription of selected cancer-related genes identified as being affected by Rlip depletion in our previous studies. We constructed novel promoter CpG island/luciferase reporter plasmids that respond only to CpG methylation and transcription factors. We found that Rlip depletion regulated expression by a transcription factor-based mechanism that functioned independently of promoter CpG methylation, lipid peroxidation, and p53 status.
Collapse
Affiliation(s)
- Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - Jihyun Lee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Christopher J. Peterson
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- UMC Cancer Center, UMC Health System, Lubbock, TX 79415, USA
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-806-743-3543 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (C.B.); (J.L.); (C.J.P.); (P.H.R.)
- Division of Hematology & Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-806-743-3543 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
28
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
29
|
Wu CF, Aoki N, Takeshita N, Fukuhara T, Chiura HX, Arie T, Kotta-Loizou I, Okada R, Komatsu K, Moriyama H. Unique Terminal Regions and Specific Deletions of the Segmented Double-Stranded RNA Genome of Alternaria Alternata Virus 1, in the Proposed Family Alternaviridae. Front Microbiol 2021; 12:773062. [PMID: 34745080 PMCID: PMC8570381 DOI: 10.3389/fmicb.2021.773062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Alternaria alternata virus 1 (AaV1) has been identified in the saprophytic fungus Alternaria alternata strain EGS 35-193. AaV1 has four genomic double-stranded (ds)RNA segments (dsRNA1-4) packaged in isometric particles. The 3' end of each coding strand is polyadenylated (36-50nt), but the presence of a cap structure at each 5' end has not previously been investigated. Here, we have characterized the AaV1 genome and found that it has unique features among the mycoviruses. We confirmed the existence of cap structures on the 5' ends of the AaV1 genomic dsRNAs using RNA dot blots with anti-cap antibodies and the oligo-capping method. Polyclonal antibodies against purified AaV1 particles specifically bound to an 82kDa protein, suggesting that this protein is the major capsid component. Subsequent Edman degradation indicated that the AaV1 dsRNA3 segment encodes the major coat protein. Two kinds of defective AaV1 dsRNA2, which is 2,794bp (844 aa) in length when intact, appeared in EGS 35-193 during subculturing, as confirmed by RT-PCR and northern hybridization. Sequence analysis revealed that one of the two defective dsRNA2s contained a 231bp deletion, while the other carried both the 231bp deletion and an additional 465bp deletion in the open reading frame. Both deletions occurred in-frame, resulting in predicted proteins of 767 aa and 612 aa. The fungal isolates carrying virions with the defective dsRNA2s showed impaired growth and abnormal pigmentation. To our best knowledge, AaV1 is the first dsRNA virus to be identified with both 5' cap and 3'poly(A) structures on its genomic segments, as well as the specific deletions of dsRNA2.
Collapse
Affiliation(s)
- Chien-Fu Wu
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Nanako Aoki
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Naoki Takeshita
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiroshi X Chiura
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Ryo Okada
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
30
|
Kumar A, Yu CWH, Rodríguez-Molina JB, Li XH, Freund SMV, Passmore LA. Dynamics in Fip1 regulate eukaryotic mRNA 3' end processing. Genes Dev 2021; 35:1510-1526. [PMID: 34593603 PMCID: PMC8559680 DOI: 10.1101/gad.348671.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023]
Abstract
In this study, Kumar et al. characterized the structure–function relationship of the essential poly(A) factor Fip1. Using in vitro reconstitution and structural studies, the authors report that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation. Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3′ end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3′ end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation.
