1
|
Sudhakaran G. Blue healing: marine biopolymers' dual role in diabetic wounds and palliative care. Nat Prod Res 2025; 39:2999-3001. [PMID: 38780166 DOI: 10.1080/14786419.2024.2358523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Chronic Diabetic wounds pose significant challenges in healthcare due to prolonged healing times and increased susceptibility to infections. Traditional wound dressings often fall short in providing an optimal environment for healing. Owing to their biocompatibility and biodegradability, natural polysaccharides present promising wound management alternatives. This review highlights the potential of polysaccharides derived from diverse sources, including marine organisms, in promoting wound healing. While considerable progress has been made in understanding their haemostatic, antimicrobial, and immunomodulatory properties, further research is needed to elucidate their precise mechanisms of action and optimise their therapeutic efficacy. Harnessing the unique characteristics of marine-based polysaccharides holds excellent promise for future advancements in wound care, particularly in the detection and treatment of diabetic wound infections.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, India
| |
Collapse
|
2
|
Liu M, Wang Y, Wang H, Qi L, Shang Y, Song J, Feng X, Chen Y, Memon WA, Shen Y, Wu X, Cao J, Zhao Y, Jiang Z, Liu D, Shafique S, Li S, Lu G, Wei Z, Liu Z, Zhou K, Quan Y, Zhang X, Zou X, Wang X, Liu N, Zhang Y, Hu Y, Han C, Wang W. Electret-Inspired Charge-Injected Hydrogel for Scar-Free Healing of Bacterially Infected Burns Through Bioelectrical Stimulation and Immune Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411889. [PMID: 39951351 PMCID: PMC11967837 DOI: 10.1002/advs.202411889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Indexed: 02/16/2025]
Abstract
In this study, an electret-inspired, charge-injected hydrogel called QOSP hydrogel (QCS/OD/SDI/PANI/PS/Plasma) that promotes scar-free healing of bacteria-infected burns through bioelectrical stimulation and immune modulation, is presented. The hydrogel, composed of quaternized chitosan (QCS), oxidized dextran (OD), sulfadiazine (SDI), polystyrene (PS), and polyaniline nanowires (PANI), forms a conductive network capable of storing and releasing electric charges, emulating an electret-like mechanism. This structure delivers bioelectrical signals continuously, enhancing wound healing by regulating immune responses and minimizing fibrosis. In a mouse model of second-degree burns infected with Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA), the hydrogel accelerates wound healing by 32% and reduces bacterial load by 60%, significantly inhibited scar formation by 40% compared to controls. QOSP hydrogel modulates the Th1/Th2 immune balance toward a Th1-dominant antifibrotic state through quaternized chitosan, thereby reducing collagen deposition by 35%. Electro-dielectric characterization reveals a dielectric constant of 6.2, a 34% improvement in conductivity (3.33 × 10-5 S/m) and a 30 °C increase in thermal stability. Proteomic analysis highlights a 50% down-regulation of pro-inflammatory and pro-fibrotic pathways, suggesting a controlled immune response conducive to scar-free healing. This study underscores the potential of bioelectrically active hydrogels as a novel approach for treating infected wounds prone to scarring.
