1
|
Gárate-Rascón M, Recalde M, Rojo C, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. SLU7: A New Hub of Gene Expression Regulation—From Epigenetics to Protein Stability in Health and Disease. Int J Mol Sci 2022; 23:ijms232113411. [PMID: 36362191 PMCID: PMC9658179 DOI: 10.3390/ijms232113411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
SLU7 (Splicing factor synergistic lethal with U5 snRNA 7) was first identified as a splicing factor necessary for the correct selection of 3′ splice sites, strongly impacting on the diversity of gene transcripts in a cell. More recent studies have uncovered new and non-redundant roles of SLU7 as an integrative hub of different levels of gene expression regulation, including epigenetic DNA remodeling, modulation of transcription and protein stability. Here we review those findings, the multiple factors and mechanisms implicated as well as the cellular functions affected. For instance, SLU7 is essential to secure liver differentiation, genome integrity acting at different levels and a correct cell cycle progression. Accordingly, the aberrant expression of SLU7 could be associated with human diseases including cancer, although strikingly, it is an essential survival factor for cancer cells. Finally, we discuss the implications of SLU7 in pathophysiology, with particular emphasis on the progression of liver disease and its possible role as a therapeutic target in human cancer.
Collapse
Affiliation(s)
- María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Carla Rojo
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-194700; Fax: +34-948-194717
| |
Collapse
|
2
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|
3
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
4
|
Recalde M, Gárate-Rascón M, Elizalde M, Azkona M, Latasa MU, Bárcena-Varela M, Sangro B, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. The splicing regulator SLU7 is required to preserve DNMT1 protein stability and DNA methylation. Nucleic Acids Res 2021; 49:8592-8609. [PMID: 34331453 PMCID: PMC8421144 DOI: 10.1093/nar/gkab649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023] Open
Abstract
Gene expression is finely and dynamically controlled through the tightly coordinated and interconnected activity of epigenetic modulators, transcription and splicing factors and post-translational modifiers. We have recently identified the splicing factor SLU7 as essential for maintaining liver cell identity and genome integrity and for securing cell division both trough transcriptional and splicing mechanisms. Now we uncover a new function of SLU7 controlling gene expression at the epigenetic level. We show that SLU7 is required to secure DNMT1 protein stability and a correct DNA methylation. We demonstrate that SLU7 is part in the chromatome of the protein complex implicated in DNA methylation maintenance interacting with and controlling the integrity of DNMT1, its adaptor protein UHRF1 and the histone methyl-transferase G9a at the chromatin level. Mechanistically, we found that SLU7 assures DNMT1 stability preventing its acetylation and degradation by facilitating its interaction with HDAC1 and the desubiquitinase USP7. Importantly, we demonstrate that this DNMT1 dependency on SLU7 occurs in a large panel of proliferating cell lines of different origins and in in vivo models of liver proliferation. Overall, our results uncover a novel and non-redundant role of SLU7 in DNA methylation and present SLU7 as a holistic regulator of gene expression.
Collapse
Affiliation(s)
- Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - María Elizalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - María Azkona
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - M Ujue Latasa
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Marina Bárcena-Varela
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Bruno Sangro
- IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid 28029, Spain.,Hepatology Unit, Navarra University Clinic, Pamplona 31008, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid 28029, Spain
| | - Matías A Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid 28029, Spain
| | - María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid 28029, Spain
| |
Collapse
|
5
|
Jiménez M, Urtasun R, Elizalde M, Azkona M, Latasa MU, Uriarte I, Arechederra M, Alignani D, Bárcena-Varela M, Álvarez-Sola G, Colyn L, Santamaría E, Sangro B, Rodriguez-Ortigosa C, Fernández-Barrena MG, Ávila MA, Berasain C. Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins. Nucleic Acids Res 2019; 47:3450-3466. [PMID: 30657957 PMCID: PMC6468163 DOI: 10.1093/nar/gkz014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA-DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Maddalen Jiménez
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - Raquel Urtasun
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain
| | - María Elizalde
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - María Azkona
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - Diego Alignani
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,Cytometry Unit, CIMA, University of Navarra, Pamplona 31008, Spain
| | | | - Gloria Álvarez-Sola
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Leticia Colyn
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - Eva Santamaría
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Bruno Sangro
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain.,Hepatology Unit, Navarra University Clinic, Pamplona 31008, Spain
| | - Carlos Rodriguez-Ortigosa
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Matías A Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
6
|
Wang J, Kainrad N, Shen H, Zhou Z, Rote P, Zhang Y, Nagy LE, Wu J, You M. Hepatic Knockdown of Splicing Regulator Slu7 Ameliorates Inflammation and Attenuates Liver Injury in Ethanol-Fed Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1807-1819. [PMID: 29870742 DOI: 10.1016/j.ajpath.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Aberrant precursor mRNA splicing plays a pivotal role in liver diseases. However, roles of splicing regulators in alcoholic liver disease are unknown. Herein, we investigated a splicing regulator, Slu7, in the development of alcoholic steatohepatitis. Adenovirus-mediated alteration of hepatic Slu7 expression in mice pair fed either with or without (as control) ethanol in their diet was used. Knockdown of hepatic Slu7 by adenovirus-Slu7shRNA treatment ameliorated inflammation and attenuated liver injury in mice after ethanol administration. Mechanistically, reducing liver Slu7 expression increased the expression of sirtuin 1 (SIRT1) full-length and repressed the splicing of SIRT1 into SIRT1-ΔExon8 isoform in ethanol-fed mice. Knockdown of hepatic Slu7 in the ethanol-fed mice also ameliorated splicing of lipin-1 and serine/arginine-rich splicing factor 3 (Srsf3). In concordance with ameliorated splicing of SIRT1, lipin-1, and Srsf3, knockdown of hepatic Slu7 inhibited the activity of NF-κB, normalized iron and zinc homeostasis, reduced oxidative stress, and attenuated liver damage in ethanol-fed mice. In addition, hepatic Slu7 was significantly elevated in patients with alcoholic steatohepatitis. Our present study illustrates a novel role of Slu7 in alcoholic liver injury and suggests that dysregulated Slu7 may contribute to the pathogenesis of human alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jiayou Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio; Department of Anatomy, School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Noah Kainrad
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Hong Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio; Department of Liver Diseases, Guangdong Hospital of Traditional Chinese Medicine in Zhuhai, Zhuhai, People's Republic of China
| | - Zhou Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Paula Rote
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Min You
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
7
|
Melangath G, Sen T, Kumar R, Bawa P, Srinivasan S, Vijayraghavan U. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS One 2017; 12:e0188159. [PMID: 29236736 PMCID: PMC5728500 DOI: 10.1371/journal.pone.0188159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast.
