1
|
Lou Y, Dong C, Jiang Q, He Z, Yang S. Protein succinylation mechanisms and potential targeted therapies in urinary disease. Cell Signal 2025; 131:111744. [PMID: 40090556 DOI: 10.1016/j.cellsig.2025.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Succinylation is a relatively common post-translational modification. It occurs in the cytoplasm, mitochondria, and the nucleus, where its essential precursor, succinyl-CoA, is present, allowing for the modification of non-histone and histone proteins. In normal cells, succinylation levels are carefully regulated to sustain a dynamic balance, necessitating the involvement of various regulatory mechanisms, including non-enzymatic reactions, succinyltransferases, and desuccinylases. Among these regulatory factors, sirtuin 5, the first identified desuccinylase, plays a significant role and has been extensively researched. The level of succinylation has a significant effect on multiple metabolic pathways, including the tricarboxylic acid cycle, redox balance, and fatty acid metabolism. Dysregulated succinylation can contribute to the progression or exacerbation of various urinary diseases. Succinylation predominantly affects disease progression by altering the expression of key genes and modulating the activity of enzymes involved in vital metabolic processes. Desuccinylases primarily affect enzymes associated with Warburg's effect, thereby affecting the energy supply of tumor cells, while succinyltransferases can regulate gene transcription to alter cell phenotype, thereby involving the development of urinary diseases. Considering these effects, targeting succinylation-related enzymes to regulate metabolic pathways or gene expression may offer a promising therapeutic strategy for treating urinary diseases.
Collapse
Affiliation(s)
- Yuanquan Lou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
2
|
Yu CK, Stephenson CJ, Villamor TC, Dyba TG, Schulz BL, Fraser JA. Deciphering the functions of Spt20 in the SAGA complex: Implications for Cryptococcus neoformans virulence. Life Sci 2025; 368:123509. [PMID: 40023276 DOI: 10.1016/j.lfs.2025.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
AIMS The SAGA complex is a conserved transcriptional co-activator essential for eukaryotic gene regulation. In fungi of the Ascomycota, the core protein Spt20 contributes to the structure and function of SAGA. This study aimed to identify and characterize SPT20 in Cryptococcus neoformans, the WHO top-ranked critical priority group species on their Fungal Priority Pathogen list. MATERIALS AND METHODS Identification of C. neoformans SPT20 revealed the presence of a tRNA gene within its 5' UTR. Precisely deleting the SPT20 ORF preserved the tRNA gene while enabling analysis of Spt20 function. Phenotypic assays assessed growth under stress, capsule formation, and antifungal susceptibility. RT-qPCR divulged effects on transcriptional regulation of SAGA components, while Western blotting evaluated changes in histone acetylation and deubiquitination. A murine inhalation model assessed virulence. KEY FINDINGS Loss of SPT20 impaired growth under a number of stresses, influenced capsule formation, increased antifungal susceptibility, and disrupted expression of most genes encoding SAGA complex proteins. The mutant exhibited defects in several histone modifications as well as severely compromised virulence in mice. SIGNIFICANCE Characterization of SPT20 in C. neoformans has provided important insights into the role of this protein as a critical regulator of survival and virulence in this clinically important species.
Collapse
Affiliation(s)
- Chendi Katherine Yu
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Christina J Stephenson
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Tristan C Villamor
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Taylor G Dyba
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Dai W, Yu Q, Ma R, Zheng Z, Hong L, Qi Y, He F, Wang M, Ge F, Yu X, Li S. PKA plays a conserved role in regulating gene expression and metabolic adaptation by phosphorylating Rpd3/HDAC1. Nat Commun 2025; 16:4030. [PMID: 40301306 PMCID: PMC12041213 DOI: 10.1038/s41467-025-59064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Cells need to reprogram their metabolism to adapt to extracellular nutrient changes. The yeast histone acetyltransferase SAGA (Spt-Ada-Gcn5-acetyltransferase) has been reported to acetylate its subunit Ada3 and form homo-dimers to enhance its ability to acetylate nucleosomes and facilitate metabolic gene transcription. How cells transduce extracellular nutrient changes to SAGA structure and function changes remains unclear. Here, we found that SAGA is deacetylated by Rpd3L complex and uncover how its deacetylase activity is repressed by nutrient sensor protein kinase A (PKA). When sucrose is used as the sole carbon source, PKA catalytic subunit Tpk2 is activated, which phosphorylates Rpd3L catalytic subunit Rpd3 to inhibit its ability to deacetylate Ada3. Moreover, Tpk2 phosphorylates Rpd3L subunit Ash1, which specifically reduces the interaction between Rpd3L and SAGA. By phosphorylating both Rpd3 and Ash1, Tpk2 inhibits Rpd3L-mediated Ada3 deacetylation, which promotes SAGA dimerization, nucleosome acetylation and transcription of genes involved in sucrose utilization and tricarboxylate (TCA) cycle, resulting in metabolic shift from glycolysis to TCA cycle. Most importantly, PKA phosphorylates HDAC1, the Rpd3 homolog in mammals to repress its deacetylase activity, promote TCA cycle gene transcription and facilitate cell growth. Our work hence reveals a conserved role of PKA in regulating Rpd3/HDAC1 and metabolic adaptation.
Collapse
Affiliation(s)
- Wenjing Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhu Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lingling Hong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yuqing Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Fei He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Min Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Chauhan M, Shivarathri R, Aptekmann AA, Chowdhary A, Kuchler K, Desai JV, Chauhan N. The Gcn5 lysine acetyltransferase mediates cell wall remodeling, antifungal drug resistance, and virulence of Candida auris. mSphere 2025; 10:e0006925. [PMID: 40066990 PMCID: PMC12039264 DOI: 10.1128/msphere.00069-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 04/30/2025] Open
Abstract
Candida auris has emerged as a multidrug-resistant human fungal pathogen that causes infections of high morbidity and mortality. However, the molecular mechanisms underlying pronounced multidrug resistance and host-pathogen interactions are poorly understood. Here, we show that C. auris GCN5 lysine acetyltransferase is essential for cell wall remodeling, antifungal drug resistance, and virulence. The Candida albicans GCN5 has previously been shown to be an important regulator of antifungal drug resistance and virulence. Therefore, to identify Gcn5-dependent evolutionary conserved as well as divergent transcriptional networks between the two species, we performed comparative transcriptional analysis. The gene set enrichment analysis of C. auris vs C. albicans gcn5Δ transcriptomic data revealed several major biological pathways and processes including sphingolipid metabolism and glycosylphosphatidylinositol anchor biosynthesis to be enriched in both species. Consistent with these data, we found a prominent role for C. auris Gcn5 in maintaining cell-wall architecture, as the C. auris gcn5Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and chitin content. Additionally, we observed that Gcn5 modulates susceptibility to caspofungin and was required for fungal survival when challenged with primary murine macrophages and neutrophils ex vivo. Furthermore, disruption of GCN5 causes virulence attenuation in a murine model of disseminated candidiasis. Lastly, lysine acetyltransferase inhibitor cyclopentanone, 2-[4-(4-chlorophenyl)-2-thiazolyl] hydrazone displayed antifungal activity either alone or in combination with caspofungin against the drug-resistant C. auris wild-type strain. Collectively, these data provide new insights into the mechanisms of antifungal drug resistance and C. auris-host interactions and suggest Gcn5 lysine acetyltransferase as a potential target for antifungal therapy. IMPORTANCE Invasive fungal diseases affect approximately 6.5 million people every year, of which about 2.5 million people die worldwide. This number is expected to rise due to increasing numbers of immunosuppressed people, including the elderly, premature infants, organ transplant recipients, cancer, and HIV/AIDS patients. The Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) have both recently emphasized a critical need for the development of new antifungal therapeutics to address expanding drug resistance among human fungal pathogens. The necessity of new antifungal drugs is also underscored by the fact that mortality due to invasive candidiasis has remained unchanged for several decades. However, the discovery of new drugs acting on antifungal drug targets is complicated because fungi are eukaryotes. This greatly limits the number of feasible fungal-specific drug targets. One class of molecules that fulfills the criterion of fungal specificity is chromatin modification enzymes such as lysine acetyltransferase (KATs). The fungal KATs are structurally less well conserved, and some modifications are only found in fungi, minimizing the risk of toxicity, thus making KATs new promising tools for antifungal therapy. We report here that Gcn5 lysine acetyltransferase mediates antifungal drug resistance and virulence of C. auris and represents an important target for antifungal drug discovery.
