1
|
Serrano MV, Cottier S, Wang L, Moreira-Antepara S, Nzessi A, Liu Z, Williams B, Lee M, Schneiter R, Liu J. The C. elegans LON-1 protein requires its CAP domain for function in regulating body size and BMP signaling. Genetics 2025; 229:iyae202. [PMID: 39657262 PMCID: PMC11796460 DOI: 10.1093/genetics/iyae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
The CAP (cysteine-rich secretory proteins, antigen-5, and pathogenesis-related) proteins are widely expressed and have been implicated to play diverse roles ranging from mammalian reproduction to plant immune response. Increasing evidence supports a role of CAP proteins in lipid binding. The Caenorhabditis elegans CAP protein LON-1 is known to regulate body size and bone morphogenetic protein (BMP) signaling. LON-1 is a secreted protein with a conserved CAP domain and a C-terminal unstructured domain with no homology to other proteins. In this study, we report that the C-terminal domain of LON-1 is dispensable for its function. Instead, key conserved residues located in the CAP domain are critical for LON-1 function in vivo. We further showed that LON-1 is capable of binding sterol, but not fatty acid, in vitro, and that certain key residues implicated in LON-1 function in vivo are also important for LON-1 sterol binding in vitro. These findings suggest a role of LON-1 in regulating body size and BMP signaling via sterol binding.
Collapse
Affiliation(s)
| | - Stéphanie Cottier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Lianzijun Wang
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | | | - Anthony Nzessi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Zhiyu Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Myeongwoo Lee
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Zhu H, Bruck-Haimson R, Zaretsky A, Cohen I, Falk R, Achache H, Tzur YB, Cohen E. A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling. Nat Cell Biol 2025; 27:87-102. [PMID: 39753948 DOI: 10.1038/s41556-024-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases. Yet the identification of proteostasis regulators is needed to assess the feasibility of this approach. Here we report that knocking down the activity of the nucleolar FIB-1-NOL-56 complex protects model nematodes from proteotoxicity of the Alzheimer's disease-causing amyloid-β peptide and of abnormally long poly-glutamine stretches. This mechanism promotes proteostasis across tissues by modulating the activity of TGFβ signalling and by enhancing proteasome activity. Our findings point at research avenues towards the development of proteostasis-promoting therapies for neurodegenerative maladies.
Collapse
Affiliation(s)
- Huadong Zhu
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam Zaretsky
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roni Falk
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanna Achache
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan B Tzur
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Chaimon S, Phuphisut O, Reamtong O, Ampawong S, Fongsodsri K, Chantree P, Thanongsaksrikul J, Malaithong P, Sreesai S, Maleewong W, Sadaow L, Martviset P, Adisakwattana P. Molecular and biological characterization of transforming growth factor-β homolog derived from Trichinella spiralis. Sci Rep 2024; 14:31229. [PMID: 39732815 DOI: 10.1038/s41598-024-82599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
The cytokine homologs, particularly transforming growth factor (TGF)-β, is a crucial immunomodulatory molecule and involved in growth and developmental processes in several helminths. In this study, the basic properties and functions of T. spiralis TGF-β homolog 2 (TsTGH2) were characterized using bioinformatics and molecular biology approaches. Bioinformatics analyses indicated that TsTGH2 belongs to the TGF-β subfamily. Recombinant TsTGH2 (rTsTGH2) expressed in Escherichia coli was used to produce a polyclonal antibody (pAb) in mice. Western blot and immunolocalization using pAb detected native TsTGH2 in crude worm antigens from muscle larvae and adults, showing it was mainly localized in the body wall muscles and the epithelia of the ovary and uterus. To assess the interplay between TsTGH2 and the human TGF-β signaling pathway, rTsTGH2 produced in a HEK293T cell was incubated with the SBE luciferase-HEK293 cell. The result indicated a significant increase in luciferase activity after treatment with rTsTGH2 compared to untreated control (p < 0.05). In conclusion, these findings are the first to characterize the basic properties and functions of TGF-β homologs in T. spiralis, demonstrating their interaction with the human TGF-β receptor. Further investigation is required to identify and optimize an appropriate expression system or conditions for TsTGH2. Additionally, studies are needed to clarify the specific role of native TsTGH2 in parasite development and host immunomodulation.
Collapse
Affiliation(s)
- Salisa Chaimon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, 12120, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand
| | - Preeyarat Malaithong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Suthasinee Sreesai
- Central Equipment Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wanchai Maleewong
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lakkhana Sadaow
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, 12120, Thailand.
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Woodruff GC, Willis JH, Johnson E, Phillips PC. Widespread changes in gene expression accompany body size evolution in nematodes. G3 (BETHESDA, MD.) 2024; 14:jkae110. [PMID: 38775657 PMCID: PMC11304970 DOI: 10.1093/g3journal/jkae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/27/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Body size is a fundamental trait that drives multiple evolutionary and ecological patterns. Caenorhabditis inopinata is a fig-associated nematode that is exceptionally large relative to other members of the genus, including Caenorhabditis elegans. We previously showed that C. inopinata is large primarily due to postembryonic cell size expansion that occurs during the larval-to-adult transition. Here, we describe gene expression patterns in C. elegans and C. inopinata throughout this developmental period to understand the transcriptional basis of body size change. We performed RNA-seq in both species across the L3, L4, and adult stages. Most genes are differentially expressed across all developmental stages, consistent with C. inopinata's divergent ecology and morphology. We also used a model comparison approach to identify orthologues with divergent dynamics across this developmental period between the 2 species. This included genes connected to neurons, behavior, stress response, developmental timing, and small RNA/chromatin regulation. Multiple hypodermal collagens were also observed to harbor divergent developmental dynamics across this period, and genes important for molting and body morphology were also detected. Genes associated with transforming growth factor β signaling revealed idiosyncratic and unexpected transcriptional patterns given their role in body size regulation in C. elegans. This widespread transcriptional divergence between these species is unexpected and maybe a signature of the ecological and morphological divergence of C. inopinata. Alternatively, transcriptional turnover may be the rule in the Caenorhabditis genus, indicative of widespread developmental system drift among species. This work lays the foundation for future functional genetic studies interrogating the bases of body size evolution in this group.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
5
|
Ciccarelli EJ, Wing Z, Bendelstein M, Johal RK, Singh G, Monas A, Savage-Dunn C. TGF-β ligand cross-subfamily interactions in the response of Caenorhabditis elegans to a bacterial pathogen. PLoS Genet 2024; 20:e1011324. [PMID: 38875298 PMCID: PMC11210861 DOI: 10.1371/journal.pgen.1011324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
The Transforming Growth Factor beta (TGF-β) family consists of numerous secreted peptide growth factors that play significant roles in cell function, tissue patterning, and organismal homeostasis, including wound repair and immunity. Typically studied as homodimers, these ligands have the potential to diversify their functions through ligand interactions that may enhance, repress, or generate novel functions. In the nematode Caenorhabditis elegans, there are only five TGF-β ligands, providing an opportunity to dissect ligand interactions in fewer combinations than in vertebrates. As in vertebrates, these ligands can be divided into bone morphogenetic protein (BMP) and TGF-β/Activin subfamilies that predominantly signal through discrete signaling pathways. The BMP subfamily ligand DBL-1 has been well studied for its role in the innate immune response in C. elegans. Here we show that all five TGF-β ligands play a role in survival on bacterial pathogens. We also demonstrate that multiple TGF-β ligand pairs act nonredundantly as part of this response. We show that the two BMP-like ligands-DBL-1 and TIG-2-function independently of each other in the immune response, while TIG-2/BMP and the TGF-β/Activin-like ligand TIG-3 function together. Structural modeling supports the potential for TIG-2 and TIG-3 to form heterodimers. Additionally, we identify TIG-2 and TIG-3 as members of a rare subset of TGF-β ligands lacking the conserved cysteine responsible for disulfide linking mature dimers. Finally, we show that canonical DBL-1/BMP receptor and Smad signal transducers function in the response to bacterial pathogens, while components of the DAF-7 TGF-β/Activin signaling pathway do not play a major role in survival. These results demonstrate a novel potential for BMP and TGF-β/Activin subfamily ligands to interact and may provide a mechanism for distinguishing the developmental and homeostatic functions of these ligands from an acute response such as the innate immune response to bacterial pathogens.
Collapse
Affiliation(s)
- Emma Jo Ciccarelli
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
- PhD Program in Biology, The Graduate Center, City University of New York, New York City, New York, United States of America
| | - Zachary Wing
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Moshe Bendelstein
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Ramandeep Kaur Johal
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Gurjot Singh
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Ayelet Monas
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, New York City, New York, United States of America
- PhD Program in Biology, The Graduate Center, City University of New York, New York City, New York, United States of America
| |
Collapse
|
6
|
Zhu R, Chin-Sang ID. C. elegans insulin-like peptides. Mol Cell Endocrinol 2024; 585:112173. [PMID: 38346555 DOI: 10.1016/j.mce.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
Insulin-like peptides are a group of hormones crucial for regulating metabolism, growth, and development in animals. Invertebrates, such as C. elegans, have been instrumental in understanding the molecular mechanisms of insulin-like peptides. Here, we review the 40 insulin-like peptide genes encoded in the C. elegans genome. Despite the large number, there is only one C. elegans insulin-like peptide receptor, called DAF-2. The insulin and insulin-like growth factor signaling (IIS) pathway is evolutionarily conserved from worms to humans. Thus C. elegans provides an excellent model to understand how these insulin-like peptides function. C. elegans is unique in that it possesses insulin-like peptides that have antagonistic properties, unlike all human insulin-like peptides, which are agonists. This review provides an overview of the current literature on C. elegans insulin-like peptide structures, processing, tissue localization, and regulation. We will also provide examples of insulin-like peptide signaling in C. elegans during growth, development, germline development, learning/memory, and longevity.