Collapse
Affiliation(s)
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
31
|
Thompson MG, Sacco MT, Horner SM. How RNA modifications regulate the antiviral response. Immunol Rev 2021; 304:169-180. [PMID: 34405413 PMCID: PMC8616813 DOI: 10.1111/imr.13020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022]
Abstract
Induction of the antiviral innate immune response is highly regulated at the RNA level, particularly by RNA modifications. Recent discoveries have revealed how RNA modifications play key roles in cellular surveillance of nucleic acids and in controlling gene expression in response to viral infection. These modifications have emerged as being essential for a functional antiviral response and maintaining cellular homeostasis. In this review, we will highlight these and other discoveries that describe how the antiviral response is controlled by modifications to both viral and cellular RNA, focusing on how mRNA cap modifications, N6-methyladenosine, and RNA editing all contribute to coordinating an efficient response that properly controls viral infection.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Matthew T Sacco
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Stacy M Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
32
|
Wang S, Xie X, Li C, Jia J, Chen C. Integrative network analysis of N 6 methylation-related genes reveal potential therapeutic targets for spinal cord injury. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8174-8187. [PMID: 34814294 DOI: 10.3934/mbe.2021405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The diagnosis of the severity of spinal cord injury (SCI) and the revelation of potential therapeutic targets are crucial for urgent clinical care and improved patient outcomes. Here, we analyzed the overall gene expression data in peripheral blood leukocytes during the acute injury phase collected from Gene Expression Omnibus (GEO) and identified six m6A regulators specifically expressed in SCI compared to normal samples. LncRNA-mRNA network analysis identified AKT2/3 and PIK3R1 related to m6A methylation as potential therapeutic targets for SCI and constructed a classifier to identify patients of SCI to assist clinical diagnosis. Moreover, FTO (eraser) and RBMX (reader) were found to be significantly down-regulated in SCI and the functional gene co-expressed with them was found to be involved in the signal transduction of multiple pathways related to nerve injury. Through the construction of the drug-target gene network, eight key genes were identified as drug targets and it was emphasized that fostamatinib can be used as a potential drug for the treatment of SCI. Taken together, our study characterized the pathogenesis and identified a potential therapeutic target of SCI providing theoretical support for the development of precision medicine.
Collapse
Affiliation(s)
- Shanzheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Xinhui Xie
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Chao Li
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Jun Jia
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force, PLA, 101 Xingyuan North Road, Wuxi 214000, China
| | - Changhong Chen
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Middle Road, Jiangyin 214400, China
| |
Collapse
|
33
|
Perez-Borrajero C, Podvalnaya N, Holleis K, Lichtenberger R, Karaulanov E, Simon B, Basquin J, Hennig J, Ketting RF, Falk S. Structural basis of PETISCO complex assembly during piRNA biogenesis in C. elegans. Genes Dev 2021; 35:1304-1323. [PMID: 34413138 PMCID: PMC8415317 DOI: 10.1101/gad.348648.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
In this study, Perez-Borrajero et al. set out to characterize PETISCO architecture and its interaction with RNA, together with its effector proteins TOST-1 and PID-1. Using biochemical and structural biology approaches, the authors found that PETISCO forms a dimer of tetramers, in which dimerization is mediated by both PID-3 and ERH-2. Crystal structures of the PID- 3/TOFU-6 and ERH-2/PID-3 subcomplexes reveal insights into PETISCO assembly, function, and subcellular localization. Using NMR spectroscopy, the authors also characterize the mutually exclusive interplay of ERH-2 with the two effector proteins TOST-1 and PID-1. Piwi-interacting RNAs (piRNAs) constitute a class of small RNAs that bind PIWI proteins and are essential to repress transposable elements in the animal germline, thereby promoting genome stability and maintaining fertility. C. elegans piRNAs (21U RNAs) are transcribed individually from minigenes as precursors that require 5′ and 3′ processing. This process depends on the PETISCO complex, consisting of four proteins: IFE-3, TOFU-6, PID-3, and ERH-2. We used biochemical and structural biology approaches to characterize the PETISCO architecture and its interaction with RNA, together with its effector proteins TOST-1 and PID-1. These two proteins define different PETISCO functions: PID-1 governs 21U processing, whereas TOST-1 links PETISCO to an unknown process essential for early embryogenesis. Here, we show that PETISCO forms an octameric assembly with each subunit present in two copies. Determination of structures of the TOFU-6/PID-3 and PID-3/ERH-2 subcomplexes, supported by in vivo studies of subunit interaction mutants, allows us to propose a model for the formation of the TOFU-6/PID-3/ERH-2 core complex and its functionality in germ cells and early embryos. Using NMR spectroscopy, we demonstrate that TOST-1 and PID-1 bind to a common surface on ERH-2, located opposite its PID-3 binding site, explaining how PETISCO can mediate different cellular roles.