Collapse
Affiliation(s)
- Manju Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Raju Shivarathri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ariel A. Aptekmann
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Department of Medical Biochemistry, Campus Vienna Biocenter, Vienna, Austria
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
5
|
Zencir S, Dilg D, Bruzzone M, Stutz F, Soudet J, Shore D, Albert B. A two-step regulatory mechanism dynamically controls histone H3 acetylation by SAGA complex at growth-related promoters. Nucleic Acids Res 2025; 53:gkaf276. [PMID: 40207626 PMCID: PMC11983098 DOI: 10.1093/nar/gkaf276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Acetylation of histone H3 at residue K9 (H3K9ac) is a dynamically regulated mark associated with transcriptionally active promoters in eukaryotes. However, our understanding of the relationship between H3K9ac and gene expression remains mostly correlative. In this study, we identify a large suite of growth-related (GR) genes in yeast that undergo a particularly strong down-regulation of both transcription and promoter-associated H3K9ac upon stress, and delineate the roles of transcriptional activators (TAs), repressors, SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase, and RNA-polymerase II in this response. We demonstrate that H3K9 acetylation states are orchestrated by a two-step mechanism driven by the dynamic binding of transcriptional repressors (TRs) and activators, that is independent of transcription. In response to stress, promoter release of TAs at GR genes is a prerequisite for rapid reduction of H3K9ac, whereas binding of TRs is required to establish a hypo-acetylated, strongly repressed state.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Daniel Dilg
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - David Shore
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| |
Collapse
|
6
|
Jeon J, Friedman LJ, Zhou DH, Seo HD, Adeleke OA, Graham B, Patteson EF, Gelles J, Buratowski S. Single-molecule analysis of transcription activation: dynamics of SAGA coactivator recruitment. Nat Struct Mol Biol 2025; 32:675-686. [PMID: 39809941 DOI: 10.1038/s41594-024-01451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/13/2024] [Indexed: 01/16/2025]
Abstract
Transcription activators are said to stimulate gene expression by 'recruiting' coactivators, yet this vague term fits multiple kinetic models. To directly analyze the dynamics of activator-coactivator interactions, single-molecule microscopy was used to image promoter DNA, a transcription activator and the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex within yeast nuclear extract. SAGA readily but transiently binds nucleosome-free DNA without an activator, while chromatin association occurs primarily when an activator is present. On both templates, an activator increases SAGA association rates by an order of magnitude and dramatically extends occupancy time. These effects reflect sustained interactions with the transactivation domain, as VP16 or Rap1 activation domains produce different SAGA dynamics. SAGA preferentially associates with templates carrying more than one activator. Unexpectedly, SAGA binding is substantially improved by nucleoside triphosphates but not histone H3 or H4 tail tetra-acetylations. Thus, we observe two modes of SAGA-template interaction: short-lived activator-independent binding to non-nucleosomal DNA and tethering to promoter-bound transcription activators for up to several minutes.
Collapse
Affiliation(s)
- Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | - Daniel H Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | - Hogyu David Seo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA, USA.
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Hanafy DM, Leaver DJ. Is a Fungal Apocalypse Inevitable or Just a Hallucination? An Overview of the Antifungal Armamentarium Used in the Fight against Pathogenic Fungi. ACS Med Chem Lett 2025; 16:379-387. [PMID: 40104801 PMCID: PMC11912285 DOI: 10.1021/acsmedchemlett.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025] Open
Abstract
The World Health Organization (WHO) fungal priority pathogens list (WHO FPPL) published in 2022 highlighted the inequity and research challenges faced by researchers who study pathogenic fungi that afflict humans. Antifungal drugs are the only weapon available to treat infections; however, these drugs are old, are not effective against multidrug-resistant (MDR) fungal strains, and are associated with substantial toxicity in clinical use. This Microperspective summarizes challenges pertaining to antifungal drug discovery in addition to highlighting recent advances and antifungal agents in clinical trials.
Collapse
Affiliation(s)
- Doaa M. Hanafy
- School of Dentistry and Medical
Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - David J. Leaver
- School of Dentistry and Medical
Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
8
|
Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H, Guo D, Meng Y, Han H, Luo S, Wu Q, Jiang X, Xu J, Tang Z, Tao YJ, Lu Z. ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. Cell Metab 2025; 37:361-376.e7. [PMID: 39561764 DOI: 10.1016/j.cmet.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/28/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Lactyl-coenzyme A (CoA)-dependent histone lysine lactylation impacts gene expression and plays fundamental roles in biological processes. However, mammalian lactyl-CoA synthetases and their regulation of histone lactylation have not yet been identified. Here, we demonstrate that epidermal growth factor receptor (EGFR) activation induces extracellular signal-regulated kinase (ERK)-mediated S267 phosphorylation of acetyl-CoA synthetase 2 (ACSS2) and its subsequent nuclear translocation and complex formation with lysine acetyltransferase 2A (KAT2A). Importantly, ACSS2 functions as a bona fide lactyl-CoA synthetase and converts lactate to lactyl-CoA, which binds to KAT2A as demonstrated by a co-crystal structure analysis. Consequently, KAT2A acts as a lactyltransferase to lactylate histone H3, leading to the expression of Wnt/β-catenin, NF-κB, and PD-L1 and brain tumor growth and immune evasion. A combination treatment with an ACSS2-KAT2A interaction-blocking peptide and an anti-PD-1 antibody induces an additive tumor-inhibitory effect. These findings uncover ACSS2 and KAT2A as hitherto unidentified lactyl-CoA synthetase and lactyltransferase, respectively, and the significance of the ACSS2-KAT2A coupling in gene expression and tumor development.
Collapse
Affiliation(s)
- Rongxuan Zhu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xianglai Ye
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaotong Lu
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Liwei Xiao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ming Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hong Zhao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Dong Guo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Hongkuan Han
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Shudi Luo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaoming Jiang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Jun Xu
- Genetics and Metabolism Department, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX 77005, USA.
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
9
|
Ma H, Su L, Zhang W, Sun Y, Li D, Li S, Lin YJ, Zhou C, Li W. Epigenetic regulation of lignin biosynthesis in wood formation. THE NEW PHYTOLOGIST 2025; 245:1589-1607. [PMID: 39639540 PMCID: PMC11754936 DOI: 10.1111/nph.20328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Lignin, a major wood component, is the key limiting factor for wood conversion efficiency. Its biosynthesis is controlled by transcriptional regulatory networks involving transcription factor (TF)-DNA interactions. However, the epigenetic mechanisms underlying these interactions in lignin biosynthesis remain largely unknown. Here, using yeast one-hybrid, chromatin immunoprecipitation, and electrophoretic mobility shift assays, we identified that PtrbZIP44-A1, a key wood-forming TF, directly interacts with the promoters of PtrCCoAOMT2 and PtrCCR2, genes involved in the monolignol biosynthetic pathway. We used yeast two-hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR-mediated transgenesis in Populus trichocarpa to demonstrate that PtrHDA15, a histone deacetylase, acts as an epigenetic inhibitor and is recruited by PtrbZIP44-A1 for chromatin histone modifications to repress PtrCCoAOMT2 and PtrCCR2, leading to reduced lignin deposition. In transgenic lines overexpressing PtrbZIP44-A1 or PtrHDA15, histone acetylation at the promoters of PtrCCoAOMT2 and PtrCCR2 decreased, reducing their expression and lignin content. Conversely, in loss-of-function ptrbzip44-a1 and ptrhda15 mutants, histone acetylation levels at PtrCCoAOMT2 and PtrCCR2 promoters increased, enhancing target gene expression and lignin content. Our study uncovered an epigenetic mechanism that suppresses lignin biosynthesis. This finding may help fill a knowledge gap between epigenetic regulation and lignin biosynthesis during wood formation in Populus.