Collapse
Affiliation(s)
- Rain Zhu
- Department of Biology, Queen's University, Kingston ON Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston ON Canada.
| |
Collapse
|
7
|
Choi R, Bodkhe R, Pees B, Kim D, Berg M, Monnin D, Cho J, Narayan V, Deller E, Savage-Dunn C, Shapira M. An Enterobacteriaceae bloom in aging animals is restrained by the gut microbiome. AGING BIOLOGY 2024; 2:20240024. [PMID: 38736850 PMCID: PMC11085993 DOI: 10.59368/agingbio.20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The gut microbiome plays important roles in host function and health. Core microbiomes have been described for different species, and imbalances in their composition, known as dysbiosis, are associated with pathology. Changes in the gut microbiome and dysbiosis are common in aging, possibly due to multi-tissue deterioration, which includes metabolic shifts, dysregulated immunity, and disrupted epithelial barriers. However, the characteristics of these changes, as reported in different studies, are varied and sometimes conflicting. Using clonal populations of Caenorhabditis elegans to highlight trends shared among individuals, we employed 16s rRNA gene sequencing, CFU counts and fluorescent imaging, identifying an Enterobacteriaceae bloom as a common denominator in aging animals. Experiments using Enterobacter hormaechei, a representative commensal, suggested that the Enterobacteriaceae bloom was facilitated by a decline in Sma/BMP immune signaling in aging animals and demonstrated its potential for exacerbating infection susceptibility. However, such detrimental effects were context-dependent, mitigated by competition with commensal communities, highlighting the latter as determinants of healthy versus unhealthy aging, depending on their ability to restrain opportunistic pathobionts.
Collapse
Affiliation(s)
- Rebecca Choi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rahul Bodkhe
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Barbara Pees
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dan Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maureen Berg
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Monnin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Juhyun Cho
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vivek Narayan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ethan Deller
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing NY, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Gowripriya T, Meharaj Afrin K, Paurna M, Yashwanth R, Bhaskar JP, Suresh R, Balamurugan K. Regulation of miR-61 and col-19 via TGF-β and Notch signalling in Caenorhabditis elegans against Klebsiella aerogenes infection. Microb Pathog 2024; 186:106505. [PMID: 38122874 DOI: 10.1016/j.micpath.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Klebsiella aerogenes, previously known as Enterobacter aerogenes, is a gram-negative bacterium typically present in the gastrointestinal tract. While numerous studies reported the pathogenicity and drug resistance of this bacterium there remains a lack of comprehensive research on K. aerogenes induced alterations in the host cellular mechanisms. In this study, we identify a previously uncharacterized C. elegans miR-61 that defines an evolutionarily conserved miRNA important for development and innate immunity regulation through Notch and TGF-β signaling pathway. We employed C. elegans wild-type (N2) as well as mutant strains, such as TGF-β (sma-6) and notch-signaling pathway mutants (adm-4 and mir-61). Our results have demonstrated that the K. aerogenes infected mutants exhibited significantly reduced survival rate, reduced pharyngeal pumping, altered swimming and chemotactic behavior. Moreover, K. aerogenes affects the healthspan by increasing ROS level in the mutants. The gene expression analysis revealed that K. aerogenes upregulated egl-30, tph-1 and sod-1 in adm-4, mir-61 mutants not in sma-6. The in-silico analysis indicated an interaction between mir-61 and col-19, which was confirmed by the upregulation of miR-61 expression and the downregulation of col-19 in sma-6, adm-4, and wild-type strains. These findings suggest that C. elegans activates mir-61 and col-19 regulation through the Notch and TGF-β signaling pathway against K. aerogenes infection.
Collapse
Affiliation(s)
- Thirumugam Gowripriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India.
| | | | - Manikandan Paurna
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India.
| | - Radhakrishnan Yashwanth
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | - James Prabhanand Bhaskar
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | - Ramamurthi Suresh
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | | |
Collapse
|
9
|
Stojanovski K, Gheorghe I, Lenart P, Lanjuin A, Mair WB, Towbin BD. Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1. Nat Commun 2023; 14:7564. [PMID: 37985670 PMCID: PMC10661912 DOI: 10.1038/s41467-023-43230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Even slight imbalance between the growth rate of different organs can accumulate to a large deviation from their appropriate size during development. Here, we use live imaging of the pharynx of C. elegans to ask if and how organ size scaling nevertheless remains uniform among individuals. Growth trajectories of hundreds of individuals reveal that pharynxes grow by a near constant volume per larval stage that is independent of their initial size, such that undersized pharynxes catch-up in size during development. Tissue-specific depletion of RAGA-1, an activator of mTOR and growth, shows that maintaining correct pharynx-to-body size proportions involves a bi-directional coupling between pharynx size and body growth. In simulations, this coupling cannot be explained by limitation of food uptake alone, and genetic experiments reveal an involvement of the mechanotransducing transcriptional co-regulator yap-1. Our data suggests that mechanotransduction coordinates pharynx growth with other tissues, ensuring body plan uniformity among individuals.
Collapse
Affiliation(s)
| | - Ioana Gheorghe
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Peter Lenart
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anne Lanjuin
- Department Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William B Mair
- Department Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
10
|
Woodruff GC, Willis JH, Johnson E, Phillips PC. Widespread changes in gene expression accompany body size evolution in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564729. [PMID: 37961435 PMCID: PMC10635002 DOI: 10.1101/2023.10.30.564729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Body size is a fundamental trait that drives multiple evolutionary and ecological patterns. Caenorhabditis inopinata is a fig-associated nematode that is exceptionally large relative to other members of the genus, including C. elegans. We previously showed that C. inopinata is large primarily due to postembryonic cell size expansion that occurs during the larval-to-adult transition. Here, we describe gene expression patterns in C. elegans and C. inopinata throughout this developmental period to understand the transcriptional basis of body size change. We performed RNA-seq in both species across the L3, L4, and adult stages. Most genes are differentially expressed across all developmental stages, consistent with C. inopinata's divergent ecology and morphology. We also used a model comparison approach to identify orthologs with divergent dynamics across this developmental period between the two species. This included genes connected to neurons, behavior, stress response, developmental timing, and small RNA/chromatin regulation. Multiple hypodermal collagens were also observed to harbor divergent developmental dynamics across this period, and genes important for molting and body morphology were also detected. Genes associated with TGF-β signaling revealed idiosyncratic and unexpected transcriptional patterns given their role in body size regulation in C. elegans. Widespread transcriptional divergence between these species is unexpected and may be a signature of the ecological and morphological divergence of C. inopinata. Alternatively, transcriptional turnover may be the rule in the Caenorhabditis genus, indicative of widespread developmental system drift among species. This work lays the foundation for future functional genetic studies interrogating the bases of body size evolution in this group.
Collapse
Affiliation(s)
- Gavin C Woodruff
- University of Oregon, Eugene, Oregon, USA
- Current institution: University of Oklahoma, Norman, Oklahoma, USA
| | | | | | | |
Collapse
|
11
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Reich H, Savage-Dunn C. Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode Caenorhabditis elegans. Am J Physiol Cell Physiol 2023; 325:C1201-C1211. [PMID: 37721005 PMCID: PMC10861026 DOI: 10.1152/ajpcell.00195.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Collapse
Affiliation(s)
- Hannah Reich
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
13
|
Zhang X, Wang Y, Cai Z, Wan Z, Aihemaiti Y, Tu H. A gonadal gap junction INX-14/Notch GLP-1 signaling axis suppresses gut defense through an intestinal lysosome pathway. Front Immunol 2023; 14:1249436. [PMID: 37928537 PMCID: PMC10620905 DOI: 10.3389/fimmu.2023.1249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Gap junctions mediate intercellular communications across cellular networks in the nervous and immune systems. Yet their roles in intestinal innate immunity are poorly understood. Here, we show that the gap junction/innexin subunit inx-14 acts in the C. elegans gonad to attenuate intestinal defenses to Pseudomonas aeruginosa PA14 infection through the PMK-1/p38 pathway. RNA-Seq analyses revealed that germline-specific inx-14 RNAi downregulated Notch/GLP-1 signaling, while lysosome and PMK-1/p38 pathways were upregulated. Consistently, disruption of inx-14 or glp-1 in the germline enhanced resistance to PA14 infection and upregulated lysosome and PMK-1/p38 activity. We show that lysosome signaling functions downstream of the INX-14/GLP-1 signaling axis and upstream of PMK-1/p38 pathway to facilitate intestinal defense. Our findings expand the understanding of the links between the reproductive system and intestinal defense, which may be evolutionarily conserved in higher organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
14
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
15
|
Ciccarelli EJ, Wing Z, Bendelstein M, Johal RK, Singh G, Monas A, Savage-Dunn C. TGF-β Ligand Cross-Subfamily Interactions in the Response of Caenorhabditis elegans to Bacterial Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539606. [PMID: 37215035 PMCID: PMC10197529 DOI: 10.1101/2023.05.05.539606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Transforming Growth Factor beta (TGF-β) family consists of numerous secreted peptide growth factors that play significant roles in cell function, tissue patterning, and organismal homeostasis, including wound repair and immunity. Typically studied as homodimers, these ligands have the potential to diversify their functions through ligand interactions that are synergistic, cooperative, additive, and/or antagonistic. In the nematode Caenorhabditis elegans, there are only five TGF-β ligands, providing an opportunity to dissect ligand interactions in fewer combinations than in vertebrates. As in vertebrates, these ligands can be divided into bone morphogenetic protein (BMP) and TGF-β/Activin subfamilies that predominantly signal through discrete signaling pathways. The BMP subfamily ligand DBL-1 has been well studied for its role in the innate immune response in C. elegans. Here we show that all five TGF-β ligands play a role in the immune response. We also demonstrate that multiple TGF-β ligands act cooperatively as part of this response. We show that the two BMP-like ligands - DBL-1 and TIG-2 - function independently of each other in the immune response, while TIG-2/BMP and the TGF-β/Activin-like ligand TIG-3 function cooperatively. Structural modeling supports the potential for TIG-2 and TIG-3 to form heterodimers. Finally, we show that canonical DBL-1/BMP receptor and Smad signal transducers function in the response to bacterial pathogens, while components of the DAF-7 TGF-β/Activin signaling pathway do not play a role in survival. These results demonstrate a novel potential for BMP and TGF-β/Activin subfamily ligands to interact, and may provide a mechanism for distinguishing the developmental and homeostatic functions of these ligands from an acute response such as the innate immune response to bacterial pathogens.
