1
|
Roy S, Saha G, Ghosh MK. UPS and Kinases-Gatekeepers of the G1/S Transition. Biofactors 2025; 51:e70020. [PMID: 40305374 DOI: 10.1002/biof.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
The G1/S transition is a highly regulated and pivotal checkpoint in the cell cycle, where the cell decides whether to commit to DNA replication and subsequent division or enter a non-dividing state. This checkpoint serves as a critical control point for preventing uncontrolled cell proliferation and maintaining genomic stability. The major driving force underlying the G1/S transition is the sequential activation of Cyclin-dependent kinases (CDKs), which is regulated by the coordinated binding of Cyclin partners, as well as the phosphorylation and ubiquitin-mediated degradation of both Cyclin partners and Cyclin-dependent kinase inhibitors (CKIs). Various E3 ligase families govern the timely degradation of these regulatory proteins, with their activity intricately controlled by phosphorylation events. This coordination enables the cells to efficiently translate the environmental cues and molecular signaling inputs to determine their fate. We explore the evolution of three distinct models describing the G1/S transition, highlighting how the traditional linear model is being challenged by recent paradigm shifts and conflicting findings. These advances reveal emerging complexity and unresolved questions in the field, particularly regarding how the latest insights into coordinated phosphorylation and ubiquitination-dependent degradation integrate into contemporary models of the G1/S transition.
Collapse
Affiliation(s)
- Srija Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Zhou KD, Wang YJ, Ma PY, Fang SY, Ma W. Balance of polo-like kinase Plo1 and monopolar attachment protein 1 (Moa1) regulates fission yeast meiosis. Int J Biol Macromol 2025; 307:142189. [PMID: 40112985 DOI: 10.1016/j.ijbiomac.2025.142189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
During meiosis, diploid germ cells undergo two successive rounds of chromosome segregation requiring key changes that sister chromatids co-orient in meiosis I and bi-orient in meiosis II. The kinetochore protein MEIKIN/Moa1 is restricted to meiosis I, has the function to properly co-orient sister kinetochores and maintain pericentrometic cohesion. However, the mechanisms governing the Moa1 activity throughout meiosis remain elusive in Schizosaccharomyces pombe. Here, we demonstrate that fission yeast Moa1 is degraded by the APC/C at anaphase I and blocking Moa1 degradation has no effect on cohesin protection and chromosome segregation during meiosis. Blocking Moa1 degradation can be prevented by the elimination of kinetochore Plo1. Conversely, the removal of Plo1 from the kinetochore, which leads to chromosome mis-segregation, can be reversed by maintaining kinetochore Moa1 levels. Therefore, we have observed a feedback relationship between reduced Plo1 enrichment at kinetochores and inhibited Moa1 degradation.
Collapse
Affiliation(s)
- Kang-Di Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu-Jia Wang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Pei-Yan Ma
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shao-Yang Fang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Verma A, Bharatiya P, Jaitak A, Nigam V, Monga V. Advances in the design, discovery, and optimization of aurora kinase inhibitors as anticancer agents. Expert Opin Drug Discov 2025; 20:475-497. [PMID: 40094219 DOI: 10.1080/17460441.2025.2481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION Aurora kinases (AKs) play key roles during carcinogenesis and show a close relationship with many cellular effects including mitotic entry, spindle assembly and chromosomal alignment biorientation. Indeed, elevated levels of AKs have been reported in several different tumor types, leading research scientists to investigate ways that we can target AKs for the purpose of developing new anticancer therapeutics. AREA COVERED This review examines the design, discovery, and development of Aurora kinase inhibitors (AKIs) as anticancer agents and delineates their roles in cancer progression or development. Various databases like PubMed, Scopus, Google scholar, SciFinder were used to search the relevant information. This article provides a comprehensive overview of recent advances in the medicinal chemistry of AKIs including the candidates under clinical development and list of patents filed. In addition, their mechanistic findings, SARs, and in silico studies have also been discussed to offer prospects in this field. EXPERT OPINION The integration of artificial intelligence and computational approaches is poised to accelerate the development of AKIs as anticancer agents. However, the associated challenges currently hindering its impact in drug development must be overcome before drugs can successfully translate from early drug development into clinical practice.
Collapse
Affiliation(s)
- Anubhav Verma
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Pradhuman Bharatiya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Aashish Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vaibhav Nigam
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
4
|
Grisetti L, Garcia CJC, Saponaro AA, Tiribelli C, Pascut D. The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer. Cell Prolif 2024; 57:e13641. [PMID: 38590119 PMCID: PMC11294426 DOI: 10.1111/cpr.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA's dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA's role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA's critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.
Collapse
Affiliation(s)
- Luca Grisetti
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Clarissa J. C. Garcia
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Anna A. Saponaro
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| | | | - Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| |
Collapse
|
5
|
Treekitkarnmongkol W, Solis LM, Sankaran D, Gagea M, Singh PK, Mistry R, Nguyen T, Kai K, Liu J, Sasai K, Jitsumori Y, Liu J, Nagao N, Stossi F, Mancini MA, Wistuba II, Thompson AM, Lee JM, Cadiñanos J, Wong KK, Abbott CM, Sahin AA, Liu S, Katayama H, Sen S. eEF1A2 promotes PTEN-GSK3β-SCF complex-dependent degradation of Aurora kinase A and is inactivated in breast cancer. Sci Signal 2024; 17:eadh4475. [PMID: 38442201 PMCID: PMC12039992 DOI: 10.1126/scisignal.adh4475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3β, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.
Collapse
Affiliation(s)
- Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Deivendran Sankaran
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pankaj K. Singh
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Ragini Mistry
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tristian Nguyen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshimi Jitsumori
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Norio Nagao
- Department of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Jonathan M. Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Juan Cadiñanos
- Fundación Centro Médico de Asturias, 33193 Oviedo, Spain
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Catherine M. Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Suyu Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Yu L, Kong N, Lin Y, Qiu P, Xu Q, Zhang Y, Zhen X, Yan G, Sun H, Mei J, Cao G. NUSAP1 regulates mouse oocyte meiotic maturation. J Cell Biochem 2023; 124:1931-1947. [PMID: 37992207 DOI: 10.1002/jcb.30498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
The correct assembly of the spindle apparatus directly regulates the precise separation of chromosomes in mouse oocytes, which is crucial for obtaining high-quality oocytes capable of successful fertilization. The localization, assembly, migration, and disassembly of the spindle are regulated by a series of spindle-associated proteins, which exhibit unique expression level variations and specific localization in oocytes. Proteomic analysis revealed that among many representative spindle-associated proteins, the expression level of nucleolar and spindle-associated protein 1 (NUSAP1) significantly increased after meiotic resumption, with a magnitude of change higher than that of other proteins. However, the role of NUSAP1 during oocyte meiosis maturation has not been reported. Here, we report that NUSAP1 is distributed within the cell nucleus during the germinal vesicle (GV) oocytes with non-surrounded nucleolus stage and is not enriched in the nucleus during the GV-surrounded nucleolus stage. Interestingly, NUSAP1 forms distinct granular aggregates near the spindle poles during the prophase of the first meiotic division (Pro-MI), metaphase I, and anaphase I/telophase I stages. Nusap1 depletion leads to chromosome misalignment, increased aneuploidy, and abnormal spindle assembly, particularly a decrease in spindle pole width. Correspondingly, RNA-seq analysis revealed significant suppression of the "establishment of spindle orientation" signaling pathway. Additionally, the attenuation of F-actin in NUSAP1-deficient oocytes may affect the asymmetric division process. Gene ontology analysis of NUSAP1 interactomes, identified through mass spectrometry here, revealed significant enrichment for RNA binding. As an RNA-binding protein, NUSAP1 is likely involved in the regulation of messenger RNA homeostasis by influencing the dynamics of processing (P)-body components. Overall, our results demonstrate the critical importance of precise regulation of NUSAP1 expression levels and protein localization for maintaining mouse oocyte meiosis.