Collapse
Affiliation(s)
- Hongyan Ma
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Liwei Su
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Wen Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Danning Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | | | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Wei Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
10
|
Li L, Luo Q, Yang S, Wang H, Mu Y, Guo J, Zhang F. Unraveling the molecular mechanism of FgGcn5 inhibition by phenazine-1-carboxamide: combined in silico and in vitro studies. PEST MANAGEMENT SCIENCE 2025; 81:937-945. [PMID: 39465489 DOI: 10.1002/ps.8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Fusarium head blight (FHB), mainly caused by Fusarium graminearum (F. graminearum), remains a devastating disease worldwide. The histone acetyltransferase Gcn5 plays a crucial role in epigenetic regulation. Aberrant Gcn5 acetylation activity can result in serious impacts such as impaired growth and development in organisms. The secondary metabolite phenazine-1-carboxamide (PCN) inhibits F. graminearum by blocking the acetylation process of Gcn5 (FgGcn5), and is currently used to control FHB. However, the molecular basis of acetylation inhibition by PCN remains to be further explored. RESULTS Our molecular dynamics simulations revealed that PCN binds to the cleft in FgGcn5 where histone H3 is bound, with key amino acid residues including Leu96 (L96), Arg121 (R121), Phe133 (F133), Tyr169 (Y169), and Tyr201 (Y201), preventing FgGcn5 from binding to histone H3 and affecting histone H3 from being acetylated. Experimental validation of key amino acid mutations further confirmed the impact of these mutations on the interaction of FgGcn5 with PCN and histone H3 peptide. CONCLUSION In summary, our study sheds light on the mechanism by which PCN inhibits the acetylation function of FgGcn5, providing a foundation for the development of drugs or fungicides targeting histone acetyltransferases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing Luo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Shuai Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hancheng Wang
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Sarkar D, Chakraborty A, Mandi S, Dutt S. PARylation of GCN5 by PARP1 mediates its recruitment to DSBs and facilitates both HR and NHEJ Repair. Cell Mol Life Sci 2024; 81:446. [PMID: 39508866 PMCID: PMC11544116 DOI: 10.1007/s00018-024-05469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024]
Abstract
Efficient DNA double strand break (DSB) repair is necessary for genomic stability and determines efficacy of DNA damaging cancer therapeutics. Spatiotemporal dynamics and post-translational modifications of repair proteins at DSBs dictate repair efficacy. Here, we identified a non-canonical function of GCN5 in regulating both HR and NHEJ repair post genotoxic stress. Mechanistically, genotoxic stress induced GCN5 recruitment to DSBs. GCN5 PARylation by PARP1 was essential for its recruitment, acetyltransferase activity and DSB repair function. Liquid chromatography-mass spectrometry (LC-MS) identified DNA-PKcs as part of GCN5 interactome. In-vitro acetyltransferase assays revealed that GCN5 acetylates DNA-PKcs at K3241 residue, a prerequisite for DNA-PKcs S2056 phosphorylation and DSB recruitment. Alongside, ChIP-qPCR revealed GCN5 mediates transcription of PRKDC via H3K27Ac acetylation in its promoter region (- 710 to - 554). Genetic perturbation of GCN5 also decreased CHEK1, NBN1, TP53BP1, POL-L transcription and abrogated ATM, BRCA1 activation. Accordingly, GCN5 loss led to persistent ɣ-H2AX foci formation, compromised in-vivo HR-NHEJ and caused GBM radio-sensitization. Importantly, PARP1 inhibition phenocopied GCN5 loss. Together, this study identifies an untraversed DSB repair function of GCN5 and provides mechanistic insights into transcriptional as well as post-translational regulation of pivotal HR-NHEJ factors. Alongside, it highlights the translational importance of PARP1-GCN5 axis in mediating GBM radio-resistance.
Collapse
Affiliation(s)
- Debashmita Sarkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Amartya Chakraborty
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Shaina Mandi
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Shilpee Dutt Laboratory, School of Life Sciences (SLS), Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 1100067, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
12
|
Kang Y, Xiao K, Wang D, Peng Z, Luo R, Liu X, Hu L, Hu G. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of l-Pipecolic Acid from Glucose. ACS Synth Biol 2024; 13:3378-3388. [PMID: 39267441 DOI: 10.1021/acssynbio.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
l-Pipecolic acid (L-PA), an essential chiral cyclic nonprotein amino acid, is gaining prominence in the food and pharmaceutical sectors due to its wide-ranging biological and pharmacological properties. Historically, L-PA has been synthesized chemically for commercial purposes. This study introduces a novel and efficient microbial production method for L-PA using engineered strain Saccharomyces cerevisiae BY4743. Initially, an optimized biosynthetic pathway was constructed within S. cerevisiae, converting glucose to L-PA with a yield of 0.60 g/L in a 250 mL shake flask in vivo. Subsequently, a multifaceted engineering strategy was implemented to enhance L-PA production: substrate-enzyme affinity modification, global transcription machinery engineering modification, and Kozak sequence optimization for enhanced L-PA production. Approaches above led to an impressive 8.6-fold increase in L-PA yield, reaching 5.47 g/L in shake flask cultures. Further scaling up in a 5 L fed-batch fermenter achieved a remarkable L-PA concentration of 74.54 g/L. This research offers innovative insights into the industrial-scale production of L-PA.
Collapse
Affiliation(s)
- Yaqi Kang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Kaixing Xiao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zhiyao Peng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Ruoshi Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Xuemei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Lin Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Ge Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| |
Collapse
|
13
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
14
|
Dent SYR. KAT tales: Functions of Gcn5 and PCAF lysine acetyltransferases in SAGA and ATAC. J Biol Chem 2024; 300:107744. [PMID: 39222683 PMCID: PMC11439848 DOI: 10.1016/j.jbc.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The Allis group identified Gcn5 as the first transcription-related lysine acetyltransferase in 1996, providing a molecular "missing link" between chromatin organization and gene regulation. This review will focus on functions subsequently identified for Gcn5 and the closely related PCAF protein, in the context of two major complexes, SAGA and ATAC, and how the study of these enzymes informs long standing questions regarding the importance of lysine acetylation.
Collapse
Affiliation(s)
- Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer, Center for Cancer Epigenetics, University of Texas M.D. Anderson/UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
15
|
Tersenidis C, Poulios S, Komis G, Panteris E, Vlachonasios K. Roles of Histone Acetylation and Deacetylation in Root Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2760. [PMID: 39409630 PMCID: PMC11478958 DOI: 10.3390/plants13192760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
Roots are usually underground plant organs, responsible for anchoring to the soil, absorbing water and nutrients, and interacting with the rhizosphere. During root development, roots respond to a variety of environmental signals, contributing to plant survival. Histone post-translational modifications play essential roles in gene expression regulation, contributing to plant responses to environmental cues. Histone acetylation is one of the most studied post-translational modifications, regulating numerous genes involved in various biological processes, including development and stress responses. Although the effect of histone acetylation on plant responses to biotic and abiotic stimuli has been extensively reviewed, no recent reviews exist focusing on root development regulation by histone acetylation. Therefore, this review brings together all the knowledge about the impact of histone acetylation on root development in several plant species, mainly focusing on Arabidopsis thaliana. Here, we summarize the role of histone acetylation and deacetylation in numerous aspects of root development, such as stem cell niche maintenance, cell division, expansion and differentiation, and developmental zone determination. We also emphasize the gaps in current knowledge and propose new perspectives for research toward deeply understanding the role of histone acetylation in root development.
Collapse
Affiliation(s)
- Christos Tersenidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Stylianos Poulios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - George Komis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Konstantinos Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 57001 Thessaloniki, Greece
| |
Collapse
|
16
|
Zhang R, An K, Gao Y, Zhang Z, Zhang X, Zhang X, Rossi V, Cao Y, Xiao J, Xin M, Du J, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. The transcription factor CAMTA2 interacts with the histone acetyltransferase GCN5 and regulates grain weight in wheat. THE PLANT CELL 2024; 36:koae261. [PMID: 39321218 PMCID: PMC11638106 DOI: 10.1093/plcell/koae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/22/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Grain weight and size are major traits targeted in breeding to improve wheat (Triticum aestivum L.) yield. Here, we find that the histone acetyltransferase GENERAL CONTROL NONDEREPRESSIBLE 5 (GCN5) physically interacts with the calmodulin-binding transcription factor CAMTA2 and regulates wheat grain size and weight. gcn5 mutant grains were smaller and contained less starch. GCN5 promoted the expression of the starch biosynthesis genes SUCROSE SYNTHASE 2 (Sus2) and STARCH-BRANCHING ENZYME Ic (SBEIc) by regulating H3K9ac and H3K14ac levels in their promoters. Moreover, immunoprecipitation followed by mass spectrometry (IP-MS) revealed that CAMTA2 physically interacts with GCN5. The CAMTA2-GCN5 complex activated Sus2 and SBEIc by directly binding to their promoters and depositing H3K9ac and H3K14ac marks during wheat endosperm development. camta2 knockout mutants exhibited similar phenotypes to gcn5 mutants, including smaller grains that contained less starch. In gcn5 mutants, transcripts of high molecular weight (HMW) Glutenin (Glu) genes were downregulated, leading to reduced HMW glutenin protein levels, gluten content, and sodium dodecyl sulfate (SDS) sedimentation volume. However, the association of GCN5 with Glu genes was independent of CAMTA2, since GCN5 enrichment on Glu promoters was unchanged in camta2 knockouts. Finally, we identified a CAMTA2-AH3 elite allele that corresponded with enhanced grain size and weight, serving as a candidate gene for breeding wheat varieties with improved grain weight.