Collapse
Affiliation(s)
- Emma Jo Ciccarelli
- Department of Biology, Queens College, CUNY, Flushing, NY
- PhD Program in Biology, The Graduate Center, CUNY, New York, NY
| | - Zachary Wing
- Department of Biology, Queens College, CUNY, Flushing, NY
| | | | | | - Gurjot Singh
- Department of Biology, Queens College, CUNY, Flushing, NY
| | - Ayelet Monas
- Department of Biology, Queens College, CUNY, Flushing, NY
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, Flushing, NY
- PhD Program in Biology, The Graduate Center, CUNY, New York, NY
| |
Collapse
|
16
|
DeGroot MS, Williams B, Chang TY, Maas Gamboa ML, Larus IM, Hong G, Fromme JC, Liu J. SMOC-1 interacts with both BMP and glypican to regulate BMP signaling in C. elegans. PLoS Biol 2023; 21:e3002272. [PMID: 37590248 PMCID: PMC10464977 DOI: 10.1371/journal.pbio.3002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Secreted modular calcium-binding proteins (SMOCs) are conserved matricellular proteins found in organisms from Caenorhabditis elegans to humans. SMOC homologs characteristically contain 1 or 2 extracellular calcium-binding (EC) domain(s) and 1 or 2 thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate proteoglycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans. We showed that CeSMOC-1 binds to the heparin sulfate proteoglycan GPC3 homolog LON-2/glypican, as well as the mature domain of the BMP2/4 homolog DBL-1. Moreover, CeSMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between CeSMOC-1 and LON-2/glypican is mediated specifically by the EC domain of CeSMOC-1, while the full interaction between CeSMOC-1 and DBL-1/BMP requires full-length CeSMOC-1. We provide both in vitro biochemical and in vivo functional evidence demonstrating that CeSMOC-1 functions both negatively in a LON-2/glypican-dependent manner and positively in a DBL-1/BMP-dependent manner to regulate BMP signaling. We further showed that in silico, Drosophila and vertebrate SMOC proteins can also bind to mature BMP dimers. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Collapse
Affiliation(s)
- Melisa S. DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Timothy Y. Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Maria L. Maas Gamboa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Isabel M. Larus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Garam Hong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
17
|
Silva-García CG. Devo-Aging: Intersections Between Development and Aging. GeroScience 2023; 45:2145-2159. [PMID: 37160658 PMCID: PMC10651630 DOI: 10.1007/s11357-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
There are two fundamental questions in developmental biology. How does a single fertilized cell give rise to a whole body? and how does this body later produce progeny? Synchronization of these embryonic and postembryonic developments ensures continuity of life from one generation to the next. An enormous amount of work has been done to unravel the molecular mechanisms behind these processes, but more recently, modern developmental biology has been expanded to study development in wider contexts, including regeneration, environment, disease, and even aging. However, we have just started to understand how the mechanisms that govern development also regulate aging. This review discusses examples of signaling pathways involved in development to elucidate how their regulation influences healthspan and lifespan. Therefore, a better knowledge of developmental signaling pathways stresses the possibility of using them as innovative biomarkers and targets for aging and age-related diseases.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
18
|
Choi R, Bodkhe R, Pees B, Kim D, Berg M, Monnin D, Cho J, Narayan V, Deller E, Shapira M. An Enterobacteriaceae bloom in aging animals is restrained by the gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544815. [PMID: 37398063 PMCID: PMC10312681 DOI: 10.1101/2023.06.13.544815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The gut microbiome plays important roles in host function and health. Core microbiomes have been described for different species, and imbalances in their composition, known as dysbiosis, are associated with pathology. Changes in the gut microbiome and dysbiosis are common in aging, possibly due to multi-tissue deterioration, which includes metabolic shifts, dysregulated immunity, and disrupted epithelial barriers. However, the characteristics of these changes, as reported in different studies, are varied and sometimes conflicting. Using clonal populations of C. elegans to highlight trends shared among individuals, and employing NextGen sequencing, CFU counts and fluorescent imaging to characterize age-dependent changes in worms raised in different microbial environments, we identified an Enterobacteriaceae bloom as a common denominator in aging animals. Experiments using Enterobacter hormachei, a representative commensal, suggested that the Enterobacteriaceae bloom was facilitated by a decline in Sma/BMP immune signaling in aging animals and demonstrated its detrimental potential for increasing susceptibility to infection. However, such detrimental effects were context-dependent, mitigated by competition with commensal communities, highlighting the latter as determinants of healthy versus unhealthy aging, depending on their ability to restrain opportunistic pathobionts.
Collapse
Affiliation(s)
- Rebecca Choi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rahul Bodkhe
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Barbara Pees
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dan Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maureen Berg
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Monnin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Juhyun Cho
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vivek Narayan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ethan Deller
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
19
|
Joseph BB, Naslavsky N, Binti S, Conquest S, Robison L, Bai G, Homer RO, Grant BD, Caplan S, Fay DS. Conserved NIMA kinases regulate multiple steps of endocytic trafficking. PLoS Genet 2023; 19:e1010741. [PMID: 37099601 PMCID: PMC10166553 DOI: 10.1371/journal.pgen.1010741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/08/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
Human NIMA-related kinases have primarily been studied for their roles in cell cycle progression (NEK1/2/6/7/9), checkpoint-DNA-damage control (NEK1/2/4/5/10/11), and ciliogenesis (NEK1/4/8). We previously showed that Caenorhabditis elegans NEKL-2 (NEK8/9 homolog) and NEKL-3 (NEK6/7 homolog) regulate apical clathrin-mediated endocytosis (CME) in the worm epidermis and are essential for molting. Here we show that NEKL-2 and NEKL-3 also have distinct roles in controlling endosome function and morphology. Specifically, loss of NEKL-2 led to enlarged early endosomes with long tubular extensions but showed minimal effects on other compartments. In contrast, NEKL-3 depletion caused pronounced defects in early, late, and recycling endosomes. Consistently, NEKL-2 was strongly localized to early endosomes, whereas NEKL-3 was localized to multiple endosomal compartments. Loss of NEKLs also led to variable defects in the recycling of two resident cargoes of the trans-Golgi network (TGN), MIG-14/Wntless and TGN-38/TGN38, which were missorted to lysosomes after NEKL depletion. In addition, defects were observed in the uptake of clathrin-dependent (SMA-6/Type I BMP receptor) and independent cargoes (DAF-4/Type II BMP receptor) from the basolateral surface of epidermal cells after NEKL-2 or NEKL-3 depletion. Complementary studies in human cell lines further showed that siRNA knockdown of the NEKL-3 orthologs NEK6 and NEK7 led to missorting of the mannose 6-phosphate receptor from endosomes. Moreover, in multiple human cell types, depletion of NEK6 or NEK7 disrupted both early and recycling endosomal compartments, including the presence of excess tubulation within recycling endosomes, a defect also observed after NEKL-3 depletion in worms. Thus, NIMA family kinases carry out multiple functions during endocytosis in both worms and humans, consistent with our previous observation that human NEKL-3 orthologs can rescue molting and trafficking defects in C. elegans nekl-3 mutants. Our findings suggest that trafficking defects could underlie some of the proposed roles for NEK kinases in human disease.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sylvia Conquest
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Lexi Robison
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Rafael O. Homer
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
20
|
DeGroot MS, Williams B, Chang TY, Maas Gamboa ML, Larus I, Fromme JC, Liu J. C. elegans SMOC-1 interacts with both BMP and glypican to regulate BMP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523017. [PMID: 36711863 PMCID: PMC9881921 DOI: 10.1101/2023.01.06.523017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secreted modular calcium binding (SMOC) proteins are conserved matricellular proteins found in organisms from C. elegans to humans. SMOC homologs characteristically contain one or two extracellular calcium (EC) binding domain(s) and one or two thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate protein glycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans . We showed that SMOC-1 binds LON-2/glypican, as well as the mature domain of DBL-1/BMP. Moreover, SMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between SMOC-1 and LON-2/glypican is mediated by the EC domain of SMOC-1, while the interaction between SMOC-1 and DBL-1/BMP involves full-length SMOC-1. We further showed that while SMOC-1(EC) is sufficient to promote BMP signaling when overexpressed, both the EC and TY domains are required for SMOC-1 function at the endogenous locus. Finally, when overexpressed, SMOC-1 can promote BMP signaling in the absence of LON-2/glypican. Taken together, our findings led to a model where SMOC-1 functions both negatively in a LON-2-dependent manner and positively in a LON-2-independent manner to regulate BMP signaling. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Collapse
Affiliation(s)
- Melisa S. DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Timothy Y Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Maria L. Maas Gamboa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Isabel Larus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
21
|
Estrada-Valencia R, de Lima ME, Colonnello A, Rangel-López E, Saraiva NR, de Ávila DS, Aschner M, Santamaría A. The Endocannabinoid System in Caenorhabditis elegans. Rev Physiol Biochem Pharmacol 2023; 184:1-31. [PMID: 34401955 PMCID: PMC8850531 DOI: 10.1007/112_2021_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The existence of a formal Endocannabinoid System in C. elegans has been questioned due to data showing the absence of typical cannabinoid receptors in the worm; however, the presence of a full metabolism for endocannabinoids, alternative ligands, and receptors for these agents and a considerable number of orthologous and homologous genes regulating physiological cannabinoid-like signals and responses - several of which are similar to those of mammals - demonstrates a well-structured and functional complex system in nematodes. In this review, we describe and compare similarities and differences between the Endocannabinoid System in mammals and nematodes, highlighting the basis for the integral study of this novel system in the worm.