Collapse
Affiliation(s)
- Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yuling Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Panpan Qiu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Qian Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jie Mei
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
7
|
Wu Q, Yin J, Jiang M, Zhang J, Sui Z. Identification, characterization and expression profiles of E2 and E3 gene superfamilies during the development of tetrasporophytes in Gracilariopsis lemaneiformis (Rhodophyta). BMC Genomics 2023; 24:549. [PMID: 37723489 PMCID: PMC10506303 DOI: 10.1186/s12864-023-09639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
E2 ubiquitin conjugating enzymes and E3 ubiquitin ligases play important roles in the growth and development of plants and animals. To date, the systematic analysis of E2 and E3 genes in Rhodophyta is limited. In this study, 14 E2 genes and 51 E3 genes were identified in Gracilariopsis lemaneiformis, an economically important red alga. E2 genes were classified into four classes according to the structure of the conserved domain, UBC. E3 genes were classified into 12 subfamilies according to individual conserved domains. A phylogenetic tree of seven algae species showed that functional differentiation of RING-type E3s was the highest, and the similarity between orthologous genes was high except in Chlamydomonas reinhardtii and Chara braunii. RNA-seq data analysis showed significant differential expression levels of E2 and E3 genes under the life stages of tetraspore formation and release, especially GlUBCN and GlAPC3. According to GO and KEGG analysis of two transcriptomes, GlUBCN and GlAPC3 were involved in ubiquitin-mediated proteolysis, and other subunits of the anaphase promoting complex or cyclosome (APC/C) and its activators GlCDC20 and GlCDH1 were also enriched into this process. The CDH1 and CDC20 in 981 were down-regulated during tetraspores formation and release, with the down-regulation of CDH1 being particularly significant; CDH1 and CDC20 in WLP-1, ZC, and WT were up-regulated during tetraspores formation and release, with CDC20 being more significantly up-regulated. Therefore, GlCDH1, rather than GlCDC20, in '981' might play the leading role in the activation of the APC/C, and GlCDC20 might play the leading role rather than GlCDH1 in strains WLP-1, ZC and wild type. The low fertility of cultivar 981 might be highly correlated with the inactivity of activators CDH1 and CDC20. This study provided a basic and comprehensive understanding of characteristic of E2 and E3 genes in Gp. lemaneiformis and set a foundation for further understanding of E2 ubiquitin conjugating enzymes and E3 ubiquitin ligase in regulating tetrasporophytes development of Gp. lemaneiformis.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Jingru Yin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Min Jiang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Jingyu Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China), Qingdao, 266003, China.
| |
Collapse
|
8
|
Faria-Reis A, Santos-Araújo S, Pereira J, Rios T, Majerowicz D, Gondim KC, Ramos I. Silencing of the 20S proteasomal subunit-α6 triggers full oogenesis arrest and increased mRNA levels of the selective autophagy adaptor protein p62/SQSTM1 in the ovary of the vector Rhodnius prolixus. PLoS Negl Trop Dis 2023; 17:e0011380. [PMID: 37267415 DOI: 10.1371/journal.pntd.0011380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
The high reproductive rates of insects contribute significantly to their ability to act as vectors of a variety of vector-borne diseases. Therefore, it is strategically critical to find molecular targets with biotechnological potential through the functional study of genes essential for insect reproduction. The ubiquitin-proteasome system is a vital degradative pathway that contributes to the maintenance of regular eukaryotic cell proteostasis. This mechanism involves the action of enzymes to covalently link ubiquitin to proteins that are meant to be delivered to the 26S proteasome and broken down. The 26S proteasome is a large protease complex (including the 20S and 19S subcomplexes) that binds, deubiquitylates, unfolds, and degrades its substrates. Here, we used bioinformatics to identify the genes that encode the seven α and β subunits of the 20S proteasome in the genome of R. prolixus and learned that those transcripts are accumulated into mature oocytes. To access proteasome function during oogenesis, we conducted RNAi functional tests employing one of the 20S proteasome subunits (Prosα6) as a tool to suppress 20S proteasomal activity. We found that Prosα6 silencing resulted in no changes in TAG buildup in the fat body and unaffected availability of yolk proteins in the hemolymph of vitellogenic females. Despite this, the silencing of Prosα6 culminated in the impairment of oocyte maturation at the early stages of oogenesis. Overall, we discovered that proteasome activity is especially important for the signals that initiate oogenesis in R. prolixus and discuss in what manner further investigations on the regulation of proteasome assembly and activity might contribute to the unraveling of oogenesis molecular mechanisms and oocyte maturation in this vector.
Collapse
Affiliation(s)
- Allana Faria-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Samara Santos-Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| |
Collapse
|
9
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
10
|
Abdelbaki A, Ascanelli C, Okoye CN, Akman HB, Janson G, Min M, Marcozzi C, Hagting A, Grant R, De Luca M, Asteriti IA, Guarguaglini G, Paiardini A, Lindon C. Revisiting degron motifs in human AURKA required for its targeting by APC/C FZR1. Life Sci Alliance 2023; 6:6/2/e202201372. [PMID: 36450448 PMCID: PMC9713472 DOI: 10.26508/lsa.202201372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Cynthia N Okoye
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giacomo Janson
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Mingwei Min
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Chiara Marcozzi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anja Hagting
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Maria De Luca
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Jeong SM, Bui QT, Kwak M, Lee JY, Lee PCW. Targeting Cdc20 for cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188824. [DOI: 10.1016/j.bbcan.2022.188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
|
12
|
Liu F, Wang X, Duan J, Hou Z, Wu Z, Liu L, Lei H, Huang D, Ren Y, Wang Y, Li X, Zhuo J, Zhang Z, He B, Yan M, Yuan H, Zhang L, Yan J, Wen S, Wang Z, Liu Q. A Temporal PROTAC Cocktail-Mediated Sequential Degradation of AURKA Abrogates Acute Myeloid Leukemia Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104823. [PMID: 35652200 PMCID: PMC9353462 DOI: 10.1002/advs.202104823] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
AURKA is a potential kinase target in various malignancies. The kinase-independent oncogenic functions partially disclose the inadequate efficacy of the kinase inhibitor in a Phase III clinical trial. Simultaneously targeting the catalytic and noncatalytic functions of AURKA may be a feasible approach. Here, a set of AURKA proteolysis targeting chimeras (PROTACs) are developed. The CRBN-based dAurA383 preferentially degrades the highly abundant mitotic AURKA, while cIAP-based dAurA450 degrades the lowly abundant interphase AURKA in acute myeloid leukemia (AML) cells. The proteomic and transcriptomic analyses indicate that dAurA383 triggers the "mitotic cell cycle" and "stem cell" processes, while dAurA450 inhibits the "MYC/E2F targets" and "stem cell" processes. dAurA383 and dAurA450 are combined as a PROTAC cocktail. The cocktail effectively degrades AURKA, relieves the hook effect, and synergistically inhibits AML stem cells. Furthermore, the PROTAC cocktail induces AML regression in a xenograft mouse model and primary patient blasts. These findings establish the PROTAC cocktail as a promising spatial-temporal drug administration strategy to sequentially eliminate the multifaceted functions of oncoproteins, relieve the hook effect, and prevent cancer stem cell-mediated drug resistance.