Collapse
Affiliation(s)
- Mujie Liu
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
- Health Science CenterNingbo UniversityNingbo315211China
| | - Yuheng Wang
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Haodong Wang
- Health Science CenterNingbo UniversityNingbo315211China
| | - Lihong Qi
- Department of Geriatric MedicineThe Affiliated Hospital of Southwest Medical UniversityLuzhou646000China
| | - Yuxuan Shang
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Jiajie Song
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Xiulong Feng
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Yiwei Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Yuping Shen
- The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou310000China
| | - Xiaodong Wu
- Department of Anesthesiologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Jiangbei Cao
- Department of Anesthesiologythe First Medical Center of Chinese PLA General HospitalBeijing100853China
| | - Yifan Zhao
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologiesSchool of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologiesSchool of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Shareen Shafique
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologiesSchool of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Shengtao Li
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Guanghao Lu
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in Nanoscience National Center for Nanoscience and TechnologyBeijing100190China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power EquipmentCentre for Plasma Biomedicine, School of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Kun Zhou
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| | - Yuping Quan
- Department of Plastic Surgery and Regenerative MedicineFujian Medical University Union HospitalFuzhou350001China
| | - Xiaoyu Zhang
- Department of Medical EngineeringXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Xin Zou
- Department of Medical EngineeringXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Xuefeng Wang
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Na Liu
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| | - Yaqing Zhang
- Department of Pediatric OrthopaedicsXinhua Hospital Affiliated to Shanghai Jiao Tong UniversitySchool of MedicineShanghai200092China
| | - Yiwei Hu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Chao Han
- The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou310000China
| | - Wen Wang
- Functional and Molecular Imaging Key Lab of Shaanxi ProvinceDepartment of RadiologyTangdu HospitalAir Force Medical UniversityXi'an710032China
| |
Collapse
|
3
|
Shadmani A, Wu AY. Navigating the path to corneal healing success and challenges: a comprehensive overview. Eye (Lond) 2025; 39:1047-1055. [PMID: 39939391 PMCID: PMC11978883 DOI: 10.1038/s41433-025-03619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
The cornea serves to protect the eye from external insults and refracts light to the retina. Maintaining ocular homeostasis requires constant epithelial renewal and an efficient healing process following injury. Corneal wound healing is a dynamic process involving several key cell populations and molecular pathways. Immediately after a large corneal epithelial injury involving limbal stem cells, conjunctival epithelial cells migrate toward the center of the wound guided by the newly formed electrical field (EF). Proliferation and transdifferentiation play a critical role in corneal epithelial regeneration. Corneal nerve endings migrate through the EF, connect with the migrating epithelial cells, and provide them with multiple growth factors. Finally, the migrated epithelial cells undergo differentiation, which is also regulated by corneal nerve endings. All these processes require energy and effective cellular cross-talk between different cell lines and extracellular matrix molecules. We provide an overview of the roles and interactions between corneal wound regeneration components that may help develop fascinating new targeted therapeutic strategies to enhance corneal wound healing with less injury-related corneal opacity and neovascularization.
Collapse
Affiliation(s)
- Athar Shadmani
- Bascom Palmer Eye Institute, University of Miami, Naples, FL, USA
- Omid Salmat Clinic, Firozabad, Shiraz University of Medical Sciences, Firozabad, Iran
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Lin X, Jia Q, Lin X, Shi J, Gong W, Shen K, Liu B, Sun L, Fan Z. Galvanic Cell Bipolar Microneedle Patches for Reversing Photoaging Wrinkles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500552. [PMID: 40066473 DOI: 10.1002/adma.202500552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Indexed: 04/24/2025]
Abstract
Excessive exposure to ultraviolet (UV) radiation is a major factor in the development of skin photoaging wrinkles. While current treatments can slow the progression of photoaging, it is very difficult to achieve complete reversal. This study introduces galvanic cell microneedle (GCMN) patches with magnesium-containing bipolar electrodes. These patches operate through a galvanic cell mechanism, generating microcurrents and releasing hydrogen gas and magnesium ions via a redox reaction. The combination of hydrogen's antioxidant and anti-inflammatory properties, microcurrent-induced stimulation of cell migration, and magnesium's promotion of angiogenesis and macrophage M2 anti-inflammatory polarization synergistically works to reverse photoaging wrinkles and rejuvenate the skin. Furthermore, this work examines how GCMNs may influence the transforming growth factor-β/Smad (TGF-β/Smad) pathway. This approach shows promise for advancing research and development in the field of medical cosmetology.
