1
|
Yan Z, He L, Yuan J, Niu Y, Shuai S, Luo S, Du C, Rao H. The splicing factor SRRM2 modulates two S6K kinases to promote colorectal cancer growth. Oncogene 2025; 44:1284-1299. [PMID: 39956864 DOI: 10.1038/s41388-025-03307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway plays a critical role in cell growth and metabolic homeostasis. The ribosomal protein S6 kinases S6K1 and S6K2 are the major effectors of the mTOR pathway key to translation efficiency, but the underlying regulatory mechanisms remain largely unclear. In this study, we searched for mTOR regulators and found that the splicing factor SRRM2 modulates the levels of S6K1 and S6K2, thereby activating the mTOR-S6K pathway. Interestingly, SRRM2 facilitates the expression of S6K2 by modulating alternative splicing, and enhances the stability of the S6K1 protein by regulating the E3 ubiquitin ligase WWP2. Moreover, SRRM2 is highly expressed in colorectal cancer (CRC) tissues and is associated with a poor prognosis. SRRM2 promotes CRC growth in vitro and in vivo. Combined, these data reveal an oncogenic role of SRRM2 in CRC through activating the mTOR-S6K pathway by two different approaches, further suggesting SRRM2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhengwei Yan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Luling He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Yuan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yulong Niu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shiwen Luo
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Changzheng Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Beijing Tsinghua Changgung Hospital & Tsinghua University School of Medicine, 168 Litang Road, Changping District, Beijing, 102218, PR China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Pabon A, Bhupana JN, Wong CO. Crosstalk between degradation and bioenergetics: how autophagy and endolysosomal processes regulate energy production. Neural Regen Res 2025; 20:671-681. [PMID: 38886933 PMCID: PMC11433889 DOI: 10.4103/nrr.nrr-d-23-02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
Collapse
Affiliation(s)
- Angelid Pabon
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
3
|
Yang Y, Li Y, Zhu J. Research progress on the function and regulatory pathways of amino acid permeases in fungi. World J Microbiol Biotechnol 2024; 40:392. [PMID: 39581943 DOI: 10.1007/s11274-024-04199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Nitrogen sources are pivotal for the formation of fungal mycelia and the biosynthesis of metabolites, playing a crucial role in the growth and development of fungi. Amino acids are integral to protein construction, constitute an essential nitrogen source for fungi. Fungi actively uptake amino acids from their surroundings, a process that necessitates the involvement of amino acid permeases (AAPs) located on the plasma membrane. By sensing the intracellular demand for amino acids and their extracellular availability, fungi activate or suppress relevant pathways to precisely regulate the genes encoding these transporters. This review aims to illustrate the function of fungal AAPs on uptake of amino acids and the effect of AAPs on fungal growth, development and virulence. Additionally, the complex mechanisms to regulate expression of aaps are elucidated in mainly Saccharomyces cerevisiae, including the Ssy1-Ptr3-Ssy5 (SPS) pathway, the Nitrogen Catabolite Repression (NCR) pathway, and the General Amino Acid Control (GAAC) pathway. However, the physiological roles of AAPs and their regulatory mechanisms in other species, particularly pathogenic fungi, merit further exploration. Gaining insights into these aspects could reveal how AAPs facilitate fungal adaptation and survival under diverse stress conditions, shedding light on their potential impact on fungal biology and pathogenicity.
Collapse
Affiliation(s)
- Yuzhen Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yanqiu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China.
| |
Collapse
|
4
|
Chatzitheodoridou D, Bureik D, Padovani F, Nadimpalli KV, Schmoller KM. Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients. EMBO J 2024; 43:5141-5168. [PMID: 39271795 PMCID: PMC11535423 DOI: 10.1038/s44318-024-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
To maintain protein homeostasis in changing nutrient environments, cells must precisely control the amount of their proteins, despite the accompanying changes in cell growth and biosynthetic capacity. As nutrients are major regulators of cell cycle length and progression, a particular challenge arises for the nutrient-dependent regulation of 'cell cycle genes', which are periodically expressed during the cell cycle. One important example are histones, which are needed at a constant histone-to-DNA stoichiometry. Here we show that budding yeast achieves histone homeostasis in different nutrients through a decoupling of transcript and protein abundance. We find that cells downregulate histone transcripts in poor nutrients to avoid toxic histone overexpression, but produce constant amounts of histone proteins through nutrient-specific regulation of translation efficiency. Our findings suggest that this allows cells to balance the need for rapid histone production under fast growth conditions with the tight regulation required to avoid toxic overexpression in poor nutrients.
Collapse
Affiliation(s)
- Dimitra Chatzitheodoridou
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kalyan V Nadimpalli
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
5
|
Lash E, Maufrais C, Janbon G, Robbins N, Herzel L, Cowen LE. The spliceosome impacts morphogenesis in the human fungal pathogen Candida albicans. mBio 2024; 15:e0153524. [PMID: 38980041 PMCID: PMC11323467 DOI: 10.1128/mbio.01535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.
Collapse
Affiliation(s)
- Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Corinne Maufrais
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Université Paris Cité, Paris, France
- HUB Bioinformatique et Biostatistique, Institut Pasteur, Université Paris Cité, Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lydia Herzel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
7
|
Dai X, Li X, Yin D, Chen X, Wang L, Pang L, Fu Y. Identification and characterization of TOR in Macrobrachium rosenbergii and its role in muscle protein and lipid production. Sci Rep 2024; 14:2082. [PMID: 38267514 PMCID: PMC10810085 DOI: 10.1038/s41598-023-50300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
The recent scarcity of fishmeal and other resources means that studies on the intrinsic mechanisms of nutrients in the growth and development of aquatic animals at the molecular level have received widespread attention. The target of rapamycin (TOR) pathway has been reported to receive signals from nutrients and environmental stresses, and regulates cellular anabolism and catabolism to achieve precise regulation of cell growth and physiological activities. In this study, we cloned and characterized the full-length cDNA sequence of the TOR gene of Macrobrachium rosenbergii (MrTOR). MrTOR was expressed in all tissues, with higher expression in heart and muscle tissues. In situ hybridization also indicated that MrTOR was expressed in muscle, mainly around the nucleus. RNA interference decreased the expression levels of MrTOR and downstream protein synthesis-related genes (S6K, eIF4E, and eIF4B) (P < 0.05) and the expression and enzyme activity of the lipid synthesis-related enzyme, fatty acid synthase (FAS), and increased enzyme activity of the lipolysis-related enzyme, lipase (LPS). In addition, amino acid injection significantly increased the transcript levels of MrTOR and downstream related genes (S6K, eIF4E, eIF4B, and FAS), as well as triglyceride and total cholesterol tissue levels and FAS activity. Starvation significantly increased transcript levels and enzyme activities of adenylate-activated protein kinase and LPS and decreased transcript levels and enzyme activities of FAS, as well as transcript levels of MrTOR and its downstream genes (P < 0.05), whereas amino acid injection alleviated the starvation-induced decreases in transcript levels of these genes. These results suggested that arginine and leucine activated the TOR signaling pathway, promoted protein and lipid syntheses, and alleviated the pathway changes induced by starvation.
Collapse
Affiliation(s)
- Xilin Dai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Danhui Yin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Xin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Linwei Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Luyao Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
8
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
9
|
Black A, Williams TD, Soubigou F, Joshua IM, Zhou H, Lamoliatte F, Rousseau A. The ribosome-associated chaperone Zuo1 controls translation upon TORC1 inhibition. EMBO J 2023; 42:e113240. [PMID: 37984430 PMCID: PMC10711665 DOI: 10.15252/embj.2022113240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Protein requirements of eukaryotic cells are ensured by proteostasis, which is mediated by tight control of TORC1 activity. Upon TORC1 inhibition, protein degradation is increased and protein synthesis is reduced through inhibition of translation initiation to maintain cell viability. Here, we show that the ribosome-associated complex (RAC)/Ssb chaperone system, composed of the HSP70 chaperone Ssb and its HSP40 co-chaperone Zuo1, is required to maintain proteostasis and cell viability under TORC1 inhibition in Saccharomyces cerevisiae. In the absence of Zuo1, translation does not decrease in response to the loss of TORC1 activity. A functional interaction between Zuo1 and Ssb is required for proper translational control and proteostasis maintenance upon TORC1 inhibition. Furthermore, we have shown that the rapid degradation of eIF4G following TORC1 inhibition is mediated by autophagy and is prevented in zuo1Δ cells, contributing to decreased survival in these conditions. We found that autophagy is defective in zuo1Δ cells, which impedes eIF4G degradation upon TORC1 inhibition. Our findings identify an essential role for RAC/Ssb in regulating translation in response to changes in TORC1 signalling.