Collapse
Affiliation(s)
- Ruijie Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Kexin An
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yujiao Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaobang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126, Bergamo, Italy
| | - Yuan Cao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Chen YJC, Bhaskara GB, Lu Y, Lin K, Dent SYR. The SAGA acetyltransferase module is required for the maintenance of MAF and MYC oncogenic gene expression programs in multiple myeloma. Genes Dev 2024; 38:738-754. [PMID: 39168636 PMCID: PMC11444170 DOI: 10.1101/gad.351789.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of data sets in the Cancer Dependency Map Project revealed that many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and cleavage under targets and release using nuclease assay (CUT&RUN) results identified pathways directly regulated by ADA2B including MTORC1 signaling and oncogenic programs driven by MYC, E2F, and MM-specific MAF. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found that the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Collapse
Affiliation(s)
- Ying-Jiun C Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA;
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Govinal Badiger Bhaskara
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA;
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
18
|
Conway TP, Simonicova L, Moye-Rowley WS. Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. Genetics 2024; 228:iyae115. [PMID: 39028831 PMCID: PMC11791784 DOI: 10.1093/genetics/iyae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024] Open
Abstract
Azole resistance in the pathogenic yeast Candida glabrata is a serious clinical complication and increasing in frequency. The majority of resistant organisms have been found to contain a substitution mutation in the Zn2Cys6 zinc cluster-containing transcription factor Pdr1. These mutations typically lead to this factor driving high, constitutive expression of target genes like the ATP-binding cassette transporter-encoding gene CDR1. Overexpression of Cdr1 is required for the observed elevated fluconazole resistance exhibited by strains containing one of these hyperactive PDR1 alleles. While the identity of hyperactive PDR1 alleles has been extensively documented, the mechanisms underlying how these gain-of-function (GOF) forms of Pdr1 lead to elevated target gene transcription are not well understood. We have used a tandem affinity purification-tagged form of Pdr1 to identify coactivator proteins that biochemically purify with the wild-type and 2 different GOF forms of Pdr1. Three coactivator proteins were found to associate with Pdr1: the SWI/SNF complex Snf2 chromatin remodeling protein and 2 different components of the SAGA complex, Spt7 and Ngg1. We found that deletion mutants lacking either SNF2 or SPT7 exhibited growth defects, even in the absence of fluconazole challenge. To overcome these issues, we employed a conditional degradation system to acutely deplete these coactivators and determined that loss of either coactivator complex, SWI/SNF or SAGA, caused defects in Pdr1-dependent transcription. A double degron strain that could be depleted for both SWI/SNF and SAGA exhibited a profound defect in PDR1 autoregulation, revealing that these complexes work together to ensure high-level Pdr1-dependent gene transcription.
Collapse
Affiliation(s)
- Thomas P Conway
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lucia Simonicova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
20
|
Guan Y, Gajewska J, Floryszak‐Wieczorek J, Tanwar UK, Sobieszczuk‐Nowicka E, Arasimowicz‐Jelonek M. Histone (de)acetylation in epigenetic regulation of Phytophthora pathobiology. MOLECULAR PLANT PATHOLOGY 2024; 25:e13497. [PMID: 39034655 PMCID: PMC11261156 DOI: 10.1111/mpp.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species: P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Ewa Sobieszczuk‐Nowicka
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Magdalena Arasimowicz‐Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| |
Collapse
|
21
|
Conway TP, Simonicova L, Moye-Rowley WS. Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595833. [PMID: 38853834 PMCID: PMC11160619 DOI: 10.1101/2024.05.24.595833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Azole resistance in the pathogenic yeast Candida glabrata is a serious clinical complication and increasing in frequency. The majority of resistant organisms have been found to contain a substitution mutation in the Zn2Cys6 zinc cluster-containing transcription factor Pdr1. These mutations typically lead to this factor driving high, constitutive expression of target genes like the ATP-binding cassette transporter-encoding gene CDR1 . Overexpression of Cdr1 is required for the observed elevated fluconazole resistance exhibited by strains containing one of these hyperactive PDR1 alleles. While the identity of hyperactive PDR1 alleles has been extensively documented, the mechanisms underlying how these gain-of-function (GOF) forms of Pdr1 lead to elevated target gene transcription are not well understood. We have used a tandem affinity purification (TAP)-tagged form of Pdr1 to identify coactivator proteins that biochemically purify with the wild-type and two different GOF forms of Pdr1. Three coactivator proteins were found to associate with Pdr1: the SWI/SNF complex Snf2 chromatin remodeling protein and two different components of the SAGA complex, Spt7 and Ngg1. We found that deletion mutants lacking either SNF2 or SPT7 exhibited growth defects, even in the absence of fluconazole challenge. To overcome these issues, we employed a conditional degradation system to acutely deplete these coactivators and determined that loss of either coactivator complex, SWI/SNF or SAGA, caused defects in Pdr1-dependent transcription. A double degron strain that could be depleted for both SWI/SNF and SAGA exhibited a profound defect in PDR1 autoregulation, revealing that these complexes work together to ensure high level Pdr1-dependent gene transcription.
Collapse
|
22
|
Selvam K, Wyrick JJ, Parra MA. DNA Repair in Nucleosomes: Insights from Histone Modifications and Mutants. Int J Mol Sci 2024; 25:4393. [PMID: 38673978 PMCID: PMC11050016 DOI: 10.3390/ijms25084393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
DNA repair pathways play a critical role in genome stability, but in eukaryotic cells, they must operate to repair DNA lesions in the compact and tangled environment of chromatin. Previous studies have shown that the packaging of DNA into nucleosomes, which form the basic building block of chromatin, has a profound impact on DNA repair. In this review, we discuss the principles and mechanisms governing DNA repair in chromatin. We focus on the role of histone post-translational modifications (PTMs) in repair, as well as the molecular mechanisms by which histone mutants affect cellular sensitivity to DNA damage agents and repair activity in chromatin. Importantly, these mechanisms are thought to significantly impact somatic mutation rates in human cancers and potentially contribute to carcinogenesis and other human diseases. For example, a number of the histone mutants studied primarily in yeast have been identified as candidate oncohistone mutations in different cancers. This review highlights these connections and discusses the potential importance of DNA repair in chromatin to human health.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael A. Parra
- Department of Chemistry, Susquehanna University, Selinsgrove, PA 17870, USA
| |
Collapse
|
23
|
Chen YJC, Bhaskara GB, Lu Y, Lin K, Dent SYR. The SAGA acetyltransferase module is required for the maintenance of MAF and MYC oncogenic gene expression programs in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586811. [PMID: 38585845 PMCID: PMC10996596 DOI: 10.1101/2024.03.26.586811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of datasets in the Cancer Dependency Map Project revealed many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA-seq, ATAC-seq, and CUT&RUN results identified pathways directly regulated by ADA2B include MTORC1 signaling, MYC, E2F, and MM-specific MAF oncogenic programs. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Collapse
Affiliation(s)
- Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Govinal Badiger Bhaskara
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Georis I, Ronsmans A, Vierendeels F, Dubois E. Differing SAGA module requirements for NCR-sensitive gene transcription in yeast. Yeast 2024; 41:207-221. [PMID: 37357465 DOI: 10.1002/yea.3885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
Nitrogen catabolite repression (NCR) is a means for yeast to adapt its transcriptome to changing nitrogen sources in its environment. In conditions of derepression (under poor nitrogen conditions, upon rapamycin treatment, or when glutamine production is inhibited), two transcriptional activators of the GATA family are recruited to NCR-sensitive promoters and activate transcription of NCR-sensitive genes. Earlier observations have involved the Spt-Ada-Gcn5 acetyltransferase (SAGA) chromatin remodeling complex in these transcriptional regulations. In this report, we provide an illustration of the varying NCR-sensitive responses and question whether differing SAGA recruitment could explain this diversity of responses.