Collapse
Affiliation(s)
- Geetha Melangath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Titash Sen
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rakesh Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Subha Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 2017; 542:318-323. [DOI: 10.1038/nature21079] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022]
|
9
|
Vijaykrishna N, Melangath G, Kumar R, Khandelia P, Bawa P, Varadarajan R, Vijayraghavan U. The Fission Yeast Pre-mRNA-processing Factor 18 (prp18+) Has Intron-specific Splicing Functions with Links to G1-S Cell Cycle Progression. J Biol Chem 2016; 291:27387-27402. [PMID: 27875300 DOI: 10.1074/jbc.m116.751289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/11/2016] [Indexed: 12/24/2022] Open
Abstract
The fission yeast genome, which contains numerous short introns, is an apt model for studies on fungal splicing mechanisms and splicing by intron definition. Here we perform a domain analysis of the evolutionarily conserved Schizosaccharomyces pombe pre-mRNA-processing factor, SpPrp18. Our mutational and biophysical analyses of the C-terminal α-helical bundle reveal critical roles for the conserved region as well as helix five. We generate a novel conditional missense mutant, spprp18-5 To assess the role of SpPrp18, we performed global splicing analyses on cells depleted of prp18+ and the conditional spprp18-5 mutant, which show widespread but intron-specific defects. In the absence of functional SpPrp18, primer extension analyses on a tfIId+ intron 1-containing minitranscript show accumulated pre-mRNA, whereas the lariat intron-exon 2 splicing intermediate was undetectable. These phenotypes also occurred in cells lacking both SpPrp18 and SpDbr1 (lariat debranching enzyme), a genetic background suitable for detection of lariat RNAs. These data indicate a major precatalytic splicing arrest that is corroborated by the genetic interaction between spprp18-5 and spprp2-1, a mutant in the early acting U2AF59 protein. Interestingly, SpPrp18 depletion caused cell cycle arrest before S phase. The compromised splicing of transcripts coding for G1-S regulators, such as Res2, a transcription factor, and Skp1, a regulated proteolysis factor, are shown. The cumulative effects of SpPrp18-dependent intron splicing partly explain the G1 arrest upon the loss of SpPrp18. Our study using conditional depletion of spprp18+ and the spprp18-5 mutant uncovers an intron-specific splicing function and early spliceosomal interactions and suggests links with cell cycle progression.
Collapse
Affiliation(s)
| | | | - Rakesh Kumar
- From the Department of Microbiology and Cell Biology and
| | | | | | - Raghavan Varadarajan
- the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
10
|
Mayerle M, Guthrie C. Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing. RNA (NEW YORK, N.Y.) 2016; 22:793-809. [PMID: 26968627 PMCID: PMC4836653 DOI: 10.1261/rna.055459.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 05/14/2023]
Abstract
Pre-mRNA splicing must occur with high fidelity and efficiency for proper gene expression. The spliceosome uses DExD/H box helicases to promote on-pathway interactions while simultaneously minimizing errors. Prp8 and Snu114, an EF2-like GTPase, regulate the activity of the Brr2 helicase, promoting RNA unwinding by Brr2 at appropriate points in the splicing cycle and repressing it at others. Mutations linked to retinitis pigmentosa (RP), a disease that causes blindness in humans, map to the Brr2 regulatory region of Prp8. Previous in vitro studies of homologous mutations in Saccharomyces cerevisiaes how that Prp8-RP mutants cause defects in spliceosome activation. Here we show that a subset of RP mutations in Prp8 also causes defects in the transition between the first and second catalytic steps of splicing. Though Prp8-RP mutants do not cause defects in splicing fidelity, they result in an overall decrease in splicing efficiency. Furthermore, genetic analyses link Snu114 GTP/GDP occupancy to Prp8-dependent regulation of Brr2. Our results implicate the transition between the first and second catalytic steps as a critical place in the splicing cycle where Prp8-RP mutants influence splicing efficiency. The location of the Prp8-RP mutants, at the "hinge" that links the Prp8 Jab1-MPN regulatory "tail" to the globular portion of the domain, suggests that these Prp8-RP mutants inhibit regulated movement of the Prp8 Jab1/MPN domain into the Brr2 RNA binding channel to transiently inhibit Brr2. Therefore, in Prp8-linked RP, disease likely results not only from defects in spliceosome assembly and activation, but also because of defects in splicing catalysis.
Collapse
Affiliation(s)
- Megan Mayerle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
11
|
Darman R, Seiler M, Agrawal A, Lim K, Peng S, Aird D, Bailey S, Bhavsar E, Chan B, Colla S, Corson L, Feala J, Fekkes P, Ichikawa K, Keaney G, Lee L, Kumar P, Kunii K, MacKenzie C, Matijevic M, Mizui Y, Myint K, Park E, Puyang X, Selvaraj A, Thomas M, Tsai J, Wang J, Warmuth M, Yang H, Zhu P, Garcia-Manero G, Furman R, Yu L, Smith P, Buonamici S. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3′ Splice Site Selection through Use of a Different Branch Point. Cell Rep 2015; 13:1033-45. [DOI: 10.1016/j.celrep.2015.09.053] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/21/2015] [Accepted: 09/18/2015] [Indexed: 10/22/2022] Open
|
12
|
Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly. Mol Cell Biol 2013; 33:3125-36. [PMID: 23754748 DOI: 10.1128/mcb.00007-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.
Collapse
|
13
|
Lei H, Zhai B, Yin S, Gygi S, Reed R. Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res 2012; 41:2517-25. [PMID: 23275560 PMCID: PMC3575797 DOI: 10.1093/nar/gks1314] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously showed that mRNAs synthesized from three genes that naturally lack introns contain a portion of their coding sequence, known as a cytoplasmic accumulation region (CAR), which is essential for stable accumulation of the intronless mRNAs in the cytoplasm. The CAR in each mRNA is unexpectedly large, ranging in size from ∼160 to 285 nt. Here, we identified one or more copies of a 10-nt consensus sequence in each CAR. To determine whether this element (designated CAR-E) functions in cytoplasmic accumulation of intronless mRNA, we multimerized the most conserved CAR-E and inserted it upstream of β-globin cDNA, which is normally retained/degraded in the nucleus. Significantly, the tandem CAR-E, but not its antisense counterpart, rescued cytoplasmic accumulation of β-globin cDNA transcripts. Moreover, dinucleotide mutations in the CAR-E abolished this rescue. We show that the CAR-E, but not the mutant CAR-E, associates with components of the TREX mRNA export machinery, the Prp19 complex and U2AF2. Moreover, knockdown of these factors results in nuclear retention of the intronless mRNAs. Together, these data suggest that the CAR-E promotes export of intronless mRNA by sequence-dependent recruitment of the mRNA export machinery.
Collapse
Affiliation(s)
- Haixin Lei
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, Will CL, Pena V, Lührmann R, Stelzl U. Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell 2012; 45:567-80. [PMID: 22365833 DOI: 10.1016/j.molcel.2011.12.034] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/01/2011] [Accepted: 12/12/2011] [Indexed: 12/12/2022]
Abstract
More than 200 proteins copurify with spliceosomes, the compositionally dynamic RNPs catalyzing pre-mRNA splicing. To better understand protein - protein interactions governing splicing, we systematically investigated interactions between human spliceosomal proteins. A comprehensive Y2H interaction matrix screen generated a protein interaction map comprising 632 interactions between 196 proteins. Among these, 242 interactions were found between spliceosomal core proteins and largely validated by coimmunoprecipitation. To reveal dynamic changes in protein interactions, we integrated spliceosomal complex purification information with our interaction data and performed link clustering. These data, together with interaction competition experiments, suggest that during step 1 of splicing, hPRP8 interactions with SF3b proteins are replaced by hSLU7, positioning this second step factor close to the active site, and that the DEAH-box helicases hPRP2 and hPRP16 cooperate through ordered interactions with GPKOW. Our data provide extensive information about the spliceosomal protein interaction network and its dynamics.