Collapse
Affiliation(s)
- Ailsa Black
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Thomas D Williams
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Flavie Soubigou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Ifeoluwapo M Joshua
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Adrien Rousseau
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
10
|
Hwang YS, Seita Y, Blanco MA, Sasaki K. CRISPR loss of function screening to identify genes involved in human primordial germ cell-like cell development. PLoS Genet 2023; 19:e1011080. [PMID: 38091369 PMCID: PMC10752514 DOI: 10.1371/journal.pgen.1011080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/27/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Despite our increasing knowledge of molecular mechanisms guiding various aspects of human reproduction, those underlying human primordial germ cell (PGC) development remain largely unknown. Here, we conducted custom CRISPR screening in an in vitro system of human PGC-like cells (hPGCLCs) to identify genes required for acquisition and maintenance of PGC fate. Amongst our candidates, we identified TCL1A, an AKT coactivator. Functional assessment in our in vitro hPGCLCs system revealed that TCL1A played a critical role in later stages of hPGCLC development. Moreover, we found that TCL1A loss reduced AKT-mTOR signaling, downregulated expression of genes related to translational control, and subsequently led to a reduction in global protein synthesis and proliferation. Together, our study highlights the utility of CRISPR screening for human in vitro-derived germ cells and identifies novel translational regulators critical for hPGCLC development.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - M. Andrés Blanco
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
11
|
Hirai H, Sen Y, Tamura M, Ohta K. TOR inactivation triggers heterochromatin formation in rDNA during glucose starvation. Cell Rep 2023; 42:113320. [PMID: 37913773 DOI: 10.1016/j.celrep.2023.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
In response to environmental cues, such as nutrient starvation, living organisms modulate gene expression through mechanisms involving histone modifications. Specifically, nutrient depletion inactivates the TOR (target of rapamycin) pathway, leading to reduced expression of ribosomal genes. While these regulatory mechanisms are well elucidated in budding yeast Saccharomyces cerevisiae, their conservation across diverse organisms remains unclear. In this study, we demonstrate that fission yeast Schizosaccharomyces pombe cells repress ribosomal gene transcription through a different mechanism. TORC1, which accumulates in the rDNA region, dissociates upon starvation, resulting in enhanced methylation of H3K9 and heterochromatin formation, facilitated by dissociation of the stress-responsive transcription factor Atf1 and accumulation of the histone chaperone FACT. We propose that this mechanism might be adapted in mammals that possess Suv39H1 and HP1, which are absent in budding yeast.
Collapse
Affiliation(s)
- Hayato Hirai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yuki Sen
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan; Universal Biology Institute, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Levitin MO, Rawlins LE, Sanchez-Andrade G, Arshad OA, Collins SC, Sawiak SJ, Iffland PH, Andersson MHL, Bupp C, Cambridge EL, Coomber EL, Ellis I, Herkert JC, Ironfield H, Jory L, Kretz PF, Kant SG, Neaverson A, Nibbeling E, Rowley C, Relton E, Sanderson M, Scott EM, Stewart H, Shuen AY, Schreiber J, Tuck L, Tonks J, Terkelsen T, van Ravenswaaij-Arts C, Vasudevan P, Wenger O, Wright M, Day A, Hunter A, Patel M, Lelliott CJ, Crino PB, Yalcin B, Crosby AH, Baple EL, Logan DW, Hurles ME, Gerety SS. Models of KPTN-related disorder implicate mTOR signalling in cognitive and overgrowth phenotypes. Brain 2023; 146:4766-4783. [PMID: 37437211 PMCID: PMC10629792 DOI: 10.1093/brain/awad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023] Open
Abstract
KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.
Collapse
Affiliation(s)
- Maria O Levitin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Evox Therapeutics Limited, Oxford OX4 4HG, UK
| | - Lettie E Rawlins
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX1 2ED, UK
| | | | - Osama A Arshad
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephan C Collins
- INSERM Unit 1231, Université de Bourgogne Franche-Comté, Dijon 21078, France
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Phillip H Iffland
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Malin H L Andersson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Caleb Bupp
- Spectrum Health, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
| | - Emma L Cambridge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Eve L Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ian Ellis
- Department of Clinical Genetics, Alder Hey Children’s Hospital, Liverpool L14 5AB, UK
| | - Johanna C Herkert
- Department of Genetics, University Medical Centre, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Holly Ironfield
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Logan Jory
- Haven Clinical Psychology Practice Ltd, Bude, Cornwall EX23 9HP, UK
| | | | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Alexandra Neaverson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Esther Nibbeling
- Laboratory for Diagnostic Genome Analysis, Department of Clinical Genetics, Leiden University Medical Center, Leiden 3015 GD, The Netherlands
| | - Christine Rowley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Institute of Metabolic Science, Cambridge University, Cambridge CB2 0QQ, UK
| | - Emily Relton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7YH, UK
| | - Mark Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ethan M Scott
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH 44659, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford OX3 7HE, UK
| | - Andrew Y Shuen
- London Health Sciences Centre, London, ON N6A 5W9, Canada
- Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5W9, Canada
| | - John Schreiber
- Department of Neurology, Children’s National Medical Center, Washington DC 20007, USA
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - James Tonks
- Haven Clinical Psychology Practice Ltd, Bude, Cornwall EX23 9HP, UK
| | - Thorkild Terkelsen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Conny van Ravenswaaij-Arts
- Department of Genetics, University Medical Centre, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, UK
| | - Olivia Wenger
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH 44659, USA
| | - Michael Wright
- Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne NE1 7RU, UK
| | - Andrew Day
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Qkine Ltd., Cambridge CB5 8HW, UK
| | - Adam Hunter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Christopher J Lelliott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Institute of Metabolic Science, Cambridge University, Cambridge CB2 0QQ, UK
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Binnaz Yalcin
- INSERM Unit 1231, Université de Bourgogne Franche-Comté, Dijon 21078, France
| | - Andrew H Crosby
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX1 2ED, UK
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Waltham Petcare Science Institute, Waltham on the Wolds LE14 4RT, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sebastian S Gerety
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
13
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
14
|
Shapiro JS, Chang HC, Tatekoshi Y, Zhao Z, Waxali ZS, Hong BJ, Chen H, Geier JA, Bartom ET, De Jesus A, Nejad FK, Mahmoodzadeh A, Sato T, Ramos-Alonso L, Romero AM, Martinez-Pastor MT, Jiang SC, Sah-Teli SK, Li L, Bentrem D, Lopaschuk G, Ben-Sahra I, O'Halloran TV, Shilatifard A, Puig S, Bergelson J, Koivunen P, Ardehali H. Iron drives anabolic metabolism through active histone demethylation and mTORC1. Nat Cell Biol 2023; 25:1478-1494. [PMID: 37749225 PMCID: PMC11407783 DOI: 10.1038/s41556-023-01225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/08/2023] [Indexed: 09/27/2023]
Abstract
All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.
Collapse
Affiliation(s)
- Jason S Shapiro
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuki Tatekoshi
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Zohra Sattar Waxali
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Bong Jin Hong
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Haimei Chen
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Justin A Geier
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Adam De Jesus
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Farnaz K Nejad
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Amir Mahmoodzadeh
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Lucia Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonia Maria Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Shang-Chuan Jiang
- Plant Production and Protection Division (NSP), Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
| | - Shiv K Sah-Teli
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David Bentrem
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Gary Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Joy Bergelson
- Center of Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
15
|
Méndez-Narváez J, Warkentin KM. Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. J Comp Physiol B 2023; 193:523-543. [PMID: 37639061 DOI: 10.1007/s00360-023-01506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Frogs evolved terrestrial development multiple times, necessitating mechanisms to avoid ammonia toxicity at early stages. Urea synthesis from ammonia is a key adaptation that reduces water dependence after metamorphosis. We tested for early expression and plasticity of enzymatic mechanisms of ammonia detoxification in three terrestrial-breeding frogs: foam-nest-dwelling larvae of Leptodactylus fragilis (Lf) and arboreal embryos of Hyalinobatrachium fleischmanni (Hf) and Agalychnis callidryas (Ac). Activity of two ornithine-urea cycle (OUC) enzymes, arginase and CPSase, and levels of their products urea and CP in tissues were high in Lf regardless of nest hydration, but reduced in experimental low- vs. high-ammonia environments. High OUC activity in wet and dry nests, comparable to that under experimental high ammonia, suggests terrestrial Lf larvae maintain high capacity for urea excretion regardless of their immediate risk of ammonia toxicity. This may aid survival through unpredictably long waiting periods before rain enables their transition to water. Moderate levels of urea and CP were present in Hf and Ac tissues and enzymatic activities were lower than in Lf. In both species, embryos in drying clutches can hatch and enter the water early, behaviorally avoiding ammonia toxicity. Moreover, glutamine synthetase was active in early stages of all three species, condensing ammonia and glutamate to glutamine as another mechanism of detoxification. Enzyme activity appeared highest in Lf, although substrate and product levels were higher in Ac and Lf. Our results reveal that multiple biochemical mechanisms of ammonia detoxification occur in early life stages of anuran lineages that evolved terrestrial development.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia.