Collapse
Affiliation(s)
| | | | | | - Evelyne Dubois
- Labiris, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Xu Z, Wang X, Yu P, Zhang Y, Huang L, Mao E, Han Y. Lysine acetyltransferase KAT2A modulates ferroptosis during colorectal cancer development. Scand J Gastroenterol 2024; 59:437-444. [PMID: 38258976 DOI: 10.1080/00365521.2023.2301331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Histone modifications, especially the lysine acetylation, have drawn increasing attention in cancer research area. The aim of this research is to explore the molecular mechanisms underlying the regulation of lysine acetyltransferase 2 A (KAT2A) on colorectal cancer (CRC). METHODS Clinical samples were collected from patients with CRC. The expression and correlation between KAT2A and ferroptosis suppressor SLC7A11 and glutathione peroxidase 4 (GPX4) were measured by qPCR and Pearson correlation analysis. NCP cells were transfected with KAT2A overexpression vectors or siRNAs. The proliferation of cells was measured by CCK-8 and colony formation assay. Cell migration and invasion was analyzed by Transwell. The accumulation of lipid peroxidation, ferrous iron, and malondialdehyde (MDA) were analyzed to determine cell ferroptosis. The expression of cell metastasis biomarkers was measured by western blotting assay. Interaction between KAT2A with GPX4 gene was measured by chromatin immunoprecipitation (ChIP). RESULTS The KAT2A, GPX4, and SLC7A11 expression was notably elevated in tumor tissues compared with the paired non-tumor tissues from CRC patients. The expression of KAT2A showed positive correlation with GPX4 and SLC7A11. Overexpression of KAT2A recovered the cell proliferation, migration, and invasion of CRC cells that suppressed by ferroptosis inducer erastin, along with deceased levels of ROS, iron, Fe2+, and MDA. Overexpression of KAT2A suppressed E-cadherin level and increased N-cadherin, Snail, and Vimentin expression in CRC cells. KAT2A interacted with GPX4 promoter region. CONCLUSIONS In conclusion, our findings demonstrated that KAT2A modulates the histone acetylation of GPX4 to regulate proliferation, metastasis, and ferroptosis of CRC cells.
Collapse
Affiliation(s)
- Zhenye Xu
- Department of Emergency, Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Wang
- Department of Emergency, Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Yu
- Department of Emergency, Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Department of Emergency, Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Emergency, Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Han
- Department of Emergency, Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
27
|
Bajpai SK, Nisha, Pandita S, Bahadur A, Verma PC. Recent advancements in the role of histone acetylation dynamics to improve stress responses in plants. Mol Biol Rep 2024; 51:413. [PMID: 38472555 DOI: 10.1007/s11033-024-09300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Collapse
Affiliation(s)
- Sanjay Kumar Bajpai
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nisha
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shivali Pandita
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Anand Bahadur
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
28
|
Yu Y, Zhao F, Yue Y, Zhao Y, Zhou DX. Lysine acetylation of histone acetyltransferase adaptor protein ADA2 is a mechanism of metabolic control of chromatin modification in plants. NATURE PLANTS 2024; 10:439-452. [PMID: 38326652 DOI: 10.1038/s41477-024-01623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Histone acetylation is a predominant active chromatin mark deposited by histone acetyltransferases (HATs) that transfer the acetyl group from acetyl coenzyme A (acetyl-CoA) to lysine ε-amino groups in histones. GENERAL CONTROL NON-REPRESSED PROTEIN 5 (GCN5) is one of the best-characterized HATs and functions in association with several adaptor proteins such as ADA2 within multiprotein HAT complexes. ADA2-GCN5 interaction increases GCN5 binding to acetyl-CoA and stimulates its HAT activity. It remains unclear whether the HAT activity of GCN5 (which acetylates not only histones but also cellular proteins) is regulated by acetyl-CoA levels, which vary greatly in cells under different metabolic and nutrition conditions. Here we show that the ADA2 protein itself is acetylated by GCN5 in rice cells. Lysine acetylation exposes ADA2 to a specific E3 ubiquitin ligase and reduces its protein stability. In rice plants, ADA2 protein accumulation reversely parallels its lysine acetylation and acetyl-CoA levels, both of which are dynamically regulated under varying growth conditions. Stress-induced ADA2 accumulation could stimulate GCN5 HAT activity to compensate for the reduced acetyl-CoA levels for histone acetylation. These results indicate that ADA2 lysine acetylation that senses cellular acetyl-CoA variations is a mechanism to regulate HAT activity and histone acetylation homeostasis in plants under changing environments.
Collapse
Affiliation(s)
- Yue Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Feng Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, France.
| |
Collapse
|
29
|
Tu A, Wu M, Jiang Y, Guo L, Guo Y, Wang J, Xu G, Shi J, Chen J, Yang J, Zhong K. Regulation of Disease-Resistance Genes against CWMV Infection by NbHAG1-Mediated H3K36ac. Int J Mol Sci 2024; 25:2800. [PMID: 38474046 DOI: 10.3390/ijms25052800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Post-translational modification of proteins plays a critical role in plant-pathogen interactions. Here, we demonstrate in Nicotiana benthamiana that knockout of NbHAG1 promotes Chinese wheat mosaic virus (CWMV) infection, whereas NbHAG1 overexpression inhibits infection. Transcriptome sequencing indicated that a series of disease resistance-related genes were up-regulated after overexpression of NbHAG1. In addition, cleavage under targets and tagmentation (Cut&Tag)-qPCR results demonstrated that NbHAG1 may activate the transcription of its downstream disease-resistance genes by facilitating the acetylation level of H3K36ac. Therefore, we suggest that NbHAG1 is an important positive regulator of resistance to CWMV infestation.
Collapse
Affiliation(s)
- Aizhu Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mila Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lidan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yunfei Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jinnan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gecheng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
30
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
31
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
32
|
Librais GMN, Jiang Y, Razzaq I, Brandl CJ, Shapiro RS, Lajoie P. Evolutionary diversity of the control of the azole response by Tra1 across yeast species. G3 (BETHESDA, MD.) 2024; 14:jkad250. [PMID: 37889998 PMCID: PMC10849324 DOI: 10.1093/g3journal/jkad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Tra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses. In the opportunistic fungal pathogen Candida albicans, the tra1Q3 allele reduces pathogenicity and increases sensitivity to the echinocandin antifungal drug caspofungin, which disrupts the fungal cell wall. Here, we found that compromised Tra1 function, in contrast to what is seen with caspofungin, increases tolerance to the azole class of antifungal drugs, which inhibits ergosterol synthesis. In C. albicans, tra1Q3 increases the expression of genes linked to azole resistance, such as ERG11 and CDR1. CDR1 encodes a multidrug ABC transporter associated with efflux of multiple xenobiotics, including azoles. Consequently, cells carrying tra1Q3 show reduced intracellular accumulation of fluconazole. In contrast, a tra1Q3 Saccharomyces cerevisiae strain displayed opposite phenotypes: decreased tolerance to azole, decreased expression of the efflux pump PDR5, and increased intracellular accumulation of fluconazole. Therefore, our data provide evidence that Tra1 differentially regulates the antifungal response across yeast species.
Collapse
Affiliation(s)
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
33
|
Patel AB, He Y, Radhakrishnan I. Histone acetylation and deacetylation - Mechanistic insights from structural biology. Gene 2024; 890:147798. [PMID: 37726026 PMCID: PMC11253779 DOI: 10.1016/j.gene.2023.147798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Histones are subject to a diverse array of post-translational modifications. Among them, lysine acetylation is not only the most pervasive and dynamic modification but also highly consequential for regulating gene transcription. Although enzymes responsible for the addition and removal of acetyl groups were discovered almost 30 years ago, high-resolution structures of the enzymes in the context of their native complexes are only now beginning to become available, thanks to revolutionary technologies in protein structure determination and prediction. Here, we will review our current understanding of the molecular mechanisms of acetylation and deacetylation engendered by chromatin-modifying complexes, compare and contrast shared features, and discuss some of the pressing questions for future studies.
