1
|
Mirvis M, Weingard B, Goodman SN, Marshall WF. A scoping study of the whole-cell imaging literature: a foundational corpus, potential for mesoscale data synthesis, and implications for standardization of an emerging field. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636363. [PMID: 39975100 PMCID: PMC11838562 DOI: 10.1101/2025.02.03.636363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The level of cellular organization bridging the mesoscale and whole-cell scale is coming into focus as a new frontier in cell biology. Great progress has been made in unraveling the complex physical and functional interconnectivity of organelles, but how the entire organelle network is spatially arranged within the cytoplasm is only beginning to be explored. Drawing on cross-disciplinary research synthesis methods, we systematically curated the whole-cell volumetric imaging literature, resulting in a corpus consisting of 89 studies and 118 image datasets. We describe the trajectory and current state of the field between 2004 and 2024. A broad characterization, or "scoping review", of bibliometrics, study design, and reporting practices shows accelerating technological development and research output. We find high variability in study design and reporting practices, including imaging modality, model organism, cellular contexts, organelles imaged, and analyses. Due to the laborious, low-throughput nature of most volumetric imaging methods, we find trends toward small sample sizes (<10 cells) and small cell types. We describe common quantitative analyses across studies, including volumetric ratios of organelles and inter-organelle contact analyses. This work establishes the initial iteration of a growing dataset of whole-cell imaging literature and data, and motivates a call for standardized whole-cell imaging study design, reporting, and data sharing practices in the context of an emerging sub-field of cell biology. Our curated dataset now provides the basis for a plethora of future aggregate and comparative analyses to reveal larger patterns and generalized hypotheses about the systems behavior and regulation of whole-cell organelle networks. More broadly, we showcase the potential of new rigorous secondary research methods to strengthen cell biology's literature review and reproducibility toolkit, create new avenues for discovery, and promote open research practices that support secondary data-reuse and integration.
Collapse
Affiliation(s)
- Mary Mirvis
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA
| | - Brooke Weingard
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA
| | - Steven N Goodman
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA
| | - Wallace F Marshall
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
2
|
Jafari P, Forrest M, Segal J, Wang P, Tjota MY. Pan-Cancer Molecular Biomarkers: Practical Considerations for the Surgical Pathologist. Mod Pathol 2025; 38:100752. [PMID: 40058460 DOI: 10.1016/j.modpat.2025.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Traditional anatomic pathologic classification of cancer is based on tissue of origin and morphologic and immunohistochemical characterization of the malignant cells. With the technological improvements of massively parallel or next-generation sequencing, oncogenic drivers that are shared across different tumor types are increasingly being identified and used as pan-cancer biomarkers. This approach is reflected in the growing list of Food and Drug Administration-approved tumor-agnostic therapies, including pembrolizumab in the setting of microsatellite instability and high tumor mutational burden, larotrectinib and entrectinib for solid tumors with NTRK fusions, and combined dabrafenib-trametinib for BRAF V600E-mutated neoplasms. Several other biomarkers are currently under investigation, including fibroblast growth factor receptor (FGFR), RET, and ROS1 fusions; ERBB2 amplification; and mutations in the AKT1/2/3, NF1, RAS pathway and (mitogen-activated protein kinase (MAPK) pathway. As molecular assays are increasingly incorporated into routine tumor workup, the emergence of additional pan-cancer biomarkers is likely to be a matter more of "when" than "if." In this review, we first explore some of the conceptual and technical considerations at the intersection of surgical and molecular pathology, followed by a brief overview of both established and emerging molecular pan-cancer biomarkers and their diagnostic and clinical applications.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Megan Forrest
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Jeremy Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
3
|
Nelan R, Mijuskovic M, Hughes M, Becq J, Kingsbury Z, Tsogka E, He M, Vucenovic D, Craig C, Elgar G, Levey P, Suaris T, Walsh E, Ross M, Jones JL. Clinical utility of 'Shaken' biopsies for whole-genome sequencing. J Clin Pathol 2025:jcp-2024-209781. [PMID: 40032506 DOI: 10.1136/jcp-2024-209781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 03/05/2025]
Abstract
AIMS Whole-genome sequencing (WGS) is beginning to be applied to cancer samples in the clinical setting. This ideally requires high-quality, minimally degraded DNA of high tumour cell content, while retaining sufficient tissue with excellent morphology for histopathological diagnosis and immunohistochemistry. The aim of this study was to investigate alternative ways of handling cancer samples to fulfil both diagnostic and molecular requirements. METHODS Ex vivo biopsies were taken to investigate the feasibility of using cancer cells 'shaken' from the surface of a biopsy for WGS, while maintaining the tissue biopsy for histological diagnosis. WGS from the shaken cells was compared with the gold standard of a fresh-frozen (FF) biopsy. The procedure was piloted in the real-world setting for breast cancer samples. RESULTS Cells shaken from ex vivo biopsies can yield DNA of sufficient quantity and quality for WGS, while having no discernible impact on quality of tissue morphology. WGS data showed good coverage, comparable variant calls and generally higher tumour content in shaken cell samples compared with the control FF samples. For real-world biopsies, DNA yields were lower, but WGS data were of excellent quality for the cases analysed. CONCLUSIONS Shaken biopsy sampling allows genomic sequencing from patients with cancer who may otherwise not receive a genome sequence due to limited sample availability. It represents a way of overcoming the logistics of obtaining and storing FF tissue making it a suitable technique for wider scale implementation in the clinical setting.
Collapse
Affiliation(s)
- Rachel Nelan
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| | | | - Martina Hughes
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| | | | | | | | - Miao He
- Illumina Cambridge, Great Abington, UK
| | | | | | | | - Pauline Levey
- Queen Mary University of London Blizard Institute, London, UK
| | - Tamara Suaris
- Department of Radiology, St Bartholomew's Hospital, London, UK
| | | | - Mark Ross
- Illumina Cambridge, Great Abington, UK
| | - J Louise Jones
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Ballisat L, De Sio C, Beck L, Chambers AL, Dillingham MS, Guatelli S, Sakata D, Shi Y, Duan J, Velthuis J, Rosenfeld A. Simulation of cell cycle effects on DNA strand break induction due to α-particles. Phys Med 2025; 129:104871. [PMID: 39667143 DOI: 10.1016/j.ejmp.2024.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/04/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024] Open
Abstract
PURPOSE Understanding cell cycle variations in radiosensitivity is important for α-particle therapies. Differences are due to both repair response mechanisms and the quantity of initial radiation-induced DNA strand breaks. Genome compaction within the nucleus has been shown to impact the yield of strand breaks. Compaction changes during the cell cycle are therefore likely to contribute to radiosensitivity differences. Simulation allows the strand break yield to be calculated independently of repair mechanisms which would be challenging experimentally. METHODS Using Geant4 the impact of genome compaction changes on strand break induction due to α-particles was simulated. Genome compaction is considered to be described by three metrics: global base pair density, chromatin fibre packing fraction and chromosome condensation. Nuclei in the G1, S, G2 and M phases from two cancer cell lines and one normal cell line are simulated. Repair mechanisms are not considered to study only the impact of genome compaction changes. RESULTS The three compaction metrics have differing effects on the strand break yield. For all cell lines the strand break yield is greatest in G2 cells and least in G1 cells. More strand breaks are induced in the two cancer cell lines than in the normal cell line. CONCLUSIONS Compaction of the genome affects the initial yield of strand breaks. Some radiosensitivity differences between cell lines can be attributed to genome compaction changes between the phases of the cell cycle. This study provides a basis for further analysis of how repair deficiencies impact radiation-induced lethality in normal and malignant cells.
Collapse
Affiliation(s)
| | - Chiara De Sio
- School of Physics, University of Bristol, Bristol, UK
| | - Lana Beck
- School of Physics, University of Bristol, Bristol, UK
| | - Anna L Chambers
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Susanna Guatelli
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| | - Dousatsu Sakata
- School of Physics, University of Bristol, Bristol, UK; Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia; Division of Health Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yuyao Shi
- School of Physics, University of Bristol, Bristol, UK
| | - Jinyan Duan
- School of Physics, University of Bristol, Bristol, UK
| | - Jaap Velthuis
- School of Physics, University of Bristol, Bristol, UK
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| |
Collapse
|
5
|
Lai H, Fan P, Wang H, Wang Z, Chen N. New perspective on central nervous system disorders: focus on mass spectrometry imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8080-8102. [PMID: 39508396 DOI: 10.1039/d4ay01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples in situ. With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Collapse
Affiliation(s)
- Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine, Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Kullik GA, Waldmann M, Renné T. Analysis of polyphosphate in mammalian cells and tissues: methods, functions and challenges. Curr Opin Biotechnol 2024; 90:103208. [PMID: 39321579 DOI: 10.1016/j.copbio.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Polyphosphates play a crucial role in various biological processes, such as blood coagulation, energy homeostasis, and cellular stress response. However, their isolation, detection, and quantification present significant challenges. These difficulties arise primarily from their solubility, low concentration in mammals, and structural similarity to other ubiquitous biopolymers. This review provides an overview of the current understanding of polyphosphates in mammals, including their proposed functions and tissue distribution. It also examines key isolation techniques, such as chromatography and precipitation, alongside detection methods, such as colorimetric assays and enzymatic digestion. The strengths and limitations of these methods are discussed, as well as the challenges in preserving polyphosphate integrity. Recent advancements in isolation and detection are also highlighted, offering a comprehensive perspective essential for advancing polyphosphate research.