Collapse
Affiliation(s)
- Fang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Xuan Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Jianli Duan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zhijie Hou
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Zhouming Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Lingling Liu
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Hanqi Lei
- Department of UrologyKidney and Urology CenterPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Dan Huang
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yifei Ren
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Yue Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Xinyan Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Junxiao Zhuo
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zijian Zhang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Bin He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Min Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical ChemistryNational Chromatographic R&A CenterDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jinsong Yan
- Department of Hematologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116027China
| | - Shijun Wen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Zifeng Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Quentin Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Department of Hematologythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
13
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Okoye CN, Rowling PJE, Itzhaki LS, Lindon C. Counting Degrons: Lessons From Multivalent Substrates for Targeted Protein Degradation. Front Physiol 2022; 13:913063. [PMID: 35860655 PMCID: PMC9289945 DOI: 10.3389/fphys.2022.913063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
E3s comprise a structurally diverse group of at least 800 members, most of which target multiple substrates through specific and regulated protein-protein interactions. These interactions typically rely on short linear motifs (SLiMs), called "degrons", in an intrinsically disordered region (IDR) of the substrate, with variable rules of engagement governing different E3-docking events. These rules of engagement are of importance to the field of targeted protein degradation (TPD), where substrate ubiquitination and destruction require tools to effectively harness ubiquitin ligases (E3s). Substrates are often found to contain multiple degrons, or multiple copies of a degron, contributing to the affinity and selectivity of the substrate for its E3. One important paradigm for E3-substrate docking is presented by the Anaphase-Promoting Complex/Cyclosome (APC/C), a multi-subunit E3 ligase that targets hundreds of proteins for destruction during mitotic exit. APC/C substrate targeting takes place in an ordered manner thought to depend on tightly regulated interactions of substrates, with docking sites provided by the substoichiometric APC/C substrate adaptors and coactivators, Cdc20 or Cdh1/FZR1. Both structural and functional studies of individual APC/C substrates indicate that productive ubiquitination usually requires more than one degron, and that degrons are of different types docking to distinct sites on the coactivators. However, the dynamic nature of APC/C substrate recruitment, and the influence of multiple degrons, remains poorly understood. Here we review the significance of multiple degrons in a number of E3-substrate interactions that have been studied in detail, illustrating distinct kinetic effects of multivalency and allovalency, before addressing the role of multiple degrons in APC/C substrates, key to understanding ordered substrate destruction by APC/C. Lastly, we consider how lessons learnt from these studies can be applied in the design of TPD tools.
Collapse
Affiliation(s)
| | | | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Pajpach F, Shearwin-Whyatt L, Grützner F. Evolution, Expression and Meiotic Behavior of Genes Involved in Chromosome Segregation of Monotremes. Genes (Basel) 2021; 12:1320. [PMID: 34573302 PMCID: PMC8470780 DOI: 10.3390/genes12091320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosome segregation at mitosis and meiosis is a highly dynamic and tightly regulated process that involves a large number of components. Due to the fundamental nature of chromosome segregation, many genes involved in this process are evolutionarily highly conserved, but duplications and functional diversification has occurred in various lineages. In order to better understand the evolution of genes involved in chromosome segregation in mammals, we analyzed some of the key components in the basal mammalian lineage of egg-laying mammals. The chromosome passenger complex is a multiprotein complex central to chromosome segregation during both mitosis and meiosis. It consists of survivin, borealin, inner centromere protein, and Aurora kinase B or C. We confirm the absence of Aurora kinase C in marsupials and show its absence in both platypus and echidna, which supports the current model of the evolution of Aurora kinases. High expression of AURKBC, an ancestor of AURKB and AURKC present in monotremes, suggests that this gene is performing all necessary meiotic functions in monotremes. Other genes of the chromosome passenger complex complex are present and conserved in monotremes, suggesting that their function has been preserved in mammals. Cohesins are another family of genes that are of vital importance for chromosome cohesion and segregation at mitosis and meiosis. Previous work has demonstrated an accumulation and differential loading of structural maintenance of chromosomes 3 (SMC3) on the platypus sex chromosome complex at meiotic prophase I. We investigated if a similar accumulation occurs in the echidna during meiosis I. In contrast to platypus, SMC3 was only found on the synaptonemal complex in echidna. This indicates that the specific distribution of SMC3 on the sex chromosome complex may have evolved specifically in platypus.
Collapse
Affiliation(s)
| | | | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| |
Collapse
|
16
|
Wang R, Ascanelli C, Abdelbaki A, Fung A, Rasmusson T, Michaelides I, Roberts K, Lindon C. Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool. Commun Biol 2021; 4:640. [PMID: 34050235 PMCID: PMC8163823 DOI: 10.1038/s42003-021-02158-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted protein degradation tools are becoming a new therapeutic modality, allowing small molecule ligands to be reformulated as heterobifunctional molecules (PROteolysis Targeting Chimeras, PROTACs) that recruit ubiquitin ligases to targets of interest, leading to ubiquitination and destruction of the targets. Several PROTACs against targets of clinical interest have been described, but detailed descriptions of the cell biology modulated by PROTACs are missing from the literature. Here we describe the functional characterization of a PROTAC derived from AURKA inhibitor MLN8237 (alisertib). We demonstrate efficient and specific destruction of both endogenous and overexpressed AURKA by Cereblon-directed PROTACs. At the subcellular level, we find differential targeting of AURKA on the mitotic spindle compared to centrosomes. The phenotypic consequences of PROTAC treatment are therefore distinct from those mediated by alisertib, and in mitotic cells differentially regulate centrosome- and chromatin- based microtubule spindle assembly pathways. In interphase cells PROTAC-mediated clearance of non-centrosomal AURKA modulates the cytoplasmic role played by AURKA in mitochondrial dynamics, whilst the centrosomal pool is refractory to PROTAC-mediated clearance. Our results point to differential sensitivity of subcellular pools of substrate, governed by substrate conformation or localization-dependent accessibility to PROTAC action, a phenomenon not previously described for this new class of degrader compounds. Wang et al develop tools to target the mitotic regulator AURKA by synthesising PROTACs based on the inhibitor MLN8237. They find that the new PROTAC compound efficiently clears cytoplasmic and mitotic spindle-associated AURKA but does not eliminate AURKA activity from centrosomes, demonstrating the possibility of targeting subpopulations.
Collapse
Affiliation(s)
- Richard Wang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Alex Fung
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Tim Rasmusson
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.,Bristol Myers Squibb, Cambridge, MA, USA
| | | | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Bertolin G, Alves-Guerra MC, Cheron A, Burel A, Prigent C, Le Borgne R, Tramier M. Mitochondrial Aurora kinase A induces mitophagy by interacting with MAP1LC3 and Prohibitin 2. Life Sci Alliance 2021; 4:4/6/e202000806. [PMID: 33820826 PMCID: PMC8046421 DOI: 10.26508/lsa.202000806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
The multifunctional Ser/Thr kinase AURKA uses the Inner Mitochondrial Membrane receptor PHB2 and MAP1LC3 as a signalling platform to orchestrate the elimination of dysfunctional mitochondria. Epithelial and haematologic tumours often show the overexpression of the serine/threonine kinase AURKA. Recently, AURKA was shown to localise at mitochondria, where it regulates mitochondrial dynamics and ATP production. Here we define the molecular mechanisms of AURKA in regulating mitochondrial turnover by mitophagy. AURKA triggers the degradation of Inner Mitochondrial Membrane/matrix proteins by interacting with core components of the autophagy pathway. On the inner mitochondrial membrane, the kinase forms a tripartite complex with MAP1LC3 and the mitophagy receptor PHB2, which triggers mitophagy in a PARK2/Parkin–independent manner. The formation of the tripartite complex is induced by the phosphorylation of PHB2 on Ser39, which is required for MAP1LC3 to interact with PHB2. Last, treatment with the PHB2 ligand xanthohumol blocks AURKA-induced mitophagy by destabilising the tripartite complex and restores normal ATP production levels. Altogether, these data provide evidence for a role of AURKA in promoting mitophagy through the interaction with PHB2 and MAP1LC3. This work paves the way to the use of function-specific pharmacological inhibitors to counteract the effects of the overexpression of AURKA in cancer.