Collapse
Affiliation(s)
- Anna Hegele
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Corrionero A, Raker VA, Izquierdo JM, Valcárcel J. Strict 3' splice site sequence requirements for U2 snRNP recruitment after U2AF binding underlie a genetic defect leading to autoimmune disease. RNA (NEW YORK, N.Y.) 2011; 17:401-411. [PMID: 21233219 PMCID: PMC3039140 DOI: 10.1261/rna.2444811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/10/2010] [Indexed: 05/30/2023]
Abstract
We report that the 3' splice site associated with the alternatively spliced exon 6 of the Fas receptor CD95 displays strict sequence requirements and that a mutation that disrupts this particular sequence arrangement leads to constitutive exon 6 skipping in a patient suffering from autoimmune lymphoproliferative syndrome (ALPS). Specifically, we find an absolute requirement for RCAG/G at the 3' splice site (where R represents purine, and / indicates the intron/exon boundary) and the balance between exon inclusion and skipping is exquisitely sensitive to single nucleotide variations in the uridine content of the upstream polypyrimidine (Py)-tract. Biochemical experiments revealed that the ALPS patient mutation reduces U2 snRNP recruitment to the 3' splice site region and that this effect cannot be explained by decreased interaction with the U2 snRNP Auxiliary Factor U2AF, whose 65- and 35-kDa subunits recognize the Py-tract and 3' splice site AG, respectively. The effect of the mutation, which generates a tandem of two consecutive AG dinucleotides at the 3' splice site, can be suppressed by increasing the distance between the AGs, mutating the natural 3' splice site AG or increasing the uridine content of the Py-tract at a position distal from the 3' splice site. The suppressive effects of these additional mutations correlate with increased recruitment of U2 snRNP but not with U2AF binding, again suggesting that the strict architecture of Fas intron 5 3' splice site region is tuned to regulate alternative exon inclusion through modulation of U2 snRNP assembly after U2AF binding.
Collapse
|
16
|
Tu Q, Dong H, Yao H, Fang Y, Dai C, Luo H, Yao J, Zhao D, Li D. Global Identification of Significantly Expressed Genes in Developing Endosperm of Rice by Expression Sequence Tags and cDNA Array Approaches. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1078-88. [PMID: 0 DOI: 10.1111/j.1744-7909.2008.00714.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
17
|
Alberstein M, Amit M, Vaknin K, O'Donnell A, Farhy C, Lerenthal Y, Shomron N, Shaham O, Sharrocks AD, Ashery-Padan R, Ast G. Regulation of transcription of the RNA splicing factor hSlu7 by Elk-1 and Sp1 affects alternative splicing. RNA (NEW YORK, N.Y.) 2007; 13:1988-99. [PMID: 17804646 PMCID: PMC2040095 DOI: 10.1261/rna.492907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Alternative splicing plays a major role in transcriptome diversity and plasticity, but it is largely unknown how tissue-specific and embryogenesis-specific alternative splicing is regulated. The highly conserved splicing factor Slu7 is involved in 3' splice site selection and also regulates alternative splicing. We show that Slu7 has a unique spatial pattern of expression among human and mouse embryonic and adult tissues. We identified several functional Ets binding sites and GC-boxes in the human Slu7 (hSlu7) promoter region. The Ets and GC-box binding transcription factors, Elk-1 and Sp1, respectively, exerted opposite effects on hSlu7 transcription: Sp1 protein enhances and Elk-1 protein represses transcription in a dose-dependent manner. Sp1 protein bound to the hSlu7 promoter in vivo, and depletion of Sp1 by RNA interference (RNAi) repressed hSlu7 expression. Elk-1 protein bound to the hSlu7 promoter in vivo, and depletion of Elk-1 by RNAi caused an increase in the endogenous level of hSlu7 mRNA. Further, depletion of either Sp1 or Elk-1 affected alternative splicing. Our results provide indications of a complex transcription regulation mechanism that controls the spatial and temporal expression of Slu7, presumably allowing regulation of tissue-specific alternative splicing events.
Collapse
Affiliation(s)
- Moti Alberstein
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Coyle DE. Spinal cord transcriptional profile analysis reveals protein trafficking and RNA processing as prominent processes regulated by tactile allodynia. Neuroscience 2007; 144:144-56. [PMID: 17069981 DOI: 10.1016/j.neuroscience.2006.08.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/14/2006] [Accepted: 08/30/2006] [Indexed: 11/29/2022]
Abstract
Since partial peripheral injury does not necessarily lead to the development of neuropathic pain it is possible that a set of genes is directly regulated by the development of neuropathic pain independent of the genes regulated by nerve injury. This study identifies the genes expressed within the spinal cord that are uniquely regulated by tactile allodynia in rats. Using subtractive methods, genes regulated by allodynia were differentiated from those of nerve injury. Gene ontology analysis identified that allodynic genes are involved in a variety of processes including myelination, actin cytoskeleton reorganization, dephosphorylation, phosphorylation, response to stress, as well as protein trafficking and RNA processing. The processes of protein trafficking and RNA processing were found to be as statistically significant as other processes that have been associated with neuropathic pain development such as response to stress, phosphorylation, and cell migration. Trafficking and transcription are linked and undergo activity dependent regulation which results in both rapid and gradual synaptic changes (plasticity). The data presented here greatly expand the list of genes regulated by the development of tactile allodynia and reveal protein trafficking and RNA processing as prominent biological processes that may be involved in synaptic plasticity changes within the spinal cord in response to allodynia.
Collapse
Affiliation(s)
- D E Coyle
- Department of Anesthesiology, University of Cincinnati, 231 Albert Sabin Way, PO Box 670531, Cincinnati, OH 45267-0531, USA.