Collapse
Affiliation(s)
- Giuliano A Kullik
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
7
|
Smirnov P, Przybilla MJ, Simovic-Lorenz M, Parra RG, Susak H, Ratnaparkhe M, Wong JK, Körber V, Mallm JP, Philippos G, Sill M, Kolb T, Kumar R, Casiraghi N, Okonechnikov K, Ghasemi DR, Maaß KK, Pajtler KW, Jauch A, Korshunov A, Höfer T, Zapatka M, Pfister SM, Huber W, Stegle O, Ernst A. Multi-omic and single-cell profiling of chromothriptic medulloblastoma reveals genomic and transcriptomic consequences of genome instability. Nat Commun 2024; 15:10183. [PMID: 39580568 PMCID: PMC11585558 DOI: 10.1038/s41467-024-54547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Chromothripsis is a frequent form of genome instability, whereby a presumably single catastrophic event generates extensive genomic rearrangements of one or multiple chromosome(s). However, little is known about the heterogeneity of chromothripsis across different clones from the same tumour, as well as changes in response to treatment. Here we analyse single-cell genomic and transcriptomic alterations linked with chromothripsis in human p53-deficient medulloblastoma and neural stem cells (n = 9). We reconstruct the order of somatic events, identify early alterations likely linked to chromothripsis and depict the contribution of chromothripsis to malignancy. We characterise subclonal variation of chromothripsis and its effects on extrachromosomal circular DNA, cancer drivers and putatively druggable targets. Furthermore, we highlight the causative role and the fitness consequences of specific rearrangements in neural progenitors.
Collapse
Affiliation(s)
- Petr Smirnov
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Moritz J Przybilla
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - R Gonzalo Parra
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | - Hana Susak
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manasi Ratnaparkhe
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Kl Wong
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Körber
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - George Philippos
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Kolb
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rithu Kumar
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nicola Casiraghi
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kendra Korinna Maaß
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, DKFZ, Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
8
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2Rα KO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. Front Immunol 2024; 15:1369818. [PMID: 38812502 PMCID: PMC11133634 DOI: 10.3389/fimmu.2024.1369818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction IL-2Rα knock out (KO) mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα KO mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα KO to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα KO vascular smooth muscle cells had detectable IL-2Rα. Methods We used multiple gene and protein-based methods to determine why IL-2Rα KO vascular smooth muscle cells exhibited IL-2Rα protein. These methods included: genomic sequencing, assessing cells and tissues for evidence of maternal microchimerism, and determining the half-life of IL-2Rα protein. Results Our studies demonstrated the following: (1) in addition to the cell surface, IL-2Rα is localized to the nucleus; (2) the genetic deletion of IL-2Rα is intact in IL-2Rα KO mice; (3) both IL-2Rα KO and WT tissues show evidence of maternal microchimerism, the likely source of IL-2Rα (4) IL-2Rα is transmitted between cells; (5) IL-2Rα has a long half-life; and (6) nuclear IL-2Rα contributes to the regulation of cell proliferation and size. Conclusion Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
Affiliation(s)
- Victoria A. Wong
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kristie N. Dinh
- Fertility Wellness Institute of Ohio West Chester Township, OH, United States
| | - Guangchun Chen
- Genomics and Microarray Core Facility, University of Texas Southwestern Medical Center Dallas, TX, United States
| | - Lucile E. Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Medical Education, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
9
|
Small CD, Benfey TJ, Crawford BD. Tissue-specific compensatory mechanisms maintain tissue architecture and body size independent of cell size in polyploid zebrafish. Dev Biol 2024; 509:85-96. [PMID: 38387487 DOI: 10.1016/j.ydbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Genome duplications and ploidy transitions have occurred in nearly every major taxon of eukaryotes, but they are far more common in plants than in animals. Due to the conservation of the nuclear:cytoplasmic volume ratio increased DNA content results in larger cells. In plants, polyploid organisms are larger than diploids as cell number remains relatively constant. Conversely, vertebrate body size does not correlate with cell size and ploidy as vertebrates compensate for increased cell size to maintain tissue architecture and body size. This has historically been explained by a simple reduction in cell number that matches the increase in cell size maintaining body size as ploidy increases, but here we show that the compensatory mechanisms that maintain body size in triploid zebrafish are tissue-specific: A) erythrocytes respond in the classical pattern with a reduced number of larger erythrocytes in circulation, B) muscle, a tissue comprised of polynucleated muscle fibers, compensates by reducing the number of larger nuclei such that myofiber and myotome size in unaffected by ploidy, and C) vascular tissue compensates by thickening blood vessel walls, possibly at the expense of luminal diameter. Understanding the physiological implications of ploidy on tissue function requires a detailed description of the specific mechanisms of morphological compensation occurring in each tissue to understand how ploidy changes affect development and physiology.
Collapse
Affiliation(s)
- C D Small
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - T J Benfey
- Biology Department, University of New Brunswick, Fredericton, NB, Canada
| | - B D Crawford
- Biology Department, University of New Brunswick, Fredericton, NB, Canada.
| |
Collapse
|
10
|
Vaisvila R, Johnson SR, Yan B, Dai N, Bourkia BM, Chen M, Corrêa IR, Yigit E, Sun Z. Discovery of cytosine deaminases enables base-resolution methylome mapping using a single enzyme. Mol Cell 2024; 84:854-866.e7. [PMID: 38402612 DOI: 10.1016/j.molcel.2024.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Deaminases have important uses in modification detection and genome editing. However, the range of applications is limited by the small number of characterized enzymes. To expand the toolkit of deaminases, we developed an in vitro approach that bypasses a major hurdle with their toxicity in cells. We assayed 175 putative cytosine deaminases on a variety of substrates and found a broad range of activity on double- and single-stranded DNA in various sequence contexts, including CpG-specific deaminases and enzymes without sequence preference. We also characterized enzyme selectivity across six DNA modifications and reported enzymes that do not deaminate modified cytosines. The detailed analysis of diverse deaminases opens new avenues for biotechnological and medical applications. As a demonstration, we developed SEM-seq, a non-destructive single-enzyme methylation sequencing method using a modification-sensitive double-stranded DNA deaminase. The streamlined protocol enables accurate, base-resolution methylome mapping of scarce biological material, including cell-free DNA and 10 pg input DNA.
Collapse
Affiliation(s)
| | - Sean R Johnson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Bo Yan
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Nan Dai
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Billal M Bourkia
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Minyong Chen
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Ivan R Corrêa
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Erbay Yigit
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Zhiyi Sun
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
11
|
Aljumaili T, Haines AM. An evaluation of the RapidHIT™ ID system for hair roots stained with Diamond™ Nucleic Acid Dye. Forensic Sci Int Genet 2024; 69:103003. [PMID: 38154325 DOI: 10.1016/j.fsigen.2023.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
The RapidHIT™ ID (RHID) system was evaluated for its suitability in processing a single hair root to obtain informative DNA profiles. Hair samples were assessed for nuclear DNA prior to DNA analysis using Diamond™ Nucleic Acid Dye (DD) and real-time Extended Depth of Field (EDF) imaging to visualise and count nuclei if present. Hairs were viewed under an Optico N300F LED Fluorescent Microscope and imaged using a MIchrome 5 Pro camera. Hair roots were processed through both the ACE GlobalFiler™ Express sample cartridge and the RapidINTEL™ sample cartridge. A total of 44 hairs including shed hairs (9) and plucked hairs (35) from 8 donors were evaluated in this study. The processing of hairs using the RHID system required the modification of a standard swab that allowed for hairs to be easily collected and placed into the cartridge but also allowed for the re-collection of hair roots post RHID analysis (for potential standard DNA workflow). 90% of plucked hairs with a high nuclei count (>100) resulted in a high partial or full DNA profile, with the remaining 10% resulting in a low partial profile. 44% of shed hairs resulted in a low partial profile, with the remaining hairs resulting in a null profile. This study demonstrated that the RHID system could successfully obtain a DNA profile from a single hair root with nuclei present post-DD staining. According to these results, it is suggested that when dealing with hairs containing fewer than 50 nuclei, using the RapidINTEL™ cartridge can enhance allele recovery.
Collapse
Affiliation(s)
| | - Alicia M Haines
- School of Science, Western Sydney University, Penrith, Australia.
| |
Collapse
|
12
|
Faase RA, Keeling NM, Plaut JS, Leycam C, Munares GA, Hinds MT, Baio JE, Jurney PL. Temporal Changes in the Surface Chemistry and Topography of Reactive Ion Plasma-Treated Poly(vinyl alcohol) Alter Endothelialization Potential. ACS APPLIED MATERIALS & INTERFACES 2024; 16:389-400. [PMID: 38117934 PMCID: PMC10788828 DOI: 10.1021/acsami.3c16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Synthetic small-diameter vascular grafts (<6 mm) are used in the treatment of cardiovascular diseases, including coronary artery disease, but fail much more readily than similar grafts made from autologous vascular tissue. A promising approach to improve the patency rates of synthetic vascular grafts is to promote the adhesion of endothelial cells to the luminal surface of the graft. In this study, we characterized the surface chemical and topographic changes imparted on poly(vinyl alcohol) (PVA), an emerging hydrogel vascular graft material, after exposure to various reactive ion plasma (RIP) surface treatments, how these changes dissipate after storage in a sealed environment at standard temperature and pressure, and the effect of these changes on the adhesion of endothelial colony-forming cells (ECFCs). We showed that RIP treatments including O2, N2, or Ar at two radiofrequency powers, 50 and 100 W, improved ECFC adhesion compared to untreated PVA and to different degrees for each RIP treatment, but that the topographic and chemical changes responsible for the increased cell affinity dissipate in samples treated and allowed to age for 230 days. We characterized the effect of aging on RIP-treated PVA using an assay to quantify ECFCs on RIP-treated PVA 48 h after seeding, atomic force microscopy to probe surface topography, scanning electron microscopy to visualize surface modifications, and X-ray photoelectron spectroscopy to investigate surface chemistry. Our results show that after treatment at higher RF powers, the surface exhibits increased roughness and greater levels of charged nitrogen species across all precursor gases and that these surface modifications are beneficial for the attachment of ECFCs. This study is important for our understanding of the stability of surface modifications used to promote the adhesion of vascular cells such as ECFCs.