Collapse
Affiliation(s)
- Giulia Bertolin
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marie-Clotilde Alves-Guerra
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, Paris, France
| | - Angélique Cheron
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Agnès Burel
- University of Rennes, MRic CNRS, INSERM, Structure Fédérative de Recherche (SFR) Biosit, UMS 3480, Rennes, France
| | - Claude Prigent
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Roland Le Borgne
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| | - Marc Tramier
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Genetics and Development Institute of Rennes, Unité Mixte de Recherche (UMR) 6290, Rennes, France
| |
Collapse
|
18
|
Orr JN, Waugh R, Colas I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:667314. [PMID: 33897750 PMCID: PMC8058418 DOI: 10.3389/fpls.2021.667314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Meiosis is a specialized cell division which is essential to sexual reproduction. The success of this highly ordered process involves the timely activation, interaction, movement, and removal of many proteins. Ubiquitination is an extraordinarily diverse post-translational modification with a regulatory role in almost all cellular processes. During meiosis, ubiquitin localizes to chromatin and the expression of genes related to ubiquitination appears to be enhanced. This may be due to extensive protein turnover mediated by proteasomal degradation. However, degradation is not the only substrate fate conferred by ubiquitination which may also mediate, for example, the activation of key transcription factors. In plant meiosis, the specific roles of several components of the ubiquitination cascade-particularly SCF complex proteins, the APC/C, and HEI10-have been partially characterized indicating diverse roles in chromosome segregation, recombination, and synapsis. Nonetheless, these components remain comparatively poorly understood to their counterparts in other processes and in other eukaryotes. In this review, we present an overview of our understanding of the role of ubiquitination in plant meiosis, highlighting recent advances, remaining challenges, and high throughput methods which may be used to overcome them.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
19
|
Maan M, Agrawal NJ, Padmanabhan J, Leitzinger CC, Rivera-Rivera Y, Saavedra HI, Chellappan SP. Tank Binding Kinase 1 modulates spindle assembly checkpoint components to regulate mitosis in breast and lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118929. [PMID: 33310066 DOI: 10.1016/j.bbamcr.2020.118929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Neha Jaiswal Agrawal
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Jaya Padmanabhan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Christelle Colin Leitzinger
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Srikumar P Chellappan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America.
| |
Collapse
|
20
|
Wang S, Qi J, Zhu M, Wang M, Nie J. AURKA rs2273535 T>A Polymorphism Associated With Cancer Risk: A Systematic Review With Meta-Analysis. Front Oncol 2020; 10:1040. [PMID: 32733797 PMCID: PMC7357424 DOI: 10.3389/fonc.2020.01040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Aurora kinase A (AURKA) is a cell cycle regulatory serine/threonine kinase that promotes cell cycle progression. It plays an important role in regulating the transition from G2 to M phase during mitosis. The association between the AURKA rs2273535 T>A polymorphism and cancer risk has been investigated, but the results remain inconsistent. To get a more accurate conclusion, we conducted a comprehensive meta-analysis of 36 case-control studies, involving 22,884 cancer cases and 30,497 healthy controls. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the association of interest. Pooled analysis indicated that the AURKA rs2273535 T>A polymorphism increased the overall risk of cancer (homozygous: OR = 1.17, 95% CI = 1.04-1.33; recessive: OR = 1.15, 95% CI = 1.05-1.25; allele: OR = 1.07, 95% CI = 1.02-1.13). Stratification analysis by cancer type further showed that this polymorphism was associated with an increased breast cancer risk. This meta-analysis indicated that the AURKA rs2273535 T>A polymorphism was associated with an overall increased cancer risk, especially breast cancer. Further validation experiments are needed to strengthen our conclusion.
Collapse
Affiliation(s)
- Shujie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jian Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Wang
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hefei, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
21
|
Abdelbaki A, Akman HB, Poteau M, Grant R, Gavet O, Guarguaglini G, Lindon C. AURKA destruction is decoupled from its activity at mitotic exit but is essential to suppress interphase activity. J Cell Sci 2020; 133:jcs243071. [PMID: 32393600 PMCID: PMC7328152 DOI: 10.1242/jcs.243071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Activity of AURKA is controlled through multiple mechanisms including phosphorylation, ubiquitin-mediated degradation and allosteric interaction with TPX2. Activity peaks at mitosis, before AURKA is degraded during and after mitotic exit in a process strictly dependent on the APC/C coactivator FZR1. We used FZR1 knockout cells (FZR1KO) and a novel FRET-based AURKA biosensor to investigate how AURKA activity is regulated in the absence of destruction. We found that AURKA activity in FZR1KO cells dropped at mitotic exit as rapidly as in parental cells, despite absence of AURKA destruction. Unexpectedly, TPX2 was degraded normally in FZR1KO cells. Overexpression of an N-terminal TPX2 fragment sufficient for AURKA binding, but that is not degraded at mitotic exit, caused delay in AURKA inactivation. We conclude that inactivation of AURKA at mitotic exit is determined not by AURKA degradation but by degradation of TPX2 and therefore is dependent on CDC20 rather than FZR1. The biosensor revealed that FZR1 instead suppresses AURKA activity in interphase and is critically required for assembly of the interphase mitochondrial network after mitosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Marion Poteau
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Olivier Gavet
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Roma, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
22
|
APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin Cancer Biol 2020; 67:80-91. [PMID: 32165320 DOI: 10.1016/j.semcancer.2020.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.
Collapse
|
23
|
Bansal S, Tiwari S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div 2019; 14:14. [PMID: 31889987 PMCID: PMC6927175 DOI: 10.1186/s13008-019-0057-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit, multifunctional ubiquitin ligase that controls the temporal degradation of numerous cell cycle regulatory proteins to direct the unidirectional cell cycle phases. Several different mechanisms contribute to ensure the correct order of substrate modification by the APC/C complex. Recent advances in biochemical, biophysical and structural studies of APC/C have provided a deep mechanistic insight into the working of this complex ubiquitin ligase. This complex displays remarkable conformational flexibility in response to various binding partners and post-translational modifications, which together regulate substrate selection and catalysis of APC/C. Apart from this, various features and modifications of the substrates also influence their recognition and affinity to APC/C complex. Ultimately, temporal degradation of substrates depends on the kind of ubiquitin modification received, the processivity of APC/C, and other extrinsic mechanisms. This review discusses our current understanding of various intrinsic and extrinsic mechanisms responsible for 'substrate ordering' by the APC/C complex.
Collapse
Affiliation(s)
- Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
24
|
Hippo signaling is intrinsically regulated during cell cycle progression by APC/C Cdh1. Proc Natl Acad Sci U S A 2019; 116:9423-9432. [PMID: 31000600 DOI: 10.1073/pnas.1821370116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Hippo-YAP/TAZ signaling pathway plays a pivotal role in growth control during development and regeneration and its dysregulation is widely implicated in various cancers. To further understand the cellular and molecular mechanisms underlying Hippo signaling regulation, we have found that activities of core Hippo signaling components, large tumor suppressor (LATS) kinases and YAP/TAZ transcription factors, oscillate during mitotic cell cycle. We further identified that the anaphase-promoting complex/cyclosome (APC/C)Cdh1 E3 ubiquitin ligase complex, which plays a key role governing eukaryotic cell cycle progression, intrinsically regulates Hippo signaling activities. CDH1 recognizes LATS kinases to promote their degradation and, hence, YAP/TAZ regulation by LATS phosphorylation is under cell cycle control. As a result, YAP/TAZ activities peak in G1 phase. Furthermore, we show in Drosophila eye and wing development that Cdh1 is required in vivo to regulate the LATS homolog Warts with a conserved mechanism. Cdh1 reduction increased Warts levels, which resulted in reduction of the eye and wing sizes in a Yorkie dependent manner. Therefore, LATS degradation by APC/CCdh1 represents a previously unappreciated and evolutionarily conserved layer of Hippo signaling regulation.
Collapse
|
25
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
26
|
Choi J, Saraf A, Florens L, Washburn MP, Busino L. PTPN14 regulates Roquin2 stability by tyrosine dephosphorylation. Cell Cycle 2018; 17:2243-2255. [PMID: 30209976 DOI: 10.1080/15384101.2018.1522912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation regulates a variety of cellular signaling pathways and fundamental mechanisms in cells. In this paper, we demonstrate that the mRNA decay factor Roquin2 is phosphorylated at tyrosine residue in position 691 in vivo. This phosphorylation disrupts the interaction with KLHL6, the E3 ligase for Roquin2. Furthermore, we establish that the tyrosine phosphatase PTPN14 specifically interacts with Roquin2 through its phosphatase domain and dephosphorylates Roquin2 tyrosine 691. Overexpression of PTPN14 promotes Roquin2 degradation in a KLHL6-dependant manner by promoting interaction with KLHL6. Collectively, our findings reveal that PTPN14 negatively regulates the protein stability of Roquin2, thereby adding a new layer of regulation to the KLHL6-Roquin2 axis.