Collapse
Affiliation(s)
- Cecilia Perez-Borrajero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Nadezda Podvalnaya
- Biology of Noncoding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany.,International PhD Programme on Gene Regulation, Epigenetics and Genome Stability, 55099 Mainz, Germany
| | - Kay Holleis
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Raffael Lichtenberger
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Emil Karaulanov
- Bioinformatics Core Facility, Institute of Molecular Biology, 55099 Mainz, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - René F Ketting
- Biology of Noncoding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany.,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
34
|
Wood S, Willbanks A, Cheng JX. The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Curr Cancer Drug Targets 2021; 21:326-352. [PMID: 33504307 DOI: 10.2174/1568009621666210127092828] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5' cap N7-methylguanosine (m7G) and 2'-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Shaun Wood
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Amber Willbanks
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| | - Jason X Cheng
- Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL60637, United States
| |
Collapse
|
35
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
36
|
Human retroviral antisense mRNAs are retained in the nuclei of infected cells for viral persistence. Proc Natl Acad Sci U S A 2021; 118:2014783118. [PMID: 33875584 DOI: 10.1073/pnas.2014783118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human retroviruses, including human T cell leukemia virus type 1 (HTLV-1) and HIV type 1 (HIV-1), encode an antisense gene in the negative strand of the provirus. Besides coding for proteins, the messenger RNAs (mRNAs) of retroviral antisense genes have also been found to regulate transcription directly. Thus, it has been proposed that retroviruses likely localize their antisense mRNAs to the nucleus in order to regulate nuclear events; however, this opposes the coding function of retroviral antisense mRNAs that requires a cytoplasmic localization for protein translation. Here, we provide direct evidence that retroviral antisense mRNAs are localized predominantly in the nuclei of infected cells. The retroviral 3' LTR induces inefficient polyadenylation and nuclear retention of antisense mRNA. We further reveal that retroviral antisense RNAs retained in the nucleus associate with chromatin and have transcriptional regulatory function. While HTLV-1 antisense mRNA is recruited to the promoter of C-C chemokine receptor type 4 (CCR4) and enhances transcription from it to support the proliferation of HTLV-1-infected cells, HIV-1 antisense mRNA is recruited to the viral LTR and inhibits sense mRNA expression to maintain the latency of HIV-1 infection. In summary, retroviral antisense mRNAs are retained in nucleus, act like long noncoding RNAs instead of mRNAs, and contribute to viral persistence.
Collapse
|
37
|
Ramli S, Sim MS, Guad RM, Gopinath SCB, Subramaniyan V, Fuloria S, Fuloria NK, Choy KW, Rana S, Wu YS. Long Noncoding RNA UCA1 in Gastrointestinal Cancers: Molecular Regulatory Roles and Patterns, Mechanisms, and Interactions. JOURNAL OF ONCOLOGY 2021; 2021:5519720. [PMID: 33936199 PMCID: PMC8055404 DOI: 10.1155/2021/5519720] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023]
Abstract
The rising trend of gastrointestinal (GI) cancer has become a global burden due to its aggressive nature and poor prognosis. Long noncoding RNAs (lncRNAs) have recently been reported to be overexpressed in different GI cancers and may contribute to cancer progression and chemoresistance. They are featured with more than 200 nucleotides, commonly polyadenylated, and lacking an open reading frame. LncRNAs, particularly urothelial carcinoma-associated 1 (UCA1), are oncogenes involved in regulating cancer progression, such as cell proliferation, invasion, migration, and chemoresistance, particularly in GI cancer. This review was aimed to present an updated focus on the molecular regulatory roles and patterns of lncRNA UCA1 in progression and chemoresistance of different GI cancers, as well as deciphering the underlying mechanisms and its interactions with key molecules involved, together with a brief presentation on its diagnostic and prognostic values. The regulatory roles of lncRNA UCA1 are implicated in esophageal cancer, gastric cancer, pancreatic cancer, hepatobiliary cancer, and colorectal cancer, where they shared similar molecular mechanisms in regulating cancer phenotypes and chemoresistance. Comparatively, gastric cancer is the most intensively studied type in GI cancer. LncRNA UCA1 is implicated in biological roles of different GI cancers via interactions with various molecules, particularly microRNAs, and signaling pathways. In conclusion, lncRNA UCA1 is a potential molecular target for GI cancer, which may lead to the development of a novel chemotherapeutic agent. Hence, it also acts as a potential diagnostic and prognostic marker for GI cancer patients.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rhanye M. Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Subash C. B Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Neeraj K. Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Sungai Buloh 47000, Selangor, Malaysia