Collapse
Affiliation(s)
- Ryan A. Faase
- School
of Chemical, Biological, and Environmental Engineering, Oregon State University, 103 Gleeson Hall, Corvallis, Oregon 97331, United States
| | - Novella M. Keeling
- Biomedical
Engineering Program, University of Colorado
Boulder, 1111 Engineering Drive 521 UCB, Boulder, Colorado 80309-0521, United States
- Department
of Biomedical Engineering, Oregon Health
and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Justin S. Plaut
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Christian Leycam
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| | - Gabriela Acevedo Munares
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| | - Monica T. Hinds
- Department
of Biomedical Engineering, Oregon Health
and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Joe E. Baio
- School
of Chemical, Biological, and Environmental Engineering, Oregon State University, 103 Gleeson Hall, Corvallis, Oregon 97331, United States
| | - Patrick L. Jurney
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| |
Collapse
|
13
|
Syddall KL, Fernandez-Martell A, Cartwright JF, Alexandru-Crivac CN, Hodgson A, Racher AJ, Young RJ, James DC. Directed evolution of biomass intensive CHO cells by adaptation to sub-physiological temperature. Metab Eng 2024; 81:53-69. [PMID: 38007176 DOI: 10.1016/j.ymben.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
We report a simple and effective means to increase the biosynthetic capacity of host CHO cells. Lonza proprietary CHOK1SV® cells were evolved by serial sub-culture for over 150 generations at 32 °C. During this period the specific proliferation rate of hypothermic cells gradually recovered to become comparable to that of cells routinely maintained at 37 °C. Cold-adapted cell populations exhibited (1) a significantly increased volume and biomass content (exemplified by total RNA and protein), (2) increased mitochondrial function, (3) an increased antioxidant capacity, (4) altered central metabolism, (5) increased transient and stable productivity of a model IgG4 monoclonal antibody and Fc-fusion protein, and (6) unaffected recombinant protein N-glycan processing. This phenotypic transformation was associated with significant genome-scale changes in both karyotype and the relative abundance of thousands of cellular mRNAs across numerous functional groups. Taken together, these observations provide evidence of coordinated cellular adaptations to sub-physiological temperature. These data reveal the extreme genomic/functional plasticity of CHO cells, and that directed evolution is a viable genome-scale cell engineering strategy that can be exploited to create host cells with an increased cellular capacity for recombinant protein production.
Collapse
Affiliation(s)
- Katie L Syddall
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Alejandro Fernandez-Martell
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Joseph F Cartwright
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Cristina N Alexandru-Crivac
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Adam Hodgson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK.
| |
Collapse
|
14
|
Kiyomiya K, Tomabechi R, Saito N, Watai K, Takada T, Shirasaka Y, Kishimoto H, Higuchi K, Inoue K. Macrolide and Ketolide Antibiotics Inhibit the Cytotoxic Effect of Trastuzumab Emtansine in HER2-Positive Breast Cancer Cells: Implication of a Potential Drug-ADC Interaction in Cancer Chemotherapy. Mol Pharm 2023; 20:6130-6139. [PMID: 37971309 DOI: 10.1021/acs.molpharmaceut.3c00490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Macrolides are widely used for the long-term treatment of infections and chronic inflammatory diseases. The pharmacokinetic features of macrolides include extensive tissue distribution because of favorable membrane permeability and accumulation within lysosomes. Trastuzumab emtansine (T-DM1), a HER2-targeting antibody-drug conjugate (ADC), is catabolized in the lysosomes, where Lys-SMCC-DM1, a potent cytotoxic agent, is processed by proteinase degradation and subsequently released from the lysosomes to the cytoplasm through the lysosomal membrane transporter SLC46A3, resulting in an antitumor effect. We recently demonstrated that erythromycin and clarithromycin inhibit SLC46A3 and attenuate the cytotoxicity of T-DM1; however, the effect of other macrolides and ketolides has not been determined. In this study, we evaluated the effect of macrolide and ketolide antibiotics on T-DM1 cytotoxicity in a human breast cancer cell line, KPL-4. Macrolides used in the clinic, such as roxithromycin, azithromycin, and josamycin, as well as solithromycin, a ketolide under clinical development, significantly attenuated T-DM1 cytotoxicity in addition to erythromycin and clarithromycin. Of these, azithromycin was the most potent inhibitor of T-DM1 efficacy. These antibiotics significantly inhibited the transport function of SLC46A3 in a concentration-dependent manner. Moreover, these compounds extensively accumulated in the lysosomes at the levels estimated to be 0.41-13.6 mM when cells were incubated with them at a 2 μM concentration. The immunofluorescence staining of trastuzumab revealed that azithromycin and solithromycin inhibit the degradation of T-DM1 in the lysosomes. These results suggest that the attenuation of T-DM1 cytotoxicity by macrolide and ketolide antibiotics involves their lysosomal accumulation and results in their greater lysosomal concentrations to inhibit the SLC46A3 function and T-DM1 degradation. This suggests a potential drug-ADC interaction during cancer chemotherapy.
Collapse
Affiliation(s)
- Keisuke Kiyomiya
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryuto Tomabechi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoki Saito
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenta Watai
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8655, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
15
|
Hatton IA, Galbraith ED, Merleau NSC, Miettinen TP, Smith BM, Shander JA. The human cell count and size distribution. Proc Natl Acad Sci U S A 2023; 120:e2303077120. [PMID: 37722043 PMCID: PMC10523466 DOI: 10.1073/pnas.2303077120] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
Cell size and cell count are adaptively regulated and intimately linked to growth and function. Yet, despite their widespread relevance, the relation between cell size and count has never been formally examined over the whole human body. Here, we compile a comprehensive dataset of cell size and count over all major cell types, with data drawn from >1,500 published sources. We consider the body of a representative male (70 kg), which allows further estimates of a female (60 kg) and 10-y-old child (32 kg). We build a hierarchical interface for the cellular organization of the body, giving easy access to data, methods, and sources (https://humancelltreemap.mis.mpg.de/). In total, we estimate total body counts of ≈36 trillion cells in the male, ≈28 trillion in the female, and ≈17 trillion in the child. These data reveal a surprising inverse relation between cell size and count, implying a trade-off between these variables, such that all cells within a given logarithmic size class contribute an equal fraction to the body's total cellular biomass. We also find that the coefficient of variation is approximately independent of mean cell size, implying the existence of cell-size regulation across cell types. Our data serve to establish a holistic quantitative framework for the cells of the human body, and highlight large-scale patterns in cell biology.
Collapse
Affiliation(s)
- Ian A. Hatton
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Department of Earth and Planetary Sciences, McGill University, Montreal, QuebecH3A 0E8, Canada
| | - Eric D. Galbraith
- Department of Earth and Planetary Sciences, McGill University, Montreal, QuebecH3A 0E8, Canada
- ICREA, Barcelona08010, Spain
| | - Nono S. C. Merleau
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, D-04105Leipzig, Germany
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Benjamin McDonald Smith
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QuebecH4A 3S5, Canada
- Department of Medicine, Columbia University Medical Center, New York, NY10032
| | | |
Collapse
|
16
|
Andreeva TV, Maluchenko NV, Efremenko AV, Lyubitelev AV, Korovina AN, Afonin DA, Kirpichnikov MP, Studitsky VM, Feofanov AV. Epigallocatechin Gallate Affects the Structure of Chromatosomes, Nucleosomes and Their Complexes with PARP1. Int J Mol Sci 2023; 24:14187. [PMID: 37762491 PMCID: PMC10532227 DOI: 10.3390/ijms241814187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The natural flavonoid epigallocatechin gallate has a wide range of biological activities, including being capable of binding to nucleic acids; however, the mechanisms of the interactions of epigallocatechin gallate with DNA organized in chromatin have not been systematically studied. In this work, the interactions of epigallocatechin gallate with chromatin in cells and with nucleosomes and chromatosomes in vitro were studied using fluorescent microscopy and single-particle Förster resonance energy transfer approaches, respectively. Epigallocatechin gallate effectively penetrates into the nuclei of living cells and binds to DNA there. The interaction of epigallocatechin gallate with nucleosomes in vitro induces a large-scale, reversible uncoiling of nucleosomal DNA that occurs without the dissociation of DNA or core histones at sub- and low-micromolar concentrations of epigallocatechin gallate. Epigallocatechin gallate does not reduce the catalytic activity of poly(ADP-ribose) polymerase 1, but causes the modulation of the structure of the enzyme-nucleosome complex. Epigallocatechin gallate significantly changes the structure of chromatosomes, but does not cause the dissociation of the linker histone. The reorganization of nucleosomes and chromatosomes through the use of epigallocatechin gallate could facilitate access to protein factors involved in DNA repair, replication and transcription to DNA and, thus, might contribute to the modulation of gene expression through the use of epigallocatechin gallate, which was reported earlier.