| |
Collapse
|
19
|
Shi Y, Reddy B, Manley JL. PP1/PP2A phosphatases are required for the second step of Pre-mRNA splicing and target specific snRNP proteins. Mol Cell 2006; 23:819-29. [PMID: 16973434 DOI: 10.1016/j.molcel.2006.07.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 06/05/2006] [Accepted: 07/26/2006] [Indexed: 11/22/2022]
Abstract
Pre-mRNA splicing is a complex and dynamic process in which protein phosphorylation and dephosphorylation both play important roles. Although specific phosphatases, such as PP1 and PP2A, have been implicated in splicing, direct evidence for their involvement has been lacking, and their exact function(s) in this process remain unknown. In this study, we show that PP1 and certain PP2A family phosphatases play essential but redundant roles in splicing. Unexpectedly, we found that these phosphatases are required principally for the second step of the splicing reaction. Furthermore, we provide evidence that components of U2 and U5 snRNPs, specifically SAP155 and U5-116 kDa, are the key spliceosomal substrates for these phosphatases. Based on these data, we propose that dephosphorylation of U2 and U5 snRNP components by PP1/PP2A family phosphatases facilitates essential structural rearrangements in the spliceosome during the transition from the first to the second step.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
20
|
Wang W, Park JW, Wang JL, Patterson RJ. Immunoprecipitation of spliceosomal RNAs by antisera to galectin-1 and galectin-3. Nucleic Acids Res 2006; 34:5166-74. [PMID: 16998182 PMCID: PMC1636441 DOI: 10.1093/nar/gkl673] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have shown that galectin-1 and galectin-3 are functionally redundant splicing factors. Now we provide evidence that both galectins are directly associated with spliceosomes by analyzing RNAs and proteins of complexes immunoprecipitated by galectin-specific antisera. Both galectin antisera co-precipitated splicing substrate, splicing intermediates and products in active spliceosomes. Protein factors co-precipitated by the galectin antisera included the Sm core polypeptides of snRNPs, hnRNP C1/C2 and Slu7. Early spliceosomal complexes were also immunoprecipitated by these antisera. When splicing reactions were sequentially immunoprecipitated with galectin antisera, we found that galectin-1 containing spliceosomes did not contain galectin-3 and vice versa, providing an explanation for the functional redundancy of nuclear galectins in splicing. The association of galectins with spliceosomes was (i) not due to a direct interaction of galectins with the splicing substrate and (ii) easily disrupted by ionic conditions that had only a minimal effect on snRNP association. Finally, addition of excess amino terminal domain of galectin-3 inhibited incorporation of galectin-1 into splicing complexes, explaining the dominant-negative effect of the amino domain on splicing activity. We conclude that galectins are directly associated with splicing complexes throughout the splicing pathway in a mutually exclusive manner and they bind a common splicing partner through weak protein–protein interactions.
Collapse
Affiliation(s)
| | | | - John L. Wang
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI 48824, USA
| | - Ronald J. Patterson
- To whom correspondence should be addressed. Tel: +1 517 355 6463/1541; Fax: +1 517 353 8957;
| |
Collapse
|
21
|
Lee MJ, Ayaki H, Goji J, Kitamura K, Nishio H. Cadmium restores in vitro splicing activity inhibited by zinc-depletion. Arch Toxicol 2006; 80:638-43. [PMID: 16645842 DOI: 10.1007/s00204-006-0104-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 03/30/2006] [Indexed: 11/28/2022]
Abstract
Zinc (Zn)-depletion inhibits the second step of RNA splicing, namely exon-ligation. To investigate the effects of cadmium (Cd) and other metal ions on RNA splicing inhibited by Zn-depletion, we measured in vitro splicing activities in the presence of these metals. Zn-depletion in the splicing reaction mixture was achieved by addition of a Zn-chelator, 1,10-phenanthroline. Cd(II) at 1, 5 and 10 microM restored the splicing activity to 2, 24 and 72% of that in the control reaction mixture, while higher concentrations of Cd(II) decreased the splicing activity, and more than 50 microM Cd(II) showed a complete absence of spliced products. Hg(II) also restored the splicing activity, albeit to a lesser extent, since 5 and 10 microM Hg(II) restored the splicing activity to 3 and 4% of the control value. The other metal ions examined in this study, Co(II), Cu(II), Mg(II) and Mn(II), did not show any restoration of the splicing activity. We concluded that Cd(II) could restore the in vitro splicing activity inhibited by Zn-depletion, although higher concentrations of Cd(II) prevented progress of the RNA splicing reaction. These results suggest that Cd(II) has a bifunctional property regarding RNA splicing, and is stimulatory at low concentrations and inhibitory at high concentrations.
Collapse
Affiliation(s)
- Myeong Jin Lee
- Department of Public Health, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | | | |
Collapse
|
22
|
Clay NK, Nelson T. The recessive epigenetic swellmap mutation affects the expression of two step II splicing factors required for the transcription of the cell proliferation gene STRUWWELPETER and for the timing of cell cycle arrest in the Arabidopsis leaf. THE PLANT CELL 2005; 17:1994-2008. [PMID: 15937226 PMCID: PMC1167547 DOI: 10.1105/tpc.105.032771] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Generally, cell division can be uncoupled from multicellular development, but more recent evidence suggests that cell cycle progression and arrest is coupled to organogenesis and growth. We describe a recessive mutant, swellmap (smp), with reduced organ size and cell number. This defect is partially compensated for by an increase in final cell size. The mutation causes a precocious arrest of cell proliferation in the organ primordium and possibly reduces the rate of cell division there. The mutation proved to be an epigenetic mutation (renamed smp(epi)) that defined a single locus, SMP1, but affected the expression of both SMP1 and a second very similar gene, SMP2. Both genes encode CCHC zinc finger proteins with similarities to step II splicing factors involved in 3' splice site selection. Genetic knockouts demonstrate that the genes are functionally redundant and essential. SMP1 expression is associated with regions of cell proliferation. Overexpression of SMP1 produced an increase in organ cell number and a partial decrease in cell expansion. The smp(epi) mutation does not affect expression of eukaryotic cell cycle regulator genes CYCD3;1 and CDC2A but affects expression of the cell proliferation gene STRUWWELPETER (SWP) whose protein has similarities to Med150/Rgr1-like subunits of the Mediator complex required for transcriptional activation. Introduction of SWP cDNA into smp(epi) plants fully restored them to wild-type, but the expression of both SMP1 and SMP2 were also restored in these lines, suggesting a physical interaction among the three proteins and/or genes. We propose that step II splicing factors and a transcriptional Mediator-like complex are involved in the timing of cell cycle arrest during leaf development.
Collapse
Affiliation(s)
- Nicole K Clay
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8104, USA
| | | |
Collapse
|
23
|
Cazalla D, Newton K, Cáceres JF. A novel SR-related protein is required for the second step of Pre-mRNA splicing. Mol Cell Biol 2005; 25:2969-80. [PMID: 15798186 PMCID: PMC1069619 DOI: 10.1128/mcb.25.8.2969-2980.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.