- Department of Biology, Boston University, Boston, MA, USA.
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, USA
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| |
Collapse
|
16
|
Tate JJ, Rai R, Cooper TG. TorC1 and nitrogen catabolite repression control of integrated GABA shunt and retrograde pathway gene expression. Yeast 2023; 40:318-332. [PMID: 36960709 PMCID: PMC10518031 DOI: 10.1002/yea.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Despite our detailed understanding of how the lower GABA shunt and retrograde genes are regulated, there is a paucity of validated information concerning control of GAD1, the glutamate decarboxylase gene which catalyzes the first reaction of the GABA shunt. Further, integration of glutamate degradation via the GABA shunt has not been investigated. Here, we show that while GAD1 shares a response to rapamycin-inhibition of the TorC1 kinase, it does so independently of the Gln3 and Gat1 NCR-sensitive transcriptional activators that mediate transcription of the lower GABA shunt genes. We also show that GABA shunt gene expression increases dramatically in response to nickel ions. The α-ketoglutarate needed for the GABA shunt to cycle, thereby producing reduced pyridine nucleotides, derives from the retrograde pathway as shown by a similar high increase in the retrograde reporter, CIT2 when nickel is present in the medium. These observations demonstrate high integration of the GABA shunt, retrograde, peroxisomal glyoxylate cycle, and β-oxidation pathways.
Collapse
Affiliation(s)
- Jennifer J. Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Terrance G. Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| |
Collapse
|
17
|
Acs-Szabo L, Papp LA, Takacs S, Miklos I. Disruption of the Schizosaccharomyces japonicus lig4 Disturbs Several Cellular Processes and Leads to a Pleiotropic Phenotype. J Fungi (Basel) 2023; 9:jof9050550. [PMID: 37233261 DOI: 10.3390/jof9050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Gene targeting is a commonly used method to reveal the function of genes. Although it is an attractive tool for molecular studies, it can frequently be a challenge because its efficiency can be low and it requires the screening of a large number of transformants. Generally, these problems originate from the elevated level of ectopic integration caused by non-homologous DNA end joining (NHEJ). To eliminate this problem, NHEJ-related genes are frequently deleted or disrupted. Although these manipulations can improve gene targeting, the phenotype of the mutant strains raised the question of whether mutations have side effects. The aim of this study was to disrupt the lig4 gene in the dimorphic fission yeast, S. japonicus, and investigate the phenotypic changes of the mutant strain. The mutant cells have shown various phenotypic changes, such as increased sporulation on complete medium, decreased hyphal growth, faster chronological aging, and higher sensitivity to heat shock, UV light, and caffeine. In addition, higher flocculation capacity has been observed, especially at lower sugar concentrations. These changes were supported by transcriptional profiling. Many genes belonging to metabolic and transport processes, cell division, or signaling had altered mRNA levels compared to the control strain. Although the disruption improved the gene targeting, we assume that the lig4 inactivation can cause unexpected physiological side effects, and we have to be very careful with the manipulations of the NHEJ-related genes. To reveal the exact mechanisms behind these changes, further investigations are required.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Szonja Takacs
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
18
|
Gutiérrez-Santiago F, Navarro F. Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13040642. [PMID: 37189389 DOI: 10.3390/biom13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosomes are the basis for protein production, whose biogenesis is essential for cells to drive growth and proliferation. Ribosome biogenesis is highly regulated in accordance with cellular energy status and stress signals. In eukaryotic cells, response to stress signals and the production of newly-synthesized ribosomes require elements to be transcribed by the three RNA polymerases (RNA pols). Thus, cells need the tight coordination of RNA pols to adjust adequate components production for ribosome biogenesis which depends on environmental cues. This complex coordination probably occurs through a signaling pathway that links nutrient availability with transcription. Several pieces of evidence strongly support that the Target of Rapamycin (TOR) pathway, conserved among eukaryotes, influences the transcription of RNA pols through different mechanisms to ensure proper ribosome components production. This review summarizes the connection between TOR and regulatory elements for the transcription of each RNA pol in the budding yeast Saccharomyces cerevisiae. It also focuses on how TOR regulates transcription depending on external cues. Finally, it discusses the simultaneous coordination of the three RNA pols through common factors regulated by TOR and summarizes the most important similarities and differences between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
19
|
Comparative Research: Regulatory Mechanisms of Ribosomal Gene Transcription in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biomolecules 2023; 13:biom13020288. [PMID: 36830657 PMCID: PMC9952952 DOI: 10.3390/biom13020288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Restricting ribosome biosynthesis and assembly in response to nutrient starvation is a universal phenomenon that enables cells to survive with limited intracellular resources. When cells experience starvation, nutrient signaling pathways, such as the target of rapamycin (TOR) and protein kinase A (PKA), become quiescent, leading to several transcription factors and histone modification enzymes cooperatively and rapidly repressing ribosomal genes. Fission yeast has factors for heterochromatin formation similar to mammalian cells, such as H3K9 methyltransferase and HP1 protein, which are absent in budding yeast. However, limited studies on heterochromatinization in ribosomal genes have been conducted on fission yeast. Herein, we shed light on and compare the regulatory mechanisms of ribosomal gene transcription in two species with the latest insights.
Collapse
|
20
|
Panigrahi L, Anjum S, Ahmed S. Critical role of Wat1/Pop3 in regulating the TORC1 signalling pathway in fission yeast S. pombe. Fungal Genet Biol 2023; 164:103764. [PMID: 36481249 DOI: 10.1016/j.fgb.2022.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The target of rapamycin (TOR), a major pathway for the regulation of cell growth and proliferation is conserved from yeast to humans. Fission yeast contains two tor complexes, TORC1 is crucial for cell growth while TORC2 gets activated under stress conditions. Pop3/Wat1, a mammalian Lst8 ortholog is an important component of both TOR complexes and has been implicated in the oxidative stress response pathway. Here in this study, the genetic interaction analysis revealed a synthetic lethal interaction of wat1 with tor2-287 mutant cells. Co-immunoprecipitation analysis revealed Wat1 interacts with TORC1 components Tor2, Mip1, and Tco89 while wat1-17 mutant protein fails to interact with these proteins. In the absence of Wat1, the cells arrest at G1 phase with reduced cell size at non-permissive temperature reminiscent of tor2-287 mutant phenotype. Similarly, inactivation of Wat1 results in the failure of TORC1 mediated phosphorylation of Psk1 and Rps602, leading to dysregulation of amino acid permeases and delocalization of Gaf1, a DNA binding transcription factor. Overall, we have hypothesized that Wat1/Pop3 is required to execute the function of TORC1.
Collapse
Affiliation(s)
- Lalita Panigrahi
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Simmi Anjum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakil Ahmed
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Zhuang Y, Li Q, Cao C, Tang XS, Wang NA, Yuan K, Zhong GF. Bovine lactoferricin on non-specific immunity of giant freshwater prawns, Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2022; 131:891-897. [PMID: 36334700 DOI: 10.1016/j.fsi.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the effects of dietary Bovine lactoferricin (LFcinB) on the growth performance and non-specific immunity in Macrobrachium rosenbergii. Five experimental diets were 1.0‰ Bovine lactoferricin (LCB1); 1.5‰ Bovine lactoferricin (LCB1.5); 2.0‰ Bovine lactoferricin (LCB2); 2.5‰ Bovine lactoferricin (LCB2.5); the control group, basal diet without Bovine lactoferricin. A total of 600 prawns were randomly assigned to 5 groups in triplicate in 15 tanks for an 8-week feeding trial. The results showed the final weight, weight gain rate, specific growth rate and survival rate of prawns in the treatment groups were significantly improved versus the control (P < 0.05). The feed conversion ratio was reduced significantly in treatment groups compared to the control (P < 0.05). Compared with the control, alkaline phosphatase (AKP), acid phosphatase (ACP), lysozyme (LZM), catalase (CAT), superoxide dismutase (SOD) activities in the hepatopancreas of the treatment groups were significantly enhanced, and malondialdehyde (MDA) content was reduced significantly (P < 0.05). Compared with the control, the relative expression levels of AKP, ACP, LZM, CAT, SOD, Hsp70, peroxiredoxin-5, Toll, dorsal and relish genes were significantly higher among treatment groups, except for the AKP gene in the LCB1 group and the Hsp70 gene in the LCB1.5 group (P < 0.05). Compared with the control, the relative expression levels of TOR, 4E-BP, eIF4E1α and eIF4E2 genes were significantly enhanced in the LCB1.5 group (P < 0.05). When resistance against Vibrio parahaemolyticus in prawn is considered, higher doses of Bovine lactoferricin show better antibacterial ability. The present study indicated that dietary Bovine lactoferricin could significantly improve the growth performance and improve the antioxidative status of M. rosenbergii. The suitable addition level is 1.5 g/kg. LFcinB has great potential as a new feed additive without the threat of drug resistance.