Collapse
Affiliation(s)
- Tatiana V. Andreeva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Natalya V. Maluchenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Anastasiya V. Efremenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Alexander V. Lyubitelev
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Anna N. Korovina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Dmitry A. Afonin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Vasily M. Studitsky
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Alexey V. Feofanov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| |
Collapse
|
17
|
Schactler SA, Scheuerman SJ, Lius A, Altemeier WA, An D, Matula TJ, Mikula M, Kulecka M, Denisenko O, Mar D, Bomsztyk K. CryoGrid-PIXUL-RNA: high throughput RNA isolation platform for tissue transcript analysis. BMC Genomics 2023; 24:446. [PMID: 37553584 PMCID: PMC10408117 DOI: 10.1186/s12864-023-09527-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Disease molecular complexity requires high throughput workflows to map disease pathways through analysis of vast tissue repositories. Great progress has been made in tissue multiomics analytical technologies. To match the high throughput of these advanced analytical platforms, we have previously developed a multipurpose 96-well microplate sonicator, PIXUL, that can be used in multiple workflows to extract analytes from cultured cells and tissue fragments for various downstream molecular assays. And yet, the sample preparation devices, such as PIXUL, along with the downstream multiomics analytical capabilities have not been fully exploited to interrogate tissues because storing and sampling of such biospecimens remain, in comparison, inefficient. RESULTS To mitigate this tissue interrogation bottleneck, we have developed a low-cost user-friendly system, CryoGrid, to catalog, cryostore and sample tissue fragments. TRIzol is widely used to isolate RNA but it is labor-intensive, hazardous, requires fume-hoods, and is an expensive reagent. Columns are also commonly used to extract RNA but they involve many steps, are prone to human errors, and are also expensive. Both TRIzol and column protocols use test tubes. We developed a microplate PIXUL-based TRIzol-free and column-free RNA isolation protocol that uses a buffer containing proteinase K (PK buffer). We have integrated the CryoGrid system with PIXUL-based PK buffer, TRIzol, and PureLink column methods to isolate RNA for gene-specific qPCR and genome-wide transcript analyses. CryoGrid-PIXUL, when integrated with either PK buffer, TRIzol or PureLink column RNA isolation protocols, yielded similar transcript profiles in frozen organs (brain, heart, kidney and liver) from a mouse model of sepsis. CONCLUSIONS RNA isolation using the CryoGrid-PIXUL system combined with the 96-well microplate PK buffer method offers an inexpensive user-friendly high throughput workflow to study transcriptional responses in tissues in health and disease as well as in therapeutic interventions.
Collapse
Affiliation(s)
- Scott A Schactler
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Stephen J Scheuerman
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Andrea Lius
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - William A Altemeier
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Dowon An
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Thomas J Matula
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, 98195, USA
- Matchstick Technologies, Inc, Kirkland, WA, 98033, USA
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813, Warsaw, Poland
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
- Matchstick Technologies, Inc, Kirkland, WA, 98033, USA.
| |
Collapse
|
18
|
Hansson KA, Eftestøl E. Scaling of nuclear numbers and their spatial arrangement in skeletal muscle cell size regulation. Mol Biol Cell 2023; 34:pe3. [PMID: 37339435 PMCID: PMC10398882 DOI: 10.1091/mbc.e22-09-0424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 06/22/2023] Open
Abstract
Many cells display considerable functional plasticity and depend on the regulation of numerous organelles and macromolecules for their maintenance. In large cells, organelles also need to be carefully distributed to supply the cell with essential resources and regulate intracellular activities. Having multiple copies of the largest eukaryotic organelle, the nucleus, epitomizes the importance of scaling gene products to large cytoplasmic volumes in skeletal muscle fibers. Scaling of intracellular constituents within mammalian muscle fibers is, however, poorly understood, but according to the myonuclear domain hypothesis, a single nucleus supports a finite amount of cytoplasm and is thus postulated to act autonomously, causing the nuclear number to be commensurate with fiber volume. In addition, the orderly peripheral distribution of myonuclei is a hallmark of normal cell physiology, as nuclear mispositioning is associated with impaired muscle function. Because underlying structures of complex cell behaviors are commonly formalized by scaling laws and thus emphasize emerging principles of size regulation, the work presented herein offers more of a unified conceptual platform based on principles from physics, chemistry, geometry, and biology to explore cell size-dependent correlations of the largest mammalian cell by means of scaling.
Collapse
Affiliation(s)
- Kenth-Arne Hansson
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, 2624 Lillehammer, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
19
|
Hemphill W, Fenske R, Gooding A, Cech T. PRC2 direct transfer from G-quadruplex RNA to dsDNA has implications for RNA-binding chromatin modifiers. Proc Natl Acad Sci U S A 2023; 120:e2220528120. [PMID: 37252986 PMCID: PMC10266057 DOI: 10.1073/pnas.2220528120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.
Collapse
Affiliation(s)
- Wayne O. Hemphill
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Regan Fenske
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Anne R. Gooding
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Thomas R. Cech
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
20
|
Schvarzstein M, Alam F, Toure M, Yanowitz JL. An Emerging Animal Model for Querying the Role of Whole Genome Duplication in Development, Evolution, and Disease. J Dev Biol 2023; 11:26. [PMID: 37367480 PMCID: PMC10299280 DOI: 10.3390/jdb11020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An essential strategy to further our understanding of the mechanisms promoting WGD and its effects is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is emerging as an animal model for these comparisons, in part because relatively stable and fertile tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique characteristics of the C. elegans WGD model will enable significant advances in our understanding of the mechanisms of polyploidization and its role in development and disease.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
- Biology Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
- Biochemistry Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
| | - Fatema Alam
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Muhammad Toure
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA;
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
21
|
Liu J, Hu W, Han Y, Nie H. Recent advances in mass spectrometry imaging of single cells. Anal Bioanal Chem 2023:10.1007/s00216-023-04774-9. [PMID: 37269305 DOI: 10.1007/s00216-023-04774-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Mass spectrometry imaging (MSI) is a sensitive, specific, label-free imaging analysis technique that can simultaneously obtain the spatial distribution, relative content, and structural information of hundreds of biomolecules in cells and tissues, such as lipids, small drug molecules, peptides, proteins, and other compounds. The study of molecular mapping of single cells can reveal major scientific issues such as the activity pattern of living organisms, disease pathogenesis, drug-targeted therapy, and cellular heterogeneity. Applying MSI technology to the molecular mapping of single cells can provide new insights and ideas for the study of single-cell metabolomics. This review aims to provide an informative resource for those in the MSI community who are interested in single-cell imaging. Particularly, we discuss advances in imaging schemes and sample preparation, instrumentation improvements, data processing and analysis, and 3D MSI over the past few years that have allowed MSI to emerge as a powerful technique in the molecular imaging of single cells. Also, we highlight some of the most cutting-edge studies in single-cell MSI, demonstrating the future potential of single-cell MSI. Visualizing molecular distribution at the single-cell or even sub-cellular level can provide us with richer cell information, which strongly contributes to advancing research fields such as biomedicine, life sciences, pharmacodynamic testing, and metabolomics. At the end of the review, we summarize the current development of single-cell MSI technology and look into the future of this technology.
Collapse
Affiliation(s)
- Jikun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Analytical Instrumental Center, Peking University, Beijing, 100871, China
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Analytical Instrumental Center, Peking University, Beijing, 100871, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China.
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Analytical Instrumental Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Miller KE, Cadart C, Heald R. Dodecaploid Xenopus longipes provides insight into the emergence of size scaling relationships during development. Curr Biol 2023; 33:1327-1336.e4. [PMID: 36889317 PMCID: PMC10115129 DOI: 10.1016/j.cub.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Genome and cell size are strongly correlated across species1,2,3,4,5,6 and influence physiological traits like developmental rate.7,8,9,10,11,12 Although size scaling features such as the nuclear-cytoplasmic (N/C) ratio are precisely maintained in adult tissues,13 it is unclear when during embryonic development size scaling relationships are established. Frogs of the genus Xenopus provide a model to investigate this question, since 29 extant Xenopus species vary in ploidy from 2 to 12 copies (N) of the ancestral frog genome, ranging from 20 to 108 chromosomes.14,15 The most widely studied species, X. laevis (4N = 36) and X. tropicalis (2N = 20), scale at all levels, from body size to cellular and subcellular levels.16 Paradoxically, the rare, critically endangered dodecaploid (12N = 108) Xenopus longipes (X. longipes) is a small frog.15,17 We observed that despite some morphological differences, X. longipes and X. laevis embryogenesis occurred with similar timing, with genome to cell size scaling emerging at the swimming tadpole stage. Across the three species, cell size was determined primarily by egg size, whereas nuclear size correlated with genome size during embryogenesis, resulting in different N/C ratios in blastulae prior to gastrulation. At the subcellular level, nuclear size correlated more strongly with genome size, whereas mitotic spindle size scaled with cell size. Our cross-species study indicates that scaling of cell size to ploidy is not due to abrupt changes in cell division timing, that different size scaling regimes occur during embryogenesis, and that the developmental program of Xenopus is remarkably consistent across a wide range of genome and egg sizes.
Collapse
Affiliation(s)
- Kelly E Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
23
|
Davies DM, van den Handel K, Bharadwaj S, Lengefeld J. Cellular enlargement - A new hallmark of aging? Front Cell Dev Biol 2022; 10:1036602. [PMID: 36438561 PMCID: PMC9688412 DOI: 10.3389/fcell.2022.1036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2023] Open
Abstract
Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
Collapse
Affiliation(s)
- Daniel M. Davies
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kim van den Handel
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Soham Bharadwaj
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Young LEA, Conroy LR, Clarke HA, Hawkinson TR, Bolton KE, Sanders WC, Chang JE, Webb MB, Alilain WJ, Vander Kooi CW, Drake RR, Andres DA, Badgett TC, Wagner LM, Allison DB, Sun RC, Gentry MS. In situ mass spectrometry imaging reveals heterogeneous glycogen stores in human normal and cancerous tissues. EMBO Mol Med 2022; 14:e16029. [PMID: 36059248 PMCID: PMC9641418 DOI: 10.15252/emmm.202216029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Glycogen dysregulation is a hallmark of aging, and aberrant glycogen drives metabolic reprogramming and pathogenesis in multiple diseases. However, glycogen heterogeneity in healthy and diseased tissues remains largely unknown. Herein, we describe a method to define spatial glycogen architecture in mouse and human tissues using matrix-assisted laser desorption/ionization mass spectrometry imaging. This assay provides robust and sensitive spatial glycogen quantification and architecture characterization in the brain, liver, kidney, testis, lung, bladder, and even the bone. Armed with this tool, we interrogated glycogen spatial distribution and architecture in different types of human cancers. We demonstrate that glycogen stores and architecture are heterogeneous among diseases. Additionally, we observe unique hyperphosphorylated glycogen accumulation in Ewing sarcoma, a pediatric bone cancer. Using preclinical models, we correct glycogen hyperphosphorylation in Ewing sarcoma through genetic and pharmacological interventions that ablate in vivo tumor growth, demonstrating the clinical therapeutic potential of targeting glycogen in Ewing sarcoma.
