1
|
Wu X, Xu H, Xia E, Gao L, Hou Y, Sun L, Zhang H, Cheng Y. Histone modifications in the regulation of erythropoiesis. Ann Med 2025; 57:2490824. [PMID: 40214280 PMCID: PMC11995772 DOI: 10.1080/07853890.2025.2490824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION The pathogenesis of anemia and other erythroid dysphasia are mains poorly understood, primarily due to limited knowledge about the differentiation processes and regulatory mechanisms governing erythropoiesis. Erythropoiesis is a highly complex and precise biological process, that can be categorized into three distinct stages: early erythropoiesis, terminal erythroid differentiation, and reticulocyte maturation, and this complex process is tightly controlled by multiple regulatory factors. Emerging evidence highlights the crucial role of epigenetic modifications, particularly histone modifications, in regulating erythropoiesis. Methylation and acetylation are two common modification forms that affect genome accessibility by altering the state of chromatin, thereby regulating gene expression during erythropoiesis. DISCUSSION This review systematically examines the roles of histone methylation and acetylation, along with their respective regulatory enzymes, in regulating the development and differentiation of hematopoietic stem/progenitor cells (HSPCs) and erythroid progenitors. Furthermore, we discuss the involvement of these histone modifications in erythroid-specific developmental processes, including hemoglobin switching, chromatin condensation, and enucleation.Conclusions This review summarizes the current understanding of the role of histone modifications in erythropoiesis based on existing research, as a foundation for further research the mechanisms of epigenetic regulatory in erythropoiesis.
Collapse
Affiliation(s)
- Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongdi Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Erxi Xia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Linru Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Hou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Ling J, Wang S, Yi C, Zheng X, Zhou Y, Lou S, Li H, Yu R, Wu W, Wu Q, Sun X, Lv Y, Zhu H, Li Q, Jin H, Chen J, Zheng J, Qin W. PRMT1-mediated modification of H4R3me2a promotes liver cancer progression by enhancing the transcriptional activity of SOX18. Hepatol Commun 2025; 9:e0647. [PMID: 40130992 PMCID: PMC11936655 DOI: 10.1097/hc9.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND HCC is one of the most prevalent and deadliest malignancies worldwide, with a poor prognosis. Altered histone modifications have been shown to play a significant role in HCC. However, the biological roles and clinical relevance of specific histone modifications, such as the asymmetric dimethylation on arginine 3 of histone H4 (H4R3me2a), remain poorly understood in HCC. METHODS In this study, immunohistochemical staining was performed to assess histone H4R3me2a modification in 32 pairs of HCC tissues and corresponding adjacent nontumor liver tissues. Cellular-level experiments and subcutaneous xenograft models in nude mice were used to investigate the effects of silencing protein arginine methyltransferase 1 (PRMT1) with shRNA or pharmacologically blocking PRMT1 activity on HCC cell proliferation, migration, and invasion. RNA-seq analysis combined with Chip-qPCR validation was employed to explore the regulatory mechanism of PRMT1 on SOX18 expression. The downstream target of SOX18 was identified using the JASPAR database and a dual-luciferase reporter system. RESULTS The level of histone H4R3me2a modification was significantly elevated in HCC tissues and closely associated with poor prognosis in patients with HCC. Silencing PRMT1 or pharmacologically inhibiting its activity effectively suppressed the proliferation, migration, and invasion of HCC cells. Mechanistically, PRMT1 was found to regulate SOX18 expression by modulating histone H4R3me2a modification in the SOX18 promoter region. LOXL1 was identified as a downstream target of the transcription factor SOX18. CONCLUSIONS This study revealed the clinical relevance of histone H4R3me2a modification in HCC and demonstrated that PRMT1 promotes malignant behavior in HCC cells by modulating H4R3me2a modification in the SOX18 promoter region. The findings elucidate the role and molecular mechanism of PRMT1-mediated histone H4R3me2a modification in HCC progression and highlight the potential clinical applications of PRMT1 inhibitors. These results may provide new insights into the treatment of HCC.
Collapse
Affiliation(s)
- Jing Ling
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhe Yi
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xingling Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunjia Lou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruobing Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiangxin Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijue Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Arya SK, Palli SR. N-alpha-acetyltransferase 40 modulates ecdysteroid action through chromatin accessibility changes near the promoters of 20-hydroxyecdysone response genes in Tribolium Castaneum TcA cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104285. [PMID: 39986546 PMCID: PMC12067971 DOI: 10.1016/j.ibmb.2025.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Changes in chromatin accessibility leading to altered gene expression play critical roles in cellular response to environmental signals. The function of N-alpha-acetyltransferase 40 (NAA40) in modulating chromatin accessibility and transcriptional regulation of 20-hydroxyecdysone (20E) response in Tribolium castaneum (TcA) cells was investigated. RNA interference (RNAi) was used to knockdown NAA40, and ATAC and RNA sequencing were used to examine changes in chromatin accessibility and gene expression in TcA cells exposed to 20E. ATAC-seq data revealed chromatin accessibility patterns between NAA40 knockdown and control cells exposed to 20E. Significant differences were detected in chromatin accessibility at transcription start sites (TSS) and promoter regions between dsNAA40 or dsGFP-treated cells exposed to 20E. Differential peak analysis identified many regions in the genome with altered chromatin accessibility upon NAA40 knockdown or 20E treatment, suggesting that NAA40 plays a critical role in 20E regulation of gene expression by modifying chromatin accessibility near the promoters of genes involved in 20E action. RNA sequence data analysis revealed changes in the expression of 20E response genes after NAA40 knockdown or 20E treatment. Comparison of ATAC-seq and RNA-seq data showed a correlation between chromatin accessibility and transcriptional changes of 20E response genes such as E74 and E75. Our results demonstrate that NAA40 affects chromatin dynamics and transcriptional regulation in modulating 20E response, increasing our understanding of the molecular mechanisms underlying the hormonal regulation of gene expression.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
4
|
Tan X, Xun L, Yin Q, Chen C, Zhang T, Shen T. Epigenetic Modifications in HBV-Related Hepatocellular Carcinoma. J Viral Hepat 2025; 32:e14044. [PMID: 39868653 DOI: 10.1111/jvh.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 11/30/2024] [Indexed: 01/28/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc). Epigenetic alterations are dynamic and reversible, which regulate gene expression without altering the DNA sequence and play a pivotal role in the regulation of HCC onset and progression. The aim of this review is to elucidate the deregulation of epigenetic mechanisms involved in the pathogenesis of HBV-related HCC (HBV-HCC), including post-translational histone and non-histone modifications, DNA hypermethylation and hypomethylation, non-coding RNA modification on HBV cccDNA minichromosomes and host factors, effecting the replication/transcription of HBV cccDNA and transcription/translation of host genes, and thus HBV-HCC progression. It is expected that the epigenetic regulation perspective provides new ways for more in-depth development of therapeutic control of HBV-HCC.