Collapse
Affiliation(s)
- Yi Zhuang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qi Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Cong Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang-Shan Tang
- Zhejiang Hangzhou Tiao Wang Biological Technology Co., Ltd., Hangzhou, 310015, China
| | - Nu-An Wang
- South China Agricultural University, Guangzhou, 510640, China
| | - Kun Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Guo-Fang Zhong
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.
| |
Collapse
|
22
|
Schoonover MG, Chilson EC, Strome ED. Heterozygous Mutations in Aromatic Amino Acid Synthesis Genes Trigger TOR Pathway Activation in Saccharomyces cerevisiae.. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000685. [PMID: 36468155 PMCID: PMC9713580 DOI: 10.17912/micropub.biology.000685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 01/25/2023]
Abstract
The highly conserved complexes of Target of Rapamycin (TORC1 and TORC2) are central regulators to many vital cellular processes including growth and autophagy in response to nutrient availability. Previous research has extensively elucidated exogenous nutrient control on TORC1/TORC2; however, little is known about the potential alteration of nutrient pools from mutations in biosynthesis pathways and their impact on Tor pathway activity. Here, we analyze the impacts of heterozygous mutations in aromatic amino acid biosynthesis genes on TOR signaling via differential expression of genes downstream of TORC1 and autophagy induction for TORC1 and TORC2 activity.
Collapse
|
23
|
Stempinski PR, Goughenour KD, du Plooy LM, Alspaugh JA, Olszewski MA, Kozubowski L. The Cryptococcus neoformans Flc1 Homologue Controls Calcium Homeostasis and Confers Fungal Pathogenicity in the Infected Hosts. mBio 2022; 13:e0225322. [PMID: 36169198 PMCID: PMC9600462 DOI: 10.1128/mbio.02253-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 01/30/2023] Open
Abstract
Cryptococcus neoformans, an opportunistic yeast pathogen, relies on a complex network of stress response pathways that allow for proliferation in the host. In Saccharomyces cerevisiae, stress responses are regulated by integral membrane proteins containing a transient receptor potential (TRP) domain, including the flavin carrier protein 1 (Flc1), which regulates calcium homeostasis and flavin transport. Here, we report that deletion of C. neoformans FLC1 results in cytosolic calcium elevation and increased nuclear content of calcineurin-dependent transcription factor Crz1, which is associated with an aberrant cell wall chitin overaccumulation observed in the flc1Δ mutant. Absence of Flc1 or inhibition of calcineurin with cyclosporine A prevents vacuolar fusion under conditions of combined osmotic and temperature stress, which is reversed in the flc1Δ mutant by the inhibition of TORC1 kinase with rapamycin. Flc1-deficient yeasts exhibit compromised vacuolar fusion under starvation conditions, including conditions that stimulate formation of carbohydrate capsule. Consequently, the flc1Δ mutant fails to proliferate under low nutrient conditions and displays a defect in capsule formation. Consistent with the previously uncharacterized role of Flc1 in vacuolar biogenesis, we find that Flc1 localizes to the vacuole. The flc1Δ mutant presents a survival defect in J774A.1 macrophage cell-line and profound virulence attenuation in both the Galleria mellonella and mouse pulmonary infection models, demonstrating that Flc1 is essential for pathogenicity. Thus, cryptococcal Flc1 functions in calcium homeostasis and links calcineurin and TOR signaling with vacuolar biogenesis to promote survival under conditions associated with vacuolar fusion required for this pathogen's fitness and virulence. IMPORTANCE Cryptococcosis is a highly lethal infection with limited drug choices, most of which are highly toxic or complicated by emerging antifungal resistance. There is a great need for new drug targets that are unique to the fungus. Here, we identify such a potential target, the Flc1 protein, which we show is crucial for C. neoformans stress response and virulence. Importantly, homologues of Flc1 exist in other fungal pathogens, such as Candida albicans and Aspergillus fumigatus, and are poorly conserved in humans, which could translate into wider spectrum therapy associated with minimal toxicity. Thus, Flc1 could be an "Achille's heel" of C. neoformans to be leveraged therapeutically in cryptococcosis and possibly other fungal infections.
Collapse
Affiliation(s)
- Piotr R. Stempinski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Kristie D. Goughenour
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School
| | - Lukas M. du Plooy
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michal A. Olszewski
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
24
|
Isabelle G, Mohammad FK, Evi Z, Fabienne V, Martine R, Evelyne D. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 2022; 39:493-507. [PMID: 35942513 DOI: 10.1002/yea.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Fayyad-Kazan Mohammad
- Université Libre de Bruxelles, Belgium.,Biotechnology Department, American International University (AIU), Saad Al Abdullah, Al Jahra, Kuwait
| | - Zaremba Evi
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| | | | | | - Dubois Evelyne
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| |
Collapse
|
25
|
Identification of a modulator of the actin cytoskeleton, mitochondria, nutrient metabolism and lifespan in yeast. Nat Commun 2022; 13:2706. [PMID: 35577788 PMCID: PMC9110415 DOI: 10.1038/s41467-022-30045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
In yeast, actin cables are F-actin bundles that are essential for cell division through their function as tracks for cargo movement from mother to daughter cell. Actin cables also affect yeast lifespan by promoting transport and inheritance of higher-functioning mitochondria to daughter cells. Here, we report that actin cable stability declines with age. Our genome-wide screen for genes that affect actin cable stability identified the open reading frame YKL075C. Deletion of YKL075C results in increases in actin cable stability and abundance, mitochondrial fitness, and replicative lifespan. Transcriptome analysis revealed a role for YKL075C in regulating branched-chain amino acid (BCAA) metabolism. Consistent with this, modulation of BCAA metabolism or decreasing leucine levels promotes actin cable stability and function in mitochondrial quality control. Our studies support a role for actin stability in yeast lifespan, and demonstrate that this process is controlled by BCAA and a previously uncharacterized ORF YKL075C, which we refer to as actin, aging and nutrient modulator protein 1 (AAN1). Actin cables affect lifespan by supporting movement and inheritance of fitter mitochondria to daughter cells in yeast. Here the authors show that branched-chain amino acid (BCAA) levels affect actin cable stability and a role for YKL075C/AAN1 in control of BCAA metabolism and actin cable stability and function.
Collapse
|
26
|
Bailey AD, Talkish J, Ding H, Igel H, Duran A, Mantripragada S, Paten B, Ares M. Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling. eLife 2022; 11:e76562. [PMID: 35384842 PMCID: PMC9045821 DOI: 10.7554/elife.76562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Nucleotides in RNA and DNA are chemically modified by numerous enzymes that alter their function. Eukaryotic ribosomal RNA (rRNA) is modified at more than 100 locations, particularly at highly conserved and functionally important nucleotides. During ribosome biogenesis, modifications are added at various stages of assembly. The existence of differently modified classes of ribosomes in normal cells is unknown because no method exists to simultaneously evaluate the modification status at all sites within a single rRNA molecule. Using a combination of yeast genetics and nanopore direct RNA sequencing, we developed a reliable method to track the modification status of single rRNA molecules at 37 sites in 18 S rRNA and 73 sites in 25 S rRNA. We use our method to characterize patterns of modification heterogeneity and identify concerted modification of nucleotides found near functional centers of the ribosome. Distinct, undermodified subpopulations of rRNAs accumulate upon loss of Dbp3 or Prp43 RNA helicases, suggesting overlapping roles in ribosome biogenesis. Modification profiles are surprisingly resistant to change in response to many genetic and acute environmental conditions that affect translation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture single-molecule RNA modification profiles provides new insights into the roles of nucleotide modifications in RNA function.