Collapse
Affiliation(s)
- Xinyuan Lin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qing Jia
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xuanyi Lin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiakai Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wanru Gong
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
5
|
Wu T, Ren M, Li Y, Yang Q, Xiang K, Liu F, Yang S. Bioelectrically Reprogramming Hydrogels Rejuvenate Vascularized Bone Regeneration in Senescence. Adv Healthc Mater 2025; 14:e2403837. [PMID: 39801203 DOI: 10.1002/adhm.202403837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/02/2025] [Indexed: 03/04/2025]
Abstract
Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg2+)-modified black phosphorus (BP). The hydrogel reprograms electrical signals, restores Mg2+ homeostasis, reconstructs physiological signals, and promotes blood vessel regeneration in senile bone defects. The conductive hydrogel synergistically restores both the chemical and bioelectric signals within the bone microenvironment. This hydrogel increases the expression of vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR2), activates the PI3K-AKT-eNOS pathway, and significantly increases the angiogenic ability of vascular endothelial cells in the aged state. In addition, the conductive hydrogel normalizes calcium ion (Ca2+) influx, increases the accumulation of osteogenic transcription factors in the nucleus, and promotes the osteogenic differentiation of senescent stem cells. This innovative treatment strategy restores bone-vascular coupling in areas of senile bone defects, achieves effective vascularized bone regeneration, and has good potential for the treatment of senile bone defects.
Collapse
Affiliation(s)
- Tianli Wu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Mingxing Ren
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Yuzhou Li
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qian Yang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Kai Xiang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Fengyi Liu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Sheng Yang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| |
Collapse
|
6
|
Li J, Wang J, Wu J, Wang X. Matrix-producing cells' orientation order facilitates Bacillus subtilis biofilm self-healing. Arch Microbiol 2024; 207:19. [PMID: 39739119 DOI: 10.1007/s00203-024-04224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
During the self-healing process of Bacillus subtilis biofilms on a solid MSgg substrate, large-scale ordered clusters emerge within the biofilm, providing an invasive advantages. To investigate the self-healing mechanism, an agent-based model is employed to simulate the self-healing processes of biofilms at two ages. The study reveals that a uniform cell distribution facilitates the healing of biofilm incisions. The nutrient diffusion rate within the biofilm and the elastic modulus (comprising cell and EPS) play a dominant role in the healing of circumferential incisions, while the diffusion rate outside the biofilm governs the healing of radial and penetrating incisions. These influencing factors can adjust cellular ordering, providing valuable insights for controlling the self-healing of Bacillus subtilis biofilms.
Collapse
Affiliation(s)
- Jin Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
7
|
Yan Y, Chen Y, Dai H, Zhang W, Guo R. Reconfiguring the endogenous electric field of a wound through a conductive hydrogel for effective exudate management to enhance skin wound healing. J Mater Chem B 2024; 12:11347-11358. [PMID: 39499499 DOI: 10.1039/d4tb01349b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The ionic environment has a strong influence on the bioelectricity of skin, which is also present in the wound healing process. Inspired by this, we proposed a mechanism for hydrogel-based dressings to respond to endogenous electric fields through exudate absorption and conducted a verification study using a typical hydrogel, namely, polyacrylamide and sodium alginate (PAM-SA) hydrogels, as an example. Theoretical calculations showed that the PAM-SA hydrogels could absorb and orient the various electrolytes of exudate in the hydrogel at the wound site, contributing to the reconstruction of the electric field at the wound site. During the treatment process, this effect significantly accelerated the healing process of the rat epidermis, which exceeded the conventional dressing in terms of healing speed and efficacy, and the wounds on the complete layer of rat skin (wound area: 1.13 cm2) could be rapidly repaired within 10 days. Revealing the electrophysiological behavior of PAM-SA dressings during wound healing can help further improve the design model, the optimization concept, and development paths for the bioelectrical structures of modern dressings and bioelectrical stimulation in wound healing.
Collapse
Affiliation(s)
- Yukun Yan
- Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.
| | - Yuanyuan Chen
- Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.
| | - Hanqing Dai
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.
| | - Ruiqian Guo
- Institute for Electric Light Sources, Fudan University, Shanghai 200433, China.