Collapse
Affiliation(s)
- Xiaoqing Tan
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, Kunming, Peoples republic of China, China
| | - Linting Xun
- Department of Gastroenterology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People's Republic of China
| | - Qi Yin
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China, China
| | - Chaohui Chen
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Tao Zhang
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, Kunming, Peoples republic of China, China
| | - Tao Shen
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People's Hospital of Yunnan Province, Kunming, Peoples republic of China, China
| |
Collapse
|
5
|
de Korte D, Hoekstra M. Protein Arginine Methyltransferase 1: A Multi-Purpose Player in the Development of Cancer and Metabolic Disease. Biomolecules 2025; 15:185. [PMID: 40001488 PMCID: PMC11852820 DOI: 10.3390/biom15020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the main PRMT family member involved in the formation of monomethylarginine and asymmetric dimethylarginine on its protein substrates. Many protein substrates of PRMT1 are key mediators of cell proliferation and oncogenesis. As such, the function of PRMT1 has been most prominently investigated in the context of cancer development. However, recent in vitro and in vivo studies have highlighted that PRMT1 may also promote metabolic disorders. With the current review, we aim to present an in-depth overview of how PRMT1 influences epigenetic modulation, transcriptional regulation, DNA damage repair, and signal transduction in cancer. Furthermore, we summarize the current knowledge regarding the role of PRMT1 in metabolic reprogramming, lipid metabolism, and glucose metabolism and describe the association of PRMT1 with numerous metabolic pathologies such as obesity, liver disease, and type 2 diabetes. It has become apparent that inhibiting the function of PRMT1 will likely serve as the most beneficial therapeutic approach, since several PRMT1 inhibitors have already been shown to exert positive effects on both cancer and metabolic disease in preclinical settings. However, pharmacological PRMT1 inhibition has not yet been shown to be therapeutically effective in clinical studies.
Collapse
Affiliation(s)
| | - Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
6
|
Cao Q, Xu W, Chen X, Luo G, Reinach PS, Yan D. PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3. Invest Ophthalmol Vis Sci 2025; 66:22. [PMID: 39786757 PMCID: PMC11725987 DOI: 10.1167/iovs.66.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes. Methods The murine CEWH model was established using an Alger brush. Corneal epithelial-specific Prmt1 knockout mice were generated using the Cre-lox system. Quantitative reverse transcription polymerase chain reaction and Western blot analyses determined the expression of candidate genes at mRNA and protein expression levels. Human corneal epithelial cells (HCECs) were transfected with siRNA using Lipofectamine RNAiMAX or infected with lentivirus to precisely alter the expression of PRMT1 or Annexin A3 (ANXA3). EdU and a scratch wound-healing assay evaluated the effects of PRMT1 or ANXA3 on HCEC proliferation and migration, respectively. Rescue experiment and chromatin immunoprecipitation assay validate the correlation between PRMT1 and ANXA3. Results Prmt1 is significantly upregulated during CEWH, accompanied by an elevated global arginine methylation level. Knockdown of PRMT1 in HCECs or in vivo knockout impairs cell proliferation, migration, and the CEWH process. Furthermore, ANXA3 was identified as a critical target of PRMT1, with PRMT1 enhancing ANXA3 expression through histone arginine methylation at its promoter region, establishing a causal correlation between them. Moreover, PRMT1 can modulate the NF-κB and JNK signaling pathways via ANXA3. Conclusions PRMT1 is a critical epigenetic regulator in CEWH, promoting wound healing by upregulating ANXA3 via histone arginine methylation. These findings highlight the potential of targeting PRMT1 to enhance corneal epithelial repair.
Collapse
Affiliation(s)
- Qiongjie Cao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenji Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangying Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter S. Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Davie JR, Sattarifard H, Sudhakar SRN, Roberts CT, Beacon TH, Muker I, Shahib AK, Rastegar M. Basic Epigenetic Mechanisms. Subcell Biochem 2025; 108:1-49. [PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human genome consists of 23 chromosome pairs (22 autosomes and one pair of sex chromosomes), with 46 chromosomes in a normal cell. In the interphase nucleus, the 2 m long nuclear DNA is assembled with proteins forming chromatin. The typical mammalian cell nucleus has a diameter between 5 and 15 μm in which the DNA is packaged into an assortment of chromatin assemblies. The human brain has over 3000 cell types, including neurons, glial cells, oligodendrocytes, microglial, and many others. Epigenetic processes are involved in directing the organization and function of the genome of each one of the 3000 brain cell types. We refer to epigenetics as the study of changes in gene function that do not involve changes in DNA sequence. These epigenetic processes include histone modifications, DNA modifications, nuclear RNA, and transcription factors. In the interphase nucleus, the nuclear DNA is organized into different structures that are permissive or a hindrance to gene expression. In this chapter, we will review the epigenetic mechanisms that give rise to cell type-specific gene expression patterns.
Collapse
Affiliation(s)
- James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ishdeep Muker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Wu J, Li D, Wang L. Overview of PRMT1 modulators: Inhibitors and degraders. Eur J Med Chem 2024; 279:116887. [PMID: 39316844 DOI: 10.1016/j.ejmech.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Protein arginine methyltransferase 1 (PRMT1) is pivotal in executing normal cellular functions through its catalytic action on the methylation of arginine side chains on protein substrates. Emerging research has revealed a correlation between the dysregulation of PRMT1 expression and the initiation and progression of tumors, significantly influence on patient prognostication, attributed to the essential role played by PRMT1 in a number of biological processes, including transcriptional regulation, signal transduction or DNA repair. Therefore, PRMT1 emerged as a promising therapeutic target for anticancer drug discovery in the past decade. In this review, we first summarize the structure and biological functions of PRMT1 and its association with cancer. Next, we focus on the recent advances in the design and development of PRMT1 modulators, including isoform-selective PRMT1 inhibitors, pan type I PRMT inhibitors, PRMT1-based dual-target inhibitors, and PRMT1-targeting PROTAC degraders, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for PRMT1-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Junwei Wu
- Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Lifang Wang
- Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China.
| |
Collapse
|
9
|
Zhou L, Zhao X, Sun J, Zou K, Huang X, Yu L, Wu M, Wang Y, Li X, Yi W. Mina53 demethylates histone H4 arginine 3 asymmetric dimethylation to regulate neural stem/progenitor cell identity. Nat Commun 2024; 15:10227. [PMID: 39587091 PMCID: PMC11589143 DOI: 10.1038/s41467-024-54680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Arginine methylation of histones plays a critical role in regulating gene expression. The writers (methyltransferases) and readers of methylarginine marks are well-known, but the erasers-arginine demethylases-remain mysterious. Here we identify Myc-induced nuclear antigen 53 (Mina53), a jumonji C domain containing protein, as an arginine demethylase for removing asymmetric di-methylation at arginine 3 of histone H4 (H4R3me2a). Using a photoaffinity capture method, we first identify Mina53 as an interactor of H4R3me2a. Biochemical assays in vitro and in cells characterize the arginine demethylation activity of Mina53. Molecular dynamics simulations provide further atomic-level evidence that Mina53 acts on H4R3me2a. In a transgenic mouse model, specific Mina53 deletion in neural stem/progenitor cells prevents H4R3me2a demethylation at distinct genes clusters, dysregulating genes important for neural stem/progenitor cell proliferation and differentiation, and consequently impairing the cognitive function of mice. Collectively, we identify Mina53 as a bona fide H4R3me2a eraser, expanding the understanding of epigenetic gene regulation.