Collapse
Affiliation(s)
- Jaewoo Choi
- a Department of Cancer Biology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Anita Saraf
- b The Stowers Institute of Medical Research , Kansas , MO , USA
| | | | - Michael P Washburn
- b The Stowers Institute of Medical Research , Kansas , MO , USA.,c Department of Pathology and Laboratory Medicine , The University of Kansas Medical Center , Kansas , KS , USA
| | - Luca Busino
- a Department of Cancer Biology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
27
|
Titova E, Shagieva G, Ivanova O, Domnina L, Domninskaya M, Strelkova O, Khromova N, Kopnin P, Chernyak B, Skulachev V, Dugina V. Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth. Cell Cycle 2018; 17:1797-1811. [PMID: 29995559 DOI: 10.1080/15384101.2018.1496748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Mitochondria are important regulators of tumour growth and progression due to their specific role in cancer metabolism and modulation of apoptotic pathways. In this paper we describe that mitochondria-targeted antioxidant SkQ1 designed as a conjugate of decyl-triphenylphosphonium cation (TPP+) with plastoquinone, suppressed the growth of fibrosarcoma HT1080 and rhabdomyosarcoma RD tumour cells in culture and tumour growth of RD in xenograft nude mouse model. Under the same conditions, no detrimental effect of SkQ1 on cell growth of primary human subcutaneous fibroblasts was observed. The tumour growth suppression was shown to be a result of the antioxidant action of low nanomolar concentrations of SkQ1. We have revealed significant prolongation of mitosis induced by SkQ1 in both tumour cell cultures. Prolonged mitosis and apoptosis could be responsible for growth suppression after SkQ1 treatment in RD cells. Growth suppression in HT1080 cells was accompanied by the delay of telophase and cytokinesis, followed by multinuclear cells formation. The effects of SkQ1 on the cell cycle were proved to be at least partially mediated by inactivation of Aurora family kinases. ABBREVIATIONS TPP+: Triphenylphosphonium cation; ROS: Reactive oxygen species; mtROS: Mitochondrial reactive oxygen species; NAC: N-acetyl-L-cysteine; DCFH-DA: Dichlorodihydrofluorescein diacetate; APC: Anaphase promoting complex; ABPs: Actin-binding proteins; DMEM: Dulbecco's modified Eagle media; SDS: sodium dodecyl sulfate; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.
Collapse
Affiliation(s)
- Ekaterina Titova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Galina Shagieva
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Olga Ivanova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Lidiya Domnina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Maria Domninskaya
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Olga Strelkova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Natalya Khromova
- b Cancerogenesis Research Institute, Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Pavel Kopnin
- b Cancerogenesis Research Institute, Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Boris Chernyak
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Vladimir Skulachev
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia.,c Faculty of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , Russia
| | - Vera Dugina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
28
|
The multifaceted allosteric regulation of Aurora kinase A. Biochem J 2018; 475:2025-2042. [PMID: 29946042 PMCID: PMC6018539 DOI: 10.1042/bcj20170771] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Abstract
The protein kinase Aurora A (AurA) is essential for the formation of bipolar mitotic spindles in all eukaryotic organisms. During spindle assembly, AurA is activated through two different pathways operating at centrosomes and on spindle microtubules. Recent studies have revealed that these pathways operate quite differently at the molecular level, activating AurA through multifaceted changes to the structure and dynamics of the kinase domain. These advances provide an intimate atomic-level view of the finely tuned regulatory control operating in protein kinases, revealing mechanisms of allosteric cooperativity that provide graded levels of regulatory control, and a previously unanticipated mechanism for kinase activation by phosphorylation on the activation loop. Here, I review these advances in our understanding of AurA function, and discuss their implications for the use of allosteric small molecule inhibitors to address recently discovered roles of AurA in neuroblastoma, prostate cancer and melanoma.
Collapse
|
29
|
STXBP4 regulates APC/C-mediated p63 turnover and drives squamous cell carcinogenesis. Proc Natl Acad Sci U S A 2018; 115:E4806-E4814. [PMID: 29735662 DOI: 10.1073/pnas.1718546115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Levels of the N-terminally truncated isoform of p63 (ΔN p63), well documented to play a pivotal role in basal epidermal gene expression and epithelial maintenance, need to be strictly regulated. We demonstrate here that the anaphase-promoting complex/cyclosome (APC/C) complex plays an essential role in the ubiquitin-mediated turnover of ΔNp63α through the M-G1 phase. In addition, syntaxin-binding protein 4 (Stxbp4), which we previously discovered to bind to ΔNp63, can suppress the APC/C-mediated proteolysis of ΔNp63. Supporting the physiological relevance, of these interactions, both Stxbp4 and an APC/C-resistant version of ΔNp63α (RL7-ΔNp63α) inhibit the terminal differentiation process in 3D organotypic cultures. In line with this, both the stable RL7-ΔNp63α variant and Stxbp4 have oncogenic activity in soft agar and xenograft tumor assays. Notably as well, higher levels of Stxbp4 expression are correlated with the accumulation of ΔNp63 in human squamous cell carcinoma (SCC). Our study reveals that Stxbp4 drives the oncogenic potential of ΔNp63α and may provide a relevant therapeutic target for SCC.
Collapse
|
30
|
Nasa I, Kettenbach AN. Coordination of Protein Kinase and Phosphoprotein Phosphatase Activities in Mitosis. Front Cell Dev Biol 2018; 6:30. [PMID: 29623276 PMCID: PMC5874294 DOI: 10.3389/fcell.2018.00030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic changes in protein phosphorylation govern the transitions between different phases of the cell division cycle. A "tug of war" between highly conserved protein kinases and the family of phosphoprotein phosphatases (PPP) establishes the phosphorylation state of proteins, which controls their function. More than three-quarters of all proteins are phosphorylated at one or more sites in human cells, with the highest occupancy of phosphorylation sites seen in mitosis. Spatial and temporal regulation of opposing kinase and PPP activities is crucial for accurate execution of the mitotic program. The role of mitotic kinases has been the focus of many studies, while the contribution of PPPs was for a long time underappreciated and is just emerging. Misconceptions regarding the specificity and activity of protein phosphatases led to the belief that protein kinases are the primary determinants of mitotic regulation, leaving PPPs out of the limelight. Recent studies have shown that protein phosphatases are specific and selective enzymes, and that their activity is tightly regulated. In this review, we discuss the emerging roles of PPPs in mitosis and their regulation of and by mitotic kinases, as well as mechanisms that determine PPP substrate recognition and specificity.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
31
|
Borges DDP, Dos Santos AWA, Paier CRK, Ribeiro HL, Costa MB, Farias IR, de Oliveira RTG, França IGDF, Cavalcante GM, Magalhães SMM, Pinheiro RF. Prognostic importance of Aurora Kinases and mitotic spindle genes transcript levels in Myelodysplastic syndrome. Leuk Res 2017; 64:61-70. [PMID: 29220700 DOI: 10.1016/j.leukres.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
Myelodysplastic syndrome (MDS) are a heterogeneous group of clonal disease characterized by insufficiency of bone marrow, increase of apoptosis and increased risk of acute leukemia progression. Proteins related to the mitotic spindle (AURKA, AURKB, TPX2), to the mitotic checkpoint (MAD2, CDC20) and the regulation of the cell cycle (p21) are directly related to chromosomal stability and tumor development. This study aimed to evaluate the mRNA expression levels of these genes in 101 MDS patients using a real-time PCR methodology. We identified that CDC20 expression are increased in patients with dysmegakaryopoiesis (p=0.024), thrombocytopenia (p=0.000) and high-risk patients (p=0.014, 0.018) MAD2 expression are decreased in patients with 2 or 3 cytopenias (p=0.000) and neutrophil below 800/mm3. TPX2 is also overexpressed in patients presenting dysmegakaryopoiesis (p=0.009). A decrease in AURKA and AURKB expression were observed in patients with altered karyotype (p=0.000), who presented dysplasia in 3 lineages (p=0.000; 0.017) and hemoglobin inferior to 8g/dL (p=0.024). The expression of AURKA, AURKB and MAD2 (p=0.000; 0.001; 0.025) were decreased in patients with hypoplastic MDS, associated with high frequency of chromosomal alterations and high mortality rate. This study reaffirms the importance of aurora kinases and mitotic spindle genes to the pathogenesis and clinical evolution of MDS.