Collapse
Affiliation(s)
| | - María Eduarda de Lima
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Nariani Rocha Saraiva
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Daiana Silva de Ávila
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
22
|
Phuphisut O, Poodeepiyasawat A, Yoonuan T, Watthanakulpanich D, Chotsiri P, Reamtong O, Mousley A, Gobert GN, Adisakwattana P. Transcriptome profiling of male and female Ascaris lumbricoides reproductive tissues. Parasit Vectors 2022; 15:477. [PMID: 36539906 PMCID: PMC9768952 DOI: 10.1186/s13071-022-05602-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ascaris lumbricoides causes human ascariasis, the most prevalent helminth disease, infecting approximately 1 billion individuals globally. In 2019 the global disease burden was estimated to be 754,000 DALYs and resulted in 2090 deaths. In the absence of a vaccination strategy, treatment of ascariasis has relied on anthelminthic chemotherapy, but drug resistance is a concern. The propensity for reinfection is also a major challenge to disease control; female worms lay up to 200,000 eggs daily, which contaminate surrounding environments and remain viable for years, resulting in high transmission rates. Understanding the molecular mechanisms of reproductive processes, including control of egg production, spermatogenesis, oogenesis and embryogenesis, will drive the development of new drugs and/or vaccine targets for future ascariasis control. METHODS Transcriptome profiles of discrete reproductive and somatic tissue samples were generated from adult male and female worms using Illumina HiSeq with 2 × 150 bp paired-end sequencing. Male tissues included: testis germinal zone, testis part of vas deferens, seminal vesicle and somatic tissue. Female tissues included: ovary germinal zone, ovary part of the oviduct, uterus and somatic tissue. Differentially expressed genes (DEGs) were identified from the fragments per kilobases per million reads (FPKM) profiles. Hierarchical analysis was performed to identify tissue-specific genes. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to identify significant terms and pathways for the DEGs. RESULTS DEGs involved in protein phosphorylation and adhesion molecules were indicated to play a crucial role in spermatogenesis and fertilization, respectively. Those genes associated with the G-protein-coupled receptor (GPCR) signaling pathway and small GTPase-mediated signal transduction pathway play an essential role in cytoskeleton organization during oogenesis. Additionally, DEGs associated with the SMA genes and TGF-β signaling pathway are crucial in adult female embryogenesis. Some genes associated with particular biological processes and pathways that were identified in this study have been linked to defects in germline development, embryogenesis and reproductive behavior. In the enriched KEGG pathway analysis, Hippo signaling, oxytocin signaling and tight junction pathways were identified to play a role in Ascaris male and female reproductive systems. CONCLUSIONS This study has provided comprehensive transcriptome profiles of discrete A. lumbricoides reproductive tissue samples, revealing the molecular basis of these functionally important tissues. The data generated from this study will provide fundamental knowledge on the reproductive biology of Ascaris and will inform future target identification for anti-ascariasis drugs and/or vaccines.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Akkarin Poodeepiyasawat
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Angela Mousley
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
23
|
Lo WS, Roca M, Dardiry M, Mackie M, Eberhardt G, Witte H, Hong R, Sommer RJ, Lightfoot JW. Evolution and Diversity of TGF-β Pathways are Linked with Novel Developmental and Behavioral Traits. Mol Biol Evol 2022; 39:msac252. [PMID: 36469861 PMCID: PMC9733428 DOI: 10.1093/molbev/msac252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is essential for numerous biologic functions. It is a highly conserved pathway found in all metazoans including the nematode Caenorhabditis elegans, which has also been pivotal in identifying many components. Utilizing a comparative evolutionary approach, we explored TGF-β signaling in nine nematode species and revealed striking variability in TGF-β gene frequency across the lineage. Of the species analyzed, gene duplications in the DAF-7 pathway appear common with the greatest disparity observed in Pristionchus pacificus. Specifically, multiple paralogues of daf-3, daf-4 and daf-7 were detected. To investigate this additional diversity, we induced mutations in 22 TGF-β components and generated corresponding double, triple, and quadruple mutants revealing both conservation and diversification in function. Although the DBL-1 pathway regulating body morphology appears highly conserved, the DAF-7 pathway exhibits functional divergence, notably in some aspects of dauer formation. Furthermore, the formation of the phenotypically plastic mouth in P. pacificus is partially influenced through TGF-β with the strongest effect in Ppa-tag-68. This appears important for numerous processes in P. pacificus but has no known function in C. elegans. Finally, we observe behavioral differences in TGF-β mutants including in chemosensation and the establishment of the P. pacificus kin-recognition signal. Thus, TGF-β signaling in nematodes represents a stochastic genetic network capable of generating novel functions through the duplication and deletion of associated genes.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marisa Mackie
- Department of Biology, California State University, Northridge, CA
| | - Gabi Eberhardt
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Ray Hong
- Department of Biology, California State University, Northridge, CA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| |
Collapse
|
24
|
Cheng X, Yan Z, Su Z, Liu J. The transforming growth factor beta ligand TIG-2 modulates the function of neuromuscular junction and muscle energy metabolism in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:962974. [PMID: 36385772 PMCID: PMC9650414 DOI: 10.3389/fnmol.2022.962974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Deciphering the physiological function of TGF-β (the transforming growth factor beta) family ligands is import for understanding the role of TGF-β in animals' development and aging. Here, we investigate the function of TIG-2, one of the ligands in Caenorhabditis elegans TGF-β family, in animals' behavioral modulation. Our results show that a loss-of-function mutation in tig-2 gene result in slower locomotion speed in the early adulthood and an increased density of cholinergic synapses, but a decreased neurotransmitter release at neuromuscular junctions (NMJs). Further tissue-specific rescue results reveal that neuronal and intestinal TIG-2 are essential for the formation of cholinergic synapses at NMJs. Interestingly, tig-2(ok3416) mutant is characterized with reduced muscle mitochondria content and adenosine triphosphate (ATP) production, although the function of muscle acetylcholine receptors and the morphology muscle fibers in the mutant are comparable to that in wild-type animals. Our result suggests that TIG-2 from different neuron and intestine regulates worm locomotion by modulating synaptogenesis and neurotransmission at NMJs, as well as energy metabolism in postsynaptic muscle cells.
Collapse
Affiliation(s)
- Xinran Cheng
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Zhenzhen Yan
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zexiong Su
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jie Liu
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Ding F, Zhao Y. Astaxanthin Induces Transcriptomic Responses Associated with Lifespan Extension in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:2115. [PMID: 36358487 PMCID: PMC9687064 DOI: 10.3390/antiox11112115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Astaxanthin is a marine xanthophyll carotenoid which effectively prevents intracellular oxidative stress and has beneficial effects against various human diseases. It has been shown that astaxanthin protects Caenorhabditis elegans (C. elegans) from oxidative damages and extends the lifespan of C. elegans possibly by modulating genes involved in insulin/insulin-like growth factor (IGF) signaling (IIS) and the oxidoreductase system, although the exact mechanisms remain elusive. In this study, RNA sequencing analyses were employed to identify the differentially expressed genes in C. elegans in response to astaxanthin treatment. A total of 190 mRNAs and 6 microRNAs (miRNAs) were significantly changed by astaxanthin treatment in C. elegans. Gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the mRNAs and miRNAs significantly altered by astaxanthin mainly function in innate immunity, lipid metabolism and stress responses, a significant portion of which are related to lifespan regulation in C. elegans. The study revealed novel mRNA and miRNA targets of astaxanthin, providing new insights for understanding the anti-aging mechanisms and the biological function of astaxanthin.
Collapse
Affiliation(s)
- Feng Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
26
|
Maruszewska-Cheruiyot M, Stear MJ, Machcińska M, Donskow-Łysoniewska K. Importance of TGFβ in Cancer and Nematode Infection and Their Interaction-Opinion. Biomolecules 2022; 12:1572. [PMID: 36358922 PMCID: PMC9687433 DOI: 10.3390/biom12111572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Historically, there has been little interaction between parasitologists and oncologists, although some helminth infections predispose to the development of tumours. In addition, both parasites and tumours need to survive immune attack. Recent research suggests that both tumours and parasites suppress the immune response to increase their chances of survival. They both co-opt the transforming growth factor beta (TGFβ) signalling pathway to modulate the immune response to their benefit. In particular, there is concern that suppression of the immune response by nematodes and their products could enhance susceptibility to tumours in both natural and artificial infections.