Collapse
Affiliation(s)
- Lixiao Zhou
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xingsen Zhao
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Jie Sun
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kun Zou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Children Health, The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liyang Yu
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Yong Wang
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Children Health, The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Wen Yi
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Zhang S, Zhang B, Wang Z, Zhong S, Zheng Y, Zhang Q, Liu X. Type I arginine methyltransferases play crucial roles in development and pathogenesis of Phytophthora capsici. Int J Biol Macromol 2024; 278:134671. [PMID: 39151856 DOI: 10.1016/j.ijbiomac.2024.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Phytophthora capsici, a pathogenic oomycete, poses a serious threat to global vegetable production. This study investigated the role of protein arginine methylation, a notable post-translational modification, in the epigenetic regulation of P. capsici. We identified and characterized five protein arginine methyltransferases (PRMTs) in P. capsici, with a focus on four putative type I PRMTs exhibiting similar functional domain. Deletion of PcPRMT3, a homolog of PRMT3, significantly affected mycelial growth, asexual spore development, pathogenicity, and stress responses in P. capsici. Transcriptome analyses indicated that absence of PcPRMT3 disrupted multiple biological pathways. The PcPRMT3 deletion mutant displayed heightened susceptibility to oxidative stress, correlated with the downregulation of genes involved in peroxidase and peroxisome activities. Additionally, PcPRMT3 acted as a negative regulator, modulating the transcription levels of specific elicitins, which in turn affects the defense response of host plant against P. capsici. Furthermore, PcPRMT3 was found to affect global arginine methylation levels in P. capsici, implying potential alterations in the functions of its substrate proteins.
Collapse
Affiliation(s)
- Sicong Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Borui Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiwen Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shan Zhong
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yang Zheng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghua Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Fisher RMA, Torrente MP. Histone post-translational modification and heterochromatin alterations in neurodegeneration: revealing novel disease pathways and potential therapeutics. Front Mol Neurosci 2024; 17:1456052. [PMID: 39346681 PMCID: PMC11427407 DOI: 10.3389/fnmol.2024.1456052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), Frontotemporal Dementia (FTD), and Amyotrophic lateral sclerosis (ALS) are complex and fatal neurodegenerative diseases. While current treatments for these diseases do alleviate some symptoms, there is an imperative need for novel treatments able to stop their progression. For all of these ailments, most cases occur sporadically and have no known genetic cause. Only a small percentage of patients bear known mutations which occur in a multitude of genes. Hence, it is clear that genetic factors alone do not explain disease occurrence. Chromatin, a DNA-histone complex whose basic unit is the nucleosome, is divided into euchromatin, an open form accessible to the transcriptional machinery, and heterochromatin, which is closed and transcriptionally inactive. Protruding out of the nucleosome, histone tails undergo post-translational modifications (PTMs) including methylation, acetylation, and phosphorylation which occur at specific residues and are connected to different chromatin structural states and regulate access to transcriptional machinery. Epigenetic mechanisms, including histone PTMs and changes in chromatin structure, could help explain neurodegenerative disease processes and illuminate novel treatment targets. Recent research has revealed that changes in histone PTMs and heterochromatin loss or gain are connected to neurodegeneration. Here, we review evidence for epigenetic changes occurring in AD, PD, and FTD/ALS. We focus specifically on alterations in the histone PTMs landscape, changes in the expression of histone modifying enzymes and chromatin remodelers as well as the consequences of these changes in heterochromatin structure. We also highlight the potential for epigenetic therapies in neurodegenerative disease treatment. Given their reversibility and pharmacological accessibility, epigenetic mechanisms provide a promising avenue for novel treatments. Altogether, these findings underscore the need for thorough characterization of epigenetic mechanisms and chromatin structure in neurodegeneration.
Collapse
Affiliation(s)
- Raven M. A. Fisher
- PhD. Program in Biochemistry, City University of New York - The Graduate Center, New York, NY, United States
| | - Mariana P. Torrente
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, United States
- PhD. Programs in Chemistry, Biochemistry, and Biology, City University of New York - The Graduate Center, New York, NY, United States
| |
Collapse
|
13
|
Ren XG, Li W, Li WX, Yu WQ. Mechanism of Histone Arginine Methylation Dynamic Change in Cellular Stress. Int J Mol Sci 2024; 25:7562. [PMID: 39062806 PMCID: PMC11277302 DOI: 10.3390/ijms25147562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Histone arginine residue methylation is crucial for individual development and gene regulation. However, the dynamics of histone arginine methylation in response to cellular stress remains largely unexplored. In addition, the interplay and regulatory mechanisms between this and other histone modifications are important scientific questions that require further investigation. This study aimed to investigate the changes in histone arginine methylation in response to DNA damage. We report a global decrease in histone H3R26 symmetric dimethylation (H3R26me2s) and hypoacetylation at the H3K27 site in response to DNA damage. Notably, H3R26me2s exhibits a distribution pattern similar to that of H3K27ac across the genome, both of which are antagonistic to H3K27me3. Additionally, histone deacetylase 1 (HDAC1) may be recruited to the H3R26me2s demethylation region to mediate H3K27 deacetylation. These findings suggest crosstalk between H3R26me2s and H3K27ac in regulating gene expression.
Collapse
Affiliation(s)
| | | | | | - Wen-Qiang Yu
- Department of RNA Epigenetics, Faculty of Institute of Biomedical Sciences, Campus of Shanghai Medical College, Fudan University, Shanghai 200032, China; (X.-G.R.); (W.L.); (W.-X.L.)
| |
Collapse
|
14
|
Najar MA, Beyer JN, Crawford CEW, Burslem GM. The Interplay of Acetylation and Ubiquitination Controls PRMT1 Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599616. [PMID: 38948822 PMCID: PMC11213003 DOI: 10.1101/2024.06.18.599616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
PRMT1 plays many important roles in both normal and disease biology, thus understanding it's regulation is crucial. Herein, we report the role of p300-mediated acetylation at K228 in triggering PRMT1 degradation through FBXL17-mediated ubiquitination. Utilizing mass-spectrometry, cellular biochemistry, and genetic code-expansion technologies, we elucidate a crucial mechanism independent of PRMT1 transcript levels. These results underscore the significance of acetylation in governing protein stability and expand our understanding of PRMT1 homeostasis. By detailing the molecular interplay between acetylation and ubiquitination involved in PRMT1 degradation, this work contributes to broader efforts in deciphering post-translational mechanisms that influence protein homeostasis.
Collapse
|
15
|
Nguyen CDK, Colón-Emeric BA, Murakami S, Shujath MNY, Yi C. PRMT1 promotes epigenetic reprogramming associated with acquired chemoresistance in pancreatic cancer. Cell Rep 2024; 43:114176. [PMID: 38691454 PMCID: PMC11238875 DOI: 10.1016/j.celrep.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis due to therapeutic resistance. We show that PDAC cells undergo global epigenetic reprogramming to acquire chemoresistance, a process that is driven at least in part by protein arginine methyltransferase 1 (PRMT1). Genetic or pharmacological PRMT1 inhibition impairs adaptive epigenetic reprogramming and delays acquired resistance to gemcitabine and other common chemo drugs. Mechanistically, gemcitabine treatment induces translocation of PRMT1 into the nucleus, where its enzymatic activity limits the assembly of chromatin-bound MAFF/BACH1 transcriptional complexes. Cut&Tag chromatin profiling of H3K27Ac, MAFF, and BACH1 suggests a pivotal role for MAFF/BACH1 in global epigenetic response to gemcitabine, which is confirmed by genetically silencing MAFF. PRMT1 and MAFF/BACH1 signature genes identified by Cut&Tag analysis distinguish gemcitabine-resistant from gemcitabine-sensitive patient-derived xenografts of PDAC, supporting the PRMT1-MAFF/BACH1 epigenetic regulatory axis as a potential therapeutic avenue for improving the efficacy and durability of chemotherapies in patients of PDAC.