Collapse
Affiliation(s)
- Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
| | - Lindsey R Conroy
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Harrison A Clarke
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Tara R Hawkinson
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kayli E Bolton
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - William C Sanders
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Josephine E Chang
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Madison B Webb
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Warren J Alilain
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKYUSA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonSCUSA
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Tom C Badgett
- Pediatric Hematology‐Oncology, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Lars M Wagner
- Pediatric Hematology‐OncologyDuke UniversityDurhamNCUSA
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, College of MedicineUniversity of KentuckyLexingtonKYUSA
| | - Ramon C Sun
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonKYUSA
- Department of Biochemistry & Molecular Biology, College of MedicineUniversity of FloridaGainesvilleFLUSA
- Center for Advanced Spatial Biomolecule ResearchUniversity of FloridaGainesvilleFLUSA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKYUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKYUSA
- Department of Biochemistry & Molecular Biology, College of MedicineUniversity of FloridaGainesvilleFLUSA
- Center for Advanced Spatial Biomolecule ResearchUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
25
|
Kropp M, Harmening N, Bascuas T, Johnen S, De Clerck E, Fernández V, Ronchetti M, Cadossi R, Zanini C, Scherman D, Ivics Z, Marie C, Izsvák Z, Thumann G. GMP-Grade Manufacturing and Quality Control of a Non-Virally Engineered Advanced Therapy Medicinal Product for Personalized Treatment of Age-Related Macular Degeneration. Biomedicines 2022; 10:2777. [PMID: 36359296 PMCID: PMC9687277 DOI: 10.3390/biomedicines10112777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/29/2023] Open
Abstract
The introduction of new therapeutics requires validation of Good Manufacturing Practice (GMP)-grade manufacturing including suitable quality controls. This is challenging for Advanced Therapy Medicinal Products (ATMP) with personalized batches. We have developed a person-alized, cell-based gene therapy to treat age-related macular degeneration and established a vali-dation strategy of the GMP-grade manufacture for the ATMP; manufacturing and quality control were challenging due to a low cell number, batch-to-batch variability and short production duration. Instead of patient iris pigment epithelial cells, human donor tissue was used to produce the transfected cell product ("tIPE"). We implemented an extended validation of 104 tIPE productions. Procedure, operators and devices have been validated and qualified by determining cell number, viability, extracellular DNA, sterility, duration, temperature and volume. Transfected autologous cells were transplanted to rabbits verifying feasibility of the treatment. A container has been engineered to ensure a safe transport from the production to the surgery site. Criteria for successful validation and qualification were based on tIPE's Critical Quality Attributes and Process Parameters, its manufacture and release criteria. The validated process and qualified operators are essential to bring the ATMP into clinic and offer a general strategy for the transfer to other manufacture centers and personalized ATMPs.
Collapse
Affiliation(s)
- Martina Kropp
- Group of Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Nina Harmening
- Group of Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Thais Bascuas
- Group of Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Eline De Clerck
- Group of Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | | | | | | | - Daniel Scherman
- CNRS, Inserm, UTCBS, Université Paris Cité, F-75006 Paris, France
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Corinne Marie
- CNRS, Inserm, UTCBS, Université Paris Cité, F-75006 Paris, France
- Chimie ParisTech, PSL Research University, F-75005 Paris, France
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Gabriele Thumann
- Group of Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
26
|
Circulating versus Cellular Tumor DNA for the Detection of BTK Resistant CLL Clones. Leuk Res Rep 2022; 18:100359. [DOI: 10.1016/j.lrr.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
|
27
|
Eftestøl E, Ochi E, Juvkam IS, Hansson KA, Gundersen K. A juvenile climbing exercise establishes a muscle memory boosting the effects of exercise in adult rats. Acta Physiol (Oxf) 2022; 236:e13879. [PMID: 36017589 DOI: 10.1111/apha.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023]
Abstract
AIM Investigate whether juvenile exercise could induce a long-term muscle memory, boosting the effects of exercise in adults. METHODS We devised a 5-week climbing exercise scheme with food reward administered to male juvenile rats (post-natal week 4-9). Subsequently, the animals were subjected to 10 weeks of detraining (week 9-19) without climbing and finally retraining during week 19-21. RESULTS The juvenile exercise increased fiber cross-sectional area (fCSA) by 21% (p = 0.0035), boosted nuclear accretion by 13% (p = 0.057), and reduced intraperitoneal fat content by 28% (p = 0.007) and body weight by 9% (p = 0.001). During detraining, the fCSA became similar in the animals that had been climbing compared to naive controls, but the elevated number of myonuclei induced by the climbing were maintained (15%, p = 0.033). When the naive rats were subjected to 2 weeks of adult exercise there was little effect on fCSA, while the previously trained rats displayed an increase of 19% (p = 0.0007). Similarly, when the rats were subjected to unilateral surgical overload in lieu of the adult climbing exercise, the increase in fCSA was 20% (p = 0.0039) in the climbing group, while there was no significant increase in naive rats when comparing to the contralateral leg. CONCLUSION This demonstrates that juvenile exercise can establish a muscle memory boosting the effects of adult exercise. The juvenile climbing exercise with food reward also led to leaner animals with lower body weight. These differences were to some extent maintained throughout the adult detraining period in spite of all animals being fed ad libitum, indicating a form of body weight memory.
Collapse
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eisuke Ochi
- Department of Biosciences, University of Oslo, Oslo, Norway.,Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Inga S Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
28
|
Cadart C, Heald R. Scaling of biosynthesis and metabolism with cell size. Mol Biol Cell 2022; 33:pe5. [PMID: 35862496 PMCID: PMC9582640 DOI: 10.1091/mbc.e21-12-0627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cells adopt a size that is optimal for their function, and pushing them beyond this limit can cause cell aging and death by senescence or reduce proliferative potential. However, by increasing their genome copy number (ploidy), cells can increase their size dramatically and homeostatically maintain physiological properties such as biosynthesis rate. Recent studies investigating the relationship between cell size and rates of biosynthesis and metabolism under normal, polyploid, and pathological conditions are revealing new insights into how cells attain the best function or fitness for their size by tuning processes including transcription, translation, and mitochondrial respiration. A new frontier is to connect single-cell scaling relationships with tissue and whole-organism physiology, which promises to reveal molecular and evolutionary principles underlying the astonishing diversity of size observed across the tree of life.
Collapse
Affiliation(s)
- Clotilde Cadart
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| | - Rebecca Heald
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|
29
|
Khan T, Becker TM, Po JW, Chua W, Ma Y. Single-Circulating Tumor Cell Whole Genome Amplification to Unravel Cancer Heterogeneity and Actionable Biomarkers. Int J Mol Sci 2022; 23:ijms23158386. [PMID: 35955517 PMCID: PMC9369222 DOI: 10.3390/ijms23158386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
The field of single-cell analysis has advanced rapidly in the last decade and is providing new insights into the characterization of intercellular genetic heterogeneity and complexity, especially in human cancer. In this regard, analyzing single circulating tumor cells (CTCs) is becoming particularly attractive due to the easy access to CTCs from simple blood samples called “liquid biopsies”. Analysis of multiple single CTCs has the potential to allow the identification and characterization of cancer heterogeneity to guide best therapy and predict therapeutic response. However, single-CTC analysis is restricted by the low amounts of DNA in a single cell genome. Whole genome amplification (WGA) techniques have emerged as a key step, enabling single-cell downstream molecular analysis. Here, we provide an overview of recent advances in WGA and their applications in the genetic analysis of single CTCs, along with prospective views towards clinical applications. First, we focus on the technical challenges of isolating and recovering single CTCs and then explore different WGA methodologies and recent developments which have been utilized to amplify single cell genomes for further downstream analysis. Lastly, we list a portfolio of CTC studies which employ WGA and single-cell analysis for genetic heterogeneity and biomarker detection.
Collapse
Affiliation(s)
- Tanzila Khan
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Therese M. Becker
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Joseph W. Po
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- Surgical Innovations Unit, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Yafeng Ma
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Correspondence:
| |
Collapse
|
30
|
Guo Q, Spasic M, Maynard AG, Goreczny GJ, Bizuayehu A, Olive JF, van Galen P, McAllister SS. Clonal barcoding with qPCR detection enables live cell functional analyses for cancer research. Nat Commun 2022; 13:3837. [PMID: 35788590 PMCID: PMC9252988 DOI: 10.1038/s41467-022-31536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
Single-cell analysis methods are valuable tools; however, current approaches do not easily enable live cell retrieval. That is a particular issue when further study of cells that were eliminated during experimentation could provide critical information. We report a clonal molecular barcoding method, called SunCatcher, that enables longitudinal tracking and live cell functional analysis. From complex cell populations, we generate single cell-derived clonal populations, infect each with a unique molecular barcode, and retain stocks of individual barcoded clones (BCs). We develop quantitative PCR-based and next-generation sequencing methods that we employ to identify and quantify BCs in vitro and in vivo. We apply SunCatcher to various breast cancer cell lines and combine respective BCs to create versions of the original cell lines. While the heterogeneous BC pools reproduce their original parental cell line proliferation and tumor progression rates, individual BCs are phenotypically and functionally diverse. Early spontaneous metastases can also be identified and quantified. SunCatcher thus provides a rapid and sensitive approach for studying live single-cell clones and clonal evolution, and performing functional analyses.