Collapse
Affiliation(s)
- Andrew D Bailey
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
| | - Jason Talkish
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Hongxu Ding
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
- Department of Pharmacy Practice & Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Haller Igel
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | | | | | - Benedict Paten
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
| | - Manuel Ares
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
27
|
Zhuang Y, Huang H, Liu XL, Wang NA, Zhong GF. Effect of bovine lactoferricin on the growth performance, digestive capacity, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 123:282-289. [PMID: 35306176 DOI: 10.1016/j.fsi.2022.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The present study evaluated the growth performance, digestive enzyme activity, non-specific immunity, immunity and growth genes in Penaeus vannamei fed diets supplemented with Bovine lactoferricin (the basal diet without Bovine lactoferricin, the control; 1.0‰ Bovine lactoferricin,LCB1; 1.5‰ Bovine lactoferricin,LCB1.5; 2.0‰ Bovine lactoferricin, LCB2; 2.5‰ Bovine lactoferricin, LCB2.5) for 56 days. The feeding trial showed that the final weight, weight gain rate, and specific growth rate of the shrimp were improved significantly, while the feed conversion ratio was reduced significantly in the LCB1.5 group compared to the control (P < 0.05). The challenge test of Vibrio parahaemolyticus showed that the cumulative mortalities of shrimp in the LCB1.5, LCB2 and LCB2.5 groups were significantly lower than that in the control (P < 0.05). Compared with the control, Lipase and Trypsin activities in the hepatopancreas of LCB1.5 and LCB2 groups were significantly enhanced (P < 0.05). Compared with the control, alkaline phosphatase, acid phosphatase activities in the hepatopancreas and the relative expression levels of Relish, Toll, JAK, STAT, TOR, Raptor, 4E-BP, eIF4E1α, eIF4E2 genes in the hepatopancreas of LCB1.5, LCB2 and LCB2.5 groups were all significantly enhanced (P < 0.05). These results suggested that dietary Bovine lactoferricin could improve the growth performance, digestive capacity and immune responses of shrimp. When resistance against Vibrio parahaemolyticus in shrimp is considered, high dosage of Bovine lactoferricin showed a better effect than low dosage of Bovine lactoferricin. However, high dosage of Bovine lactoferricin can have a negative impact on the growth performance of shrimp. Considering collectively the above, Bovine lactoferricin could improve the growth performance, digestive enzymes activities, immune responses and disease resistance of P. vannamei.
Collapse
Affiliation(s)
- Yi Zhuang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - He Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xue-Liang Liu
- Zhejiang Hangzhou Tiao Wang Biological Technology Co., Ltd., Hangzhou, 310015, China
| | - Nu-An Wang
- South China Agricultural University, Guangzhou, 510640, China
| | - Guo-Fang Zhong
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.
| |
Collapse
|
28
|
Tate JJ, Marsikova J, Vachova L, Palkova Z, Cooper TG. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production. G3 (BETHESDA, MD.) 2022; 12:jkab432. [PMID: 35100365 PMCID: PMC9210300 DOI: 10.1093/g3journal/jkab432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
In yeast physiology, a commonly used reference condition for many experiments, including those involving nitrogen catabolite repression (NCR), is growth in synthetic complete (SC) medium. Four SC formulations, SCCSH,1990, SCCSH,1994, SCCSH,2005, and SCME, have been used interchangeably as the nitrogen-rich medium of choice [Cold Spring Harbor Yeast Course Manuals (SCCSH) and a formulation in the methods in enzymology (SCME)]. It has been tacitly presumed that all of these formulations support equivalent responses. However, a recent report concluded that (i) TorC1 activity is downregulated by the lower concentration of primarily leucine in SCME relative to SCCSH. (ii) The Whi2-Psr1/2 complex is responsible for this downregulation. TorC1 is a primary nitrogen-responsive regulator in yeast. Among its downstream targets is control of NCR-sensitive transcription activators Gln3 and Gat1. They in turn control production of catabolic transporters and enzymes needed to scavenge poor nitrogen sources (e.g., Proline) and activate autophagy (ATG14). One of the reporters used in Chen et al. was an NCR-sensitive DAL80-GFP promoter fusion. This intrigued us because we expected minimal if any DAL80 expression in SC medium. Therefore, we investigated the source of the Dal80-GFP production and the proteomes of wild-type and whi2Δ cells cultured in SCCSH and SCME. We found a massive and equivalent reorientation of amino acid biosynthetic proteins in both wild-type and whi2Δ cells even though both media contained high overall concentrations of amino acids. Gcn2 appears to play a significant regulatory role in this reorientation. NCR-sensitive DAL80 expression and overall NCR-sensitive protein production were only marginally affected by the whi2Δ. In contrast, the levels of 58 proteins changed by an absolute value of log2 between 3 and 8 when Whi2 was abolished relative to wild type. Surprisingly, with only two exceptions could those proteins be related in GO analyses, i.e., GO terms associated with carbohydrate metabolism and oxidative stress after shifting a whi2Δ from SCCSH to SCME for 6 h. What was conspicuously missing were proteins related by TorC1- and NCR-associated GO terms.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jana Marsikova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Libuse Vachova
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 142 20 Prague, Czech Republic
| | - Zdena Palkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
29
|
Eisner SA, Velicer GJ, Yu YTN. Mutation of rpoB Shifts the Nutrient Threshold Triggering Myxococcus Multicellular Development. Front Microbiol 2022; 13:817080. [PMID: 35359737 PMCID: PMC8963815 DOI: 10.3389/fmicb.2022.817080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to perceive and respond to environmental change is essential to all organisms. In response to nutrient depletion, cells of the soil-dwelling δ-proteobacterium Myxococcus xanthus undergo collective morphogenesis into multicellular fruiting bodies and transform into stress-resistant spores. This process is strictly regulated by gene networks that incorporate both inter- and intracellular signals. While commonly studied M. xanthus reference strains and some natural isolates undergo development only in nutrient-poor conditions, some lab mutants and other natural isolates commit to development at much higher nutrient levels, but mechanisms enabling such rich medium development remain elusive. Here we investigate the genetic basis of rich medium development in one mutant and find that a single amino acid change (S534L) in RpoB, the β-subunit of RNA polymerase, is responsible for the phenotype. Ectopic expression of the mutant rpoB allele was sufficient to induce nutrient-rich development. These results suggest that the universal bacterial transcription machinery bearing the altered β-subunit can relax regulation of developmental genes that are normally strictly controlled by the bacterial stringent response. Moreover, the mutation also pleiotropically mediates a tradeoff in fitness during vegetative growth between high vs. low nutrient conditions and generates resistance to exploitation by a developmental cheater. Our findings reveal a previously unknown connection between the universal transcription machinery and one of the most behaviorally complex responses to environmental stress found among bacteria.
Collapse
|
30
|
Interaction of TOR and PKA Signaling in S. cerevisiae. Biomolecules 2022; 12:biom12020210. [PMID: 35204711 PMCID: PMC8961621 DOI: 10.3390/biom12020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
TOR and PKA signaling are the major growth-regulatory nutrient-sensing pathways in S. cerevisiae. A number of experimental findings demonstrated a close relationship between these pathways: Both are responsive to glucose availability. Both regulate ribosome production on the transcriptional level and repress autophagy and the cellular stress response. Sch9, a major downstream effector of TORC1 presumably shares its kinase consensus motif with PKA, and genetic rescue and synthetic defects between PKA and Sch9 have been known for a long time. Further, studies in the first decade of this century have suggested direct regulation of PKA by TORC1. Nonetheless, the contribution of a potential direct cross-talk vs. potential sharing of targets between the pathways has still not been completely resolved. What is more, other findings have in contrast highlighted an antagonistic relationship between the two pathways. In this review, I explore the association between TOR and PKA signaling, mainly by focusing on proteins that are commonly referred to as shared TOR and PKA targets. Most of these proteins are transcription factors which to a large part explain the major transcriptional responses elicited by TOR and PKA upon nutrient shifts. I examine the evidence that these proteins are indeed direct targets of both pathways and which aspects of their regulation are targeted by TOR and PKA. I further explore if they are phosphorylated on shared sites by PKA and Sch9 or when experimental findings point towards regulation via the PP2ASit4/PP2A branch downstream of TORC1. Finally, I critically review data suggesting direct cross-talk between the pathways and its potential mechanism.