Collapse
Affiliation(s)
- Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Benjamín A Colón-Emeric
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mia N Y Shujath
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
16
|
Gaddelapati SC, George S, Moola A, Sengodan K, Palli SR. N(alpha)-acetyltransferase 40-mediated histone acetylation plays an important role in ecdysone regulation of metamorphosis in the red flour beetle, Tribolium castaneum. Commun Biol 2024; 7:521. [PMID: 38702540 PMCID: PMC11068786 DOI: 10.1038/s42003-024-06212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
Histone acetylation, a crucial epigenetic modification, is governed by histone acetyltransferases (HATs), that regulate many biological processes. Functions of HATs in insects are not well understood. We identified 27 HATs and determined their functions using RNA interference (RNAi) in the model insect, Tribolium castaneum. Among HATs studied, N-alpha-acetyltransferase 40 (NAA40) knockdown caused a severe phenotype of arrested larval development. The steroid hormone, ecdysone induced NAA40 expression through its receptor, EcR (ecdysone receptor). Interestingly, ecdysone-induced NAA40 regulates EcR expression. NAA40 acetylates histone H4 protein, associated with the promoters of ecdysone response genes: EcR, E74, E75, and HR3, and causes an increase in their expression. In the absence of ecdysone and NAA40, histone H4 methylation by arginine methyltransferase 1 (ART1) suppressed the above genes. However, elevated ecdysone levels at the end of the larval period induced NAA40, promoting histone H4 acetylation and increasing the expression of ecdysone response genes. NAA40 is also required for EcR, and steroid-receptor co-activator (SRC) mediated induction of E74, E75, and HR3. These findings highlight the key role of ecdysone-induced NAA40-mediated histone acetylation in the regulation of metamorphosis.
Collapse
Affiliation(s)
- Sharath Chandra Gaddelapati
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Smitha George
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Anilkumar Moola
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Karthi Sengodan
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
17
|
Sudhakar SRN, Khan SN, Clark A, Hendrickson-Rebizant T, Patel S, Lakowski TM, Davie JR. Protein arginine methyltransferase 1, a major regulator of biological processes. Biochem Cell Biol 2024; 102:106-126. [PMID: 37922507 DOI: 10.1139/bcb-2023-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is a major type I arginine methyltransferase that catalyzes the formation of monomethyl and asymmetric dimethylarginine in protein substrates. It was first identified to asymmetrically methylate histone H4 at the third arginine residue forming the H4R3me2a active histone mark. However, several protein substrates are now identified as being methylated by PRMT1. As a result of its association with diverse classes of substrates, PRMT1 regulates several biological processes like chromatin dynamics, transcription, RNA processing, and signal transduction. The review provides an overview of PRMT1 structure, biochemical features, specificity, regulation, and role in cellular functions. We discuss the genomic distribution of PRMT1 and its association with tRNA genes. Further, we explore the different substrates of PRMT1 involved in splicing. In the end, we discuss the proteins that interact with PRMT1 and their downstream effects in diseased states.
Collapse
Affiliation(s)
- Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Shahper N Khan
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Ariel Clark
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | | | - Shrinal Patel
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Ted M Lakowski
- College of Pharmacy Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
18
|
Ku B, Eisenbarth D, Baek S, Jeong TK, Kang JG, Hwang D, Noh MG, Choi C, Choi S, Seol T, Kim H, Kim YH, Woo SM, Kong SY, Lim DS. PRMT1 promotes pancreatic cancer development and resistance to chemotherapy. Cell Rep Med 2024; 5:101461. [PMID: 38460517 PMCID: PMC10983040 DOI: 10.1016/j.xcrm.2024.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/28/2023] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer, and novel treatment regimens are direly needed. Epigenetic regulation contributes to the development of various cancer types, but its role in the development of and potential as a therapeutic target for PDAC remains underexplored. Here, we show that PRMT1 is highly expressed in murine and human pancreatic cancer and is essential for cancer cell proliferation and tumorigenesis. Deletion of PRMT1 delays pancreatic cancer development in a KRAS-dependent mouse model, and multi-omics analyses reveal that PRMT1 depletion leads to global changes in chromatin accessibility and transcription, resulting in reduced glycolysis and a decrease in tumorigenic capacity. Pharmacological inhibition of PRMT1 in combination with gemcitabine has a synergistic effect on pancreatic tumor growth in vitro and in vivo. Collectively, our findings implicate PRMT1 as a key regulator of pancreatic cancer development and a promising target for combination therapy.
Collapse
Affiliation(s)
- Bomin Ku
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - David Eisenbarth
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Seonguk Baek
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Tae-Keun Jeong
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Ju-Gyeong Kang
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Daehee Hwang
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Myung-Giun Noh
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun-gun, Jeonnam 58128, Republic of Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun-gun, Jeonnam 58128, Republic of Korea
| | - Sungwoo Choi
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Taejun Seol
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yun-Hee Kim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sang Myung Woo
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
Lu L, Ye Z, Zhang R, Olsen JV, Yuan Y, Mao Y. ETD-Based Proteomic Profiling Improves Arginine Methylation Identification and Reveals Novel PRMT5 Substrates. J Proteome Res 2024; 23:1014-1027. [PMID: 38272855 DOI: 10.1021/acs.jproteome.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Protein arginine methylations are important post-translational modifications (PTMs) in eukaryotes, regulating many biological processes. However, traditional collision-based mass spectrometry methods inevitably cause neutral losses of methylarginines, preventing the deep mining of biologically important sites. Herein we developed an optimized mass spectrometry workflow based on electron-transfer dissociation (ETD) with supplemental activation for proteomic profiling of arginine methylation in human cells. Using symmetric dimethylarginine (sDMA) as an example, we show that the ETD-based optimized workflow significantly improved the identification and site localization of sDMA. Quantitative proteomics identified 138 novel sDMA sites as potential PRMT5 substrates in HeLa cells. Further biochemical studies on SERBP1, a newly identified PRMT5 substrate, confirmed the coexistence of sDMA and asymmetric dimethylarginine in the central RGG/RG motif, and loss of either methylation caused increased the recruitment of SERBP1 to stress granules under oxidative stress. Overall, our optimized workflow not only enabled the identification and localization of extensive, nonoverlapping sDMA sites in human cells but also revealed novel PRMT5 substrates whose sDMA may play potentially important biological functions.
Collapse
Affiliation(s)
- Lingzi Lu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Zilu Ye
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rou Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Mao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
21
|
Tao H, Jin C, Zhou L, Deng Z, Li X, Dang W, Fan S, Li B, Ye F, Lu J, Kong X, Liu C, Luo C, Zhang Y. PRMT1 Inhibition Activates the Interferon Pathway to Potentiate Antitumor Immunity and Enhance Checkpoint Blockade Efficacy in Melanoma. Cancer Res 2024; 84:419-433. [PMID: 37991725 DOI: 10.1158/0008-5472.can-23-1082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Despite the immense success of immune checkpoint blockade (ICB) in cancer treatment, many tumors, including melanoma, exhibit innate or adaptive resistance. Tumor-intrinsic T-cell deficiency and T-cell dysfunction have been identified as essential factors in the emergence of ICB resistance. Here, we found that protein arginine methyltransferase 1 (PRMT1) expression was inversely correlated with the number and activity of CD8+ T cells within melanoma specimen. PRMT1 deficiency or inhibition with DCPT1061 significantly restrained refractory melanoma growth and increased intratumoral CD8+ T cells in vivo. Moreover, PRMT1 deletion in melanoma cells facilitated formation of double-stranded RNA derived from endogenous retroviral elements (ERV) and stimulated an intracellular interferon response. Mechanistically, PRMT1 deficiency repressed the expression of DNA methyltransferase 1 (DNMT1) by attenuating modification of H4R3me2a and H3K27ac at enhancer regions of Dnmt1, and DNMT1 downregulation consequently activated ERV transcription and the interferon signaling. Importantly, PRMT1 inhibition with DCPT1061 synergized with PD-1 blockade to suppress tumor progression and increase the proportion of CD8+ T cells as well as IFNγ+CD8+ T cells in vivo. Together, these results reveal an unrecognized role and mechanism of PRMT1 in regulating antitumor T-cell immunity, suggesting PRMT1 inhibition as a potent strategy to increase the efficacy of ICB. SIGNIFICANCE Targeting PRMT1 stimulates interferon signaling by increasing expression of endogenous retroviral elements and double-stranded RNA through repression of DNMT1, which induces antitumor immunity and synergizes with immunotherapy to suppress tumor progression.