Collapse
Affiliation(s)
- Qiuchen Guo
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Milos Spasic
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Adam G Maynard
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gregory J Goreczny
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amanuel Bizuayehu
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jessica F Olive
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Sandra S McAllister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
31
|
Niide T, Asari S, Kawabata K, Hara Y. Specificity of Nuclear Size Scaling in Frog Erythrocytes. Front Cell Dev Biol 2022; 10:857862. [PMID: 35663388 PMCID: PMC9159806 DOI: 10.3389/fcell.2022.857862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
In eukaryotes, the cell has the ability to modulate the size of the nucleus depending on the surrounding environment, to enable nuclear functions such as DNA replication and transcription. From previous analyses of nuclear size scaling in various cell types and species, it has been found that eukaryotic cells have a conserved scaling rule, in which the nuclear size correlates with both cell size and genomic content. However, there are few studies that have focused on a certain cell type and systematically analyzed the size scaling properties in individual species (intra-species) and among species (inter-species), and thus, the difference in the scaling rules among cell types and species is not well understood. In the present study, we analyzed the size scaling relationship among three parameters, nuclear size, cell size, and genomic content, in our measured datasets of terminally differentiated erythrocytes of five Anura frogs and collected datasets of different species classes from published papers. In the datasets of isolated erythrocytes from individual frogs, we found a very weak correlation between the measured nuclear and cell cross-sectional areas. Within the erythrocytes of individual species, the correlation of the nuclear area with the cell area showed a very low hypoallometric relationship, in which the relative nuclear size decreased when the cell size increased. These scaling trends in intra-species erythrocytes are not comparable to the known general correlation in other cell types. When comparing parameters across species, the nuclear areas correlated with both cell areas and genomic contents among the five frogs and the collected datasets in each species class. However, the contribution of genomic content to nuclear size determination was smaller than that of the cell area in all species classes. In particular, the estimated degree of the contribution of genomic content was greater in the amphibian class than in other classes. Together with our imaging analysis of structural components in nuclear membranes, we hypothesized that the observed specific features in nuclear size scaling are achieved by the weak interaction of the chromatin with the nuclear membrane seen in frog erythrocytes.
Collapse
Affiliation(s)
| | | | | | - Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
32
|
Cortesi M, Giordano E. Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ 2022; 10:e13338. [PMID: 35582620 PMCID: PMC9107788 DOI: 10.7717/peerj.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
3D cell cultures are becoming the new standard for cell-based in vitro research, due to their higher transferrability toward in vivo biology. The lack of established techniques for the non-destructive quantification of relevant variables, however, constitutes a major barrier to the adoption of these technologies, as it increases the resources needed for the experimentation and reduces its accuracy. In this review, we aim at addressing this limitation by providing an overview of different non-destructive approaches for the evaluation of biological features commonly quantified in a number of studies and applications. In this regard, we will cover cell viability, gene expression, population distribution, cell morphology and interactions between the cells and the environment. This analysis is expected to promote the use of the showcased technologies, together with the further development of these and other monitoring methods for 3D cell cultures. Overall, an extensive technology shift is required, in order for monolayer cultures to be superseded, but the potential benefit derived from an increased accuracy of in vitro studies, justifies the effort and the investment.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, Australia
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Chan KY, Yan CCS, Roan HY, Hsu SC, Tseng TL, Hsiao CD, Hsu CP, Chen CH. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature 2022; 605:119-125. [PMID: 35477758 DOI: 10.1038/s41586-022-04641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
As an animal's surface area expands during development, skin cell populations must quickly respond to maintain sufficient epithelial coverage. Despite much progress in understanding of skin cell behaviours in vivo1,2, it remains unclear how cells collectively act to satisfy coverage demands at an organismic level. Here we created a multicolour cell membrane tagging system, palmskin, to monitor the entire population of superficial epithelial cells (SECs) in developing zebrafish larvae. Using time-lapse imaging, we found that many SECs readily divide on the animal body surface; during a specific developmental window, a single SEC can produce a maximum of four progeny cells over its lifetime on the surface of the animal. Remarkably, EdU assays, DNA staining and hydroxyurea treatment showed that these terminally differentiated skin cells continue splitting despite an absence of DNA replication, causing up to 50% of SECs to exhibit reduced genome size. On the basis of a simple mathematical model and quantitative analyses of cell volumes and apical surface areas, we propose that 'asynthetic fission' is used as an efficient mechanism for expanding epithelial coverage during rapid growth. Furthermore, global or local manipulation of body surface growth affects the extent and mode of SEC division, presumably through tension-mediated activation of stretch-activated ion channels. We speculate that this frugal yet flexible mode of cell proliferation might also occur in contexts other than zebrafish skin expansion.
Collapse
Affiliation(s)
- Keat Ying Chan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Division of Physics, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
34
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|
35
|
Wu Y, Pegoraro AF, Weitz DA, Janmey P, Sun SX. The correlation between cell and nucleus size is explained by an eukaryotic cell growth model. PLoS Comput Biol 2022; 18:e1009400. [PMID: 35180215 PMCID: PMC8893647 DOI: 10.1371/journal.pcbi.1009400] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/03/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
In eukaryotes, the cell volume is observed to be strongly correlated with the nuclear volume. The slope of this correlation depends on the cell type, growth condition, and the physical environment of the cell. We develop a computational model of cell growth and proteome increase, incorporating the kinetics of amino acid import, protein/ribosome synthesis and degradation, and active transport of proteins between the cytoplasm and the nucleoplasm. We also include a simple model of ribosome biogenesis and assembly. Results show that the cell volume is tightly correlated with the nuclear volume, and the cytoplasm-nucleoplasm transport rates strongly influence the cell growth rate as well as the cell/nucleus volume ratio (C/N ratio). Ribosome assembly and the ratio of ribosomal proteins to mature ribosomes also influence the cell volume and the cell growth rate. We find that in order to regulate the cell growth rate and the cell/nucleus volume ratio, the cell must optimally control groups of kinetic and transport parameters together, which could explain the quantitative roles of canonical growth pathways. Finally, although not explicitly demonstrated in this work, we point out that it is possible to construct a detailed proteome distribution using our model and RNAseq data, provided that a quantitative cell division mechanism is known.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - David A. Weitz
- Department of Physics, Harvard University, Boston, Massachusetts, United States of America
| | - Paul Janmey
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sean X. Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nuclear Lamins: Key Proteins for Embryonic Development. BIOLOGY 2022; 11:biology11020198. [PMID: 35205065 PMCID: PMC8869099 DOI: 10.3390/biology11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary The biology of a multicellular organism is extremely complex, leaving behind a realm of compound yet systematic mechanisms still to be unraveled. The nucleus is a vital cellular organelle adapted to storing and regulating the hereditary genetic information. Dysregulation of the nucleus can have profound effects on the physiology and viability of cells. This becomes extremely significant in the context of development, where the whole organism arises from a single cell, the zygote. Therefore, even a mild aberration at this stage can have profound effects on the whole organism. However, studying the function of individual nuclear components at this point is exceptionally complicated because this phase is inherently under the control of maternal factors stored in the female germ cell, the egg. Here, we focus on the lamins, as essential nuclear components, and summarize the current knowledge of their role in development. Although scientists encounter challenges working with these miniscule yet key proteins, the demand to know more is increasing gradually due to the mutations caused in lamins leading to irreversible phenotypic conditions in humans. Abstract Lamins are essential components of the nuclear envelope and have been studied for decades due to their involvement in several devastating human diseases, the laminopathies. Despite intensive research, the molecular basis behind the disease state remains mostly unclear with a number of conflicting results regarding the different cellular functions of nuclear lamins being published. The field of developmental biology is no exception. Across model organisms, the types of lamins present in early mammalian development have been contradictory over the years. Due to the long half-life of the lamin proteins, which is a maternal factor that gets carried over to the zygote after fertilization, investigators are posed with challenges to dive into the functional aspects and significance of lamins in development. Due to these technical limitations, the role of lamins in early mammalian embryos is virtually unexplored. This review aims in converging results that were obtained so far in addition to the complex functions that ceases if lamins are mutated.
Collapse
|
37
|
Mantripragada VP, Csorba A, Bova W, Boehm C, Piuzzi NS, Bullen J, Midura RJ, Muschler GF. Assessment of Clinical, Tissue, and Cell-Level Metrics Identify Four Biologically Distinct Knee Osteoarthritis Patient Phenotypes. Cartilage 2022; 13:19476035221074003. [PMID: 35109693 PMCID: PMC9137310 DOI: 10.1177/19476035221074003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Clinical heterogeneity of primary osteoarthritis (OA) is a major challenge in understanding pathogenesis and development of targeted therapeutic strategies. This study aims to (1) identify OA patient subgroups phenotypes and (2) determine predictors of OA severity and cartilage-derived stem/progenitor concentration using clinical-, tissue-, and cell- level metrics. DESIGN Cartilage, synovium (SYN) and infrapatellar fatpad (IPFP) were collected from 90 total knee arthroplasty patients. Clinical metrics (patient demographics, radiograph-based joint space width (JSW), Kellgren and Lawrence score (KL)), tissue metrics (cartilage histopathology grade, glycosaminoglycans (GAGs)) and cell-based metrics (cartilage-, SYN-, and IPFP-derived cell concentration ([Cell], cells/mg), connective tissue progenitor (CTP) prevalence (PCTP, CTPs/million cells plated), CTP concentration, [CTP], CTPs/mg)) were assessed using k-mean clustering and linear regression model. RESULTS Four patient subgroups were identified. Clusters 1 and 2 comprised of younger, high body mass index (BMI) patients with healthier cartilage, where Cluster 1 had high CTP in cartilage, SYN, and IPFP, and Cluster 2 had low [CTP] in cartilage, SYN, and IPFP. Clusters 3 and 4 comprised of older, low BMI patients with diseased cartilage where Cluster 3 had low [CTP] in SYN, IPFP but high [CTP] in cartilage, and Cluster 4 had high [CTP] in SYN, IPFP but low [CTP] in cartilage. Age (r = 0.23, P = 0.026), JSW (r = 0.28, P = 0.007), KL (r = 0.26, P = 0.012), GAG/mg cartilage tissue (r = -0.31, P = 0.007), and SYN-derived [Cell] (r = 0.25, P = 0.049) were weak but significant predictors of OA severity. Cartilage-derived [Cell] (r = 0.38, P < 0.001) and PCTP (r = 0.9, P < 0.001) were moderate/strong predictors of cartilage-derived [CTP]. CONCLUSION Initial findings suggests the presence of OA patient subgroups that could define opportunities for more targeted patient-specific approaches to prevention and treatment.