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Fang X, Wang J, Ye C, Lin J, Ran J, Jia Z, Gong J, Zhang Y, Xiang J, Lu X, Xie C, Liu J. Polyphenol-mediated redox-active hydrogel with H 2S gaseous-bioelectric coupling for periodontal bone healing in diabetes. Nat Commun 2024; 15:9071. [PMID: 39433776 PMCID: PMC11494015 DOI: 10.1038/s41467-024-53290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Excessive oxidative response, unbalanced immunomodulation, and impaired mesenchymal stem cell function in periodontitis in diabetes makes it a great challenge to achieve integrated periodontal tissue regeneration. Here, a polyphenol-mediated redox-active algin/gelatin hydrogel encapsulating a conductive poly(3,4-ethylenedioxythiopene)-assembled polydopamine-mediated silk microfiber network and a hydrogen sulfide sustained-release system utilizing bovine serum albumin nanoparticles is developed. This hydrogel is found to reverse the hyperglycemic inflammatory microenvironment and enhance functional tissue regeneration in diabetic periodontitis. Polydopamine confers the hydrogel with anti-oxidative and anti-inflammatory activity. The slow, sustained release of hydrogen sulfide from the bovine serum albumin nanoparticles recruits mesenchymal stem cells and promotes subsequent angiogenesis and osteogenesis. Moreover, poly(3,4-ethylenedioxythiopene)-assembled polydopamine-mediated silk microfiber confers the hydrogel with good conductivity, which enables it to transmit endogenous bioelectricity, promote cell arrangement, and increase the inflow of calcium ion. In addition, the synergistic effects of hydrogen sulfide gaseous-bioelectric coupling promotes bone formation by amplifying autophagy in periodontal ligament stem cells and modulating macrophage polarization via lipid metabolism regulation. This study provides innovative insights into the synergistic effects of conductivity, reactive oxygen species scavenging, and hydrogen sulfide on the periodontium in a hyperglycemic inflammatory microenvironment, offering a strategy for the design of gaseous-bioelectric biomaterials to promote functional tissue regeneration in immune-related diseases.
Collapse
Affiliation(s)
- Xinyi Fang
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- Hospital of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Chengxinyue Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
- Hospital of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Jinhui Ran
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Zhanrong Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, PR China
| | - Jinglei Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yiming Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Jin Liu
- Lab of Aging Research and Department of Geriatrics, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
9
|
Belliveau NM, Footer MJ, Platenkamp A, Kim H, Eustis TE, Theriot JA. Galvanin is an electric-field sensor for directed cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614580. [PMID: 39386424 PMCID: PMC11463530 DOI: 10.1101/2024.09.23.614580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Directed cell migration is critical for the rapid response of immune cells, such as neutrophils, following tissue injury or infection. Endogenous electric fields, generated by the disruption of the transepithelial potential across the skin, help to guide the movement of immune and skin cells toward the wound site. However, the mechanisms by which cells sense these physical cues remain largely unknown. Through a CRISPR-based screen, we identified Galvanin, a previously uncharacterized single-pass transmembrane protein that is required for human neutrophils to change their direction of migration in response to an applied electric field. Our results indicate that Galvanin rapidly relocalizes to the anodal side of a cell on exposure to an electric field, and that the net charge on its extracellular domain is necessary and sufficient to drive this relocalization. The spatial pattern of neutrophil protrusion and retraction changes immediately upon Galvanin relocalization, suggesting that it acts as a direct sensor of the electric field that then transduces spatial information about a cell's electrical environment to the migratory apparatus. The apparent mechanism of cell steering by sensor relocalization represents a new paradigm for directed cell migration.