Collapse
Affiliation(s)
- Avinash B Patel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
34
|
Fierling N, Billard P, Bauda P, Blaudez D. Global deletome profile of Saccharomyces cerevisiae exposed to lithium. Metallomics 2024; 16:mfad073. [PMID: 38142127 DOI: 10.1093/mtomcs/mfad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023]
Abstract
The increasing use of lithium (Li) in new technologies raises the question of its impact on living microorganisms. In the present study, we aimed to identify putative Li targets and resistance mechanisms in the yeast model Saccharomyces cerevisiae using a deletomic approach based on the screening of a collection of 4733 knockout mutants under Li exposure. This screening highlighted 60 mutants resistant to Li and 124 mutants sensitive to Li. Through functional enrichment analyses, transport systems were identified as playing a central role in cell resistance to toxic concentrations of Li. In contrast, the AKT/protein kinase B family, signal transduction or cell communication were identified as potential toxic targets of Li. The majority of the mutants with a Li-sensitive phenotype were also sensitive to other alkali and alkaline earth metals, whereas the Li-resistance phenotype was mostly resistant to Na but poorly resistant to other metals. A comparison with the results of deletomics studies carried out in the presence of other metals highlighted Li-specific phenotypes. Three genes (NAM7, NMD2, UPF3) of the nonsense-mediated decay pathway were specifically involved in resistance to Li. In contrast, mutants with the NCA2, SPT20, GCN5, YOR376W, YPK3, and DCW1 genes deleted were specifically resistant to Li. These genes encode various functions from putative mannosidase to constitution of the Spt-Ada-Gcn5 acetyltransferase complex. This work provides a better understanding of potential specific resistance mechanisms and cellular targets of Li in yeast.
Collapse
|
35
|
Chen M, Liu Y, Liu Z, Su L, Yan L, Huang Y, Huang Y, Zhang W, Xu X, Zheng F. Histone acetyltransferase Gcn5-mediated histone H3 acetylation facilitates cryptococcal morphogenesis and sexual reproduction. mSphere 2023; 8:e0029923. [PMID: 37850793 PMCID: PMC10732044 DOI: 10.1128/msphere.00299-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Eukaryotic gene transcription is typically regulated by a series of histone modifications, which play a crucial role in adapting to complex environmental stresses. In the ubiquitous human fungal pathogen Cryptococcus neoformans, sexual life cycle is a continuous intracellular differentiation process that strictly occurs in response to mating stimulation. Despite the comprehensive identification of the regulatory factors and genetic pathways involved in its sexual cycle, understanding of the epigenetic modifications involved in this process remains quite limited. In this research, we found that histone acetyltransferase Gcn5-mediated histone H3 acetylation plays a crucial role in completing the cryptococcal sexual cycle, including yeast-hyphae morphogenesis and the subsequent sexual reproduction. Furthermore, we demonstrated that Gcn5 participates in this process primarily through regulating the key morphogenesis regulator Znf2 and its targets. This study thus provided a comprehensive understanding of how histone acetylation modification impacts sexual life cycle in a high-risk human pathogenic fungus.
Collapse
Affiliation(s)
- Man Chen
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanli Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| | - Zhuozhuo Liu
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Su
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lili Yan
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China
| | - Yuan Huang
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ye Huang
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China
| | - Wei Zhang
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
| | - Xinping Xu
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China
| | - Fanglin Zheng
- Department of Respiratory Medicine, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
36
|
Barman P, Chakraborty P, Bhaumik R, Bhaumik SR. UPS writes a new saga of SAGA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194981. [PMID: 37657588 PMCID: PMC10843445 DOI: 10.1016/j.bbagrm.2023.194981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
SAGA (Spt-Ada-Gcn5-Acetyltransferase), an evolutionarily conserved transcriptional co-activator among eukaryotes, is a large multi-subunit protein complex with two distinct enzymatic activities, namely HAT (Histone acetyltransferase) and DUB (De-ubiquitinase), and is targeted to the promoter by the gene-specific activator proteins for histone covalent modifications and PIC (Pre-initiation complex) formation in enhancing transcription (or gene activation). Targeting of SAGA to the gene promoter is further facilitated by the 19S RP (Regulatory particle) of the 26S proteasome (that is involved in targeted degradation of protein via ubiquitylation) in a proteolysis-independent manner. Moreover, SAGA is also recently found to be regulated by the 26S proteasome in a proteolysis-dependent manner via the ubiquitylation of its Sgf73/ataxin-7 component that is required for SAGA's integrity and DUB activity (and hence transcription), and is linked to various diseases including neurodegenerative disorders and cancer. Thus, SAGA itself and its targeting to the active gene are regulated by the UPS (Ubiquitin-proteasome system) with implications in diseases.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
37
|
Yan K, Ji Q, Zhao D, Li M, Sun X, Wang Z, Liu X, Liu Z, Li H, Ding Y, Wang S, Belmonte JCI, Qu J, Zhang W, Liu GH. SGF29 nuclear condensates reinforce cellular aging. Cell Discov 2023; 9:110. [PMID: 37935676 PMCID: PMC10630320 DOI: 10.1038/s41421-023-00602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023] Open
Abstract
Phase separation, a biophysical segregation of subcellular milieus referred as condensates, is known to regulate transcription, but its impacts on physiological processes are less clear. Here, we demonstrate the formation of liquid-like nuclear condensates by SGF29, a component of the SAGA transcriptional coactivator complex, during cellular senescence in human mesenchymal progenitor cells (hMPCs) and fibroblasts. The Arg 207 within the intrinsically disordered region is identified as the key amino acid residue for SGF29 to form phase separation. Through epigenomic and transcriptomic analysis, our data indicated that both condensate formation and H3K4me3 binding of SGF29 are essential for establishing its precise chromatin location, recruiting transcriptional factors and co-activators to target specific genomic loci, and initiating the expression of genes associated with senescence, such as CDKN1A. The formation of SGF29 condensates alone, however, may not be sufficient to drive H3K4me3 binding or achieve transactivation functions. Our study establishes a link between phase separation and aging regulation, highlighting nuclear condensates as a functional unit that facilitate shaping transcriptional landscapes in aging.
Collapse
Affiliation(s)
- Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingheng Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Sun
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zehua Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqian Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Ding
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Suarez-Fernandez M, Álvarez-Aragón R, Pastor-Mediavilla A, Maestre-Guillén A, del Olmo I, De Francesco A, Meile L, Sánchez-Vallet A. Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen. mBio 2023; 14:e0138623. [PMID: 37642412 PMCID: PMC10653901 DOI: 10.1128/mbio.01386-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE Pathogen infections require the production of effectors that enable host colonization. Effectors have diverse functions and are only expressed at certain stages of the infection cycle. Thus, effector genes are tightly regulated by several mechanisms, including chromatin remodeling. Here, we investigate the role of histone acetylation in effector gene activation in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that lysine acetyltransferases (KATs) are essential for the spatiotemporal regulation of effector genes. We show that the KAT Sas3 is involved in leaf symptom development and pycnidia formation. Importantly, our results indicate that Sas3 controls histone acetylation of effector loci and is a regulator of effector gene activation during stomatal penetration. Overall, our work demonstrates the key role of histone acetylation in regulating gene expression associated with plant infection.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain
| | - Rocio Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ana Pastor-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alejandro Maestre-Guillén
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ivan del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Agustina De Francesco
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lukas Meile
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
39
|
Huang YH, Lee YH, Lin CJ, Hsu LH, Chen YL. Deubiquitination module is critical for oxidative stress response and biofilm formation in Candida glabrata. Med Mycol 2023; 61:myad099. [PMID: 37844959 DOI: 10.1093/mmy/myad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/02/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
Candidiasis is one of the most important fungal diseases and generally refers to diseases of the skin or mucosal tissues caused by Candida species. Candida glabrata is an opportunistic human fungal pathogen. Infection with C. glabrata has significantly increased due to innate antifungal drug tolerance and the ability to adhere to mucocutaneous surfaces. Spt-Ada-Gcn5 acetyltransferase complex contains two different post-translational modifications, histone acetylation (HAT) module and deubiquitination (DUB) module, which are decisive in gene regulation and highly conserved in eukaryotes. Previous research in our laboratory found that the HAT module ADA2 could regulate C. glabrata oxidative stress tolerance, drug tolerance, cell wall integrity, and virulence. However, the roles of the DUB module that is comprised of UBP8, SGF11, SGF73, and SUS1 genes in those phenotypes are not yet understood. In this study, we found that DUB module genes UBP8, SGF11, and SUS1, but not SGF73 positively regulate histone H2B DUB. Furthermore, ubp8, sgf11, and sus1 mutants exhibited decreased biofilm formation and sensitivity to cell wall-perturbing agent sodium dodecyl sulfate and antifungal drug amphotericin B. In addition, the sgf73 mutant showed increased biofilm formation but was susceptible to oxidative stresses, antifungal drugs, and cell wall perturbing agents. The ubp8, sgf11, and sus1 mutants showed marginal hypovirulence, whereas the sgf73 mutant exhibited virulence similar to the wild type in a murine systemic infection model. In conclusion, the C. glabrata DUB module plays distinct roles in H2B ubiquitination, oxidative stress response, biofilm formation, cell wall integrity, and drug tolerance, but exhibits minor roles in virulence.