Collapse
Affiliation(s)
- Hongru Tao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chen Jin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyuan Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenzhong Deng
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiao Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhen Dang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Fan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Bing Li
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junyan Lu
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
23
|
Lathoria K, Gowda P, Umdor SB, Patrick S, Suri V, Sen E. PRMT1 driven PTX3 regulates ferritinophagy in glioma. Autophagy 2023; 19:1997-2014. [PMID: 36647288 PMCID: PMC10283415 DOI: 10.1080/15548627.2023.2165757] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Mutations in the Krebs cycle enzyme IDH1 (isocitrate dehydrogenase (NADP(+)) 1) are associated with better prognosis in gliomas. Though IDH1 mutant (IDH1R132H) tumors are characterized by their antiproliferative signatures maintained through hypermethylation of DNA and chromatin, mechanisms affecting cell death pathways in these tumors are not well elucidated. On investigating the crosstalk between the IDH1 mutant epigenome, ferritinophagy and inflammation, diminished expression of PRMT1 (protein arginine methyltransferase 1) and its associated asymmetric dimethyl epigenetic mark H4R3me2a was observed in IDH1R132H gliomas. Reduced expression of PRMT1 was concurrent with diminished levels of PTX3, a key secretory factor involved in cancer-related inflammation. Lack of PRMT1 H4R3me2a in IDH1 mutant glioma failed to epigenetically activate the expression of PTX3 with a reduction in YY1 (YY1 transcription factor) binding on its promoter. Transcriptional activation and subsequent secretion of PTX3 from cells was required for maintaining macroautophagic/autophagic balance as pharmacological or genetic ablation of PTX3 secretion in wild-type IDH1 significantly increased autophagic flux. Additionally, PTX3-deficient IDH1 mutant gliomas exhibited heightened autophagic signatures. Furthermore, we demonstrate that the PRMT1-PTX3 axis is important in regulating the levels of ferritin genes/iron storage and inhibition of this axis triggered ferritinophagic flux. This study highlights the conserved role of IDH1 mutants in augmenting ferritinophagic flux in gliomas irrespective of genetic landscape through inhibition of the PRMT1-PTX3 axis. This is the first study describing ferritinophagy in IDH1 mutant gliomas with mechanistic details. Of clinical importance, our study suggests that the PRMT1-PTX3 ferritinophagy regulatory circuit could be exploited for therapeutic gains.Abbreviations: 2-HG: D-2-hydroxyglutarate; BafA1: bafilomycin A1; ChIP: chromatin immunoprecipitation; FTH1: ferritin heavy chain 1; FTL: ferritin light chain; GBM: glioblastoma; HMOX1/HO-1: heme oxygenase 1; IHC: immunohistochemistry; IDH1: isocitrate dehydrogenase(NADP(+))1; MDC: monodansylcadaverine; NCOA4: nuclear receptor coactivator 4; NFE2L2/Nrf2: NFE2 like bZIP transcription factor 2; PTX3/TSG-14: pentraxin 3; PRMT: protein arginine methyltransferase; SLC40A1: solute carrier family 40 member 1; Tan IIA: tanshinone IIA; TCA: trichloroacetic acid; TEM: transmission electron microscopy; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Kirti Lathoria
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Pruthvi Gowda
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Sonia B Umdor
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Shruti Patrick
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Vaishali Suri
- Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Ellora Sen
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| |
Collapse
|
24
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
25
|
Lee J, Villarreal OD, Wang YC, Ragoussis J, Rivest S, Gosselin D, Richard S. PRMT1 is required for the generation of MHC-associated microglia and remyelination in the central nervous system. Life Sci Alliance 2022; 5:5/10/e202201467. [PMID: 35705491 PMCID: PMC9201232 DOI: 10.26508/lsa.202201467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
PRMT1 regulates MHC-associated microglia cluster during de/remyelination. Remyelination failure in multiple sclerosis leads to progressive demyelination and inflammation, resulting in neurodegeneration and clinical decline. Microglia are innate immune cells that can acquire a regenerative phenotype to promote remyelination, yet little is known about the regulators controlling the regenerative microglia activation. Herein, using a cuprizone (CPZ)-diet induced de- and remyelination mice model, we identify PRMT1 as a driver for MHC-associated microglia population required for remyelination in the central nervous system. The loss of PRMT1, but not PRMT5, in microglia resulted in impairment of the remyelination with a reduction of oligoprogenitor cell number and prolonged microgliosis and astrogliosis. Using single-cell RNA sequencing, we found eight distinct microglial clusters during the CPZ diet, and PRMT1 depleted microglia hindered the formation of the MHC-associated cluster, expressing MHCII and CD11c. Mechanistically, PRMT1-KO microglia displayed reduced the H3K27ac peaks at the promoter regions of the MHC- and IFN-associated genes and further suppressed gene expression during CPZ diet. Overall, our findings demonstrate that PRMT1 is a critical regulator of the MHC- and IFN-associated microglia, necessary for central nervous system remyelination.
Collapse
Affiliation(s)
- Jeesan Lee
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montreal, Canada
| | - Oscar David Villarreal
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montreal, Canada
| | - Yu Chang Wang
- McGill Genome Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, Canada
| | - David Gosselin
- Neuroscience Laboratory, CHU de Quebec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montreal, Canada
| |
Collapse
|
26
|
Zhu Q, Wang D, Liang F, Tong X, Liang Z, Wang X, Chen Y, Mo D. Protein arginine methyltransferase PRMT1 promotes adipogenesis by modulating transcription factors C/EBPβ and PPARγ. J Biol Chem 2022; 298:102309. [PMID: 35921899 PMCID: PMC9425039 DOI: 10.1016/j.jbc.2022.102309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) methylates a variety of histone and nonhistone protein substrates to regulate multiple cellular functions such as transcription, DNA damage response, and signal transduction. It has been reported as an emerging regulator of various metabolic pathways including glucose metabolism in the liver, atrophy in the skeletal muscle, and lipid catabolism in the adipose tissue. However, the underlying mechanisms governing how PRMT1 regulates adipogenesis remain elusive. Here, we delineate the roles of PRMT1 in mitotic clonal expansion and adipocyte differentiation. Gain and loss of functions demonstrate that PRMT1 is essential for adipogenesis of 3T3-L1 and C3H10T1/2 cells. Mechanistically, we show PRMT1 promotes the expression of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) by catalyzing histone modification H4R3me2a and impedes the activation of Wnt/β-catenin signaling by increasing the level of Axin to accelerate adipogenic differentiation. In addition, we demonstrate mitotic clonal expansion is suppressed by PRMT1 deficiency. PRMT1 interacts with transcription factor CCATT enhancer-binding protein β (C/EBPβ), and the absence of PRMT1 leads to the depressed phosphorylation of C/EBPβ. Interestingly, we discover PRMT1 acts as a positive regulator of C/EBPβ protein stability through decreasing the level of E3 ubiquitin ligase Smurf2, which promotes the ubiquitination and degradation of C/EBPβ, thus facilitating adipogenesis. Collectively, these discoveries highlight a critical role of PRMT1 in adipogenesis and provide potential therapeutic targets for the treatment of obesity.