Collapse
Affiliation(s)
- Nathan M. Belliveau
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Matthew J. Footer
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Amy Platenkamp
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Heonsu Kim
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Tara E. Eustis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A. Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Chai X, Lou Y, Nie L, Shavandi A, Yunusov KE, Sun Y, Jiang G. A three-dimensional printable conductive composite dressing for accelerating wound healing under electrical stimulation. Colloids Surf B Biointerfaces 2024; 245:114264. [PMID: 39332056 DOI: 10.1016/j.colsurfb.2024.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
In this study, a bioink based on poly(vinyl alcohol) (PVA) and κ-carrageenan network was prepared using conductive polymer (PEDOT:PSS) as conducting medium, and (+)-Catechin-loaded mesoporous ZnO (CmZnO) as antibacterial and anti-inflammatory active medium. 3D conductive composite dressing was further fabricated by an extrusion 3D printing technology. Our results showed that the as-obtained composite dressing had suitable conductivity, efficient blood clotting capacity, and good adhesiveness. It also showed that the as-fabricated conductive composite had 92.9 % and 95.6 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the conductive dressing with an optimal electrical stimulation (ES) parameter showed in vivo blood clotting capacity, and it enhanced in vivo wound healing process in a full-thickness skin defect model than commercial dressings by upregulating the gene expression of growth factors including CD-31 and downregulating inflammatory factor expression of IL-6.
Collapse
Affiliation(s)
- Xinxiang Chai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Yanzhen Lou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO, BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels 1050, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent 100128, Uzbekistan
| | - Yanfang Sun
- College of Life Science and Medical Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
11
|
Krutko M, Poling HM, Bryan AE, Sharma M, Singh A, Reza HA, Wikenheiser-Brokamp KA, Takebe T, Helmrath MA, Harris GM, Esfandiari L. Enhanced Piezoelectric Performance of PVDF-TrFE Nanofibers through Annealing for Tissue Engineering Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608345. [PMID: 39229142 PMCID: PMC11370437 DOI: 10.1101/2024.08.16.608345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study investigates bioelectric stimulation's role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C was assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) revealed increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C. Scanning Electron Microscopy (SEM) showed that 140°C annealed scaffolds had enhanced lamellar structures, increased porosity, and maximum piezoelectric response. Mechanical tests indicated that 140°C annealing improved elastic modulus, tensile strength, and substrate stiffness, aligning these properties with physiological soft tissues. In vitro assessments in Schwann cells demonstrated favorable responses, with increased cell proliferation, contraction, and extracellular matrix attachment. Additionally, genes linked to extracellular matrix production, vascularization, and calcium signaling were upregulated. The foreign body response in C57BL/6 mice, evaluated through Hematoxylin and Eosin (H&E) and Picrosirius Red staining, showed no differences between scaffold groups, supporting the potential for future functional evaluation of the annealed group in tissue repair.
Collapse
|
12
|
Grigore A, Coman OA, Păunescu H, Costescu M, Fulga I. Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing-A Review. Int J Mol Sci 2024; 25:6753. [PMID: 38928459 PMCID: PMC11204351 DOI: 10.3390/ijms25126753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound healing involves physical, chemical and immunological processes. Transient receptor potential (TRP) and other ion channels are implicated in epidermal re-epithelization. Ion movement across ion channels can induce transmembrane potential that leads to transepithelial potential (TEP) changes. TEP is present in epidermis surrounding the lesion decreases and induces an endogenous direct current generating an epithelial electric field (EF) that could be implicated in wound re-epithelialization. TRP channels are involved in the activation of immune cells during mainly the inflammatory phase of wound healing. The aim of the study was to review the mechanisms of ion channel involvement in wound healing in in vivo experiments in murine (mice, rats) and how can this process be influenced. This review used the latest results published in scientific journals over the last year and this year to date (1 January 2023-31 December 3000) in order to include the in-press articles. Some types of TRP channels, such as TRPV1, TRPV3 and TRPA1, are expressed in immune cells and can be activated by inflammatory mediators. The most beneficial effects in wound healing are produced using agonists of TRPV1, TRPV4 and TRPA1 channels or by inhibiting with antagonists, antisense oligonucleotides or knocking down TRPV3 and TRPM8 channels.