Collapse
|
31
|
Barba-Aliaga M, Alepuz P. Role of eIF5A in Mitochondrial Function. Int J Mol Sci 2022; 23:1284. [PMID: 35163207 PMCID: PMC8835957 DOI: 10.3390/ijms23031284] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is an evolutionarily conserved protein that binds ribosomes to facilitate the translation of peptide motifs with consecutive prolines or combinations of prolines with glycine and charged amino acids. It has also been linked to other molecular functions and cellular processes, such as nuclear mRNA export and mRNA decay, proliferation, differentiation, autophagy, and apoptosis. The growing interest in eIF5A relates to its association with the pathogenesis of several diseases, including cancer, viral infection, and diabetes. It has also been proposed as an anti-aging factor: its levels decay in aged cells, whereas increasing levels of active eIF5A result in the rejuvenation of the immune and vascular systems and improved brain cognition. Recent data have linked the role of eIF5A in some pathologies with its function in maintaining healthy mitochondria. The eukaryotic translation initiation factor 5A is upregulated under respiratory metabolism and its deficiency reduces oxygen consumption, ATP production, and the levels of several mitochondrial metabolic enzymes, as well as altering mitochondria dynamics. However, although all the accumulated data strongly link eIF5A to mitochondrial function, the precise molecular role and mechanisms involved are still unknown. In this review, we discuss the findings linking eIF5A and mitochondria, speculate about its role in regulating mitochondrial homeostasis, and highlight its potential as a target in diseases related to energy metabolism.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| |
Collapse
|
32
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
33
|
Wu P, Xu X, Yu T. Dietary watermelon residue influencing the nonspecific immunity of juvenile Pseudorasbora parva. FISH & SHELLFISH IMMUNOLOGY 2021; 118:421-425. [PMID: 34534653 DOI: 10.1016/j.fsi.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The study explored the improvement of disease resistance, non-specific immunity and anti-oxidation reactions for Pseudorasbora parva (PP) using dietary watermelon residue. The cumulative PP mortality and the pathogenic bacteria number in 15-45% groups reduced relative to those in control group (CK). Under 15-45% groups, AKP, ACP activities and akp, acp genes expression levels were increased markedly in nonspecific immunity system. Similarly, antioxidant response (SOD, CAT activities) and their genes was promoted also at 15-45% groups. Organic matter (vitamin and polyphenols) in watermelon residue improved AKP, ACP, SOD, CAT activities by increasing corresponding gene expressions. Theoretically, they could also function as stimulus signal, active center or composition to modulate enzyme activities and gene expressions. Besides, watermelon residue ameliorated NF-kB, mTOR responses pathway, and consequently suppressed Aeromonas hydrophila which augmented disease resistance.
Collapse
Affiliation(s)
- Pan Wu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China
| | - Xiaohan Xu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China.
| | - Ting Yu
- College of Architectural Engineering, Weifang University, Weifang, 261061, China.
| |
Collapse
|
34
|
Schuler MH, English AM, Xiao T, Campbell TJ, Shaw JM, Hughes AL. Mitochondrial-derived compartments facilitate cellular adaptation to amino acid stress. Mol Cell 2021; 81:3786-3802.e13. [PMID: 34547239 PMCID: PMC8513802 DOI: 10.1016/j.molcel.2021.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Amino acids are essential building blocks of life. However, increasing evidence suggests that elevated amino acids cause cellular toxicity associated with numerous metabolic disorders. How cells cope with elevated amino acids remains poorly understood. Here, we show that a previously identified cellular structure, the mitochondrial-derived compartment (MDC), functions to protect cells from amino acid stress. In response to amino acid elevation, MDCs are generated from mitochondria, where they selectively sequester and deplete SLC25A nutrient carriers and their associated import receptor Tom70 from the organelle. Generation of MDCs promotes amino acid catabolism, and their formation occurs simultaneously with transporter removal at the plasma membrane via the multivesicular body (MVB) pathway. The combined loss of vacuolar amino acid storage, MVBs, and MDCs renders cells sensitive to high amino acid stress. Thus, we propose that MDCs operate as part of a coordinated cell network that facilitates amino acid homeostasis through post-translational nutrient transporter remodeling.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Alyssa M English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Thane J Campbell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Janet M Shaw
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
35
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
36
|
Busche M, Scarpin MR, Hnasko R, Brunkard JO. TOR coordinates nucleotide availability with ribosome biogenesis in plants. THE PLANT CELL 2021; 33:1615-1632. [PMID: 33793860 PMCID: PMC8254494 DOI: 10.1093/plcell/koab043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/29/2021] [Indexed: 05/10/2023]
Abstract
TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic Ser/Thr protein kinase that coordinates growth and metabolism with nutrient availability. We conducted a medium-throughput functional genetic screen to discover essential genes that promote TOR activity in plants, and identified a critical regulatory enzyme, cytosolic phosphoribosyl pyrophosphate (PRPP) synthetase (PRS4). PRS4 synthesizes cytosolic PRPP, a key upstream metabolite in nucleotide synthesis and salvage pathways. We found that prs4 knockouts are embryo-lethal in Arabidopsis thaliana, and that silencing PRS4 expression in Nicotiana benthamiana causes pleiotropic developmental phenotypes, including dwarfism, aberrant leaf shape, and delayed flowering. Transcriptomic analysis revealed that ribosome biogenesis is among the most strongly repressed processes in prs4 knockdowns. Building on these results, we discovered that TOR activity is inhibited by chemical or genetic disruption of nucleotide biosynthesis, but that this effect can be reversed by supplying plants with nucleobases. Finally, we show that TOR transcriptionally promotes nucleotide biosynthesis to support the demands of ribosomal RNA synthesis. We propose that TOR coordinates ribosome biogenesis with nucleotide availability in plants to maintain metabolic homeostasis and support growth.
Collapse
Affiliation(s)
- Michael Busche
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - Robert Hnasko
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Pacific West Area, USDA Agricultural Research Service, Albany, CA 94710,USA
| | - Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| |
Collapse
|
37
|
Peng X, Wu B, Zhang S, Li M, Jiang X. Transcriptome Dynamics Underlying Chlamydospore Formation in Trichoderma virens GV29-8. Front Microbiol 2021; 12:654855. [PMID: 34168625 PMCID: PMC8217873 DOI: 10.3389/fmicb.2021.654855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Trichoderma spp. are widely used biocontrol agents which are antagonistic to a variety of plant pathogens. Chlamydospores are a type of propagules produced by many fungi that have thick walls and are highly resistant to adverse environmental conditions. Chlamydospore preparations of Trichoderma spp. can withstand various storage conditions, have a longer shelf life than conidial preparations and have better application potential. However, large-scale production of chlamydospores has proven difficult. To understand the molecular mechanisms governing chlamydospore formation (CF) in Trichoderma fungi, we performed a comprehensive analysis of transcriptome dynamics during CF across 8 different developmental time points, which were divided into 4 stages according to PCA analysis: the mycelium growth stage (S1), early and middle stage of CF (S2), flourishing stage of CF (S3), and late stage of CF and mycelia initial autolysis (S4). 2864, 3206, and 3630 DEGs were screened from S2 vs S1, S3 vs S2, and S4 vs S3, respectively. We then identified the pathways and genes that play important roles in each stage of CF by GO, KEGG, STC and WGCNA analysis. The results showed that DEGs in the S2 vs S1 were mainly enriched in organonitrogen compound metabolism, those in S3 vs S2 were mainly involved in secondary metabolite, cell cycle, and N-glycan biosynthesis, and DEGs in S4 vs S3 were mainly involved in lipid, glycogen, and chitin metabolic processes. We speculated that mycelial assimilation and absorption of exogenous nitrogen in the early growth stage (S1), resulted in subsequent nitrogen deficiency (S2). At the same time, secondary metabolites and active oxygen free radicals released during mycelial growth produced an adverse growth environment. The resulting nitrogen-deficient and toxin enriched medium may stimulate cell differentiation by initiating cell cycle regulation to induce morphological transformation of mycelia into chlamydospores. High expression of genes relating to glycogen, lipid, mannan, and chitin synthetic metabolic pathways during the flourishing (S3) and late stages (S4) of CF may be conducive to energy storage and cell wall construction in chlamydospores. For further verifying the functions of the amino sugar and nucleotide sugar metabolism (tre00520) pathway in the CF of T. virens GV29-8 strain, the chitin synthase gene (TRIVIDRAFT_90152), one key gene of the pathway, was deleted and resulted in the dysplasia of mycelia and an incapability to form normal chlamydospores, which illustrated the pathway affecting the CF of T. virens GV29-8 strain. Our results provide a new perspective for understanding the genetics of biochemical pathways involved in CF of Trichoderma spp.
Collapse
Affiliation(s)
| | | | | | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Mela A, Momany M. Septins coordinate cell wall integrity and lipid metabolism in a sphingolipid-dependent process. J Cell Sci 2021; 135:256543. [PMID: 33912961 DOI: 10.1242/jcs.258336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.