Collapse
Affiliation(s)
- Demian Cazalla
- MRC Human Genetics Unit, Western General Hospital, Crewe Rd., Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | |
Collapse
|
24
|
Shomron N, Alberstein M, Reznik M, Ast G. Stress alters the subcellular distribution of hSlu7 and thus modulates alternative splicing. J Cell Sci 2005; 118:1151-9. [PMID: 15728250 DOI: 10.1242/jcs.01720] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During pre-mRNA splicing, introns are removed and exons are ligated to form an mRNA. Exon choice is determined by different nuclear protein concentrations varying among tissues and cell types or by developmental stage. These can be altered by different cellular circumstances such as physiological stimuli, environmental effects and phosphorylation state. The splicing factor hSlu7 plays an important role in 3' splice site selection during the second step of splicing in vitro and has been suggested to affect alternative splicing in vivo. Our results indicate that an ultraviolet-C (UV-C) stress stimulus triggers changes in the alternative splicing patterns of cellular genes by decreasing the nuclear concentration of hSlu7 through the modulation of its nucleus-to-cytoplasm transport. This shift is mostly dependent on the Jun N-terminal kinase (JNK) cascade. Although we found by RNAi knockdown that hSlu7 is not essential for cell viability, its nuclear concentration effects exon choice and inclusion:skipping ratio of alternative splicing. A possible spatial and temporal regulatory mechanism by which hSlu7 protein levels are regulated within the nucleus is suggested, thus implying a broad effect of hSlu7 on alternative splicing.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alternative Splicing
- Base Sequence
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Nucleus/radiation effects
- Cell Survival
- Cytoplasm/metabolism
- Exons
- Glutathione Transferase/metabolism
- HeLa Cells
- Humans
- Image Processing, Computer-Assisted
- Introns
- JNK Mitogen-Activated Protein Kinases/metabolism
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Phosphorylation
- RNA/metabolism
- RNA Interference
- RNA Splicing Factors
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/metabolism
- Sequence Homology, Nucleic Acid
- Spliceosomes/metabolism
- Temperature
- Time Factors
- Ultraviolet Rays
Collapse
Affiliation(s)
- Noam Shomron
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | | | |
Collapse
|
25
|
Shomron N, Reznik M, Ast G. Splicing factor hSlu7 contains a unique functional domain required to retain the protein within the nucleus. Mol Biol Cell 2004; 15:3782-95. [PMID: 15181151 PMCID: PMC491837 DOI: 10.1091/mbc.e04-02-0152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 05/17/2004] [Accepted: 05/21/2004] [Indexed: 12/23/2022] Open
Abstract
Precursor-mRNA splicing removes the introns and ligates the exons to form a mature mRNA. This process is carried out in a spliceosomal complex containing >150 proteins and five small nuclear ribonucleoproteins. Splicing protein hSlu7 is required for correct selection of the 3' splice site. Here, we identify by bioinformatics and mutational analyses three functional domains of the hSlu7 protein that have distinct roles in its subcellular localization: a nuclear localization signal, a zinc-knuckle motif, and a lysine-rich region. The zinc-knuckle motif is embedded within the nuclear localization signal in a unique functional structure that is not required for hSlu7's entrance into the nucleus but rather to maintain hSlu7 inside it, preventing its shuttle back to the cytoplasm via the chromosomal region maintenance 1 pathway. Thus, the zinc-knuckle motif of hSlu7 determines the cellular localization of the protein through a nucleocytoplasmic-sensitive shuttling balance. Altogether, this indicates that zinc-dependent nucleocytoplasmic shuttling might be the possible molecular basis by which hSlu7 protein levels are regulated within the nucleus.
Collapse
Affiliation(s)
- Noam Shomron
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 69978
| | | | | |
Collapse
|
26
|
Shomron N, Malca H, Vig I, Ast G. Reversible inhibition of the second step of splicing suggests a possible role of zinc in the second step of splicing. Nucleic Acids Res 2002; 30:4127-37. [PMID: 12364591 PMCID: PMC140552 DOI: 10.1093/nar/gkf553] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A multicomponent complex of proteins and RNA is assembled on the newly synthesized pre-mRNA to form the spliceosome. This complex catalyzes a two-step transesterification reaction required to remove the introns and ligate the exons. To date, only six proteins have been found necessary for the second step of splicing in yeast, and their human homologs have been identified. We demonstrate that the addition of the selective chelator of zinc, 1,10-phenanthroline, to an in vitro mRNA splicing reaction causes a dose-dependent inhibition of the second step of splicing. This inhibition is accompanied by the accumulation of spliceosomes paused before completion of step two of the splicing reaction. The inhibition effect on the second step is due neither to snRNA degradation nor to direct binding to the mRNA, and is reversible by dialysis or add-back of zinc, but not of other divalent metals, at the beginning of the reaction. These findings suggest that the activity of a putative zinc-dependent metalloprotein(s) involved in the second step of splicing is affected. This study outlines a new method for specific reversible inhibition of the second step of splicing using external reagents, and suggests a possible role of divalent cations in the second step of mRNA splicing, most likely zinc.
Collapse
Affiliation(s)
- Noam Shomron
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | | | |
Collapse
|
27
|
Peng R, Dye BT, Pérez I, Barnard DC, Thompson AB, Patton JG. PSF and p54nrb bind a conserved stem in U5 snRNA. RNA (NEW YORK, N.Y.) 2002; 8:1334-47. [PMID: 12403470 PMCID: PMC1370341 DOI: 10.1017/s1355838202022070] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PTB-associated splicing factor (PSF) has been implicated in both early and late steps of pre-mRNA splicing, but its exact role in this process remains unclear. Here we show that PSF interacts with p54nrb, a highly related protein first identified based on cross-reactivity to antibodies against the yeast second-step splicing factor Prpl8. We performed RNA-binding experiments to determine the preferred RNA-binding sequences for PSF and p54nrb, both individually and in combination. In all cases, iterative selection assays identified a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. Filter-binding assays and RNA affinity selection experiments demonstrated that PSF and p54nrb bind U5 snRNA with both the sequence and structure of stem 1b contributing to binding specificity. Sedimentation analyses show that both proteins associate with spliceosomes and with U4/U6.U5 tri-snPNP.
Collapse
Affiliation(s)
- Rui Peng
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
28
|
James SA, Turner W, Schwer B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2002; 8:1068-77. [PMID: 12212850 PMCID: PMC1370317 DOI: 10.1017/s1355838202022033] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Slu7 and Prp18 act in concert during the second step of yeast pre-mRNA splicing. Here we show that the 382-amino-acid Slu7 protein contains two functionally important domains: a zinc knuckle (122CRNCGEAGHKEKDC135) and a Prp18-interaction domain (215EIELMKLELY224). Alanine cluster mutations of 215EIE217 and 221LELY224 abrogated Slu7 binding to Prp18 in a two-hybrid assay and in vitro, and elicited temperature-sensitive growth phenotypes in vivo. Yet, the mutations had no impact on Slu7 function in pre-mRNA splicing in vitro. Single alanine mutations of zinc knuckle residues Cys122, His130, and Cys135 had no effect on cell growth, but caused Slu7 function during pre-mRNA splicing in vitro to become dependent on Prp18. Specifically, zinc knuckle mutants required Prp18 in order to bind to the spliceosome. Compound mutations in both Slu7 domains (e.g., C122A-EIE, H130A-EIE, and C135A-EIE) were lethal in vivo and abolished splicing in vitro, suggesting that the physical interaction between Slu7 and Prp18 is important for cooperation in splicing. Depletion/reconstitution studies coupled with immunoprecipitations suggest that second step factors are recruited to the spliceosome in the following order: Slu7 --> Prp18 --> Prp22. All three proteins are released from the spliceosome after step 2 concomitant with release of mature mRNA.
Collapse
Affiliation(s)
- Shelly-Ann James
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
29
|
Lallena MJ, Chalmers KJ, Llamazares S, Lamond AI, Valcárcel J. Splicing regulation at the second catalytic step by Sex-lethal involves 3' splice site recognition by SPF45. Cell 2002; 109:285-96. [PMID: 12015979 DOI: 10.1016/s0092-8674(02)00730-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Drosophila protein Sex-lethal (SXL) promotes skipping of exon 3 from its own pre-mRNA. An unusual sequence arrangement of two AG dinucleotides and an intervening polypyrimidine (Py)-tract at the 3' end of intron 2 is important for Sxl autoregulation. Here we show that U2AF interacts with the Py-tract and downstream AG, whereas the spliceosomal protein SPF45 interacts with the upstream AG and activates it for the second catalytic step of the splicing reaction. SPF45 represents a new class of second step factors, and its interaction with SXL blocks splicing at the second step. These results are in contrast with other known mechanisms of splicing regulation, which target early events of spliceosome assembly. A similar role for SPF45 is demonstrated in the activation of a cryptic 3' ss generated by a mutation that causes human beta-thalassemia.