Collapse
Affiliation(s)
| | - Michael James Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora 3086, Australia
| | - Maja Machcińska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | | |
Collapse
|
27
|
Chomyshen SC, Tabarraei H, Wu CW. Translational suppression via IFG-1/eIF4G inhibits stress-induced RNA alternative splicing in Caenorhabditis elegans. Genetics 2022; 221:iyac075. [PMID: 35536193 PMCID: PMC9252287 DOI: 10.1093/genetics/iyac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Splicing of precursor mRNA is an essential process for dividing cells, and splicing defects have been linked to aging and various chronic diseases. Environmental stress has recently been shown to modify alternative splicing, and molecular mechanisms that influence stress-induced alternative splicing remain unclear. Using an in vivo RNA splicing reporter, we performed a genome-wide RNAi screen in Caenorhabditis elegans and found that protein translation suppression via silencing of the conserved eukaryotic initiation factor 4G (IFG-1/eIF4G) inhibits cadmium-induced alternative splicing. Transcriptome analysis of an ifg-1-deficient mutant revealed an overall decrease in intronic and intergenic reads and prevented cadmium-induced alternative splicing compared to the wild type. We found that the ifg-1 mutant up-regulates >80 RNA splicing regulatory genes controlled by the TGF-β transcription factor SMA-2. The extended lifespan of the ifg-1 mutant is partially reduced upon sma-2 depletion and completely nullified when core spliceosome genes including snr-1, snr-2, and uaf-2 are knocked down. Depletion of snr-1 and snr-2 also diminished the enhanced cadmium resistance of the ifg-1 mutant. Together, these data describe a molecular mechanism through which translation suppression inhibits stress-induced alternative splicing and demonstrate an essential role for RNA splicing in promoting longevity and stress resistance in a translation-compromised mutant.
Collapse
Affiliation(s)
- Samantha C Chomyshen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
28
|
Stojanovski K, Großhans H, Towbin BD. Coupling of growth rate and developmental tempo reduces body size heterogeneity in C. elegans. Nat Commun 2022; 13:3132. [PMID: 35668054 PMCID: PMC9170734 DOI: 10.1038/s41467-022-29720-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
Animals increase by orders of magnitude in volume during development. Therefore, small variations in growth rates among individuals could amplify to a large heterogeneity in size. By live imaging of C. elegans, we show that amplification of size heterogeneity is prevented by an inverse coupling of the volume growth rate to the duration of larval stages and does not involve strict size thresholds for larval moulting. We perturb this coupling by changing the developmental tempo through manipulation of a transcriptional oscillator that controls the duration of larval development. As predicted by a mathematical model, this perturbation alters the body volume. Model analysis shows that an inverse relation between the period length and the growth rate is an intrinsic property of genetic oscillators and can occur independently of additional complex regulation. This property of genetic oscillators suggests a parsimonious mechanism that counteracts the amplification of size differences among individuals during development. Animals must reach the correct size during development, despite stochastic differences in their growth rate. Here, Stojanovski et al. show that a coupling of growth and development by an oscillatory timer buffers fluctuations in the growth of the nematode C. elegans to ensure its correct size.
Collapse
Affiliation(s)
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Benjamin D Towbin
- University of Bern, Bern, Switzerland. .,Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| |
Collapse
|
29
|
Vora M, Mondal A, Jia D, Gaddipati P, Akel M, Gilleran J, Roberge J, Rongo C, Langenfeld J. Bone morphogenetic protein signaling regulation of AMPK and PI3K in lung cancer cells and C. elegans. Cell Biosci 2022; 12:76. [PMID: 35641992 PMCID: PMC9153151 DOI: 10.1186/s13578-022-00817-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein (BMP) is a phylogenetically conserved signaling pathway required for development that is aberrantly expressed in several age-related diseases including cancer, Alzheimer's disease, obesity, and cardiovascular disease. Aberrant BMP signaling in mice leads to obesity, suggesting it may alter normal metabolism. The role of BMP signaling regulating cancer metabolism is not known. METHODS To examine BMP regulation of metabolism, C. elegans harboring BMP gain-of-function (gof) and loss-of-function (lof) mutations were examined for changes in activity of catabolic and anabolic metabolism utilizing Western blot analysis and fluorescent reporters. AMP activated kinase (AMPK) gof and lof mutants were used to examine AMPK regulation of BMP signaling. H1299 (LKB1 wild-type), A549 (LKB1 lof), and A549-LKB1 (LKB1 restored) lung cancer cell lines were used to study BMP regulation of catabolic and anabolic metabolism. Studies were done using recombinant BMP ligands to activate BMP signaling, and BMP receptor specific inhibitors and siRNA to inhibit signaling. RESULTS BMP signaling in both C. elegans and cancer cells is responsive to nutrient conditions. In both C. elegans and lung cancer cell lines BMP suppressed AMPK, the master regulator of catabolism, while activating PI3K, a regulator of anabolism. In lung cancer cells, inhibition of BMP signaling by siRNA or small molecules increased AMPK activity, and this increase was mediated by activation of LKB1. BMP2 ligand suppressed AMPK activation during starvation. BMP2 ligand decreased expression of TCA cycle intermediates and non-essential amino acids in H1299 cells. Furthermore, we show that BMP activation of PI3K is mediated through BMP type II receptor. We also observed feedback signaling, as AMPK suppressed BMP signaling, whereas PI3K increased BMP signaling. CONCLUSION These studies show that BMP signaling suppresses catabolic metabolism and stimulates anabolic metabolism. We identified feedback mechanisms where catabolic induced signaling mediated by AMPK negatively regulates BMP signaling, whereas anabolic signaling produces a positive feedback regulation of BMP signing through Akt. These mechanisms were conserved in both lung cancer cells and C. elegans. These studies suggest that aberrant BMP signaling causes dysregulation of metabolism that is a potential mechanism by which BMP promotes survival of cancer cells.
Collapse
Affiliation(s)
- Mehul Vora
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Dongxuan Jia
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Pranya Gaddipati
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - Moumen Akel
- Rutgers University, Piscataway, NJ, 08854, USA
| | - John Gilleran
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jacques Roberge
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Christopher Rongo
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
30
|
Synergistic interaction of gut microbiota enhances the growth of nematode through neuroendocrine signaling. Curr Biol 2022; 32:2037-2050.e4. [PMID: 35397201 DOI: 10.1016/j.cub.2022.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 01/21/2023]
Abstract
Animals are associated with a diverse bacterial community that impacts host physiology. It is well known that nutrients and enzymes synthesized by bacteria largely expand host metabolic capacity. Bacteria also impact a wide range of animal physiology that solely depends on host genetics through direct interaction. However, studying the synergistic effects of the bacterial community remains challenging due to its complexity. The omnivorous nematode Pristionchus pacificus has limited digestive efficiency on bacteria. Therefore, we established a bacterial collection that represents the natural gut microbiota that are resistant to digestion. Using this collection, we show that the bacterium Lysinibacillus xylanilyticus by itself provides limited nutritional value, but in combination with Escherichia coli, it significantly promotes life-history traits of P. pacificus by regulating the neuroendocrine peptide in sensory neurons. This gut-to-brain communication depends on undigested L. xylanilyticus providing Pristionchus nematodes a specific fitness advantage to compete with nematodes that rupture bacteria efficiently. Using RNA-seq and CRISPR-induced mutants, we show that 1-h exposure to L. xylanilyticus is sufficient to stimulate the expression of daf-7-type TGF-β signaling ligands, which induce a global transcriptome change. In addition, several effects of L. xylanilyticus depend on TGF-β signaling, including olfaction, body size regulation, and a switch of energy allocation from lipid storage to reproduction. Our results reveal the beneficial effects of a gut bacterium to modify life-history traits and maximize nematode survival in natural habitats.
Collapse
|
31
|
Baltaci O, Pedersen ME, Sherry T, Handley A, Snieckute G, Cao W, Haas M, Archer S, Pocock R. Atypical TGF-β signaling controls neuronal guidance in Caenorhabditis elegans. iScience 2022; 25:103791. [PMID: 35146399 PMCID: PMC8819019 DOI: 10.1016/j.isci.2022.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Coordinated expression of cell adhesion and signaling molecules is crucial for brain development. Here, we report that the Caenorhabditis elegans transforming growth factor β (TGF-β) type I receptor SMA-6 (small-6) acts independently of its cognate TGF-β type II receptor DAF-4 (dauer formation-defective-4) to control neuronal guidance. SMA-6 directs neuronal development from the hypodermis through interactions with three, orphan, TGF-β ligands. Intracellular signaling downstream of SMA-6 limits expression of NLR-1, an essential Neurexin-like cell adhesion receptor, to enable neuronal guidance. Together, our data identify an atypical TGF-β-mediated regulatory mechanism to ensure correct neuronal development.