| | - Sohel Rana
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore-7400, Bangladesh
| | - Yuan Seng Wu
- Department of Biochemistry, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| |
Collapse
|
38
|
Burjoski V, Reddy ASN. The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status. Int J Mol Sci 2021; 22:2845. [PMID: 33799602 PMCID: PMC7999938 DOI: 10.3390/ijms22062845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
RNAs transmit information from DNA to encode proteins that perform all cellular processes and regulate gene expression in multiple ways. From the time of synthesis to degradation, RNA molecules are associated with proteins called RNA-binding proteins (RBPs). The RBPs play diverse roles in many aspects of gene expression including pre-mRNA processing and post-transcriptional and translational regulation. In the last decade, the application of modern techniques to identify RNA-protein interactions with individual proteins, RNAs, and the whole transcriptome has led to the discovery of a hidden landscape of these interactions in plants. Global approaches such as RNA interactome capture (RIC) to identify proteins that bind protein-coding transcripts have led to the identification of close to 2000 putative RBPs in plants. Interestingly, many of these were found to be metabolic enzymes with no known canonical RNA-binding domains. Here, we review the methods used to analyze RNA-protein interactions in plants thus far and highlight the understanding of plant RNA-protein interactions these techniques have provided us. We also review some recent protein-centric, RNA-centric, and global approaches developed with non-plant systems and discuss their potential application to plants. We also provide an overview of results from classical studies of RNA-protein interaction in plants and discuss the significance of the increasingly evident ubiquity of RNA-protein interactions for the study of gene regulation and RNA biology in plants.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
39
|
Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomed Pharmacother 2021; 137:111376. [PMID: 33588266 DOI: 10.1016/j.biopha.2021.111376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, especially in developing countries. To date, several approaches have been proposed for the prevention and treatment of CVDs. However, the increased risk of developing cardiovascular events that result in hospitalization has become a growing public health concern. The pathogenesis of CVDs has been analyzed from various perspectives. Recent data suggest that regulatory RNAs play a multidimensional role in the development of CVDs. Studies have identified several mRNA modifications that have contributed to the functional characterization of various cardiac diseases. RNA methylation, such as N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, N7-methylguanosine, N4-acetylcytidine, and 2'-O-methylation are novel epigenetic modifications that affect the regulation of cell growth, immunity, DNA damage, calcium signaling, apoptosis, and aging in cardiomyocytes. In this review, we summarize the role of RNA methylation in the pathophysiology of CVDs and the potential of using epigenetics to treat such disorders.
Collapse
|
40
|
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021; 220:e202009045. [PMID: 33464299 PMCID: PMC7816648 DOI: 10.1083/jcb.202009045] [Citation(s) in RCA: 911] [Impact Index Per Article: 227.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Subcellular localization of RNAs has gained attention in recent years as a prevalent phenomenon that influences numerous cellular processes. This is also evident for the large and relatively novel class of long noncoding RNAs (lncRNAs). Because lncRNAs are defined as RNA transcripts >200 nucleotides that do not encode protein, they are themselves the functional units, making their subcellular localization critical to their function. The discovery of tens of thousands of lncRNAs and the cumulative evidence involving them in almost every cellular activity render assessment of their subcellular localization essential to fully understanding their biology. In this review, we summarize current knowledge of lncRNA subcellular localization, factors controlling their localization, emerging themes, including the role of lncRNA isoforms and the involvement of lncRNAs in phase separation bodies, and the implications of lncRNA localization on their function and on cellular behavior. We also discuss gaps in the current knowledge as well as opportunities that these provide for novel avenues of investigation.