Collapse
Affiliation(s)
- Yue-Han Huang
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Yi-Hang Lee
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Chi-Jan Lin
- Institute of Molecular Biology, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Li-Hang Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
40
|
Chen A, Zhou Y, Ren Y, Liu C, Han X, Wang J, Ma Z, Chen Y. Ubiquitination of acetyltransferase Gcn5 contributes to fungal virulence in Fusarium graminearum. mBio 2023; 14:e0149923. [PMID: 37504517 PMCID: PMC10470610 DOI: 10.1128/mbio.01499-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
The histone acetyltransferase general control non-depressible 5 (Gcn5) plays a critical role in the epigenetic landscape and chromatin modification for regulating a wide variety of biological events. However, the post-translational regulation of Gcn5 itself is poorly understood. Here, we found that Gcn5 was ubiquitinated and deubiquitinated by E3 ligase Tom1 and deubiquitinating enzyme Ubp14, respectively, in the important plant pathogenic fungus Fusarium graminearum. Tom1 interacted with Gcn5 in the nucleus and subsequently ubiquitinated Gcn5 mainly at K252 to accelerate protein degradation. Conversely, Ubp14 deubiquitinated Gcn5 and enhanced its stability. In the deletion mutant Δubp14, protein level of Gcn5 was significantly reduced and resulted in attenuated virulence in the fungus by affecting the mycotoxin production, autophagy process, and the penetration ability. Our findings indicate that Tom1 and Ubp14 show antagonistic functions in the control of the protein stability of Gcn5 via post-translational modification and highlight the importance of Tom1-Gcn5-Ubp14 circuit in the fungal virulence. IMPORTANCE Post-translational modification (PTM) enzymes have been reported to be involved in regulating numerous cellular processes. However, the modification of these PTM enzymes themselves is largely unknown. In this study, we found that the E3 ligase Tom1 and deubiquitinating enzyme Ubp14 contributed to the regulation of ubiquitination and deubiquitination of acetyltransferase Gcn5, respectively, in Fusarium graminearum, the causal agent of Fusarium head blight of cereals. Our findings provide deep insights into the modification of acetyltransferase Gcn5 and its dynamic regulation via ubiquitination and deubiquitination. To our knowledge, this work is the most comprehensive analysis of a regulatory network of ubiquitination that impinges on acetyltransferase in filamentous pathogens. Moreover, our findings are important because we present the novel roles of the Tom1-Gcn5-Ubp14 circuit in fungal virulence, providing novel possibilities and targets to control fungal diseases.
Collapse
Affiliation(s)
- Ahai Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yifan Zhou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiyi Ren
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xingmin Han
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jing Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Jeon J, Friedman LJ, Seo HD, Adeleke A, Graham B, Patteson E, Gelles J, Buratowski S. Single-molecule analysis of transcription activation: dynamics of SAGA co-activator recruitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552353. [PMID: 37609355 PMCID: PMC10441308 DOI: 10.1101/2023.08.07.552353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Transcription activators are said to stimulate gene expression by "recruiting" coactivators to promoters, yet this term fits several different kinetic models. To directly analyze dynamics of activator-coactivator interactions, single-molecule microscopy was used to image promoter DNA, a transcription activator, and the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex within nuclear extract. SAGA readily, but transiently, binds nucleosome-free DNA without activator, while chromatin template association occurs nearly exclusively when activator is present. On both templates, activator increases SAGA association rates by up to an order of magnitude, and dramatically extends its dwell times. These effects reflect direct interactions with the transactivation domain, as VP16 or Rap1 activation domains produce different SAGA dynamics. Despite multiple bromodomains, acetyl-CoA or histone H3/H4 tail acetylation only modestly improves SAGA binding. Unexpectedly, histone acetylation more strongly affects activator residence. Our studies thus reveal two modes of SAGA interaction with the genome: a short-lived activator-independent interaction with nucleosome-free DNA, and a state tethered to promoter-bound transcription activators that can last up to several minutes.
Collapse
|
42
|
Hu SJ, Zheng H, Li XP, Li ZX, Xu C, Li J, Liu JH, Hu WX, Zhao XY, Wang JJ, Qiu L. Ada2 and Ada3 Regulate Hyphal Growth, Asexual Development, and Pathogenicity in Beauveria bassiana by Maintaining Gcn5 Acetyltransferase Activity. Microbiol Spectr 2023; 11:e0028123. [PMID: 37052485 PMCID: PMC10269768 DOI: 10.1128/spectrum.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
The histone acetyltransferase (HAT) Gcn5 ortholog is essential for a variety of fungi. Here, we characterize the roles of Ada2 and Ada3, which are functionally linked to Gcn5, in the insect-pathogenic fungus Beauveria bassiana. Loss of Ada2 and Ada3 led to severe hyphal growth defects on rich and minimal media and drastic decreases in blastospore yield and conidiation capacity, with abnormal conidia-producing structures. ΔAda2 and ΔAda3 exhibited a delay in conidial germination and increased sensitivity to multiple chemical stresses and heat shock. Nearly all their pathogenicity was lost, and their ability to secrete extracellular enzymes, Pr1 proteases and chitinases for cuticle degradation was reduced. A yeast two-hybrid assay demonstrated that Ada2 binds to Ada3 and directly interacts with Gcn5, confirming the existence of a yeast-like Ada3-Ada2-Gcn5 HAT complex in this fungus. Additionally, deletion of the Ada genes reduced the activity of Gcn5, especially in the ΔAda2 strain, which was consistent with the acetylation level of histone H3 determined by Western blotting. These results illustrate the dependence of Gcn5 enzyme activity on Ada2 and Ada3 in fungal hyphal growth, asexual development, multiple stress responses, and pathogenicity in B. bassiana. IMPORTANCE The histone acetyltransferase Gcn5 ortholog contributes significantly to the growth and development of various fungi. In this study, we found that Ada2 and Ada3 have critical regulatory effects on Gcn5 enzyme activity and influence the acetylation of histone H3. Deletion of Ada2 or Ada3 decreased the fungal growth rate and asexual conidial yield and increased susceptibility to multiple stresses in Beauveria bassiana. Importantly, Ada genes are vital virulence factors, and their deletion caused the most virulence loss, mainly by inhibiting the activity of a series of hydrolytic enzymes and the dimorphic transition ability. These findings provide a new perspective on the function of the Gcn5 acetyltransferase complex in pathogens.
Collapse
Affiliation(s)
- Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Hao Zheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin-Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zhi-Xing Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jia-Hua Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wen-Xiao Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xian-Yan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
43
|
Haile ST, Rahman S, Fields JK, Orsburn BC, Bumpus NN, Wolberger C. The SAGA HAT module is tethered by its SWIRM domain and modulates activity of the SAGA DUB module. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194929. [PMID: 36965704 PMCID: PMC10226619 DOI: 10.1016/j.bbagrm.2023.194929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is a transcriptional co-activator that both acetylates and deubiquitinates histones. The histone acetyltransferase (HAT) subunit, Gcn5, is part of a subcomplex of SAGA called the HAT module. A minimal HAT module complex containing Gcn5 bound to Ada2 and Ada3 is required for full Gcn5 activity on nucleosomes. Deletion studies have suggested that the Ada2 SWIRM domain plays a role in tethering the HAT module to the remainder of SAGA. While recent cryo-EM studies have resolved the structure of the core of the SAGA complex, the HAT module subunits and molecular details of its interactions with the SAGA core could not be resolved. Here we show that the SWIRM domain is required for incorporation of the HAT module into the yeast SAGA complex, but not the ADA complex, a distinct six-protein acetyltransferase complex that includes the SAGA HAT module proteins. In the isolated Gcn5/Ada2/Ada3 HAT module, deletion of the SWIRM domain modestly increased activity but had negligible effect on nucleosome binding. Loss of the HAT module due to deletion of the SWIRM domain decreases the H2B deubiquitinating activity of SAGA, indicating a role for the HAT module in regulating SAGA DUB module activity. A model of the HAT module created with Alphafold Multimer provides insights into the structural basis for our biochemical data, as well as prior deletion studies.