Collapse
|
27
|
Identification of Novel Circular RNAs of the Human Protein Arginine Methyltransferase 1 (PRMT1) Gene, Expressed in Breast Cancer Cells. Genes (Basel) 2022; 13:genes13071133. [PMID: 35885916 PMCID: PMC9316507 DOI: 10.3390/genes13071133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a type of RNA formed through back-splicing. In breast cancer, circRNAs are implicated in tumor onset and progression. Although histone methylation by PRMT1 is largely involved in breast cancer development and metastasis, the effect of circular transcripts deriving from this gene has not been examined. In this study, total RNA was extracted from four breast cancer cell lines and reversely transcribed using random hexamer primers. Next, first- and second-round PCRs were performed using gene-specific divergent primers. Sanger sequencing followed for the determination of the sequence of each novel PRMT1 circRNA. Lastly, bioinformatics analysis was conducted to predict the functions of the novel circRNAs. In total, nine novel circRNAs were identified, comprising both complete and truncated exons of the PRMT1 gene. Interestingly, we demonstrated that the back-splice junctions consist of novel splice sites of the PRMT1 exons. Moreover, the circRNA expression pattern differed among these four breast cancer cell lines. All the novel circRNAs are predicted to act as miRNA and/or protein sponges, while five circRNAs also possess an open reading frame. In summary, we described the complete sequence of nine novel circRNAs of the PRMT1 gene, comprising distinct back-splice junctions and probably having different molecular properties.
Collapse
|
28
|
An X, Lee J, Kim GH, Kim HJ, Pyo HJ, Kwon I, Cho H. Modulation of I Ks channel-PIP 2 interaction by PRMT1 plays a critical role in the control of cardiac repolarization. J Cell Physiol 2022; 237:3069-3079. [PMID: 35580065 PMCID: PMC9543859 DOI: 10.1002/jcp.30775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022]
Abstract
Recent studies have shown that protein arginine methyltransferase 1 (PRMT1) is highly expressed in the human heart, and loss of PRMT1 contributes to cardiac remodeling in the heart failure. However, the functional importance of PRMT1 in cardiac ion channels remains uncertain. The slow activating delayed rectifier K+ (IKs) channel is a cardiac K+ channel composed of KCNQ1 and KCNE1 subunits and is a new therapeutic target for treating lethal arrhythmias in many cardiac pathologies, especially heart failure. Here, we demonstrate that PRMT1 is a critical regulator of the IKs channel and cardiac rhythm. In the guinea pig ventricular myocytes, treatment with furamidine, a PRMT1‐specific inhibitor, prolonged the action potential duration (APD). We further show that this APD prolongation was attributable to IKs reduction. In HEK293T cells expressing human KCNQ1 and KCNE1, inhibiting PRMT1 via furamidine reduced IKs and concurrently decreased the arginine methylation of KCNQ1, a pore‐forming α‐subunit. Evidence presented here indicates that furamidine decreased IKs mainly by lowering the affinity of IKs channels for the membrane phospholipid, phosphatidylinositol 4,5‐bisphosphate (PIP2), which is crucial for pore opening. Finally, applying exogenous PIP2 to cardiomyocytes prevented the furamidine‐induced IKs reduction and APD prolongation. Taken together, these results indicate that PRMT1 positively regulated IKs activity through channel–PIP2 interaction, thereby restricting excessive cardiac action potential.
Collapse
Affiliation(s)
- Xue An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jiwon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ga Hye Kim
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun-Jeong Pyo
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
29
|
Dansu DK, Liang J, Selcen I, Zheng H, Moore DF, Casaccia P. PRMT5 Interacting Partners and Substrates in Oligodendrocyte Lineage Cells. Front Cell Neurosci 2022; 16:820226. [PMID: 35370564 PMCID: PMC8968030 DOI: 10.3389/fncel.2022.820226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
The protein arginine methyl transferase PRMT5 is an enzyme expressed in oligodendrocyte lineage cells and responsible for the symmetric methylation of arginine residues on histone tails. Previous work from our laboratory identified PRMT5 as critical for myelination, due to its transcriptional regulation of genes involved in survival and early stages of differentiation. However, besides its nuclear localization, PRMT5 is found at high levels in the cytoplasm of several cell types, including oligodendrocyte progenitor cells (OPCs) and yet, its interacting partners in this lineage, remain elusive. By using mass spectrometry on protein eluates from extracts generated from primary oligodendrocyte lineage cells and immunoprecipitated with PRMT5 antibodies, we identified 1196 proteins as PRMT5 interacting partners. These proteins were related to molecular functions such as RNA binding, ribosomal structure, cadherin and actin binding, nucleotide and protein binding, and GTP and GTPase activity. We then investigated PRMT5 substrates using iTRAQ-based proteomics on cytosolic and nuclear protein extracts from CRISPR-PRMT5 knockdown immortalized oligodendrocyte progenitors compared to CRISPR-EGFP controls. This analysis identified a similar number of peptides in the two subcellular fractions and a total number of 57 proteins with statistically decreased symmetric methylation of arginine residues in the CRISPR-PRMT5 knockdown compared to control. Several PRMT5 substrates were in common with cancer cell lines and related to RNA processing, splicing and transcription. In addition, we detected ten oligodendrocyte lineage specific substrates, corresponding to proteins with high expression levels in neural tissue. They included: PRC2C, a proline-rich protein involved in methyl-RNA binding, HNRPD an RNA binding protein involved in regulation of RNA stability, nuclear proteins involved in transcription and other proteins related to migration and actin cytoskeleton. Together, these results highlight a cell-specific role of PRMT5 in OPC in regulating several other cellular processes, besides RNA splicing and metabolism.
Collapse
Affiliation(s)
- David K. Dansu
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States
- Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ipek Selcen
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States
- Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, United States
- Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States
| | - Dirk F. Moore
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States
- Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
30
|
Lee J, An S, Lee SJ, Kang JS. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. Cells 2022; 11:364. [PMID: 35159176 PMCID: PMC8834056 DOI: 10.3390/cells11030364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular diseases (NMDs) are characterized by progressive loss of muscle mass and strength that leads to impaired body movement. It not only severely diminishes the quality of life of the patients, but also subjects them to increased risk of secondary medical conditions such as fall-induced injuries and various chronic diseases. However, no effective treatment is currently available to prevent or reverse the disease progression. Protein arginine methyltransferases (PRMTs) are emerging as a potential therapeutic target for diverse diseases, such as cancer and cardiovascular diseases. Their expression levels are altered in the patients and molecular mechanisms underlying the association between PRMTs and the diseases are being investigated. PRMTs have been shown to regulate development, homeostasis, and regeneration of both muscle and neurons, and their association to NMDs are emerging as well. Through inhibition of PRMT activities, a few studies have reported suppression of cytotoxic phenotypes observed in NMDs. Here, we review our current understanding of PRMTs' involvement in the pathophysiology of NMDs and potential therapeutic strategies targeting PRMTs to address the unmet medical need.