Collapse
Affiliation(s)
| | | | - Horia Păunescu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucureșt, Romania; (A.G.); (O.A.C.); (M.C.); (I.F.)
| | | | | |
Collapse
|
13
|
Hernandez CO, Hsieh HC, Zhu K, Li H, Yang HY, Recendez C, Asefifeyzabadi N, Nguyen T, Tebyani M, Baniya P, Lopez AM, Alhamo MA, Gallegos A, Hsieh C, Barbee A, Orozco J, Soulika AM, Sun YH, Aslankoohi E, Teodorescu M, Gomez M, Norouzi N, Isseroff RR, Zhao M, Rolandi M. A bioelectronic device for electric field treatment of wounds reduces inflammation in an in vivo mouse model. PLoS One 2024; 19:e0303692. [PMID: 38875291 PMCID: PMC11178234 DOI: 10.1371/journal.pone.0303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Electrical signaling plays a crucial role in the cellular response to tissue injury in wound healing and an external electric field (EF) may expedite the healing process. Here, we have developed a standalone, wearable, and programmable electronic device to administer a well-controlled exogenous EF, aiming to accelerate wound healing in an in vivo mouse model to provide pre-clinical evidence. We monitored the healing process by assessing the re-epithelization rate and the ratio of M1/M2 macrophage phenotypes through histology staining. Following three days of treatment, the M1/M2 macrophage ratio decreased by 30.6% and the re-epithelization in the EF-treated wounds trended towards a non-statically significant 24.2% increase compared to the control. These findings provide point towards the effectiveness of the device in shortening the inflammatory phase by promoting reparative macrophages over inflammatory macrophages, and in speeding up re-epithelialization. Our wearable device supports the rationale for the application of programmed EFs for wound management in vivo and provides an exciting basis for further development of our technology based on the modulation of macrophages and inflammation to better wound healing.
Collapse
Affiliation(s)
- Cristian O Hernandez
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Hao-Chieh Hsieh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Kan Zhu
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Houpu Li
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Cynthia Recendez
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Narges Asefifeyzabadi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Maryam Tebyani
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Prabhat Baniya
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Andrea Medina Lopez
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Moyasar A Alhamo
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Anthony Gallegos
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
| | - Cathleen Hsieh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Alexie Barbee
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Jonathan Orozco
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Athena M Soulika
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States of America
| | - Yao-Hui Sun
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| | - Marcella Gomez
- Department of Applied Mathematics, University of California, Santa Cruz, CA, United States of America
| | - Narges Norouzi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States of America
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Dermatology Section, VA Northern California Health Care System, Mather, CA, United States of America
| | - Min Zhao
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States of America
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, United States of America
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, United States of America
| |
Collapse
|
14
|
Zhou Q, Dai H, Yan Y, Qin Z, Zhou M, Zhang W, Zhang G, Guo R, Wei X. From Short Circuit to Completed Circuit: Conductive Hydrogel Facilitating Oral Wound Healing. Adv Healthc Mater 2024; 13:e2303143. [PMID: 38306368 DOI: 10.1002/adhm.202303143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The primary challenges posed by oral mucosal diseases are their high incidence and the difficulty in managing symptoms. Inspired by the ability of bioelectricity to activate cells, accelerate metabolism, and enhance immunity, a conductive polyacrylamide/sodium alginate crosslinked hydrogel composite containing reduced graphene oxide (PAA-SA@rGO) is developed. This composite possesses antibacterial, anti-inflammatory, and antioxidant properties, serving as a bridge to turn the "short circuit" of the injured site into a "completed circuit," thereby prompting fibroblasts in proximity to the wound site to secrete growth factors and expedite tissue regeneration. Simultaneously, the PAA-SA@rGO hydrogel effectively seals wounds to form a barrier, exhibits antibacterial and anti-inflammatory properties, and prevents foreign bacterial invasion. As the electric field of the wound is rebuilt and repaired by the PAA-SA@rGO hydrogel, a 5 × 5 mm2 wound in the full-thickness buccal mucosa of rats can be expeditiously mended within mere 7 days. The theoretical calculations indicate that the PAA-SA@rGO hydrogel can aggregate and express SOX2, PITX1, and PITX2 at the wound site, which has a promoting effect on rapid wound healing. Importantly, this PAA-SA@rGO hydrogel has a fast curative effect and only needs to be applied for the first three days, which significantly improves patient satisfaction during treatment.