Collapse
Affiliation(s)
- Alexander Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| |
Collapse
|
39
|
Tate JJ, Rai R, De Virgilio C, Cooper TG. N- and C-terminal Gln3-Tor1 interaction sites: one acting negatively and the other positively to regulate nuclear Gln3 localization. Genetics 2021; 217:iyab017. [PMID: 33857304 PMCID: PMC8049557 DOI: 10.1093/genetics/iyab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/24/2021] [Indexed: 12/31/2022] Open
Abstract
Gln3 activates Nitrogen Catabolite Repression, NCR-sensitive expression of the genes required for Saccharomyces cerevisiae to scavenge poor nitrogen sources from its environment. The global TorC1 kinase complex negatively regulates nuclear Gln3 localization, interacting with an α-helix in the C-terminal region of Gln3, Gln3656-666. In nitrogen replete conditions, Gln3 is sequestered in the cytoplasm, whereas when TorC1 is down-regulated, in nitrogen restrictive conditions, Gln3 migrates into the nucleus. In this work, we show that the C-terminal Gln3-Tor1 interaction site is required for wild type, rapamycin-elicited, Sit4-dependent nuclear Gln3 localization, but not for its dephosphorylation. In fact, truncated Gln31-384 can enter the nucleus in the absence of Sit4 in both repressive and derepressive growth conditions. However, Gln31-384 can only enter the nucleus if a newly discovered second positively-acting Gln3-Tor1 interaction site remains intact. Importantly, the N- and C-terminal Gln3-Tor1 interaction sites function both autonomously and collaboratively. The N-terminal Gln3-Tor1 interaction site, previously designated Gln3URS contains a predicted α-helix situated within an unstructured coiled-coil region. Eight of the thirteen serine/threonine residues in the Gln3URS are dephosphorylated 3-15-fold with three of them by 10-15-fold. Substituting phosphomimetic aspartate for serine/threonine residues in the Gln3 URS abolishes the N-terminal Gln3-Tor1 interaction, rapamycin-elicited nuclear Gln3 localization, and ½ of the derepressed levels of nuclear Gln3 localization. Cytoplasmic Gln3 sequestration in repressive conditions, however, remains intact. These findings further deconvolve the mechanisms that achieve nitrogen-responsive transcription factor regulation downstream of TorC1.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
40
|
TOR targets an RNA processing network to regulate facultative heterochromatin, developmental gene expression and cell proliferation. Nat Cell Biol 2021; 23:243-256. [PMID: 33574613 PMCID: PMC9260697 DOI: 10.1038/s41556-021-00631-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023]
Abstract
Cell proliferation and differentiation require signalling pathways that enforce appropriate and timely gene expression. We find that Tor2, the catalytic subunit of the TORC1 complex in fission yeast, targets a conserved nuclear RNA elimination network, particularly the serine and proline-rich protein Pir1, to control gene expression through RNA decay and facultative heterochromatin assembly. Phosphorylation by Tor2 protects Pir1 from degradation by the ubiquitin-proteasome system involving the polyubiquitin Ubi4 stress-response protein and the Cul4-Ddb1 E3 ligase. This pathway suppresses widespread and untimely gene expression and is critical for sustaining cell proliferation. Moreover, we find that the dynamic nature of Tor2-mediated control of RNA elimination machinery defines gene expression patterns that coordinate fundamental chromosomal events during gametogenesis, such as meiotic double-strand-break formation and chromosome segregation. These findings have important implications for understanding how the TOR signalling pathway reprogrammes gene expression patterns and contributes to diseases such as cancer.
Collapse
|
41
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
42
|
Liu S, Zhao S, Dong Y, Wang T, Niu X, Zhao L, Wang G. Antitumor activity and mechanism of resistance of the novel HDAC and PI3K dual inhibitor CUDC-907 in pancreatic cancer. Cancer Chemother Pharmacol 2021; 87:415-423. [PMID: 33392641 DOI: 10.1007/s00280-020-04210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. The benefit of chemotherapy treatment for pancreatic cancer is very limited. Therefore, new therapeutic targets and approaches are urgently needed for this deadly disease. Multi-target therapy is a potential and feasible treatment strategy. Given the important roles that histone deacetylases (HDACs) and phosphoinositide-3-kinase (PI3K) play in pancreatic cancer, we investigated the antitumor activity and mechanism of novel HDAC and PI3K dual inhibitor CUDC-907 in pancreatic cancer. METHODS AND RESULTS MTT assay and flow cytometric analysis were used to examine the in vitro antitumor activity of CUDC-907. A BxPC-3-derived xenograft mouse model was used to determine CUDC-907 in vivo efficacy. The TUNEL assay as used to determine apoptosis in tumors in vivo post CUDC-907 treatment. Western blots were used to determine the effect of CUDC-907 on protein levels. Our results show that CUDC-907 decreased viable cells and induced cell death in a concentration-dependent manner. Furthermore, CUDC-907 showed promising in vivo antitumor activity in the BxPC-3-derived xenograft mouse model while exhibiting tolerable toxicity. Furthermore, long-term treatment with CUDC-907 induced phosphorylation of AKT, S6 (ribosomal protein S6), and ERK (extracellular regulated protein kinase), and inhibition of PI3K (phosphatidylinositol 3-kinase), mTOR (mammalian target of rapamycin), or ERK significantly enhanced CUDC-907-induced cell death in pancreatic cell lines. CONCLUSION Taken together, these findings support the clinical development of CUDC-907 for the treatment of pancreatic cancer and identify compensatory activation of mTOR and MEK/ERK as a possible mechanism of resistance to CUDC-907.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory for Molecular Enzymology and Engineering, National Engineering Laboratory for AIDS Vaccine, The Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, Jilin, China
| | - Shoujing Zhao
- Key Laboratory for Molecular Enzymology and Engineering, National Engineering Laboratory for AIDS Vaccine, The Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, Jilin, China
| | - Yang Dong
- Key Laboratory for Molecular Enzymology and Engineering, National Engineering Laboratory for AIDS Vaccine, The Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, Jilin, China
| | - Tingting Wang
- Key Laboratory for Molecular Enzymology and Engineering, National Engineering Laboratory for AIDS Vaccine, The Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, Jilin, China
| | - Xiaojia Niu
- Key Laboratory for Molecular Enzymology and Engineering, National Engineering Laboratory for AIDS Vaccine, The Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, Jilin, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Guan Wang
- Key Laboratory for Molecular Enzymology and Engineering, National Engineering Laboratory for AIDS Vaccine, The Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, Jilin, China.
| |
Collapse
|
43
|
Barba-Aliaga M, Villarroel-Vicente C, Stanciu A, Corman A, Martínez-Pastor MT, Alepuz P. Yeast Translation Elongation Factor eIF5A Expression Is Regulated by Nutrient Availability through Different Signalling Pathways. Int J Mol Sci 2020; 22:E219. [PMID: 33379337 PMCID: PMC7794953 DOI: 10.3390/ijms22010219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Translation elongation factor eIF5A binds to ribosomes to promote peptide bonds between problematic amino acids for the reaction like prolines. eIF5A is highly conserved and essential in eukaryotes, which usually contain two similar but differentially expressed paralogue genes. The human eIF5A-1 isoform is abundant and implicated in some cancer types; the eIF5A-2 isoform is absent in most cells but becomes overexpressed in many metastatic cancers. Several reports have connected eIF5A and mitochondria because it co-purifies with the organelle or its inhibition reduces respiration and mitochondrial enzyme levels. However, the mechanisms of eIF5A mitochondrial function, and whether eIF5A expression is regulated by the mitochondrial metabolism, are unknown. We analysed the expression of yeast eIF5A isoforms Tif51A and Tif51B under several metabolic conditions and in mutants. The depletion of Tif51A, but not Tif51B, compromised yeast growth under respiration and reduced oxygen consumption. Tif51A expression followed dual positive regulation: by high glucose through TORC1 signalling, like other translation factors, to promote growth and by low glucose or non-fermentative carbon sources through Snf1 and heme-dependent transcription factor Hap1 to promote respiration. Upon iron depletion, Tif51A was down-regulated and Tif51B up-regulated. Both were Hap1-dependent. Our results demonstrate eIF5A expression regulation by cellular metabolic status.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Carlos Villarroel-Vicente
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Alice Stanciu
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Alba Corman
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Paula Alepuz
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| |
Collapse
|
44
|
Vellanki S, Garcia AE, Lee SC. Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens. Front Mol Biosci 2020; 7:588913. [PMID: 33195437 PMCID: PMC7596385 DOI: 10.3389/fmolb.2020.588913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.