Collapse
Affiliation(s)
- Venkata P. Mantripragada
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alexander Csorba
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Wesley Bova
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cynthia Boehm
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S. Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer Bullen
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald J. Midura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - George F. Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
38
|
Yolk platelets impede nuclear expansion in Xenopus embryos. Dev Biol 2021; 482:101-113. [PMID: 34906546 DOI: 10.1016/j.ydbio.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
During metazoan early embryogenesis, the intracellular properties of proteins and organelles change dynamically through rapid cleavage. In particular, a change in the nucleus size is known to contribute to embryonic development-dependent cell cycle and gene expression regulation. Here, we compared the nuclear sizes of various blastomeres from developing Xenopus embryos and analyzed the mechanisms that control the nuclear expansion dynamics by manipulating the amount of intracellular components in a cell-free system. Nuclear expansion was slower in blastomeres from vegetal hemispheres during a longer interphase than in those from animal hemispheres. Furthermore, upon recapitulating interphase events by manipulating the concentration of yolk platelets, which are originally rich in the vegetal blastomeres, in cell-free cytoplasmic extracts, nuclear expansion and DNA replication became slower than that in normal yolk-free conditions. Under these conditions, the supplemented yolk platelets accumulated around the nucleus in a microtubule-dependent manner and impeded the organization of the endoplasmic reticulum network. Overall, we propose that yolk platelets around the nucleus reduce membrane supply from the endoplasmic reticulum to the nucleus, resulting in slower nuclear expansion and cell cycle progression in the yolk-rich vegetal blastomeres.
Collapse
|
39
|
Møller P, Roursgaard M. Biomarkers of DNA Oxidation Products: Links to Exposure and Disease in Public Health Studies. Chem Res Toxicol 2021; 34:2235-2250. [PMID: 34704445 DOI: 10.1021/acs.chemrestox.1c00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
40
|
Labusca L, Herea DD, Emanuela Minuti A, Stavila C, Danceanu C, Plamadeala P, Chiriac H, Lupu N. Magnetic Nanoparticles and Magnetic Field Exposure Enhances Chondrogenesis of Human Adipose Derived Mesenchymal Stem Cells But Not of Wharton Jelly Mesenchymal Stem Cells. Front Bioeng Biotechnol 2021; 9:737132. [PMID: 34733830 PMCID: PMC8558412 DOI: 10.3389/fbioe.2021.737132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose: Iron oxide based magnetic nanoparticles (MNP) are versatile tools in biology and medicine. Adipose derived mesenchymal stem cells (ADSC) and Wharton Jelly mesenchymal stem cells (WJMSC) are currently tested in different strategies for regenerative regenerative medicine (RM) purposes. Their superiority compared to other mesenchymal stem cell consists in larger availability, and superior proliferative and differentiation potential. Magnetic field (MF) exposure of MNP-loaded ADSC has been proposed as a method to deliver mechanical stimulation for increasing conversion to musculoskeletal lineages. In this study, we investigated comparatively chondrogenic conversion of ADSC-MNP and WJMSC with or without MF exposure in order to identify the most appropriate cell source and differentiation protocol for future cartilage engineering strategies. Methods: Human primary ADSC and WJMSC from various donors were loaded with proprietary uncoated MNP. The in vitro effect on proliferation and cellular senescence (beta galactosidase assay) in long term culture was assessed. In vitro chondrogenic differentiation in pellet culture system, with or without MF exposure, was assessed using pellet histology (Safranin O staining) as well as quantitative evaluation of glycosaminoglycan (GAG) deposition per cell. Results: ADSC-MNP complexes displayed superior proliferative capability and decreased senescence after long term (28 days) culture in vitro compared to non-loaded ADSC and to WJMSC-MNP. Significant increase in chondrogenesis conversion in terms of GAG/cell ratio could be observed in ADSC-MNP. MF exposure increased glycosaminoglycan deposition in MNP-loaded ADSC, but not in WJMSC. Conclusion: ADSC-MNP display decreased cellular senescence and superior chondrogenic capability in vitro compared to non-loaded cells as well as to WJMSC-MNP. MF exposure further increases ADSC-MNP chondrogenesis in ADSC, but not in WJMSC. Loading ADSC with MNP can derive a successful procedure for obtaining improved chondrogenesis in ADSC. Further in vivo studies are needed to confirm the utility of ADSC-MNP complexes for cartilage engineering.
Collapse
Affiliation(s)
- Luminita Labusca
- National Institute of Research and Development for Technical Physics, Iasi, Romania
- Orthopedics and Traumatology Clinic County Emergency Hospital Saint Spiridon, Iasi, Romania
| | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, Iasi, Romania
| | - Anca Emanuela Minuti
- National Institute of Research and Development for Technical Physics, Iasi, Romania
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, Romania
| | - Cristina Stavila
- National Institute of Research and Development for Technical Physics, Iasi, Romania
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, Romania
| | - Camelia Danceanu
- National Institute of Research and Development for Technical Physics, Iasi, Romania
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, Romania
| | - Petru Plamadeala
- Pathology Department County Children Emergency Hospital Saint Mary, Iasi, Romania
| | - Horia Chiriac
- National Institute of Research and Development for Technical Physics, Iasi, Romania
| | - Nicoleta Lupu
- National Institute of Research and Development for Technical Physics, Iasi, Romania
| |
Collapse
|
41
|
Li Q, Hagberg CE, Silva Cascales H, Lang S, Hyvönen MT, Salehzadeh F, Chen P, Alexandersson I, Terezaki E, Harms MJ, Kutschke M, Arifen N, Krämer N, Aouadi M, Knibbe C, Boucher J, Thorell A, Spalding KL. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat Med 2021; 27:1941-1953. [PMID: 34608330 DOI: 10.1038/s41591-021-01501-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.
Collapse
Affiliation(s)
- Qian Li
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina E Hagberg
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular Medicine Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helena Silva Cascales
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Shuai Lang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mervi T Hyvönen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Firoozeh Salehzadeh
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ping Chen
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockolm, Sweden
| | - Ida Alexandersson
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eleni Terezaki
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Matthew J Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Kutschke
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nahida Arifen
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niels Krämer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Myriam Aouadi
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockolm, Sweden
| | - Carole Knibbe
- CarMeN Laboratory, Lyon University, INRIA, INSA Lyon, Lyon, France
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet and Department of Surgery, Ersta Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. .,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
42
|
Small CD, Davis JP, Crawford BD, Benfey TJ. Early, nonlethal ploidy and genome size quantification using confocal microscopy in zebrafish embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:496-510. [PMID: 34254444 DOI: 10.1002/jez.b.23069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 11/07/2022]
Abstract
Ploidy transitions through whole genome duplication have shaped evolution by allowing the sub- and neo-functionalization of redundant copies of highly conserved genes to express novel traits. The nuclear:cytoplasmic (n:c) ratio is maintained in polyploid vertebrates resulting in larger cells, but body size is maintained by a concomitant reduction in cell number. Ploidy can be manipulated easily in most teleosts, and the zebrafish, already well established as a model system for biomedical research, is therefore an excellent system in which to study the effects of increased cell size and reduced cell numbers in polyploids on development and physiology. Here we describe a novel technique using confocal microscopy to measure genome size and determine ploidy non-lethally at 48 h post-fertilization (hpf) in transgenic zebrafish expressing fluorescent histones. Volumetric analysis of myofiber nuclei using open-source software can reliably distinguish diploids and triploids from a mixed-ploidy pool of embryos for subsequent experimentation. We present an example of this by comparing heart rate between confirmed diploid and triploid embryos at 54 hpf.
Collapse
Affiliation(s)
| | - James P Davis
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Tillmann J Benfey
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
43
|
Papadakis L, Kanakousaki D, Bakopoulou A, Tsouknidas A, Michalakis K. A finite element model of an osteoblast to quantify the transduction of exogenous forces to cellular components. Med Eng Phys 2021; 94:61-69. [PMID: 34303503 DOI: 10.1016/j.medengphy.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023]
Abstract
Encouraged by recent advances of biophysical and biochemical assays we introduce a 3D finite element model of an osteoblast, seeking an analogue between exogenous forces and intracellularly activated sensory mechanisms. The cell was reverse engineered and the dimensions of the internal cellular structures were based on literature data. The model was verified and validated against atomic force microscopy experiments and four loading scenarios were considered. The stress distributions developing on the main cellular components were calculated along with their corresponding strain values. The nucleus and mitochondria exhibited similar loading trends, with the mitochondria being stressed by an order of magnitude higher than the nucleus (e.g. 1.4 vs. 0.16 MPa). Equivalent stiffness was determined to increase by almost 50%, from the apex to the cell's periphery, as was the cell's elasticity, which was lowest when the load was exerted directly above the nucleus. The assessment of how extrinsic loads are propagated to a cell's internal structures is inherently a problem of high complexity. The findings presented in this study can provide important insight into biophysical and biochemical responses elicited in cells through mechanical stimulus. This was evident in both the nuclear and mitochondrial loading and would stipulate the important contribution of even more accurate models in the interpretation of cellular events. One Sentence Summary: The results of this numerical biomechanical study demonstrated that even minor extrinsic loads irrespective of the application site, are transduced by a fraction of the cytoskeleton to its internal structure (primarily to its mitochondria and secondary to the cell's nucleus), indicating mechanical stimulus as the dominant pathway to cell expression.