Collapse
Affiliation(s)
| | | | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
41
|
Parada GE, Munita R, Georgakopoulos-Soares I, Fernandes HJR, Kedlian VR, Metzakopian E, Andres ME, Miska EA, Hemberg M. MicroExonator enables systematic discovery and quantification of microexons across mouse embryonic development. Genome Biol 2021; 22:43. [PMID: 33482885 PMCID: PMC7821500 DOI: 10.1186/s13059-020-02246-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microexons, exons that are ≤ 30 nucleotides, are a highly conserved and dynamically regulated set of cassette exons. They have key roles in nervous system development and function, as evidenced by recent results demonstrating the impact of microexons on behaviour and cognition. However, microexons are often overlooked due to the difficulty of detecting them using standard RNA-seq aligners. RESULTS Here, we present MicroExonator, a novel pipeline for reproducible de novo discovery and quantification of microexons. We process 289 RNA-seq datasets from eighteen mouse tissues corresponding to nine embryonic and postnatal stages, providing the most comprehensive survey of microexons available for mice. We detect 2984 microexons, 332 of which are differentially spliced throughout mouse embryonic brain development, including 29 that are not present in mouse transcript annotation databases. Unsupervised clustering of microexons based on their inclusion patterns segregates brain tissues by developmental time, and further analysis suggests a key function for microexons in axon growth and synapse formation. Finally, we analyse single-cell RNA-seq data from the mouse visual cortex, and for the first time, we report differential inclusion between neuronal subpopulations, suggesting that some microexons could be cell type-specific. CONCLUSIONS MicroExonator facilitates the investigation of microexons in transcriptome studies, particularly when analysing large volumes of data. As a proof of principle, we use MicroExonator to analyse a large collection of both mouse bulk and single-cell RNA-seq datasets. The analyses enabled the discovery of previously uncharacterized microexons, and our study provides a comprehensive microexon inclusion catalogue during mouse development.
Collapse
Affiliation(s)
- Guillermo E Parada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Roberto Munita
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ilias Georgakopoulos-Soares
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Hugo J R Fernandes
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Maria Estela Andres
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eric A Miska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| |
Collapse
|
42
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
43
|
Mechanisms of Long Noncoding RNA Nuclear Retention. Trends Biochem Sci 2020; 45:947-960. [DOI: 10.1016/j.tibs.2020.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
44
|
Adams RL, Wente SR. Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability. PLoS Genet 2020; 16:e1009033. [PMID: 33002012 PMCID: PMC7553267 DOI: 10.1371/journal.pgen.1009033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/13/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023] Open
Abstract
In Saccharomyces cerevisiae, the mRNA export receptor Mex67 is recruited to mature nuclear transcripts to mediate mRNA export through the nuclear pore complex (NPC) to the cytoplasm. Mex67 binds transcripts through adaptor proteins such as the poly(A) binding protein Nab2. When a transcript reaches the cytoplasmic face of the NPC, the DEAD-box protein Dbp5 acts to induce a local structural change to release Nab2 and Mex67 in an essential process termed mRNP remodeling. It is unknown how certain proteins (Nab2, Mex67) are released during Dbp5-mediated mRNP remodeling, whereas others remain associated. Here, we demonstrate that Dbp5 associates in close proximity with Mex67 and Nab2 in a cellular complex. Further, fusion of Dbp5 to Nup159 anchors Dbp5 at the cytoplasmic face of the NPC and is sufficient for cell viability. Thus, we speculate that the essential role of Dbp5 in remodeling exporting mRNPs requires its localization to the NPC and is separable from other subcellular functions of Dbp5. This work supports a model where the diverse nuclear, cytoplasmic and NPC functions of Dbp5 in the mRNA lifecycle are not interdependent and that Dbp5 is locally recruited through complex protein-protein interactions to select regions of transcripts for specific removal of transport proteins at the NPC.
Collapse
Affiliation(s)
- Rebecca L. Adams
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Susan R. Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
45
|
Liang XH, Nichols JG, De Hoyos CL, Crooke ST. Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity. Nucleic Acids Res 2020; 48:9840-9858. [PMID: 32870273 PMCID: PMC7515700 DOI: 10.1093/nar/gkaa715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023] Open
Abstract
Antisense oligonucleotide (ASO) drugs that trigger RNase H1 cleavage of target RNAs have been developed to treat various diseases. Basic pharmacological principles suggest that the development of tolerance is a common response to pharmacological interventions. In this manuscript, for the first time we report a molecular mechanism of tolerance that occurs with some ASOs. Two observations stimulated our interest: some RNA targets are difficult to reduce with RNase H1 activating ASOs and some ASOs display a shorter duration of activity than the prolonged target reduction typically observed. We found that certain ASOs targeting the coding region of some mRNAs that initially reduce target mRNAs can surprisingly increase the levels of the corresponding pre-mRNAs. The increase in pre-mRNA is delayed and due to enhanced transcription and likely also slower processing. This process requires that the ASOs bind in the coding region and reduce the target mRNA by RNase H1 while the mRNA resides in the ribosomes. The pre-mRNA increase is dependent on UPF3A and independent of the NMD pathway or the XRN1-CNOT pathway. The response is consistent in multiple cell lines and independent of the methods used to introduce ASOs into cells.