Collapse
Affiliation(s)
- Oguzhan Baltaci
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Mikael Egebjerg Pedersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Goda Snieckute
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Wei Cao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Matilda Haas
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Stuart Archer
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| |
Collapse
|
32
|
The C. elegans TspanC8 tetraspanin TSP-14 exhibits isoform-specific localization and function. PLoS Genet 2022; 18:e1009936. [PMID: 35089916 PMCID: PMC8827444 DOI: 10.1371/journal.pgen.1009936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/09/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Tetraspanin proteins are a unique family of highly conserved four-pass transmembrane proteins in metazoans. While much is known about their biochemical properties, the in vivo functions and distribution patterns of different tetraspanin proteins are less understood. Previous studies have shown that two paralogous tetraspanins that belong to the TspanC8 subfamily, TSP-12 and TSP-14, function redundantly to promote both Notch signaling and bone morphogenetic protein (BMP) signaling in C. elegans. TSP-14 has two isoforms, TSP-14A and TSP-14B, where TSP-14B has an additional 24 amino acids at its N-terminus compared to TSP-14A. By generating isoform specific knock-ins and knock-outs using CRISPR, we found that TSP-14A and TSP-14B share distinct as well as overlapping expression patterns and functions. While TSP-14A functions redundantly with TSP-12 to regulate body size and embryonic and vulva development, TSP-14B primarily functions redundantly with TSP-12 to regulate postembryonic mesoderm development. Importantly, TSP-14A and TSP-14B exhibit distinct subcellular localization patterns. TSP-14A is localized apically and on early and late endosomes. TSP-14B is localized to the basolateral cell membrane. We further identified a di-leucine motif within the N-terminal 24 amino acids of TSP-14B that serves as a basolateral membrane targeting sequence, and showed that the basolateral membrane localization of TSP-14B is important for its function. Our work highlights the diverse and intricate functions of TspanC8 tetraspanins in C. elegans, and demonstrates the importance of dissecting the functions of these important proteins in an intact living organism. Tetraspanin proteins are a unique family of highly conserved four-pass transmembrane proteins in higher eukaryotes. Abnormal expression of certain tetraspanins is associated with various types of diseases, including cancer. Understanding the functions of different tetraspanin proteins in vivo is crucial in deciphering the link between tetraspanins and their associated disease states. We have previously identified two tetraspanins, TSP-12 and TSP-14, that share redundant functions in regulating multiple aspects of C. elegans development. Here we show that TSP-14 has two protein isoforms. Using CRISPR knock-in and knock-out technology, we have found that the two isoforms share unique, as well as overlapping expression patterns and functions. Furthermore, they exhibit distinct subcellular localization patterns. Our work highlights the diverse and intricate functions of tetraspanin proteins in a living multicellular organism, and demonstrates that protein isoforms are another mechanism C. elegans uses to increase the diversity and versatility of its proteome.
Collapse
|
33
|
Goodman MB, Savage-Dunn C. Reciprocal interactions between transforming growth factor beta signaling and collagens: Insights from Caenorhabditis elegans. Dev Dyn 2022; 251:47-60. [PMID: 34537996 PMCID: PMC8982858 DOI: 10.1002/dvdy.423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Studies in genetically tractable organisms such as the nematode Caenorhabditis elegans have led to pioneering insights into conserved developmental regulatory mechanisms. For example, Smad signal transducers for the transforming growth factor beta (TGF-β) superfamily were first identified in C. elegans and in the fruit fly Drosophila. Recent studies of TGF-β signaling and the extracellular matrix (ECM) in C. elegans have forged unexpected links between signaling and the ECM, yielding novel insights into the reciprocal interactions that occur across tissues and spatial scales, and potentially providing new opportunities for the study of biomechanical regulation of gene expression.
Collapse
Affiliation(s)
- Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, CA 94304
| | - Cathy Savage-Dunn
- Department of Biology, Queens College at the City University of New York, 11367,Correspondence to: >
| |
Collapse
|
34
|
Clark JF, Ciccarelli EJ, Kayastha P, Ranepura G, Yamamoto KK, Hasan MS, Madaan U, Meléndez A, Savage-Dunn C. BMP pathway regulation of insulin signaling components promotes lipid storage in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009836. [PMID: 34634043 PMCID: PMC8530300 DOI: 10.1371/journal.pgen.1009836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
A small number of peptide growth factor ligands are used repeatedly in development and homeostasis to drive programs of cell differentiation and function. Cells and tissues must integrate inputs from these diverse signals correctly, while failure to do so leads to pathology, reduced fitness, or death. Previous work using the nematode C. elegans identified an interaction between the bone morphogenetic protein (BMP) and insulin/IGF-1-like signaling (IIS) pathways in the regulation of lipid homeostasis. The molecular components required for this interaction, however, were not fully understood. Here we report that INS-4, one of 40 insulin-like peptides (ILPs), is regulated by BMP signaling to modulate fat accumulation. Furthermore, we find that the IIS transcription factor DAF-16/FoxO, but not SKN-1/Nrf, acts downstream of BMP signaling in lipid homeostasis. Interestingly, BMP activity alters sensitivity of these two transcription factors to IIS-promoted cytoplasmic retention in opposite ways. Finally, we probe the extent of BMP and IIS interactions by testing additional IIS functions including dauer formation, aging, and autophagy induction. Coupled with our previous work and that of other groups, we conclude that BMP and IIS pathways have at least three modes of interaction: independent, epistatic, and antagonistic. The molecular interactions we identify provide new insight into mechanisms of signaling crosstalk and potential therapeutic targets for IIS-related pathologies such as diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- James F. Clark
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Emma J. Ciccarelli
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Peter Kayastha
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Gehan Ranepura
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Katerina K. Yamamoto
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Muhammad S. Hasan
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Uday Madaan
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Alicia Meléndez
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Cathy Savage-Dunn
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
DeGroot MS, Greer R, Liu J. GPN-1/glypican and UNC-52/perlecan do not appear to function in BMP signaling to pattern the C. elegans postembryonic mesoderm. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000437. [PMID: 34405137 PMCID: PMC8363907 DOI: 10.17912/micropub.biology.000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are diverse macromolecules consisting of a protein core modified with glycosaminoglycan (GAG) chains. HSPGs, including glypicans and perlecans, have been implicated in shaping the extracellular matrix (ECM) to affect growth factor signaling. Here, we tested if GPN-1/glypicanor UNC-52/perlecan plays a role in the bone morphogenetic protein (BMP) signaling pathway in patterning the C. elegans postembryonic mesoderm. Using the suppression of sma-9(0) (Susm)assay, we found that animals carrying mutant alleles of gpn-1 or unc-52 do not exhibit any Susm phenotype. We also tested and found that the two glypicans GPN-1 and LON-2 do not share functional redundancy in the BMP pathway. Our results suggest that GPN-1/glypican and UNC-52/perlecan do not play a major role in the C. elegans BMP pathway, at least in patterning of the postembryonic mesoderm.
Collapse
Affiliation(s)
- Melisa S DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY. USA
| | - Robert Greer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY. USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY. USA,
Correspondence to: Jun Liu ()
| |
Collapse
|
36
|
Shi H, Huang X, Chen X, Yang Y, Wang Z, Yang Y, Wu F, Zhou J, Yao C, Ma G, Du A. Acyl-CoA oxidase ACOX-1 interacts with a peroxin PEX-5 to play roles in larval development of Haemonchus contortus. PLoS Pathog 2021; 17:e1009767. [PMID: 34270617 PMCID: PMC8354476 DOI: 10.1371/journal.ppat.1009767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/10/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
Hypobiosis (facultative developmental arrest) is the most important life-cycle adaptation ensuring survival of parasitic nematodes under adverse conditions. Little is known about such survival mechanisms, although ascarosides (ascarylose with fatty acid-derived side chains) have been reported to mediate the formation of dauer larvae in the free-living nematode Caenorhabditis elegans. Here, we investigated the role of a key gene acox-1, in the larval development of Haemonchus contortus, one of the most important parasitic nematodes that employ hypobiosis as a routine survival mechanism. In this parasite, acox-1 encodes three proteins (ACOXs) that all show a fatty acid oxidation activity in vitro and in vivo, and interact with a peroxin PEX-5 in peroxisomes. In particular, a peroxisomal targeting signal type1 (PTS1) sequence is required for ACOX-1 to be recognised by PEX-5. Analyses on developmental transcription and tissue expression show that acox-1 is predominantly expressed in the intestine and hypodermis of H. contortus, particularly in the early larval stages in the environment and the arrested fourth larval stage within host animals. Knockdown of acox-1 and pex-5 in parasitic H. contortus shows that these genes play essential roles in the post-embryonic larval development and likely in the facultative arrest of this species. A comprehensive understanding of these genes and the associated β-oxidation cycle of fatty acids should provide novel insights into the developmental regulation of parasitic nematodes, and into the discovery of novel interventions for species of socioeconomic importance.
Collapse
Affiliation(s)
- Hengzhi Shi
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaocui Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhao Wang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts & Nevis
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (GM); (AD)
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (GM); (AD)
| |
Collapse
|
37
|
CREB mediates the C. elegans dauer polyphenism through direct and cell-autonomous regulation of TGF-β expression. PLoS Genet 2021; 17:e1009678. [PMID: 34260587 PMCID: PMC8312985 DOI: 10.1371/journal.pgen.1009678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/26/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Animals can adapt to dynamic environmental conditions by modulating their developmental programs. Understanding the genetic architecture and molecular mechanisms underlying developmental plasticity in response to changing environments is an important and emerging area of research. Here, we show a novel role of cAMP response element binding protein (CREB)-encoding crh-1 gene in developmental polyphenism of C. elegans. Under conditions that promote normal development in wild-type animals, crh-1 mutants inappropriately form transient pre-dauer (L2d) larvae and express the L2d marker gene. L2d formation in crh-1 mutants is specifically induced by the ascaroside pheromone ascr#5 (asc-ωC3; C3), and crh-1 functions autonomously in the ascr#5-sensing ASI neurons to inhibit L2d formation. Moreover, we find that CRH-1 directly binds upstream of the daf-7 TGF-β locus and promotes its expression in the ASI neurons. Taken together, these results provide new insight into how animals alter their developmental programs in response to environmental changes.