Collapse
Affiliation(s)
- Jinwoo Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Subin An
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang-Jin Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
31
|
Sung BY, Lin YH, Kong Q, Shah PD, Glick Bieler J, Palmer S, Weinhold KJ, Chang HR, Huang H, Avery RK, Schneck J, Chiu YL. Wnt activation promotes memory T cell polyfunctionality via epigenetic regulator PRMT1. J Clin Invest 2022; 132:e140508. [PMID: 35040433 PMCID: PMC8759796 DOI: 10.1172/jci140508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
T cell polyfunctionality is a hallmark of protective immunity against pathogens and cancer, yet the molecular mechanism governing it remains mostly elusive. We found that canonical Wnt agonists inhibited human memory CD8+ T cell differentiation while simultaneously promoting the generation of highly polyfunctional cells. Downstream effects of Wnt activation persisted after removal of the drug, and T cells remained polyfunctional following subsequent cell division, indicating the effect is epigenetically regulated. Wnt activation induced a gene expression pattern that is enriched with stem cell-specific gene signatures and upregulation of protein arginine methyltransferase 1 (PRMT1), a known epigenetic regulator. PRMT1+CD8+ T cells are associated with enhanced polyfunctionality, especially the ability to produce IL-2. In contrast, inhibition of PRMT1 ameliorated the effects of Wnt on polyfunctionality. Chromatin immunoprecipitation revealed that H4R3me2a, a permissive transcription marker mediated by PRMT1, increased at the IL-2 promoter loci following Wnt activation. In vivo, Wnt-treated T cells exhibited superior polyfunctionality and persistence. When applied to cytomegalovirus (CMV) donor-seropositive, recipient-seronegative patients (D+/R-) lung transplant patient samples, Wnt activation enhanced CMV-specific T cell polyfunctionality, which is important in controlling CMV diseases. These findings reveal a molecular mechanism governing T cell polyfunctionality and identify PRMT1 as a potential target for T cell immunotherapy.
Collapse
Affiliation(s)
- Bo-Yi Sung
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Microbiology and Immunology
- Department of Biomedical Engineering, and
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, and
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Pali D. Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joan Glick Bieler
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kent J. Weinhold
- Department of Surgery, and Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan Schneck
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland. USA
| | - Yen-Ling Chiu
- Institute of Cell Engineering and
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
32
|
Structure, Activity, and Function of PRMT1. Life (Basel) 2021; 11:life11111147. [PMID: 34833023 PMCID: PMC8619983 DOI: 10.3390/life11111147] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
PRMT1, the major protein arginine methyltransferase in mammals, catalyzes monomethylation and asymmetric dimethylation of arginine side chains in proteins. Initially described as a regulator of chromatin dynamics through the methylation of histone H4 at arginine 3 (H4R3), numerous non-histone substrates have since been identified. The variety of these substrates underlines the essential role played by PRMT1 in a large number of biological processes such as transcriptional regulation, signal transduction or DNA repair. This review will provide an overview of the structural, biochemical and cellular features of PRMT1. After a description of the genomic organization and protein structure of PRMT1, special consideration was given to the regulation of PRMT1 enzymatic activity. Finally, we discuss the involvement of PRMT1 in embryonic development, DNA damage repair, as well as its participation in the initiation and progression of several types of cancers.
Collapse
|
33
|
Inducible Prmt1 ablation in adult vascular smooth muscle leads to contractile dysfunction and aortic dissection. Exp Mol Med 2021; 53:1569-1579. [PMID: 34635781 PMCID: PMC8568946 DOI: 10.1038/s12276-021-00684-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/27/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) have remarkable plasticity in response to diverse environmental cues. Although these cells are versatile, chronic stress can trigger VSMC dysfunction, which ultimately leads to vascular diseases such as aortic aneurysm and atherosclerosis. Protein arginine methyltransferase 1 (Prmt1) is a major enzyme catalyzing asymmetric arginine dimethylation of proteins that are sources of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase. Although a potential role of Prmt1 in vascular pathogenesis has been proposed, its role in vascular function has yet to be clarified. Here, we investigated the role and underlying mechanism of Prmt1 in vascular smooth muscle contractility and function. The expression of PRMT1 and contractile-related genes was significantly decreased in the aortas of elderly humans and patients with aortic aneurysms. Mice with VSMC-specific Prmt1 ablation (smKO) exhibited partial lethality, low blood pressure and aortic dilation. The Prmt1-ablated aortas showed aortic dissection with elastic fiber degeneration and cell death. Ex vivo and in vitro analyses indicated that Prmt1 ablation significantly decreased the contractility of the aorta and traction forces of VSMCs. Prmt1 ablation downregulated the expression of contractile genes such as myocardin while upregulating the expression of synthetic genes, thus causing the contractile to synthetic phenotypic switch of VSMCs. In addition, mechanistic studies demonstrated that Prmt1 directly regulates myocardin gene activation by modulating epigenetic histone modifications in the myocardin promoter region. Thus, our study demonstrates that VSMC Prmt1 is essential for vascular homeostasis and that its ablation causes aortic dilation/dissection through impaired myocardin expression.
Collapse
|
34
|
Fulton MD, Cao M, Ho MC, Zhao X, Zheng YG. The macromolecular complexes of histones affect protein arginine methyltransferase activities. J Biol Chem 2021; 297:101123. [PMID: 34492270 PMCID: PMC8511957 DOI: 10.1016/j.jbc.2021.101123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Histone arginine methylation is a key post-translational modification that mediates epigenetic events that activate or repress gene transcription. Protein arginine methyltransferases (PRMTs) are the driving force for the process of arginine methylation, and the core histone proteins have been shown to be substrates for most PRMT family members. However, previous reports of the enzymatic activities of PRMTs on histones in the context of nucleosomes seem contradictory. Moreover, what governs nucleosomal substrate recognition of different PRMT members is not understood. We sought to address this key biological question by examining how different macromolecular contexts where the core histones reside may regulate arginine methylation catalyzed by individual PRMT members (i.e., PRMT1, PRMT3, PRMT4, PRMT5, PRMT6, PRMT7, and PRMT8). Our results demonstrated that the substrate context exhibits a huge impact on the histone arginine methylation activity of PRMTs. Although all the tested PRMTs methylate multiple free histones individually, they show a preference for one particular histone substrate in the context of the histone octamer. We found that PRMT1, PRMT3, PRMT5, PRMT6, PRMT7, and PRMT8 preferentially methylate histone H4, whereas PRMT4/coactivator-associated arginine methyltransferase 1 prefers histone H3. Importantly, neither reconstituted nor cell-extracted mononucleosomes could be methylated by any PRMTs tested. Structural analysis suggested that the electrostatic interaction may play a mechanistic role in priming the substrates for methylation by PRMT enzymes. Taken together, this work expands our knowledge on the molecular mechanisms of PRMT substrate recognition and has important implications for understanding cellular dynamics and kinetics of histone arginine methylation in regulating gene transcription and other chromatin-templated processes.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA
| | - Mengtong Cao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
35
|
Arginine methylation by PRMT2 promotes IFN-β production through TLR4/IRF3 signaling pathway. Mol Immunol 2021; 139:202-210. [PMID: 34583098 DOI: 10.1016/j.molimm.2021.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
A balance between the positive and negative regulation of toll-like receptor (TLR) signaling pathways is required to avoid detrimental and inappropriate inflammatory responses. Although some protein post-translational modifications (PTMs) such as phosphorylation and ubiquitination have been demonstrated to potently modulate innate immune responses, the role of methylation, an important PTM, control of TLR4 signaling pathway remains unclear. In this study, we found that protein arginine methyltransferase 1, 2 and 3 (PRMT1, 2 and 3) were recruited to methylate TLR4-CD (cytoplasmic domain) after lipopolysaccharide (LPS) stimulation respectively, but the effect of PRMT2 on arginine methylation of TLR4-CD is the most significant among above three PRMTs, which prompted us to focus on PRMT2. Reduction of PRMT2 expression down-regulated arginine (R) methylation level of TLR4 with or without LPS treatment. Methionine 115 (M115) mediated PRMT2 catalyzed-arginine methylation of TLR4 on R731 and R812. Furthermore, PRMT1, 2 and 3 was recruited to methylate interferon regulatory factor 3 (IRF3) after LPS stimulation respectively, but the effect of PRMT2 on arginine methylation of IRF3 is the most significant among the above three PRMTs. Arginine methylation of TLR4 on R812 or arginine methylation of IRF3 on R285 mediated the interaction between TLR4 and IRF3 respectively. Arginine methylation of IRF3 on R285 induced by LPS led to its dimerization and promoted its translocation from the cytoplasm to the nucleus. In addition, the enhancement of arginine methylation of TLR4 induced by PRMT1 or 2 increased IRF3 transcription activity with or without LPS treatment, while PRMT2 with histidine 112 glutamine (H112Q) or methionine 115 isoleucine (M115I) mutation and TLR4 with arginine 812 lysine (R812K) mutation decreased it. Arginine methylation of TLR4 on R812 or PRMT2 enhanced interferon-β (IFN-β) production. Our study reveals a critical role for PRMT2 and protein arginine methylation in the enhancement of IFN-β production via TLR4/IRF3 signaling pathway and may provide a therapeutic strategy to control endotoxemia.