Collapse
Affiliation(s)
- Qiangqiang Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Hanqing Dai
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yukun Yan
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Zhiming Qin
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Mengqi Zhou
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Guoqi Zhang
- Electronic Components Technology and Materials, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Ruiqian Guo
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Institute for Electric Light Sources, Fudan University, Shanghai, 200433, China
| | - Xiaoling Wei
- Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| |
Collapse
|
15
|
Laeverenz-Schlogelhofer H, Wan KY. Bioelectric control of locomotor gaits in the walking ciliate Euplotes. Curr Biol 2024; 34:697-709.e6. [PMID: 38237598 DOI: 10.1016/j.cub.2023.12.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024]
Abstract
Diverse animal species exhibit highly stereotyped behavioral actions and locomotor sequences as they explore their natural environments. In many such cases, the neural basis of behavior is well established, where dedicated neural circuitry contributes to the initiation and regulation of certain response sequences. At the microscopic scale, single-celled eukaryotes (protists) also exhibit remarkably complex behaviors and yet are completely devoid of nervous systems. Here, to address the question of how single cells control behavior, we study locomotor patterning in the exemplary hypotrich ciliate Euplotes, a highly polarized cell, which actuates a large number of leg-like appendages called cirri (each a bundle of ∼25-50 cilia) to swim in fluids or walk on surfaces. As it navigates its surroundings, a walking Euplotes cell is routinely observed to perform side-stepping reactions, one of the most sophisticated maneuvers ever observed in a single-celled organism. These are spontaneous and stereotyped reorientation events involving a transient and fast backward motion followed by a turn. Combining high-speed imaging with simultaneous time-resolved electrophysiological recordings, we show that this complex coordinated motion sequence is tightly regulated by rapid membrane depolarization events, which orchestrate the activity of different cirri on the cell. Using machine learning and computer vision methods, we map detailed measurements of cirri dynamics to the cell's membrane bioelectrical activity, revealing a differential response in the front and back cirri. We integrate these measurements with a minimal model to understand how Euplotes-a unicellular organism-manipulates its membrane potential to achieve real-time control over its motor apparatus.
Collapse
Affiliation(s)
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
16
|
Uzieliene I, Popov A, Vaiciuleviciute R, Kirdaite G, Bernotiene E, Ramanaviciene A. Polypyrrole-based structures for activation of cellular functions under electrical stimulation. Bioelectrochemistry 2024; 155:108585. [PMID: 37847982 DOI: 10.1016/j.bioelechem.2023.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Polypyrrole (Ppy) is an electroconductive polymer used in various applications, including in vitro experiments with cell cultures under electrical stimulation (ES). Ppy can be applied in various forms and most importantly, it is biocompatible with cells. Ppy specifically directs ES to cells, which makes Ppy a potential polymer for the development of novel technologies for targeted tissue regeneration. The high potential of ES in combination with different Ppy-based systems, such as hydrogels, scaffolds, or Ppy-layers is advantageous to stimulate cellular differentiation towards neurogenic, cardiac, muscle, and osteogenic lineages. Different in-house devices and the principles of ES application used to stimulate cellular functions are reviewed and summarized. The focus of this review is to observe the most relevant studies and their in-house techniques regarding the application of Ppy-based materials for the use of bone, neural, cardiac, and muscle tissue regeneration under ES. Different types of Ppy materials, such as Ppy particles, layers/films, membranes, and 3D-shaped synthetic and natural scaffolds, as well as combining Ppy with different active molecules are reviewed.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; NanoTechnas - Center on Nanotechnology and Materials Sciences, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko g. 24, LT-03225 Vilnius, Lithuania
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Gailute Kirdaite
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, VilniusTech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; NanoTechnas - Center on Nanotechnology and Materials Sciences, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko g. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
17
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
18
|