Collapse
Affiliation(s)
- Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Antônio Wesley Araújo Dos Santos
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marília Braga Costa
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Izabelle Rocha Farias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ivo Gabriel da Frota França
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Gabrielle Melo Cavalcante
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Sílvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
32
|
Taming the Beast: Control of APC/C Cdc20-Dependent Destruction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:111-121. [PMID: 29133301 DOI: 10.1101/sqb.2017.82.033712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit ubiquitin ligase that triggers the metaphase-to-anaphase transition in the cell cycle by targeting the substrates cyclin B and securin for destruction. APC/C activity toward these two key substrates requires the coactivator Cdc20. To ensure that cells enter mitosis and partition their duplicated genome with high accuracy, APC/CCdc20 activity must be tightly controlled. Here, we discuss the mechanisms that regulate APC/CCdc20 activity both before and during mitosis. We focus our discussion primarily on the chromosomal pathways that both accelerate and delay APC/C activation by targeting Cdc20 to opposing fates. The findings discussed provide an overview of how cells control the activation of this major cell cycle regulator to ensure both accurate and timely cell division.
Collapse
|
33
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
34
|
Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017; 36:683-702. [DOI: 10.1007/s10555-017-9703-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Suarez CD, Wu J, Badve SS, Sparano JA, Kaliney W, Littlepage LE. The AKT inhibitor triciribine in combination with paclitaxel has order-specific efficacy against Zfp217-induced breast cancer chemoresistance. Oncotarget 2017; 8:108534-108547. [PMID: 29312549 PMCID: PMC5752462 DOI: 10.18632/oncotarget.19308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
We previously identified the transcription factor ZNF217 (human) / Zfp217 (mouse) as an oncogene and prognostic indicator of reduced survival, increased metastasis, and reduced response to therapy in breast cancer patients. Here we investigated the role of Zfp217 in chemotherapy resistance. Preclinical animal models of Zfp217 overexpression were treated with a combination therapy of the microtubule inhibitor epothilone B, doxorubicin (Adriamycin), and cyclophosphamide (EAC). Tumors overexpressing Zfp217 increased their tumor burden compared to control tumors after treatment and accumulated a mammary gland progenitor cell population (K8+K14+). To overcome this chemoresistance after ZNF217 overexpression, we treated tumors ± Zfp217 overexpression with paclitaxel and triciribine, a nucleoside analog and AKT inhibitor that kills cells that overexpress ZNF217. Treatment order critically impacted the efficacy of the therapy. Combination treatment of triciribine followed by paclitaxel (TCN→PAC) inhibited tumor burden and increased survival in tumors that overexpressed Zfp217, whereas single agent or combination treatment in the reverse order (PAC→TCN) did not improve response. Analysis of these tumors and patient-derived tumor xenograft tumors treated with the same therapies suggested that Zfp217 overexpression in tumors contributes both to decreased microvessel density and vessel maturity, while TCN→PAC tumors overexpressing Zfp217 showed improved vessel maturity.
Collapse
Affiliation(s)
- Christopher D Suarez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Junmin Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Sunil S Badve
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph A Sparano
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Laurie E Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| |
Collapse
|
36
|
|
37
|
Korobeynikov V, Deneka AY, Golemis EA. Mechanisms for nonmitotic activation of Aurora-A at cilia. Biochem Soc Trans 2017; 45:37-49. [PMID: 28202658 PMCID: PMC5860652 DOI: 10.1042/bst20160142] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Overexpression of the Aurora kinase A (AURKA) is oncogenic in many tumors. Many studies of AURKA have focused on activities of this kinase in mitosis, and elucidated the mechanisms by which AURKA activity is induced at the G2/M boundary through interactions with proteins such as TPX2 and NEDD9. These studies have informed the development of small molecule inhibitors of AURKA, of which a number are currently under preclinical and clinical assessment. While the first activities defined for AURKA were its control of centrosomal maturation and organization of the mitotic spindle, an increasing number of studies over the past decade have recognized a separate biological function of AURKA, in controlling disassembly of the primary cilium, a small organelle protruding from the cell surface that serves as a signaling platform. Importantly, these activities require activation of AURKA in early G1, and the mechanisms of activation are much less well defined than those in mitosis. A better understanding of the control of AURKA activity and the role of AURKA at cilia are both important in optimizing the efficacy and interpreting potential downstream consequences of AURKA inhibitors in the clinic. We here provide a current overview of proteins and mechanisms that have been defined as activating AURKA in G1, based on the study of ciliary disassembly.
Collapse
Affiliation(s)
- Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, U.S.A
| | - Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
- Kazan Federal University, Kazan 420000, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A.
| |
Collapse
|
38
|
Lim NR, Yeap YYC, Ang CS, Williamson NA, Bogoyevitch MA, Quinn LM, Ng DCH. Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation. Cell Cycle 2016; 15:413-24. [PMID: 26713495 DOI: 10.1080/15384101.2015.1127472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice. The spindle recruitment of WDR62 is closely correlated with increased levels of AURKA following mitotic entry. We showed that depletion of TPX2 attenuated WDR62 localization at spindle poles indicating that TPX2 co-activation of AURKA is required to recruit WDR62 to the spindle. We demonstrated that AURKA activity contributed to the mitotic phosphorylation of WDR62 residues Ser49 and Thr50 and phosphorylation of WDR62 N-terminal residues was required for spindle organization and metaphase chromosome alignment. Our analysis of several MCPH-associated WDR62 mutants (V65M, R438H and V1314RfsX18) that are mislocalized in mitosis revealed that their interactions and phosphorylation by AURKA was substantially reduced consistent with the notion that AURKA is a key determinant of WDR62 spindle recruitment. Thus, our study highlights the role of AURKA signaling in the spatiotemporal control of WDR62 at spindle poles where it maintains spindle organization.
Collapse
Affiliation(s)
- Nicholas R Lim
- a Department of Biochemistry and Molecular Biology , University of Melbourne , Victoria , Australia.,b Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria , Australia
| | - Yvonne Y C Yeap
- a Department of Biochemistry and Molecular Biology , University of Melbourne , Victoria , Australia.,d School of Biomedical Sciences, University of Queensland , St Lucia , Australia
| | - Ching-Seng Ang
- b Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria , Australia
| | - Nicholas A Williamson
- b Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria , Australia
| | - Marie A Bogoyevitch
- a Department of Biochemistry and Molecular Biology , University of Melbourne , Victoria , Australia.,b Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria , Australia
| | - Leonie M Quinn
- c Department of Anatomy and Neuroscience , University of Melbourne , Victoria , Australia
| | - Dominic C H Ng
- a Department of Biochemistry and Molecular Biology , University of Melbourne , Victoria , Australia.,d School of Biomedical Sciences, University of Queensland , St Lucia , Australia
| |
Collapse
|
39
|
Bertolin G, Sizaire F, Herbomel G, Reboutier D, Prigent C, Tramier M. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells. Nat Commun 2016; 7:12674. [PMID: 27624869 PMCID: PMC5027284 DOI: 10.1038/ncomms12674] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation.
Collapse
Affiliation(s)
- Giulia Bertolin
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Florian Sizaire
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Gaëtan Herbomel
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - David Reboutier
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Equipe labéllisée Ligue Contre Le Cancer 2014–2016, Rennes 35043, France
| | - Claude Prigent
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Equipe labéllisée Ligue Contre Le Cancer 2014–2016, Rennes 35043, France
| | - Marc Tramier
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Microscopy Rennes Imaging Centre, Biosit, Université de Rennes 1, Rennes 35043, France
| |
Collapse
|
40
|
Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit. Nat Commun 2016; 7:12607. [PMID: 27558644 PMCID: PMC5007356 DOI: 10.1038/ncomms12607] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/16/2016] [Indexed: 01/06/2023] Open
Abstract
A multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), regulates critical cellular processes including the cell cycle. To accomplish its diverse functions, APC/C activity must be precisely regulated in time and space. The interphase APC/C activator Fizzy-related (Fzr or Cdh1) is localized at centrosomes in animal cells. However, neither the mechanism of its localization nor its importance is clear. Here we identify the centrosome component Spd2 as a major partner of Fzr in Drosophila. The localization of Fzr to the centriole during interphase depends on direct interaction with Spd2. By generating Spd2 mutants unable to bind Fzr, we show that centrosomal localization of Fzr is essential for optimal APC/C activation towards its centrosomal substrate Aurora A. Finally, we show that Spd2 is also a novel APC/CFzr substrate. Our study is the first to demonstrate the critical importance of distinct subcellular pools of APC/C activators in the spatiotemporal control of APC/C activity. The activity of the anaphase-promoting complex/cyclosome (APC/C) needs to be regulated in time and space to perform different functions. Here the authors show that Spd2 localizes the APC/C activator Fzr at the centrosomes to promote optimal APC/C activity towards its centrosomal substrate Aurora A.