Collapse
Affiliation(s)
- Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Alexis E Garcia
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
45
|
Bruch A, Laguna T, Butter F, Schaffrath R, Klassen R. Misactivation of multiple starvation responses in yeast by loss of tRNA modifications. Nucleic Acids Res 2020; 48:7307-7320. [PMID: 32484543 PMCID: PMC7367188 DOI: 10.1093/nar/gkaa455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Previously, combined loss of different anticodon loop modifications was shown to impair the function of distinct tRNAs in Saccharomyces cerevisiae. Surprisingly, each scenario resulted in shared cellular phenotypes, the basis of which is unclear. Since loss of tRNA modification may evoke transcriptional responses, we characterized global transcription patterns of modification mutants with defects in either tRNAGlnUUG or tRNALysUUU function. We observe that the mutants share inappropriate induction of multiple starvation responses in exponential growth phase, including derepression of glucose and nitrogen catabolite-repressed genes. In addition, autophagy is prematurely and inadequately activated in the mutants. We further demonstrate that improper induction of individual starvation genes as well as the propensity of the tRNA modification mutants to form protein aggregates are diminished upon overexpression of tRNAGlnUUG or tRNALysUUU, the tRNA species that lack the modifications of interest. Hence, our data suggest that global alterations in mRNA translation and proteostasis account for the transcriptional stress signatures that are commonly triggered by loss of anticodon modifications in different tRNAs.
Collapse
Affiliation(s)
- Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Teresa Laguna
- Department of Quantitative Proteomics, IMB Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, IMB Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
46
|
Xie CM, Tan M, Lin XT, Wu D, Jiang Y, Tan Y, Li H, Ma Y, Xiong X, Sun Y. The FBXW7-SHOC2-Raptor Axis Controls the Cross-Talks between the RAS-ERK and mTORC1 Signaling Pathways. Cell Rep 2020; 26:3037-3050.e4. [PMID: 30865892 DOI: 10.1016/j.celrep.2019.02.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/09/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
FBXW7 is a tumor suppressive E3 ligase, whereas RAS-ERK and mechanistic target of rapamycin kinase (mTORC1) are two major oncogenic pathways. Whether and how FBXW7 regulates these two oncogenic pathways are unknown. Here, we showed that SHOC2, a RAS activator, is a FBXW7 substrate. Growth stimuli trigger SHOC2 phosphorylation on Thr507 by the mitogen-activated protein kinase (MAPK) signal, which facilitates FBXW7 binding for ubiquitylation and degradation. FBXW7-mediated SHOC2 degradation terminates the RAS-MAPK signals and inhibits proliferation. Furthermore, SHOC2 selectively binds to Raptor to competitively inhibit the Raptor-mTOR binding to inactivate mTORC1 and induce autophagy, whereas Raptor binding of SHOC2 inhibits the SHOC2-RAS binding to block the MAPK pathway and proliferation. Finally, SHOC2 is overexpressed in pancreatic cancer, which correlated with poor patient survival. SHOC2 mutations were found in lung cancer tissues with gain-of-function activity. Collectively, the SHOC2-Raptor interaction triggers negative cross-talk between RAS-ERK and mTORC1 pathways, whereas FBXW7 regulates both pathways by targeting SHOC2 for ubiquitylation and degradation.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA; Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiao-Tong Lin
- Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Wu
- Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Yihan Jiang
- Institute of Translational Medicine and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Tan
- Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Haomin Li
- The Heart Center, Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yuanyuan Ma
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiufang Xiong
- Institute of Translational Medicine and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA; Institute of Translational Medicine and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
47
|
Willis SD, Hanley SE, Beishke T, Tati PD, Cooper KF. Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation. Mol Biol Cell 2020; 31:1015-1031. [PMID: 32160104 PMCID: PMC7346723 DOI: 10.1091/mbc.e19-11-0622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Environmental stress elicits well-orchestrated programs that either restore cellular homeostasis or induce cell death depending on the insult. Nutrient starvation triggers the autophagic pathway that requires the induction of several Autophagy (ATG) genes. Cyclin C-cyclin-dependent kinase (Cdk8) is a component of the RNA polymerase II Mediator complex that predominantly represses the transcription of stress-responsive genes in yeast. To relieve this repression following oxidative stress, cyclin C translocates to the mitochondria where it induces organelle fragmentation and promotes cell death prior to its destruction by the ubiquitin-proteasome system (UPS). Here we report that cyclin C-Cdk8, together with the Ume6-Rpd3 histone deacetylase complex, represses the essential autophagy gene ATG8. Similar to oxidative stress, cyclin C is destroyed by the UPS following nitrogen starvation. Removing this repression is important as deleting CNC1 allows enhanced cell growth under mild starvation. However, unlike oxidative stress, cyclin C is destroyed prior to its cytoplasmic translocation. This is important as targeting cyclin C to the mitochondria induces both mitochondrial fragmentation and cell death following nitrogen starvation. These results indicate that cyclin C destruction pathways are fine tuned depending on the stress and that its terminal subcellular address influences the decision between initiating cell death or cell survival pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Sara E Hanley
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Thomas Beishke
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Prasanna D Tati
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
48
|
Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P. TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 2020; 117:5049-5058. [PMID: 32051250 PMCID: PMC7060719 DOI: 10.1073/pnas.1919196117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Department of Biology, Northwest University, 710069 Xi'an, China
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Snigdha Chatterjee
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
- Innovative Genomics Institute, Berkeley, CA 94720
| | - Elena A Shemyakina
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
- Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710
| | - Howard M Goodman
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720
| | - Patricia Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley CA 94720;
| |
Collapse
|
49
|
Wu P, Liu Y, Li X, Gu Y, Liu Y, Hu Y, Wang Y, Wu Y, Li N, Zhang Y, Chen Z, Jin H. The regulation of the disease resistance, mTOR and NF-kB signaling pathway of Aristichthys nobilis using Rhodopseudomonas wastewater treatment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103517. [PMID: 31647941 DOI: 10.1016/j.dci.2019.103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/04/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The employment of traditional feed and medicament in freshwater aquaculture causes the frequent occurrence of environmental pollution and disease. Effluent collected after Rhodopseudomonas-mediated wastewater treatment could be re-utilized as microbial feeds, and aquaculture water to culture Aristichthys nobilis. Therefore, a novel integrated system of wastewater treatment using effluent containing Rhodopseudomonas that improves yield, increases disease resistance, and enhances the quality of aquaculture water for Aristichthys nobilis culture was proposed and investigated. Aristichthys nobilis can grow well in effluent containing Rhodopseudomonas (ER). The survival rate, yield, and whole body composition of the ER group were all increased compared to the control group (CK). The biochemical (B vitamin) and other substances in the effluent of Rhodopseudomonas enhanced the activity of AKP, ACP, phagocytic, SOD, and CAT by upregulating the expression of AKP, ACP, SOD, and CAT genes. Moreover, Rhodopseudomonas and biochemical substances improved mTOR and NF-kB signaling pathway. Furthermore, Rhodopseudomonas inhibited Aeromonas hydrophila that increases resistance against fish disease. Meanwhile, Rhodopseudomonas in the effluent also improved the aquaculture water quality. This technology would save the aquaculture water, reduce water pollution and wastewater discharge, and increase the output and disease resistance of Aristichthys nobilis, simultaneously.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yaxin Liu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Xiaoting Li
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yonghu Gu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yuxin Liu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yuqiao Hu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Yuan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Ning Li
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhaobo Chen
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Hua Jin
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
50
|
Rapamycin induces morphological and physiological changes without increase in lipid content in Ustilago maydis. Arch Microbiol 2020; 202:1211-1221. [PMID: 32088730 DOI: 10.1007/s00203-020-01833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
The evolutionarily conserved serine/threonine kinase TOR recruits different subunits to assemble the Target of Rapamycin Complex 1 (TORC1), which is inhibited by rapamycin and regulates ribosome biogenesis, autophagy, and lipid metabolism by regulating the expression of lipogenic genes. In addition, TORC1 participates in the cell cycle, increasing the length of the G2 phase. In the present work, we investigated the effect of rapamycin on cell growth, cell morphology and neutral lipid metabolism in the phytopathogenic fungus Ustilago maydis. Inhibition of TORC1 by rapamycin induced the formation of septa that separate the nuclei that were formed after mitosis. Regarding neutral lipid metabolism, a higher accumulation of triacylglycerols was not detected, but the cells did contain large lipid bodies, which suggests that small lipid bodies became fused into big lipid droplets. Vacuoles showed a similar behavior as the lipid bodies, and double labeling with Blue-CMAC and BODIPY indicates that vacuoles and lipid bodies were independent organelles. The results suggest that TORC1 has a role in cell morphology, lipid metabolism, and vacuolar physiology in U. maydis.
Collapse
|