Collapse
Affiliation(s)
- María José Lallena
- Gene Expression Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
30
|
Jurica MS, Licklider LJ, Gygi SR, Grigorieff N, Moore MJ. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA (NEW YORK, N.Y.) 2002; 8:426-39. [PMID: 11991638 PMCID: PMC1370266 DOI: 10.1017/s1355838202021088] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We describe characterization of spliceosomes affinity purified under native conditions. These spliceosomes consist largely of C complex containing splicing intermediates. After C complex assembly on an MS2 affinity-tagged pre-mRNA substrate containing a 3' splice site mutation, followed by RNase H digestion of earlier complexes, spliceosomes were purified by size exclusion and affinity selection. This protocol yielded 40S C complexes in sufficient quantities to visualize in negative stain by electron microscopy. Complexes purified in this way contain U2, U5, and U6 snRNAs, but very little U1 or U4 snRNA. Analysis by tandem mass spectrometry confirmed the presence of core snRNP proteins (SM and LSM), U2 and U5 snRNP-specific proteins, and the second step factors Prp16, Prp17, Slu7, and Prp22. In contrast, proteins specific to earlier splicing complexes, such as U2AF and U1 snRNP components, were not detected in C complex, but were present in similarly purified H complex. Images of these spliceosomes revealed single particles with dimensions of approximately 270 x 240 A that assort into well-defined classes. These images represent an important first step toward attaining a comprehensive three-dimensional understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Melissa S Jurica
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | |
Collapse
|
31
|
Hertweck M, Hiller R, Mueller MW. Inhibition of nuclear pre-mRNA splicing by antibiotics in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:175-83. [PMID: 11784311 DOI: 10.1046/j.0014-2956.2001.02636.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of antibiotics have been reported to disturb the decoding process in prokaryotic translation and to inhibit the function of various natural ribozymes. We investigated the effect of several antibiotics on in vitro splicing of a eukaryotic nuclear pre-mRNA (beta-globin). Of the eight antibiotics studied, erythromycin, Cl-tetracycline and streptomycin were identified as splicing inhibitors in nuclear HeLa cell extract. The K(i) values were 160, 180 and 230 microm, respectively. Cl-tetracycline-mediated and streptomycin-mediated splicing inhibition were in the molar inhibition range for hammerhead and human hepatitis delta virus ribozyme self-cleavage (tetracycline), of group-I intron self-splicing (streptomycin) and inhibition of RNase P cleavage by some aminoglycosides. Cl-tetracycline and the aminocyclitol glycoside streptomycin were found to have an indirect effect on splicing by unspecific binding to the pre-mRNA, suggesting that the inhibition is the result of disturbance of the correct folding of the pre-mRNA into the splicing-compatible tertiary structure by the charged groups of these antibiotics. The macrolide, erythromycin, the strongest inhibitor, had only a slight effect on formation of the presplicing complexes A and B, but almost completely inhibited formation of the splicing-active C complex by binding to nuclear extract component(s). This results in direct inhibition of the second step of pre-mRNA splicing. To our knowledge, this is the first report on specific inhibition of nuclear splicing by an antibiotic. The functional groups involved in the interaction of erythromycin with snRNAs and/or splicing factors require further investigation.
Collapse
Affiliation(s)
- Maren Hertweck
- Vienna BioCenter, Institute of Microbiology and Genetics, Vienna, Austria
| | | | | |
Collapse
|
32
|
Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G. SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 2001; 20:5443-52. [PMID: 11574476 PMCID: PMC125643 DOI: 10.1093/emboj/20.19.5443] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common neurodegenerative disease caused by deletion or loss-of-function mutations of the survival of motor neurons (SMN) protein. SMN is in a complex with several proteins, including Gemin2, Gemin3 and Gemin4, and it plays important roles in small nuclear ribonucleoprotein (snRNP) biogenesis and in pre-mRNA splicing. Here, we characterize three new hnRNP proteins, collectively referred to as hnRNP Qs, which are derived from alternative splicing of a single gene. The hnRNP Q proteins interact with SMN, and the most common SMN mutant found in SMA patients is defective in its interactions with them. We further demonstrate that hnRNP Qs are required for efficient pre-mRNA splicing in vitro. The hnRNP Q proteins may provide a molecular link between the SMN complex and splicing.
Collapse
Affiliation(s)
- Zissimos Mourelatos
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, and Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA Corresponding author e-mail:
| | - Linda Abel
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, and Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA Corresponding author e-mail:
| | - Jeongsik Yong
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, and Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA Corresponding author e-mail:
| | - Naoyuki Kataoka
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, and Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA Corresponding author e-mail:
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, and Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA Corresponding author e-mail:
| |
Collapse
|
33
|
Dagher SF, Fu XD. Evidence for a role of Sky1p-mediated phosphorylation in 3' splice site recognition involving both Prp8 and Prp17/Slu4. RNA (NEW YORK, N.Y.) 2001; 7:1284-97. [PMID: 11565750 PMCID: PMC1370172 DOI: 10.1017/s1355838201016077] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The SRPK family of kinases is specific for RS domain-containing splicing factors and known to play a critical role in protein-protein interaction and intracellular distribution of their substrates in both yeast and mammalian cells. However, the function of these kinases in pre-mRNA splicing remains unclear. Here we report that SKY1, a SRPK family member in Saccharomyces cerevisiae, genetically interacts with PRP8 and PRP17/SLU4, both of which are involved in splice site selection during pre-mRNA splicing. Prp8 is essential for splicing and is known to interact with both 5' and 3' splice sites in the spliceosomal catalytic center, whereas Prp17/Slu4 is nonessential and is required only for efficient recognition of the 3' splice site. Interestingly, deletion of SKY1 was synthetically lethal with all prp17 mutants tested, but only with specific prp8 alleles in a domain implicated in governing fidelity of 3'AG recognition. Indeed, deletion of SKY1 specifically suppressed 3'AG mutations in ACT1-CUP1 splicing reporters. These results suggest for the first time that 3' AG recognition may be subject to phosphorylation regulation by Sky1p during pre-mRNA splicing.
Collapse
Affiliation(s)
- S F Dagher
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla 92093-0651, USA
| | | |
Collapse
|
34
|
Dietrich RC, Peris MJ, Seyboldt AS, Padgett RA. Role of the 3' splice site in U12-dependent intron splicing. Mol Cell Biol 2001; 21:1942-52. [PMID: 11238930 PMCID: PMC86782 DOI: 10.1128/mcb.21.6.1942-1952.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
U12-dependent introns containing alterations of the 3' splice site AC dinucleotide or alterations in the spacing between the branch site and the 3' splice site were examined for their effects on splice site selection in vivo and in vitro. Using an intron with a 5' splice site AU dinucleotide, any nucleotide could serve as the 3'-terminal nucleotide, although a C residue was most active, while a U residue was least active. The penultimate A residue, by contrast, was essential for 3' splice site function. A branch site-to-3' splice site spacing of less than 10 or more than 20 nucleotides strongly activated alternative 3' splice sites. A strong preference for a spacing of about 12 nucleotides was observed. The combined in vivo and in vitro results suggest that the branch site is recognized in the absence of an active 3' splice site but that formation of the prespliceosomal complex A requires an active 3' splice site. Furthermore, the U12-type spliceosome appears to be unable to scan for a distal 3' splice site.