Collapse
Affiliation(s)
- Labros Papadakis
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, GR-50132, Kozani, Greece
| | - Dimitra Kanakousaki
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece
| | - Alexander Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, GR-50132, Kozani, Greece.
| | - Konstantinos Michalakis
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece; Division of Postgraduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
44
|
Šimoliūnas E, Kantakevičius P, Kalvaitytė M, Bagdzevičiūtė L, Alksnė M, Baltriukienė D. DNA-DAPI Interaction-Based Method for Cell Proliferation Rate Evaluation in 3D Structures. Curr Issues Mol Biol 2021; 43:251-263. [PMID: 34070775 PMCID: PMC8929038 DOI: 10.3390/cimb43010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Effective cell number monitoring throughout the three-dimensional (3D) scaffold is a key factor in tissue engineering. There are many methods developed to evaluate cell number in 2D environments; however, they often encounter limitations in 3D. Therefore, there is a demand for reliable methods to measure cell proliferation in 3D surroundings. Here, we report a novel technique for the DNA content-based evaluation of cell proliferation using DNA-binding dye DAPI. We demonstrated the method's compatibility with four different cell cultures: cancer lines MCF-7 and MH-22a, embryonic fibroblast cell line Swiss 3T3, and primary mesenchymal stem cell culture isolated from rat's incisors. The DAPI based method was able to successfully evaluate cell proliferation in 2D, 2.5D, and 3D environments. Even though the proposed method does not discriminate between viable and dead cells, it might give a convenient snapshot of the cell number at a given time point. This should help to more reliably evaluate various processes proceeding in 2.5D and 3D cultures.
Collapse
Affiliation(s)
- Egidijus Šimoliūnas
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| | - Paulius Kantakevičius
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The Univesity of Manchester, Manchester M13 9PL, UK
| | - Miglė Kalvaitytė
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| | - Lina Bagdzevičiūtė
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| | - Milda Alksnė
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| | - Daiva Baltriukienė
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| |
Collapse
|
45
|
Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv 2021; 4:560-572. [PMID: 32045475 DOI: 10.1182/bloodadvances.2019000525] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
The anti-CD19 chimeric antigen receptor (CAR)-T cell therapy tisagenlecleucel was evaluated in the global, phase 2 JULIET study in adult patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). We correlated tisagenlecleucel cellular kinetics with clinical/product parameters in 111 patients treated in JULIET. Tisagenlecleucel persistence in responders and nonresponders, respectively, was demonstrated for 554 and 400 days maximum by flow cytometry and for 693 and 374 days maximum by quantitative polymerase chain reaction (qPCR). No relationships were identified between cellular kinetics (qPCR) and product characteristics, intrinsic/extrinsic factors, dose, or immunogenicity. Most patients with 3-month response had detectable transgene at time of response and continued persistence for ≥6 months. Expansion (maximal expansion of transgene/CAR-positive T-cell levels in vivo postinfusion [Cmax]) was potentially associated with response duration but this did not reach statistical significance (hazard ratio for a twofold increase in Cmax, 0.79; 95% confidence interval, 0.61-1.01). Tisagenlecleucel expansion was associated with cytokine-release syndrome (CRS) severity and tocilizumab use; no relationships were observed with neurologic events. Transgene levels were associated with B-cell levels. Dose was associated with CRS severity, but this was not statistically significant after adjusting for baseline tumor burden. In contrast to the results from B-cell precursor acute lymphoblastic leukemia (B-ALL) and chronic lymphocytic leukemia, similar exposure was observed in DLBCL in this study regardless of response and expansion was lower in DLBCL than B-ALL, likely from differences in cancer location and/or T-cell intrinsic factors. Relationships between expansion and CRS severity, and lack of relationships between dose and exposure, were similar between DLBCL and B-ALL. Tisagenlecleucel cellular kinetics in adult relapsed/refractory DLBCL improve current understanding of in vivo expansion and its relationships with safety/efficacy endpoints. This trial was registered at www.clinicaltrials.gov as #NCT02445248.
Collapse
|
46
|
Prasad V, Millay DP. Skeletal muscle fibers count on nuclear numbers for growth. Semin Cell Dev Biol 2021; 119:3-10. [PMID: 33972174 DOI: 10.1016/j.semcdb.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle cells are noteworthy for their syncytial nature, with each myofiber accumulating hundreds or thousands of nuclei derived from resident muscle stem cells (MuSCs). These nuclei are accrued through cell fusion, which is controlled by the two essential fusogens Myomaker and Myomerger that are transiently expressed within the myogenic lineage. While the absolute requirement of fusion for muscle development has been known for decades, the underlying need for the magnitude of multinucleation in muscle remains mysterious. Possible advantages of multinucleation include the potential it affords for transcriptional diversity within these massive cells, and as a means of increasing DNA content to support optimal cell size and function. In this article, we review recent advances that elucidate the relationship between myonuclear numbers and establishment of myofiber size, and discuss how this new information refines our understanding of the concept of myonuclear domains (MND), the cytoplasmic volumes that each resident myonucleus can support. Finally, we explore the potential consequences and costs of multinucleation and its impacts on myonuclear transcriptional reserve capacity, growth potential, myofiber size regulation, and muscle adaptability. We anticipate this report will not only serve to highlight the latest advances in the basic biology of syncytial muscle cells but also provide information to help design the next generation of therapeutic strategies to maintain muscle mass and function.
Collapse
Affiliation(s)
- Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
47
|
Wang N, Liu J, Ricci WA, Gent JI, Dawe RK. Maize centromeric chromatin scales with changes in genome size. Genetics 2021; 217:iyab020. [PMID: 33857306 PMCID: PMC8049547 DOI: 10.1093/genetics/iyab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/30/2021] [Indexed: 11/14/2022] Open
Abstract
Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.
Collapse
Affiliation(s)
- Na Wang
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - Jianing Liu
- Department of Genetics, University of Georgia, Athens GA 30602, USA
| | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
- Department of Genetics, University of Georgia, Athens GA 30602, USA
| |
Collapse
|
48
|
Machado M, Steinke S, Ganter M. Plasmodium Reproduction, Cell Size, and Transcription: How to Cope With Increasing DNA Content? Front Cell Infect Microbiol 2021; 11:660679. [PMID: 33898332 PMCID: PMC8062723 DOI: 10.3389/fcimb.2021.660679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium, the unicellular parasite that causes malaria, evolved a highly unusual mode of reproduction. During its complex life cycle, invasive or transmissive stages alternate with proliferating stages, where a single parasite can produce tens of thousands of progeny. In the clinically relevant blood stage of infection, the parasite replicates its genome up to thirty times and forms a multinucleated cell before daughter cells are assembled. Thus, within a single cell cycle, Plasmodium develops from a haploid to a polypoid cell, harboring multiple copies of its genome. Polyploidy creates several biological challenges, such as imbalances in genome output, and cells can respond to this by changing their size and/or alter the production of RNA species and protein to achieve expression homeostasis. However, the effects and possible adaptations of Plasmodium to the massively increasing DNA content are unknown. Here, we revisit and embed current Plasmodium literature in the context of polyploidy and propose potential mechanisms of the parasite to cope with the increasing gene dosage.
Collapse
Affiliation(s)
- Marta Machado
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Salome Steinke
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
49
|
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. BIOLOGY 2021; 10:270. [PMID: 33810583 PMCID: PMC8067107 DOI: 10.3390/biology10040270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.
Collapse
|
50
|
Tyagi IS, Chen S, Khan MA, Xie J, Li PY, Long X, Xue H. Intrinsic and chemically-induced daughter number variations in cancer cell lines. Cell Cycle 2021; 20:537-549. [PMID: 33596747 DOI: 10.1080/15384101.2021.1883363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Multipolar mitosis was observed in cancer cells under mechanical stress or drug treatment. However, a comprehensive understanding of its basic properties and significance to cancer cell biology is lacking. In the present study, live-cell imaging was employed to investigate the division and nucleation patterns in four different cell lines. Multi-daughter divisions were observed in the three cancer cell lines HepG2, HeLa and A549, but not in the transformed non-cancer cell line RPE1. Multi-daughter mother cells displayed multi-nucleation, enlarged cell area, and prolonged division time. Under acidic pH or treatment with the anti-cancer drug 5-fluorouracil (5-FU) or the phytochemical compound wogonin, multi-daughter mitoses were increased to different extents in all three cancer cell lines, reaching as high as 16% of all mitoses. While less than 0.4% of the bi-daughter mitosis were followed by cell fusion events under the various treatment conditions, 50% or more of the multi-daughter mitoses were followed by fusion events at neutral, acidic or alkaline pH. These findings revealed a "Daughter Number Variation" (DNV) process in the cancer cells, with multi-daughter divisions in Stage 1 and cell fusions leading to the formation of cells containing up to five nuclei in Stage 2. The Stage 2-fusions were inhibited by 5-FU in A549 and HeLa, and by wogonin in A549, HeLa and HepG2. The parallel relationship between DNV frequency and malignancy among the different cell lines suggests that the inclusion of anti-fusion agents exemplified by wogonin and 5-FU could be beneficial in combinatory cancer chemotherapies.
Collapse
Affiliation(s)
- Iram Shazia Tyagi
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Si Chen
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Muhammad Ajmal Khan
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jia Xie
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ping Yin Li
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Xi Long
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Hong Xue
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China.,Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|