Collapse
|
41
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
42
|
Zhou Z, He M, Shah AA, Wan Y. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 2016; 11:9. [PMID: 27418942 PMCID: PMC4944252 DOI: 10.1186/s13008-016-0021-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
43
|
Yan M, Wang C, He B, Yang M, Tong M, Long Z, Liu B, Peng F, Xu L, Zhang Y, Liang D, Lei H, Subrata S, Kelley KW, Lam EWF, Jin B, Liu Q. Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. Med Res Rev 2016; 36:1036-1079. [PMID: 27406026 DOI: 10.1002/med.21399] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The Aurora kinase family is comprised of three serine/threonine kinases, Aurora-A, Aurora-B, and Aurora-C. Among these, Aurora-A and Aurora-B play central roles in mitosis, whereas Aurora-C executes unique roles in meiosis. Overexpression or gene amplification of Aurora kinases has been reported in a broad range of human malignancies, pointing to their role as potent oncogenes in tumorigenesis. Aurora kinases therefore represent promising targets for anticancer therapeutics. A number of Aurora kinase inhibitors (AKIs) have been generated; some of which are currently undergoing clinical evaluation. Recent studies have unveiled novel unexpected functions of Aurora kinases during cancer development and the mechanisms underlying the anticancer actions of AKIs. In this review, we discuss the most recent advances in Aurora-A kinase research and targeted cancer therapy, focusing on the oncogenic roles and signaling pathways of Aurora-A kinases in promoting tumorigenesis, the recent preclinical and clinical AKI data, and potential alternative routes for Aurora-A kinase inhibition.
Collapse
Affiliation(s)
- Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zijie Long
- Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lingzhi Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yan Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sen Subrata
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith W Kelley
- Laboratory of Immunophysiology, Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. .,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China. .,Institute of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
44
|
Janeček M, Rossmann M, Sharma P, Emery A, Huggins DJ, Stockwell SR, Stokes JE, Tan YS, Almeida EG, Hardwick B, Narvaez AJ, Hyvönen M, Spring DR, McKenzie GJ, Venkitaraman AR. Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci Rep 2016; 6:28528. [PMID: 27339427 PMCID: PMC4919790 DOI: 10.1038/srep28528] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 02/02/2023] Open
Abstract
The essential mitotic kinase Aurora A (AURKA) is controlled during cell cycle progression via two distinct mechanisms. Following activation loop autophosphorylation early in mitosis when it localizes to centrosomes, AURKA is allosterically activated on the mitotic spindle via binding to the microtubule-associated protein, TPX2. Here, we report the discovery of AurkinA, a novel chemical inhibitor of the AURKA-TPX2 interaction, which acts via an unexpected structural mechanism to inhibit AURKA activity and mitotic localization. In crystal structures, AurkinA binds to a hydrophobic pocket (the 'Y pocket') that normally accommodates a conserved Tyr-Ser-Tyr motif from TPX2, blocking the AURKA-TPX2 interaction. AurkinA binding to the Y- pocket induces structural changes in AURKA that inhibit catalytic activity in vitro and in cells, without affecting ATP binding to the active site, defining a novel mechanism of allosteric inhibition. Consistent with this mechanism, cells exposed to AurkinA mislocalise AURKA from mitotic spindle microtubules. Thus, our findings provide fresh insight into the catalytic mechanism of AURKA, and identify a key structural feature as the target for a new class of dual-mode AURKA inhibitors, with implications for the chemical biology and selective therapeutic targeting of structurally related kinases.
Collapse
Affiliation(s)
- Matej Janeček
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke’s Site, Cambridge CB2 1GA
| | - Pooja Sharma
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Amy Emery
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - David J. Huggins
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Simon R. Stockwell
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Jamie E. Stokes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yaw S. Tan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | - Bryn Hardwick
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Ana J. Narvaez
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Old Addenbrooke’s Site, Cambridge CB2 1GA
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Grahame J. McKenzie
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Ashok R. Venkitaraman
- MRC Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom, or
| |
Collapse
|
45
|
Kotak S, Afshar K, Busso C, Gönczy P. Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells. J Cell Sci 2016; 129:3015-25. [PMID: 27335426 DOI: 10.1242/jcs.184416] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/16/2016] [Indexed: 01/04/2023] Open
Abstract
Accurate spindle positioning is essential for error-free cell division. The one-cell Caenorhabditis elegans embryo has proven instrumental for dissecting mechanisms governing spindle positioning. Despite important progress, how the cortical forces that act on astral microtubules to properly position the spindle are modulated is incompletely understood. Here, we report that the PP6 phosphatase PPH-6 and its associated subunit SAPS-1, which positively regulate pulling forces acting on spindle poles, associate with the Aurora A kinase AIR-1 in C. elegans embryos. We show that acute inactivation of AIR-1 during mitosis results in excess pulling forces on astral microtubules. Furthermore, we uncover that AIR-1 acts downstream of PPH-6-SAPS-1 in modulating spindle positioning, and that PPH-6-SAPS-1 negatively regulates AIR-1 localization at the cell cortex. Moreover, we show that Aurora A and the PP6 phosphatase subunit PPP6C are also necessary for spindle positioning in human cells. There, Aurora A is needed for the cortical localization of NuMA and dynein during mitosis. Overall, our work demonstrates that Aurora A kinases and PP6 phosphatases have an ancient function in modulating spindle positioning, thus contributing to faithful cell division.
Collapse
Affiliation(s)
- Sachin Kotak
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Katayon Afshar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
46
|
Qin L, Guimarães DSPSF, Melesse M, Hall MC. Substrate Recognition by the Cdh1 Destruction Box Receptor Is a General Requirement for APC/CCdh1-mediated Proteolysis. J Biol Chem 2016; 291:15564-74. [PMID: 27226622 DOI: 10.1074/jbc.m116.731190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
The anaphase-promoting complex, or cyclosome (APC/C), is a ubiquitin ligase that selectively targets proteins for degradation in mitosis and the G1 phase and is an important component of the eukaryotic cell cycle control system. How the APC/C specifically recognizes its substrates is not fully understood. Although well characterized degron motifs such as the destruction box (D-box) and KEN-box are commonly found in APC/C substrates, many substrates apparently lack these motifs. A variety of alternative APC/C degrons have been reported, suggesting either that multiple modes of substrate recognition are possible or that our definitions of degron structure are incomplete. We used an in vivo yeast assay to compare the G1 degradation rate of 15 known substrates of the APC/C co-activator Cdh1 under normal conditions and conditions that impair binding of D-box, KEN-box, and the recently identified ABBA motif degrons to Cdh1. The D-box receptor was required for efficient proteolysis of all Cdh1 substrates, despite the absence of canonical D-boxes in many. In contrast, the KEN-box receptor was only required for normal proteolysis of a subset of substrates and the ABBA motif receptor for a single substrate in our system. Our results suggest that binding to the D-box receptor may be a shared requirement for recognition and processing of all Cdh1 substrates.