Ravanbod HR. How Might Consideration of Cell Polarity Affect Daily Therapeutic Practices?A Literature Review:. Galen Med J 2023; 12:e2970. [PMID: 37808005 PMCID: PMC10556545 DOI: 10.31661/gmj.v12i.2970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND In addition to biochemical gradients and transcriptional networks, cell behaviour is controlled by endogenous bioelectrical signals resulting from the action of ion channels and pumps. Cells are regulated not only by their own membrane resting potential (Vmem) but also by the Vmem of neighbouring cells, establishing networks through electrical synapses known as gap junctions. V mem is the primary factor in producing a polarity that can regulate cell assimilation of various substances. This article aimed to examine how cell polarity can change and how variations in cell polarity may lead to clinical demonstrations. MATERIALS AND METHODS Using Cochrane Central, PubMed, Scopus, Web of Science (WOS), and Embase, a comprehensive qualitative literature review was conducted from February 1, 2018, to February 1, 2023, to identify studies addressing bioelectric, cell polarity, and electroceuticals in patients with foot and ankle problems. RESULTS Out of 1,281 publications, 27 were included. One study investigated bioelectric wound-healing. Twenty-five studies examined bioelectric nerve cell growth, whereas one study evaluated bioelectricity-induced cellular differentiation in the treatment of arteriopathies. CONCLUSION The author of this systematic review support addressing the predisposing factors and healing impediments for a disease, thereby enhancing the healing process and reducing the likelihood of recurrence or parallel conditions. This method of treatment has provided a summary of evidence indicating that cell polarity could be addressed for the treatment and prevention of most if not all, foot and ankle problems. However, owing to the limitations of V mem and bioelectricity measurement and the direct or indirect involvement of genetics and chemical gradients, further studies are required to confirm these results.
Collapse
|
19
|
Yang CY, Sun JH, Zhu K, Du J, Zhang Y, Lu CH, Liu WY, Zhang KJ, Zhang AQ, Zeng L, Jiang JX, Li L. Electrotaxis of alveolar epithelial cells in direct-current electric fields. Chin J Traumatol 2023:S1008-1275(23)00020-2. [PMID: 37019724 DOI: 10.1016/j.cjtee.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
PURPOSE This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury. METHODS AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells) were obtained and experimented under the same conditions as AECs. To determine the influence on cell fate, cells underwent electric stimulation were collected to perform Western blot analysis. RESULTS The successful separation and culturing of AECs were confirmed through immunofluorescence staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-dependent way. In general, type Ⅰ alveolar epithelial cells migrated faster than type Ⅱ alveolar epithelial cells, and under EFs, these two types of cells exhibited different response threshold. For type Ⅱ alveolar epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of Bcl-2-associated X protein and Bcl-2-like protein 11. CONCLUSION EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar epithelium in lung injury.
Collapse
Affiliation(s)
- Chao-Yue Yang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian-Hui Sun
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kan Zhu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Zhang
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cong-Hua Lu
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wen-Yi Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ke-Jun Zhang
- Department of Outpatients, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - An-Qiang Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Trauma, Burns, and Combined Injury, Department of Trauma Medical Center, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
20
|
A Comprehensive Review on Bio-Based Materials for Chronic Diabetic Wounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020604. [PMID: 36677658 PMCID: PMC9861360 DOI: 10.3390/molecules28020604] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Globally, millions of people suffer from poor wound healing, which is associated with higher mortality rates and higher healthcare costs. There are several factors that can complicate the healing process of wounds, including inadequate conditions for cell migration, proliferation, and angiogenesis, microbial infections, and prolonged inflammatory responses. Current therapeutic methods have not yet been able to resolve several primary problems; therefore, their effectiveness is limited. As a result of their remarkable properties, bio-based materials have been demonstrated to have a significant impact on wound healing in recent years. In the wound microenvironment, bio-based materials can stimulate numerous cellular and molecular processes that may enhance healing by inhibiting the growth of pathogens, preventing inflammation, and stimulating angiogenesis, potentially converting a non-healing environment to an appropriately healing one. The aim of this present review article is to provide an overview of the mechanisms underlying wound healing and its pathophysiology. The development of bio-based nanomaterials for chronic diabetic wounds as well as novel methodologies for stimulating wound healing mechanisms are also discussed.
Collapse
|