Collapse
|
38
|
Sandhu A, Badal D, Sheokand R, Tyagi S, Singh V. Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. Genetics 2021; 217:iyaa047. [PMID: 33789349 PMCID: PMC8045729 DOI: 10.1093/genetics/iyaa047] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Collagen-enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode's genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens-DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10-led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs- levamisole and ivermectin. Upon exposure to PQ, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Divakar Badal
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Riya Sheokand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Shalini Tyagi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Lead contact
| |
Collapse
|
39
|
George AK, Behera J, Homme RP, Tyagi N, Tyagi SC, Singh M. Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Mol Neurobiol 2021; 58:3614-3627. [PMID: 33774742 PMCID: PMC8003896 DOI: 10.1007/s12035-021-02357-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a damage to the brain from an external force that results in temporary or permanent impairment in brain functions. Unfortunately, not many treatment options are available to TBI patients. Therefore, knowledge of the complex interplay between gut microbiome (GM) and brain health may shed novel insights as it is a rapidly expanding field of research around the world. Recent studies show that GM plays important roles in shaping neurogenerative processes such as blood-brain-barrier (BBB), myelination, neurogenesis, and microglial maturation. In addition, GM is also known to modulate many aspects of neurological behavior and cognition; however, not much is known about the role of GM in brain injuries. Since GM has been shown to improve cellular and molecular functions via mitigating TBI-induced pathologies such as BBB permeability, neuroinflammation, astroglia activation, and mitochondrial dysfunction, herein we discuss how a dysbiotic gut environment, which in fact, contributes to central nervous system (CNS) disorders during brain injury and how to potentially ward off these harmful effects. We further opine that a better understanding of GM-brain (GMB) axis could help assist in designing better treatment and management strategies in future for the patients who are faced with limited options.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA. .,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.
| |
Collapse
|
40
|
LRIG proteins regulate lipid metabolism via BMP signaling and affect the risk of type 2 diabetes. Commun Biol 2021; 4:90. [PMID: 33469151 PMCID: PMC7815736 DOI: 10.1038/s42003-020-01613-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins have been implicated as regulators of growth factor signaling; however, the possible redundancy among mammalian LRIG1, LRIG2, and LRIG3 has hindered detailed elucidation of their physiological functions. Here, we show that Lrig-null mouse embryonic fibroblasts (MEFs) are deficient in adipogenesis and bone morphogenetic protein (BMP) signaling. In contrast, transforming growth factor-beta (TGF-β) and receptor tyrosine kinase (RTK) signaling appeared unaltered in Lrig-null cells. The BMP signaling defect was rescued by ectopic expression of LRIG1 or LRIG3 but not by expression of LRIG2. Caenorhabditis elegans with mutant LRIG/sma-10 variants also exhibited a lipid storage defect. Human LRIG1 variants were strongly associated with increased body mass index (BMI) yet protected against type 2 diabetes; these effects were likely mediated by altered adipocyte morphology. These results demonstrate that LRIG proteins function as evolutionarily conserved regulators of lipid metabolism and BMP signaling and have implications for human disease.
Collapse
|
41
|
SMA-10 Is a Non-Canonical Member of the TGF-β Sma/Mab Pathway and Immunity Regulator via the DAF-2 Insulin Receptor in Caenorhabditis elegans. Int J Mol Sci 2021; 22:ijms22020638. [PMID: 33440633 PMCID: PMC7827673 DOI: 10.3390/ijms22020638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022] Open
Abstract
Transforming growth factor β (TGF-β) signalling pathways are highly conserved across metazoa and play essential roles not only during development but also in adult tissue maintenance. Alterations of these pathways usually result in a plethora of pathologies. In the nematode Caenorhabditis elegans, the TGF-β Sma/Mab (small/male abnormal) pathway regulates various worm phenotypes such as body size, immune response, ageing, matricide and reproductive span. SMA-10 has been described as a positive modulator of worm body size through the TGF-β Sma/Mab pathway. To better understand if SMA-10 is a core component of the pathway, we use gene epistatic analysis to assess the contribution of SMA-10 to various phenotypes regulated by TGF-β Sma/Mab. We confirm that SMA-10 controls body size and find that it also affects the matricide and reproductive span of the nematodes. However, neither male tail formation (previously reported) nor ageing appeared altered. Lastly, although null sma-10 worms are more susceptible to Pseudomonas aeruginosa infections than wild-types, this response does not depend on TGF-β Sma/Mab but on the insulin receptor DAF-2. We also show that the expression of sma-10 in either hypodermis or intestine fully rescues the wild-type immune response. Our results contribute to understanding the role of SMA-10 as a context-dependent component of TGF-β Sma/Mab, and reveal a function of SMA-10 in immunity in association to the Insulin/insulin-like growth factor signalling (IIS) pathway.
Collapse
|
42
|
Liu H, Zhang R, Wang D. Response of DBL-1/TGF-β signaling-mediated neuron-intestine communication to nanopolystyrene in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141047. [PMID: 32758726 DOI: 10.1016/j.scitotenv.2020.141047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 05/21/2023]
Abstract
TGF-β signaling pathway is important for the regulation of stress response in organisms. We here used Caenorhabditis elegans to determine the function of DBL-1/TGF-β signaling pathway in the control of response to nanopolystyrene (100 nm). In DBL-1/TGF-β signaling pathway, exposure to 1-1000 μg/L nanopolystyrene significantly increased the expressions of dbl-1 encoding a TGF-β ligand, sma-6 encoding a TGF-β receptor, sma-4 encoding a Co-Smad, and two genes (mab-31 and sma-9) encoding transcriptional factors. DBL-1 acted in the neurons to control the response to nanopolystyrene. In the neurons, the expression and the function of DBL-1 were under the control of two signaling cascades (SMOC-1-ZAG-1 and SMOC-1-ADT-2). TGF-β receptor SMA-6 acted in the intestine to control the response to nanopolystyrene. The downstream Co-Smad/SMA-4 and two transcriptional factors (MAB-31 and SMA-9) of SMA-6 in the intestine were further identified to be required for the control of response to nanopolystyrene. In nanopolystyrene exposed nematodes, intestinal MAB-31 activated the mitochondrial Mn-SOD/SOD-3 by modulating DAF-16 activity, and intestinal SMA-9 activated the mitochondrial unfolded protein response by affecting ELT-2 activity. Therefore, the DBL-1/TGF-β signaling pathway mediated an important neuron-intestine communication in nanopolystyrene exposed nematodes.
Collapse
Affiliation(s)
- Huanliang Liu
- Medical School, Southeast University, Nanjing 210009, China
| | - Ruijie Zhang
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
43
|
Robert VJ, Knutson AK, Rechtsteiner A, Garvis S, Yvert G, Strome S, Palladino F. Caenorhabditis elegans SET1/COMPASS Maintains Germline Identity by Preventing Transcriptional Deregulation Across Generations. Front Cell Dev Biol 2020; 8:561791. [PMID: 33072747 PMCID: PMC7536326 DOI: 10.3389/fcell.2020.561791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromatin regulators contribute to the maintenance of the germline transcriptional program. In the absence of SET-2, the Caenorhabditis elegans homolog of the SET1/COMPASS H3 Lys4 (H3K4) methyltransferase, animals show transgenerational loss of germline identity, leading to sterility. To identify transcriptional signatures associated with progressive loss of fertility, we performed expression profiling of set-2 mutant germlines across generations. We identify a subset of genes whose misexpression is first observed in early generations, a step we refer to as priming; their misexpression then further progresses in late generations, as animals reach sterility. Analysis of misregulated genes shows that down-regulation of germline genes, expression of somatic transcriptional programs, and desilencing of the X-chromosome are concurrent events leading to loss of germline identity in both early and late generations. Upregulation of transcription factor LIN-15B, the C/EBP homolog CEBP-1, and TGF-β pathway components strongly contribute to loss of fertility, and RNAi inactivation of cebp-1 and TGF-β/Smad signaling delays the onset of sterility, showing they individually contribute to maintenance of germ cell identity. Our approach therefore identifies genes and pathways whose misexpression actively contributes to the loss of germ cell fate. More generally, our data shows how loss of a chromatin regulator in one generation leads to transcriptional changes that are amplified over subsequent generations, ultimately leading to loss of appropriate cell fate.