Collapse
Affiliation(s)
- Liang Qin
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | | | - Michael Melesse
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Mark C Hall
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
47
|
Duhamel S, Girondel C, Dorn JF, Tanguay PL, Voisin L, Smits R, Maddox PS, Meloche S. Deregulated ERK1/2 MAP kinase signaling promotes aneuploidy by a Fbxw7β-Aurora A pathway. Cell Cycle 2016; 15:1631-42. [PMID: 27152455 DOI: 10.1080/15384101.2016.1183851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aneuploidy is a common feature of human solid tumors and is often associated with poor prognosis. There is growing evidence that oncogenic signaling pathways, which are universally dysregulated in cancer, contribute to the promotion of aneuploidy. However, the mechanisms connecting signaling pathways to the execution of mitosis and cytokinesis are not well understood. Here, we show that hyperactivation of the ERK1/2 MAP kinase pathway in epithelial cells impairs cytokinesis, leading to polyploidization and aneuploidy. Mechanistically, deregulated ERK1/2 signaling specifically downregulates expression of the F-box protein Fbxw7β, a substrate-binding subunit of the SCF(Fbxw7) ubiquitin ligase, resulting in the accumulation of the mitotic kinase Aurora A. Reduction of Aurora A levels by RNA interference or pharmacological inhibition of MEK1/2 reverts the defect in cytokinesis and decreases the frequency of abnormal cell divisions induced by oncogenic H-Ras(V12). Reciprocally, overexpression of Aurora A or silencing of Fbxw7β phenocopies the effect of H-Ras(V12) on cell division. In vivo, conditional activation of MEK2 in the mouse intestine lowers Fbxw7β expression, resulting in the accumulation of cells with enlarged nuclei. We propose that the ERK1/2/ Fbxw7β/Aurora A axis identified in this study contributes to genomic instability and tumor progression.
Collapse
Affiliation(s)
- Stéphanie Duhamel
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,b Program of Molecular Biology, Université de Montréal , Montreal , Quebec , Canada
| | - Charlotte Girondel
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,c Department of Pharmacology , Université de Montréal , Montreal , Quebec , Canada
| | - Jonas F Dorn
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Pierre-Luc Tanguay
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Laure Voisin
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada
| | - Ron Smits
- d Department of Gastroenterology and Hepatology , Erasmus MC , Rotterdam , The Netherlands
| | - Paul S Maddox
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,e Department of Pathology and Cell Biology , Université de Montréal , Montreal , Quebec , Canada
| | - Sylvain Meloche
- a Institute for Research in Immunology and Cancer, Université de Montréal , Montreal , Quebec , Canada.,b Program of Molecular Biology, Université de Montréal , Montreal , Quebec , Canada.,c Department of Pharmacology , Université de Montréal , Montreal , Quebec , Canada
| |
Collapse
|
48
|
Late mitotic functions of Aurora kinases. Chromosoma 2016; 126:93-103. [DOI: 10.1007/s00412-016-0594-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
49
|
Lim NR, Yeap YYC, Zhao TT, Yip YY, Wong SC, Xu D, Ang CS, Williamson NA, Xu Z, Bogoyevitch MA, Ng DCH. Opposing roles for JNK and Aurora A in regulating the association of WDR62 with spindle microtubules. J Cell Sci 2016; 128:527-40. [PMID: 25501809 DOI: 10.1242/jcs.157537] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WD40-repeat protein 62 (WDR62) is a spindle pole protein required for normal cell division and neuroprogenitor differentiation during brain development. Microcephaly-associated mutations in WDR62 lead to mitotic mislocalization, highlighting a crucial requirement for precise WDR62 spatiotemporal distribution, although the regulatory mechanisms are unknown. Here, we demonstrate that the WD40-repeat region of WDR62 is required for microtubule association, whereas the disordered C-terminal region regulates cell-cycle-dependent compartmentalization. In agreement with a functional requirement for the WDR62–JNK1 complex during neurogenesis, WDR62 specifically recruits JNK1 (also known as MAPK8), but not JNK2 (also known as MAPK9), to the spindle pole. However, JNK-mediated phosphorylation of WDR62 T1053 negatively regulated microtubule association, and loss of JNK signaling resulted in constitutive WDR62 localization to microtubules irrespective of cell cycle stage. In contrast, we identified that Aurora A kinase (AURKA) and WDR62 were in complex and that AURKA-mediated phosphorylation was required for the spindle localization of WDR62 during mitosis. Our studies highlight complex regulation of WDR62 localization, with opposing roles for JNK and AURKA in determining its spindle association.
Collapse
|
50
|
Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, Gerbe F, Prieto S, Krasinska L, David A, Eguren M, Birling MC, Urbach S, Hem S, Déjardin J, Malumbres M, Jay P, Dulic V, Lafontaine DL, Feil R, Fisher D. The cell proliferation antigen Ki-67 organises heterochromatin. eLife 2016; 5:e13722. [PMID: 26949251 PMCID: PMC4841783 DOI: 10.7554/elife.13722] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/06/2016] [Indexed: 12/29/2022] Open
Abstract
Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI:http://dx.doi.org/10.7554/eLife.13722.001 Living cells divide in two to produce new cells. In mammals, cell division is strictly controlled so that only certain groups of cells in the body are actively dividing at any time. However, some cells may escape these controls so that they divide rapidly and form tumors. A protein called Ki-67 is only produced in actively dividing cells, where it is located in the nucleus – the structure that contains most of the cell’s DNA. Researchers often use Ki-67 as a marker to identify which cells are actively dividing in tissue samples from cancer patients, and previous studies indicated that Ki-67 is needed for cells to divide. However, the exact role of this protein was not clear. Before cells can divide they need to make large amounts of new proteins using molecular machines called ribosomes and it has been suggested that Ki-67 helps to produce ribosomes. Now, Sobecki et al. used genetic techniques to study the role of Ki-67 in mice. The experiments show that Ki-67 is not required for cells to divide in the laboratory or to make ribosomes. Instead, Ki-67 alters the way that DNA is packaged in the nucleus. Loss of Ki-67 from mice cells resulted in DNA becoming less compact, which in turn altered the activity of genes in those cells. Sobecki et al. also identified many other proteins that interact with Ki-67, so the next step following on from this research is to understand how Ki-67 alters DNA packaging at the molecular level. Another future challenge will be to find out if inhibiting the activity of Ki-67 can hinder the growth of cancer cells. DOI:http://dx.doi.org/10.7554/eLife.13722.002
Collapse
Affiliation(s)
- Michal Sobecki
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - Karim Mrouj
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - Alain Camasses
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - Nikolaos Parisis
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - Emilien Nicolas
- RNA Molecular Biology, Center for Microscopy and Molecular Imaging, Fonds de la Recherche Nationale, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
| | - David Llères
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - François Gerbe
- Faculty of Sciences, University of Montpellier, Montpellier, France.,Institute of Functional Genomics (IGF), CNRS UMR 5203, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,U1191, Inserm, Montpellier, France
| | - Susana Prieto
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - Liliana Krasinska
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - Alexandre David
- Faculty of Sciences, University of Montpellier, Montpellier, France.,Institute of Functional Genomics (IGF), CNRS UMR 5203, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,U1191, Inserm, Montpellier, France
| | - Manuel Eguren
- Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Serge Urbach
- Faculty of Sciences, University of Montpellier, Montpellier, France.,Institute of Functional Genomics (IGF), CNRS UMR 5203, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,U1191, Inserm, Montpellier, France.,Functional Proteomics Platform, Institute of Functional Genomics, Montpellier, France
| | - Sonia Hem
- Mass Spectrometry Platform MSPP, SupAgro, Montpellier, France
| | - Jérôme Déjardin
- Faculty of Sciences, University of Montpellier, Montpellier, France.,Institute of Human Genetics (IGH) CNRS UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France
| | | | - Philippe Jay
- Faculty of Sciences, University of Montpellier, Montpellier, France.,Institute of Functional Genomics (IGF), CNRS UMR 5203, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,U1191, Inserm, Montpellier, France
| | - Vjekoslav Dulic
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - Denis Lj Lafontaine
- RNA Molecular Biology, Center for Microscopy and Molecular Imaging, Fonds de la Recherche Nationale, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
| | - Robert Feil
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| | - Daniel Fisher
- Montpellier Institute of Molecular Genetics (IGMM) CNRS UMR 5535, Centre National de la Recherche Scientifique (CNRS), Montpellier, France.,Faculty of Sciences, University of Montpellier, Montpellier, France
| |
Collapse
|