Collapse
Affiliation(s)
- Sara T Haile
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Sanim Rahman
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - James K Fields
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States of America.
| |
Collapse
|
44
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
45
|
Liu Q, Pillus L, Petty EL. Functional tug of war between kinases, phosphatases, and the Gcn5 acetyltransferase in chromatin and cell cycle checkpoint controls. G3 (BETHESDA, MD.) 2023; 13:jkad021. [PMID: 36772957 PMCID: PMC10085806 DOI: 10.1093/g3journal/jkad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Covalent modifications of chromatin regulate genomic structure and accessibility in diverse biological processes such as transcriptional regulation, cell cycle progression, and DNA damage repair. Many histone modifications have been characterized, yet understanding the interactions between these and their combinatorial effects remains an active area of investigation, including dissecting functional interactions between enzymes mediating these modifications. In budding yeast, the histone acetyltransferase Gcn5 interacts with Rts1, a regulatory subunit of protein phosphatase 2A (PP2A). Implicated in the interaction is the potential for the dynamic phosphorylation of conserved residues on histone H2B and the Cse4 centromere-specific histone H3 variant. To probe these dynamics, we sought to identify kinases which contribute to the phosphorylated state. In a directed screen beginning with in silico analysis of the 127 members of yeast kinome, we have now identified 16 kinases with genetic interactions with GCN5 and specifically found distinct roles for the Hog1 stress-activated protein kinase. Deletion of HOG1 (hog1Δ) rescues gcn5Δ sensitivity to the microtubule poison nocodazole and the lethality of the gcn5Δ rts1Δ double mutant. The Hog1-Gcn5 interaction requires the conserved H2B-T91 residue, which is phosphorylated in vertebrate species. Furthermore, deletion of HOG1 decreases aneuploidy and apoptotic populations in gcn5Δ cells. Together, these results introduce Hog1 as a kinase that functionally opposes Gcn5 and Rts1 in the context of the spindle assembly checkpoint and suggest further kinases may also influence GCN5's functions.
Collapse
Affiliation(s)
- Qihao Liu
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| | - Lorraine Pillus
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| | - Emily L Petty
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-034, USA
| |
Collapse
|
46
|
Funamoto M, Imanishi M, Tsuchiya K, Ikeda Y. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med 2023; 10:1133611. [PMID: 37008337 PMCID: PMC10050342 DOI: 10.3389/fcvm.2023.1133611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Heart failure results from various physiological and pathological stimuli that lead to cardiac hypertrophy. This pathological process is common in several cardiovascular diseases and ultimately leads to heart failure. The development of cardiac hypertrophy and heart failure involves reprogramming of gene expression, a process that is highly dependent on epigenetic regulation. Histone acetylation is dynamically regulated by cardiac stress. Histone acetyltransferases play an important role in epigenetic remodeling in cardiac hypertrophy and heart failure. The regulation of histone acetyltransferases serves as a bridge between signal transduction and downstream gene reprogramming. Investigating the changes in histone acetyltransferases and histone modification sites in cardiac hypertrophy and heart failure will provide new therapeutic strategies to treat these diseases. This review summarizes the association of histone acetylation sites and histone acetylases with cardiac hypertrophy and heart failure, with emphasis on histone acetylation sites.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| | - Masaki Imanishi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| |
Collapse
|
47
|
Wu CJ, Yuan DY, Liu ZZ, Xu X, Wei L, Cai XW, Su YN, Li L, Chen S, He XJ. Conserved and plant-specific histone acetyltransferase complexes cooperate to regulate gene transcription and plant development. NATURE PLANTS 2023; 9:442-459. [PMID: 36879016 DOI: 10.1038/s41477-023-01359-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/30/2023] [Indexed: 05/18/2023]
Abstract
Although a conserved SAGA complex containing the histone acetyltransferase GCN5 is known to mediate histone acetylation and transcriptional activation in eukaryotes, how to maintain different levels of histone acetylation and transcription at the whole-genome level remains to be determined. Here we identify and characterize a plant-specific GCN5-containing complex, which we term PAGA, in Arabidopsis thaliana and Oryza sativa. In Arabidopsis, the PAGA complex consists of two conserved subunits (GCN5 and ADA2A) and four plant-specific subunits (SPC, ING1, SDRL and EAF6). We find that PAGA and SAGA can independently mediate moderate and high levels of histone acetylation, respectively, thereby promoting transcriptional activation. Moreover, PAGA and SAGA can also repress gene transcription via the antagonistic effect between PAGA and SAGA. Unlike SAGA, which regulates multiple biological processes, PAGA is specifically involved in plant height and branch growth by regulating the transcription of hormone biosynthesis and response related genes. These results reveal how PAGA and SAGA cooperate to regulate histone acetylation, transcription and development. Given that the PAGA mutants show semi-dwarf and increased branching phenotypes without reduction in seed yield, the PAGA mutations could potentially be used for crop improvement.
Collapse
Affiliation(s)
- Chan-Juan Wu
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing, China
| | - Xin Xu
- National Institute of Biological Sciences, Beijing, China
| | - Long Wei
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
48
|
Functional Characterization of the GNAT Family Histone Acetyltransferase Elp3 and GcnE in Aspergillus fumigatus. Int J Mol Sci 2023; 24:ijms24032179. [PMID: 36768506 PMCID: PMC9916960 DOI: 10.3390/ijms24032179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a pivotal role in the regulation of gene expression and diverse biological processes. However, the function of GNAT family HATs, especially Elp3, in the opportunistic human pathogenic fungus Aspergillus fumigatus is largely unknown. To investigate the roles of the GNAT family HATs Elp3 and GcnE in the A. fumigatus, we have generated and characterized individual null Δelp3 and ΔgcnE mutants. The radial growth of fungal colonies was significantly decreased by the loss of elp3 or gcnE, and the number of asexual spores (conidia) in the ΔgcnE mutant was significantly reduced. Moreover, the mRNA levels of the key asexual development regulators were also significantly low in the ΔgcnE mutant compared to wild type (WT). Whereas both the Δelp3 and ΔgcnE mutants were markedly impaired in the formation of adherent biofilms, the ΔgcnE mutant showed a complete loss of surface structure and of intercellular matrix. The ΔgcnE mutant responded differently to oxidative stressors and showed significant susceptibility to triazole antifungal agents. Furthermore, Elp3 and GcnE function oppositely in the production of secondary metabolites, and the ΔgcnE mutant showed attenuated virulence. In conclusion, Elp3 and GcnE are associated with diverse biological processes and can be potential targets for controlling the pathogenic fungus.
Collapse
|
49
|
Dai X, Zhai R, Lin J, Wang Z, Meng D, Li M, Mao Y, Gao B, Ma H, Zhang B, Sun Y, Li S, Zhou C, Lin YCJ, Wang JP, Chiang VL, Li W. Cell-type-specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa. NATURE PLANTS 2023; 9:96-111. [PMID: 36624255 PMCID: PMC9873556 DOI: 10.1038/s41477-022-01315-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/17/2022] [Indexed: 05/20/2023]
Abstract
Stem vascular cambium cells in forest trees produce wood for materials and energy. WOX4 affects the proliferation of such cells in Populus. Here we show that PtrWOX4a is the most highly expressed stem vascular-cambium-specific (VCS) gene in P. trichocarpa, and its expression is controlled by the product of the second most highly expressed VCS gene, PtrVCS2, encoding a zinc finger protein. PtrVCS2 binds to the PtrWOX4a promoter as part of a PtrWOX13a-PtrVCS2-PtrGCN5-1-PtrADA2b-3 protein tetramer. PtrVCS2 prevented the interaction between PtrGCN5-1 and PtrADA2b-3, resulting in H3K9, H3K14 and H3K27 hypoacetylation at the PtrWOX4a promoter, which led to fewer cambium cell layers. These effects on cambium cell proliferation were consistent across more than 20 sets of transgenic lines overexpressing individual genes, gene-edited mutants and RNA interference lines in P. trichocarpa. We propose that the tetramer-PtrWOX4a system may coordinate genetic and epigenetic regulation to maintain normal vascular cambium development for wood formation.
Collapse
Affiliation(s)
- Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Rui Zhai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jiaojiao Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhifeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dekai Meng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuli Mao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Boyuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hongyan Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Baofeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
50
|
Bari KA, Berg MD, Genereaux J, Brandl CJ, Lajoie P. Tra1 controls the transcriptional landscape of the aging cell. G3 (BETHESDA, MD.) 2022; 13:6782959. [PMID: 36315064 PMCID: PMC9836359 DOI: 10.1093/g3journal/jkac287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Collapse
Affiliation(s)
- Khaleda Afrin Bari
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Present address for Matthew D Berg: Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada,Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Corresponding author: Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|