Collapse
Affiliation(s)
- R C Dietrich
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
35
|
Dye BT, Patton JG. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Exp Cell Res 2001; 263:131-44. [PMID: 11161712 DOI: 10.1006/excr.2000.5097] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using fusions with green fluorescent protein (GFP), we have identified sequences in the polypyrimidine tract binding protein-associated splicing factor (PSF) that are involved in nuclear and subnuclear localization. Like other splicing factors, PSF localizes to the nucleus, is absent from nucleoli, and accumulates in punctate structures within the nucleus referred to as speckles. However, PSF lacks the known speckle localization domains that have been identified in other proteins. Instead, the localization of PSF to speckles is dependent on an RNA recognition motif (RRM). PSF comprises an N-terminal proline- and glutamine-rich domain, two RRMs (RRM1 and RRM2), and a C-terminal region that contains two nuclear localization signals, both of which are required for complete nuclear localization. Deletion of RRM2 led to a complete loss of speckle localization and resulted in diffuse accumulation of PSF in the nucleus, indicating that RRM2 is required for subnuclear localization. Thus, PSF appears to localize to speckles through a novel pathway that is dependent on its second RRM. Consistent with the use of a novel subnuclear targeting pathway, PSF redistributes to perinucleolar clusters upon the addition of a transcription inhibitor whereas other splicing factors display increased localization to speckles in the absence of transcription. A yeast two-hybrid screen identified four-and-a-half LIM-only protein 2 (FHL2) as a potential RRM2 interaction partner, indicating a possible role for zinc-finger or LIM domains in the localization of splicing factors to subnuclear speckles.
Collapse
Affiliation(s)
- B T Dye
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
36
|
Lindsey-Boltz LA, Chawla G, Srinivasan N, Vijayraghavan U, Garcia-Blanco MA. The carboxy terminal WD domain of the pre-mRNA splicing factor Prp17p is critical for function. RNA (NEW YORK, N.Y.) 2000; 6:1289-1305. [PMID: 10999606 PMCID: PMC1370002 DOI: 10.1017/s1355838200000327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160-455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the beta-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between beta strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing.
Collapse
Affiliation(s)
- L A Lindsey-Boltz
- Program in Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
37
|
Suarez-Huerta N, Boeynaems JM, Communi D. Cloning, genomic organization, and tissue distribution of human Ssf-1. Biochem Biophys Res Commun 2000; 275:37-42. [PMID: 10944437 DOI: 10.1006/bbrc.2000.3259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the screening of a human placenta cDNA library, realized in order to isolate the P2Y(11) coding sequence, an unrelated cDNA was cloned. We identified a 1422 bp open reading frame encoding a human protein displaying 40% amino acid identity with the Saccharomyces cerevisiae Ssf-1, a protein involved in the second step of mRNA splicing. Sequencing of the corresponding genomic DNA showed that the gene encoding human Ssf-1 is located upstream to the P2Y(11) gene on chromosome 19p31. Comparison of the cDNA and genomic DNA sequences revealed that the human Ssf-1 gene is split into 12 exons. Northern blotting experiments showed that the 1.7 kb Ssf-1 mRNA presents an ubiquitous tissue expression. We also show that, in HL-60 human promyelocytic leukemia cells, Ssf-1 mRNA is rapidly upregulated following a treatment by granulocyte-colony stimulating factor and dibutyryl-cyclicAMP, two agents known to induce the granulocytic differentiation of these cells.
Collapse
Affiliation(s)
- N Suarez-Huerta
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire, Brussels, Belgium.
| | | | | |
Collapse
|
38
|
Käufer NF, Potashkin J. Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals. Nucleic Acids Res 2000; 28:3003-10. [PMID: 10931913 PMCID: PMC108416 DOI: 10.1093/nar/28.16.3003] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Based on genetic and bioinformatic analysis, 80 proteins from the newly sequenced Schizosaccharomyces pombe genome appear to be splicing factors. The fission yeast splicing factors were compared to those of Homo sapiens and Saccharomyces cerevisiae in order to determine the extent of conservation or divergence that has occurred over the billion years of evolution that separate these organisms. Our results indicate that many of the factors present in all three organisms have been well conserved throughout evolution. It is calculated that 38% of the fission yeast splicing factors are more similar to the human proteins than to the budding yeast proteins (>10% more similar or similar over a greater region). Many of the factors in this category are required for recognition of the 3' splice site. Ten fission yeast splicing factors, including putative regulatory factors, have human homologs, but no apparent budding yeast homologs based on sequence data alone. Many of the budding yeast factors that are absent in fission yeast are associated with the U1 and U4/U6.U5 snRNP. Collectively the data presented in this survey indicate that of the two yeasts, S.POMBE: contains a splicing machinery more closely reflecting the archetype of a spliceosome.
Collapse
Affiliation(s)
- N F Käufer
- Institut für Genetik-Biozentrum, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | |
Collapse
|
39
|
Abstract
The pre-mRNA splicing machinery consists of five small nuclear RNAs (U1, U2, U4, U5 and U6) and more than fifty proteins. Over the past year, important advances have been made in understanding how these factors function to achieve fidelity in splicing. Of particular note were the discoveries that the splicing factor U2AF(35) recognizes the AG dinucleotide at the 3' splice site early in spliceosome assembly, that a DEAD-box ATPase, Prp28, triggers specific rearrangements of the spliceosome, and that the splicing factor hSlu7 functions in the fidelity of AG choice during catalytic step II of splicing.
Collapse
Affiliation(s)
- R Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Jiang J, Horowitz DS, Xu RM. Crystal structure of the functional domain of the splicing factor Prp18. Proc Natl Acad Sci U S A 2000; 97:3022-7. [PMID: 10737784 PMCID: PMC16185 DOI: 10.1073/pnas.97.7.3022] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The splicing factor Prp18 is required for the second step of pre-mRNA splicing. We have isolated and determined the crystal structure of a large fragment of the Saccharomyces cerevisiae Prp18 that lacks the N-terminal 79 amino acids. This fragment, called Prp18Delta79, is fully active in yeast splicing in vitro and includes the sequences of Prp18 that have been evolutionarily conserved. The core structure of Prp18Delta79 is compact and globular, consisting of five alpha-helices that adopt a novel fold that we have designated the five-helix X-bundle. The structure suggests that one face of Prp18 interacts with the splicing factor Slu7, whereas the more evolutionarily conserved amino acids in Prp18 form the opposite face. The most highly conserved region of Prp18, a nearly invariant stretch of 19 aa, forms part of a loop between two alpha-helices and may interact with the U5 small nuclear ribonucleoprotein particles. The structure is consistent with a model in which Prp18 forms a bridge between Slu7 and the U5 small nuclear ribonucleoprotein particles.