Collapse
Affiliation(s)
- Valérie J Robert
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Andrew K Knutson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreas Rechtsteiner
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Steven Garvis
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Gaël Yvert
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
44
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
45
|
He L, Liu H, Zhang BY, Li FF, Di WD, Wang CQ, Zhou CX, Liu L, Li TT, Zhang T, Fang R, Hu M. A daf-7-related TGF-β ligand (Hc-tgh-2) shows important regulations on the development of Haemonchus contortus. Parasit Vectors 2020; 13:326. [PMID: 32586367 PMCID: PMC7318536 DOI: 10.1186/s13071-020-04196-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In most multicellular organisms, the transforming growth factor-β (TGF-β) signalling pathway is involved in regulating the growth and stem cell differentiation. Previous studies have demonstrated the importance of three key molecules in this pathway in the parasitic nematode Haemonchus contortus, including one TGF-β type I receptor (Hc-tgfbr1), one TGF-β type II receptor (Hc-tgfbr2), and one co-Smad (Hc-daf-3), which regulated the developmental transition from the free-living to the parasitic stages of this parasite. However, almost nothing is known about the function of the TGF-β ligand (Hc-tgh-2) of H. contortus. METHODS Here, the temporal transcription profiles of Hc-tgh-2 at eight different developmental stages and spatial expression patterns of Hc-TGH-2 in adult female and male worms of H. contortus have been examined by real-time PCR and immunohistochemistry, respectively. In addition, RNA interference (RNAi) by soaking was employed to assess the importance of Hc-tgh-2 in the development from exsheathed third-stage larvae (xL3s) to fourth-stage larvae (L4s) in H. contortus. RESULTS Hc-tgh-2 was continuously transcribed in all eight developmental stages of H. contortus studied with the highest level in the infective third-stage larvae (iL3) and Hc-TGH-2 was located in the muscle of the body wall, intestine, ovary of adult females and testes of adult males. Silencing Hc-tgh-2 by the specific double-stranded RNA (dsRNA), decreased the transcript level of Hc-tgh-2 and resulted in fewer xL3s developing to L4s in vitro. CONCLUSIONS These results suggested that the TGF-β ligand, Hc-TGH-2, could play important roles in the developmental transition from the free-living (L3s) to the parasitic stage (L4s). Furthermore, it may also take part in the processes such as digestion, absorption, host immune response and reproductive development in H. contortus adults.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bi-Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Fang-Fang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wen-Da Di
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chun-Qun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cai-Xian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ting-Ting Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ting Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
46
|
CREB Non-autonomously Controls Reproductive Aging through Hedgehog/Patched Signaling. Dev Cell 2020; 54:92-105.e5. [PMID: 32544391 DOI: 10.1016/j.devcel.2020.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022]
Abstract
Evolutionarily conserved signaling pathways are crucial for adjusting growth, reproduction, and cell maintenance in response to altered environmental conditions or energy balance. However, we have an incomplete understanding of the signaling networks and mechanistic changes that coordinate physiological changes across tissues. We found that loss of the cAMP response element-binding protein (CREB) transcription factor significantly slows Caenorhabditis elegans' reproductive decline, an early hallmark of aging in many animals. Our results indicate that CREB acts downstream of the transforming growth factor β (TGF-β) Sma/Mab pathway in the hypodermis to control reproductive aging, and that it does so by regulating a Hedgehog-related signaling factor, WRT-10. Overexpression of hypodermal wrt-10 is sufficient to delay reproductive decline and oocyte quality deterioration, potentially acting via Patched-related receptors in the germline. This TGF-β-CREB-Hedgehog signaling axis allows a key metabolic tissue to communicate with the reproductive system to regulate oocyte quality and the rate of reproductive decline.
Collapse
|
47
|
Hanafy NAN, Fabregat I, Leporatti S, El Kemary M. Encapsulating TGF-β1 Inhibitory Peptides P17 and P144 as a Promising Strategy to Facilitate Their Dissolution and to Improve Their Functionalization. Pharmaceutics 2020; 12:E421. [PMID: 32370293 PMCID: PMC7284799 DOI: 10.3390/pharmaceutics12050421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
: Transforming growth factor-beta (TGFβ1) is considered as a master regulator for many intracellular signaling pathways, including proliferation, differentiation and death, both in health and disease. It further represents an oncogenic factor in advanced tumors allowing cancer cells to be more invasive and prone to move into the metastatic process. This finding has received great attention for discovering new therapeutic molecules against the TGFβ1 pathway. Among many TGFβ1 inhibitors, peptides (P17 and P144) were designed to block the TGFβ1 pathway. However, their therapeutic applications have limited use, due to lack of selection for their targets and their possible recognition by the immune system and further due to their potential cytotoxicity on healthy cells. Besides that, P144 is a highly hydrophobic molecule with less dissolution even in organic solution. Here, we aimed to overcome the dissolution of P144, as well as design nano-delivery strategies to protect normal cells, to increase cellular penetration and to raise the targeted therapy of both P17 and P144. Peptides were encapsulated in moieties of polymer hybrid protein. Their assembly was investigated by TEM, microplate spectrum analysis and fluorescence microscopy. SMAD phosphorylation was analyzed by Western blot as a hallmark of their biological efficiency. The results showed that the encapsulation of P17 and P144 might improve their potential therapeutic applications.
Collapse
Affiliation(s)
- Nemany A. N. Hanafy
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona (UB) and CIBEREHD, Gran Via de l’Hospitalet, 199, Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Stefano Leporatti
- CNR NANOTEC-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Maged El Kemary
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
48
|
Tetraspanins TSP-12 and TSP-14 function redundantly to regulate the trafficking of the type II BMP receptor in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:2968-2977. [PMID: 31988138 DOI: 10.1073/pnas.1918807117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tetraspanins are a unique family of 4-pass transmembrane proteins that play important roles in a variety of cell biological processes. We have previously shown that 2 paralogous tetraspanins in Caenorhabditis elegans, TSP-12 and TSP-14, function redundantly to promote bone morphogenetic protein (BMP) signaling. The underlying molecular mechanisms, however, are not fully understood. In this study, we examined the expression and subcellular localization patterns of endogenously tagged TSP-12 and TSP-14 proteins. We found that TSP-12 and TSP-14 share overlapping expression patterns in multiple cell types, and that both proteins are localized on the cell surface and in various types of endosomes, including early, late, and recycling endosomes. Animals lacking both TSP-12 and TSP-14 exhibit reduced cell-surface levels of the BMP type II receptor DAF-4/BMPRII, along with impaired endosome morphology and mislocalization of DAF-4/BMPRII to late endosomes and lysosomes. These findings indicate that TSP-12 and TSP-14 are required for the recycling of DAF-4/BMPRII. Together with previous findings that the type I receptor SMA-6 is recycled via the retromer complex, our work demonstrates the involvement of distinct recycling pathways for the type I and type II BMP receptors and highlights the importance of tetraspanin-mediated intracellular trafficking in the regulation of BMP signaling in vivo. As TSP-12 and TSP-14 are conserved in mammals, our findings suggest that the mammalian TSP-12 and TSP-14 homologs may also function in regulating transmembrane protein recycling and BMP signaling.
Collapse
|
49
|
Akirin Is Required for Muscle Function and Acts Through the TGF-β Sma/Mab Signaling Pathway in Caenorhabditis elegans Development. G3-GENES GENOMES GENETICS 2020; 10:387-400. [PMID: 31767636 PMCID: PMC6945016 DOI: 10.1534/g3.119.400377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Akirin, a conserved metazoan protein, functions in muscle development in flies and mice. However, this was only tested in the rodent and fly model systems. Akirin was shown to act with chromatin remodeling complexes in transcription and was established as a downstream target of the NFκB pathway. Here we show a role for Caenorhabditis elegans Akirin/AKIR-1 in the muscle and body length regulation through a different pathway. Akirin localizes to somatic tissues throughout the body of C. elegans, including muscle nuclei. In agreement with its role in other model systems, Akirin loss of function mutants exhibit defects in muscle development in the embryo, as well as defects in movement and maintenance of muscle integrity in the C. elegans adult. We also have determined that Akirin acts downstream of the TGF-β Sma/Mab signaling pathway in controlling body size. Moreover, we found that the loss of Akirin resulted in an increase in autophagy markers, similar to mutants in the TGF-β Sma/Mab signaling pathway. In contrast to what is known in rodent and fly models, C. elegans Akirin does not act with the SWI/SNF chromatin-remodeling complex, and is instead involved with the NuRD chromatin remodeling complex in both movement and regulation of body size. Our studies define a novel developmental role (body size) and a new pathway (TGF-β Sma/Mab) for Akirin function, and confirmed its evolutionarily conserved function in muscle development in a new organism.
Collapse
|
50
|
Pozzolini M, Gallus L, Ghignone S, Ferrando S, Candiani S, Bozzo M, Bertolino M, Costa G, Bavestrello G, Scarfì S. Insights into the evolution of metazoan regenerative mechanisms: roles of TGF superfamily members in tissue regeneration of the marine sponge Chondrosia reniformis. J Exp Biol 2019; 222:jeb207894. [PMID: 31371401 DOI: 10.1242/jeb.207894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 01/31/2023]
Abstract
Tissue repair is an adaptive and widespread metazoan response. It is characterised by different cellular mechanisms and complex signalling networks that involve numerous growth factors and cytokines. In higher animals, transforming growth factor-β (TGF-β) signalling plays a fundamental role in wound healing. In order to evaluate the involvement of TGF superfamily members in lower invertebrate tissue regeneration, sequences for putative TGF ligands and receptors were isolated from the transcriptome of the marine sponge Chondrosia reniformis We identified seven transcripts that coded for TGF superfamily ligands and three for TGF superfamily receptors. Phylogenetically, C. reniformis TGF ligands were not grouped into any TGF superfamily clades and thus presumably evolved independently, whereas the TGF receptors clustered in the Type I receptor group. We performed gene expression profiling of these transcripts in sponge regenerating tissue explants. Data showed that three ligands (TGF1, TGF3 and TGF6) were mainly expressed during early regeneration and seemed to be involved in stem cell maintenance, whereas two others (TGF4 and TGF5) were strongly upregulated during late regeneration and thus were considered pro-differentiating factors. The presence of a strong TGF inhibitor, SB431542, blocked the restoration of the exopinacoderm layer in the sponge explants, confirming the functional involvement of the TGF pathway in tissue regeneration in these early evolved animals.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection-Turin Unit (CNR), Viale Mattioli 25, 10125 Torino, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Gabriele Costa
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Giorgio Bavestrello
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| |
Collapse
|