Collapse
Affiliation(s)
- Xue-hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cheryl L De Hoyos
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
46
|
Yamamoto KA, Blackburn K, Migowski E, Goshe MB, Brown DT, Ferreira DF, Soares MR. Quantitative proteomic analysis of the tizoxanide effect in vero cells. Sci Rep 2020; 10:14733. [PMID: 32895447 PMCID: PMC7477200 DOI: 10.1038/s41598-020-71634-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Nitazoxanide (NTZ) is effective against helminths and numerous microorganisms, including bacteria and viruses. In vivo, NTZ is metabolized into Tizoxanide (TIZ), which is the active circulating metabolite. With the emergence of SARS-Cov-2 as a Pandemic agent, NTZ became one of the molecules already approved for human use to engage clinical trials, due to results in vitro showing that NTZ was highly effective against the SARS-Cov-2, agent of COVID-19. There are currently several ongoing clinical trials mainly in the USA and Brazil involving NTZ due not only to the in vitro results, but also for its long-known safety. Here, we study the response of Vero cells to TIZ treatment and unveil possible mechanisms for its antimicrobial effect, using a label-free proteomic approach (LC/MS/MS) analysis to compare the proteomic profile between untreated- and TIZ-treated cells. Fifteen differentially expressed proteins were observed related to various biological processes, including translation, intracellular trafficking, RNA processing and modification, and signal transduction. The broad antimicrobial range of TIZ points towards its overall effect in lowering cell metabolism and RNA processing and modification. The decreased levels of FASN, HNRNPH and HNRNPK with the treatment appear to be important for antiviral activity.
Collapse
Affiliation(s)
- K A Yamamoto
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Caixa Postal 68563, Rio de Janeiro, RJ, 21941-909, Brazil
| | - K Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - E Migowski
- Institute of Pediatrics and Puericulture Martagão Gesteira, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - D T Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - D F Ferreira
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA.,Department of Virology, Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M R Soares
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Caixa Postal 68563, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
47
|
Chen ZH, Chen TQ, Zeng ZC, Wang D, Han C, Sun YM, Huang W, Sun LY, Fang K, Chen YQ, Luo XQ, Wang WT. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death Dis 2020; 11:566. [PMID: 32703936 PMCID: PMC7378249 DOI: 10.1038/s41419-020-02795-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Aberrant chromosomal translocations leading to tumorigenesis have been ascribed to the heterogeneously oncogenic functions. However, how fusion transcripts exporting remains to be declared. Here, we showed that the nuclear speckle-specific long noncoding RNA MALAT1 controls chimeric mRNA export processes and regulates myeloid progenitor cell differentiation in malignant hematopoiesis. We demonstrated that MALAT1 regulates chimeric mRNAs export in an m6A-dependent manner and thus controls hematopoietic cell differentiation. Specifically, reducing MALAT1 or m6A methyltransferases and the 'reader' YTHDC1 result in the universal retention of distinct oncogenic gene mRNAs in nucleus. Mechanically, MALAT1 hijacks both the chimeric mRNAs and fusion proteins in nuclear speckles during chromosomal translocations and mediates the colocalization of oncogenic fusion proteins with METTL14. MALAT1 and fusion protein complexes serve as a functional loading bridge for the interaction of chimeric mRNA and METTL14. This study demonstrated a universal mechanism of chimeric mRNA transport that involves lncRNA-fusion protein-m6A autoregulatory loop for controlling myeloid cell differentiation. Targeting the lncRNA-triggered autoregulatory loop to disrupt chimeric mRNA transport might represent a new common paradigm for treating blood malignancies.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xue-Qun Luo
- The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
48
|