Collapse
Affiliation(s)
- J Jiang
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
41
|
Gordon PM, Sontheimer EJ, Piccirilli JA. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA (NEW YORK, N.Y.) 2000; 6:199-205. [PMID: 10688359 PMCID: PMC1369906 DOI: 10.1017/s1355838200992069] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mechanistic analyses of nuclear pre-mRNA splicing by the spliceosome and group II intron self-splicing provide insight into both the catalytic strategies of splicing and the evolutionary relationships between the different splicing systems. We previously showed that 3'-sulfur substitution at the 3' splice site of a nuclear pre-mRNA has no effect on splicing. We now report that 3'-sulfur substitution at the 3' splice site of a nuclear pre-mRNA causes a switch in metal specificity when the second step of splicing is monitored using a bimolecular exon-ligation assay. This suggests that the spliceosome uses a catalytic metal ion to stabilize the 3'-oxyanion leaving group during the second step of splicing, as shown previously for the first step. The lack of a metal-specificity switch under cis splicing conditions indicates that a rate-limiting conformational change between the two steps of splicing may mask the subsequent chemical step and the metal-specificity switch. As the group II intron, a true ribozyme, uses identical catalytic strategies for splicing, our results strengthen the argument that the spliceosome is an RNA catalyst that shares a common molecular ancestor with group II introns.
Collapse
Affiliation(s)
- P M Gordon
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
42
|
Chen S, Anderson K, Moore MJ. Evidence for a linear search in bimolecular 3' splice site AG selection. Proc Natl Acad Sci U S A 2000; 97:593-8. [PMID: 10639124 PMCID: PMC15375 DOI: 10.1073/pnas.97.2.593] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In most eukaryotic introns the 3' splice site is defined by a surprisingly short AG consensus found a variable distance downstream of the branch site. Exactly how the spliceosome determines which AG to use, however, is not well understood. Previously we showed that when the branch site and 3' splice site AG are supplied by separate RNA molecules, there is a strong preference for use of the 5'-most AG in the 3' splice site-containing RNA. Here we show that this apparent 5'-->3' directionality holds even when this RNA contains four tandem repeats of a 6-nt sequence containing AG. Exactly the same pattern of 3' splice site choice was observed when the same tandem repeats were incorporated into a full-length splicing substrate. When the 3' splice site AG is supplied by a separate RNA, that RNA must be linear with an unobstructed 5' end. Similarly, the branch-containing RNA must be truncated immediately 3' to the polypyrimidine tract. A model is presented that incorporates these observations and reconciles previously proposed mechanisms for 3' splice site selection.
Collapse
Affiliation(s)
- S Chen
- Howard Hughes Medical Institute, Department of Biochemistry, MS 009, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | | | | |
Collapse
|
43
|
Chua K, Reed R. The RNA splicing factor hSlu7 is required for correct 3' splice-site choice. Nature 1999; 402:207-10. [PMID: 10647016 DOI: 10.1038/46086] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The production of correctly spliced messenger RNA requires two catalytic splicing steps. During step II, exon 1 attacks an adenine-guanine (AG) dinucleotide at the 3' splice site. This AG is usually located between 18 and 40 nucleotides downstream from the branch site, and closer AGs are skipped in favour of AGs located more optimally downstream. At present, little is understood about how the correct AG is distinguished from other AGs. Here we describe a metazoan splicing factor (hSlu7) that is required for selection of the correct AG. In the absence of hSlu7, use of the correct AG is suppressed and incorrect AGs are activated. We investigated this loss of fidelity by analysing spliceosomes assembled in the absence of hSlu7. These studies reveal that exon 1 is loosely associated with these spliceosomes. Thus, the improperly held exon cannot access the correct AG, but can attack other AGs indiscriminately. We conclude that hSlu7 is required to hold exon 1 tightly within the spliceosome for attack on a prespecified AG.
Collapse
Affiliation(s)
- K Chua
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Chew SL, Liu HX, Mayeda A, Krainer AR. Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing. Proc Natl Acad Sci U S A 1999; 96:10655-60. [PMID: 10485881 PMCID: PMC17938 DOI: 10.1073/pnas.96.19.10655] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exonic splicing enhancers (ESEs) activate pre-mRNA splicing by promoting the use of the flanking splice sites. They are recognized by members of the serine/arginine-rich (SR) family of proteins, such as splicing factor 2/alternative splicing factor (SF2/ASF), which recruit basal splicing factors to form the initial complexes during spliceosome assembly. The in vitro splicing kinetics of an ESE-dependent IgM pre-mRNA suggested that an SF2/ASF-specific ESE has additional functions later in the splicing reaction, after the completion of the first catalytic step. A bimolecular exon ligation assay, which physically uncouples the first and second catalytic steps of splicing in a trans-splicing reaction, was adapted to test the function of the ESE after the first step. A 3' exon containing the SF2/ASF-specific ESE underwent bimolecular exon ligation, whereas 3' exons without the ESE or with control sequences did not. The ESE-dependent trans-splicing reaction occurred after inactivation of U1 or U2 small nuclear ribonucleoprotein particles, compatible with a functional assay for events after the first step of splicing. The ESE-dependent step appears to take place before the ATP-independent part of the second catalytic step. Bimolecular exon ligation also occurred in an S100 cytosolic extract, requiring both the SF2/ASF-dependent ESE and complementation with SF2/ASF. These data suggest that some ESEs can act late in the splicing reaction, together with appropriate SR proteins, to enhance the second catalytic step of splicing.
Collapse
Affiliation(s)
- S L Chew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
45
|
Collins CA, Guthrie C. Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev 1999; 13:1970-82. [PMID: 10444595 PMCID: PMC316919 DOI: 10.1101/gad.13.15.1970] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The highly conserved spliceosomal protein Prp8 is known to cross-link the critical sequences at both the 5' (GU) and 3' (YAG) ends of the intron. We have identified prp8 mutants with the remarkable property of suppressing exon ligation defects due to mutations in position 2 of the 5' GU, and all positions of the 3' YAG. The prp8 mutants also suppress mutations in position A51 of the critical ACAGAG motif in U6 snRNA, which has been observed previously to cross-link position 2 of the 5' GU. Other mutations in the 5' splice site, branchpoint, and neighboring residues of the U6 ACAGAG motif are not suppressed. Notably, the suppressed residues are specifically conserved from yeast to man, and from U2- to U12-dependent spliceosomes. We propose that Prp8 participates in a previously unrecognized tertiary interaction between U6 snRNA and both the 5' and 3' ends of the intron. This model suggests a mechanism for positioning the 3' splice site for catalysis, and assigns a fundamental role for Prp8 in pre-mRNA splicing.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Binding Sites
- Catalytic Domain
- Conserved Sequence/genetics
- Exons/genetics
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Suppressor/genetics
- Introns/genetics
- Models, Genetic
- Mutation/genetics
- Phenotype
- RNA Splicing/genetics
- RNA, Fungal/genetics
- RNA, Small Nuclear/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear
- Ribonucleoprotein, U5 Small Nuclear
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Suppression, Genetic
Collapse
Affiliation(s)
- C A Collins
- Graduate Group in Biophysics, University of California San Francisco (UCSF), San Francisco, California 94143-0448, USA
| | | |
Collapse
|