Jara-Espejo M, Fleming AM, Burrows CJ. Potential G-Quadruplex Forming Sequences and N6-Methyladenosine Colocalize at Human Pre-mRNA Intron Splice Sites. ACS Chem Biol 2020; 15:1292-1300. [PMID: 32396327 PMCID: PMC7309266 DOI: 10.1021/acschembio.0c00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maturation of mRNA in humans involves modifying the 5' and 3' ends, splicing introns, and installing epitranscriptomic modifications that are essential for mRNA biogenesis. With respect to epitranscriptomic modifications, they are usually installed in specific consensus motifs, although not all sequences are modified suggesting a secondary structural component to site selection. Using bioinformatic analysis of published data, we identify in human mature-mRNA that potential RNA G-quadruplex (rG4) sequences colocalize with the epitranscriptomic modifications N6-methyladenosine (m6A), pseudouridine (Ψ), and inosine (I). Using the only available pre-mRNA data sets from the literature, we demonstrate colocalization of potential rG4s and m6A was greatest overall and occurred in introns near 5' and 3' splice sites. The loop lengths and sequence context of the m6A-bearing potential rG4s exhibited short loops most commonly comprised of single A nucleotides. This observation is consistent with a literature report of intronic m6A found in SAG (S = C or G) consensus motifs that are also recognized by splicing factors. The localization of m6A and potential rG4s in pre-mRNA at intron splice junctions suggests that these features could function together in alternative splicing. A similar analysis for potential rG4s around sites of Ψ installation or A-to-I editing in mRNA also found a colocalization; however, the frequency was less than that observed with m6A. These bioinformatic analyses guide a discussion of future experiments to understand how noncanonical rG4 structures may collaborate with epitranscriptomic modifications in the human cellular context to impact cellular phenotype.
Collapse
Affiliation(s)
- Manuel Jara-Espejo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
- Department of Morphology, Piracicaba Dental School, University of Campinas-UNICAMP, Av. Limeira 901, Piracicaba, CEP 13414-018 Sao Paulo, Brazil
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
49
|
Gene Architecture and Sequence Composition Underpin Selective Dependency of Nuclear Export of Long RNAs on NXF1 and the TREX Complex. Mol Cell 2020; 79:251-267.e6. [PMID: 32504555 DOI: 10.1016/j.molcel.2020.05.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
The core components of the nuclear RNA export pathway are thought to be required for export of virtually all polyadenylated RNAs. Here, we depleted different proteins that act in nuclear export in human cells and quantified the transcriptome-wide consequences on RNA localization. Different genes exhibited substantially variable sensitivities, with depletion of NXF1 and TREX components causing some transcripts to become strongly retained in the nucleus while others were not affected. Specifically, NXF1 is preferentially required for export of single- or few-exon transcripts with long exons or high A/U content, whereas depletion of TREX complex components preferentially affects spliced and G/C-rich transcripts. Using massively parallel reporter assays, we identified short sequence elements that render transcripts dependent on NXF1 for their export and identified synergistic effects of splicing and NXF1. These results revise the current model of how nuclear export shapes the distribution of RNA within human cells.
Collapse
|
50
|
Zhang H, Brown RD, Stenmark KR, Hu CJ. RNA-Binding Proteins in Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21113757. [PMID: 32466553 PMCID: PMC7312837 DOI: 10.3390/ijms21113757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by significant vascular remodeling and aberrant expression of genes involved in inflammation, apoptosis resistance, proliferation, and metabolism. Effective therapeutic strategies are limited, as mechanisms underlying PH pathophysiology, especially abnormal expression of genes, remain unclear. Most PH studies on gene expression have focused on gene transcription. However, post-transcriptional alterations have been shown to play a critical role in inflammation and metabolic changes in diseases such as cancer and systemic cardiovascular diseases. In these diseases, RNA-binding proteins (RBPs) have been recognized as important regulators of aberrant gene expression via post-transcriptional regulation; however, their role in PH is less clear. Identifying RBPs in PH is of great importance to better understand PH pathophysiology and to identify new targets for PH treatment. In this manuscript, we review the current knowledge on the role of dysregulated RBPs in abnormal mRNA gene expression as well as aberrant non-coding RNA processing and expression (e.g., miRNAs) in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4576; Fax: +1-303-724-4580
| |
Collapse
|