Collapse
|
36
|
Protein Arginine Methyltransferase 1 Is Essential for the Meiosis of Male Germ Cells. Int J Mol Sci 2021; 22:ijms22157951. [PMID: 34360715 PMCID: PMC8348183 DOI: 10.3390/ijms22157951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is a major enzyme responsible for the formation of methylarginine in mammalian cells; however, its function in vivo is not well understood due to its early embryonic lethality in null mice exhibiting spontaneous DNA damage, cell cycle delays, and defects in check point activation. Here, we generated germ cell-specific Prmt1 knock-out (KO) mice to evaluate the function of PRMT1 in spermatogenesis. Our findings demonstrate that PRMT1 is vital for male fertility in mice. Spermatogenesis in Prmt1 KO mice was arrested at the zygotene-like stage of the first meiotic division due to an elevated number of DNA double-strand breaks (DSBs). There was a loss of methylation in meiotic recombination 11 (MRE11), the key endonuclease in MRE11/RAD50/NBS 1 (MRN) complex, resulting in the accumulation of SPO11 protein in DSBs. The ATM-mediated negative feedback control over SPO11 was lost and, consequently, the repair pathway of DSBs was highly affected in PRMT1 deficient male germ cells. Our findings provide a novel insight into the role of PRMT1-mediated asymmetric demethylation in mouse spermatogenesis.
Collapse
|
37
|
Beacon TH, Delcuve GP, López C, Nardocci G, Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin Epigenetics 2021; 13:138. [PMID: 34238359 PMCID: PMC8264473 DOI: 10.1186/s13148-021-01126-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptionally active chromatin is marked by tri-methylation of histone H3 at lysine 4 (H3K4me3) located after first exons and around transcription start sites. This epigenetic mark is typically restricted to narrow regions at the 5`end of the gene body, though a small subset of genes have a broad H3K4me3 domain which extensively covers the coding region. Although most studies focus on the H3K4me3 mark, the broad H3K4me3 domain is associated with a plethora of histone modifications (e.g., H3 acetylated at K27) and is therein termed broad epigenetic domain. Genes marked with the broad epigenetic domain are involved in cell identity and essential cell functions and have clinical potential as biomarkers for patient stratification. Reducing expression of genes with the broad epigenetic domain may increase the metastatic potential of cancer cells. Enhancers and super-enhancers interact with the broad epigenetic domain marked genes forming a hub of interactions involving nucleosome-depleted regions. Together, the regulatory elements coalesce with transcription factors, chromatin modifying/remodeling enzymes, coactivators, and the Mediator and/or Integrator complex into a transcription factory which may be analogous to a liquid–liquid phase-separated condensate. The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts. In this review, we present the current knowledge of broad epigenetic domains.
Collapse
Affiliation(s)
- Tasnim H Beacon
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Camila López
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Gino Nardocci
- Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Davie
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada.
| |
Collapse
|
38
|
Xue L, Bao L, Roediger J, Su Y, Shi B, Shi YB. Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine. Cell Biosci 2021; 11:113. [PMID: 34158114 PMCID: PMC8220849 DOI: 10.1186/s13578-021-00627-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Background Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse. Methods We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium. Results We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged. Conclusions Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00627-z.
Collapse
Affiliation(s)
- Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan, 430074, China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging and Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Transcriptionally Active Chromatin-Lessons Learned from the Chicken Erythrocyte Chromatin Fractionation. Cells 2021; 10:cells10061354. [PMID: 34070759 PMCID: PMC8226759 DOI: 10.3390/cells10061354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
The chicken erythrocyte model system has been valuable to the study of chromatin structure and function, specifically for genes involved in oxygen transport and the innate immune response. Several seminal features of transcriptionally active chromatin were discovered in this system. Davie and colleagues capitalized on the unique features of the chicken erythrocyte to separate and isolate transcriptionally active chromatin and silenced chromatin, using a powerful native fractionation procedure. Histone modifications, histone variants, atypical nucleosomes (U-shaped nucleosomes) and other chromatin structural features (open chromatin) were identified in these studies. More recently, the transcriptionally active chromosomal domains in the chicken erythrocyte genome were mapped by combining this chromatin fractionation method with next-generation DNA and RNA sequencing. The landscape of histone modifications relative to chromatin structural features in the chicken erythrocyte genome was reported in detail, including the first ever mapping of histone H4 asymmetrically dimethylated at Arg 3 (H4R3me2a) and histone H3 symmetrically dimethylated at Arg 2 (H3R2me2s), which are products of protein arginine methyltransferases (PRMTs) 1 and 5, respectively. PRMT1 is important in the establishment and maintenance of chicken erythrocyte transcriptionally active chromatin.
Collapse
|
40
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
41
|
Alcoforado Diniz J, Chaves MM, Vaselek S, Miserani Magalhães RD, Ricci-Azevedo R, de Carvalho RVH, Lorenzon LB, Ferreira TR, Zamboni D, Walrad PB, Volf P, Sacks DL, Cruz AK. Protein methyltransferase 7 deficiency in Leishmania major increases neutrophil associated pathology in murine model. PLoS Negl Trop Dis 2021; 15:e0009230. [PMID: 33651805 PMCID: PMC7954300 DOI: 10.1371/journal.pntd.0009230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/12/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmania major is the main causative agent of cutaneous leishmaniasis in the Old World. In Leishmania parasites, the lack of transcriptional control is mostly compensated by post-transcriptional mechanisms. Methylation of arginine is a conserved post-translational modification executed by Protein Arginine Methyltransferase (PRMTs). The genome from L. major encodes five PRMT homologs, including the cytosolic protein associated with several RNA-binding proteins, LmjPRMT7. It has been previously reported that LmjPRMT7 could impact parasite infectivity. In addition, a more recent work has clearly shown the importance of LmjPRMT7 in RNA-binding capacity and protein stability of methylation targets, demonstrating the role of this enzyme as an important epigenetic regulator of mRNA metabolism. In this study, we unveil the impact of PRMT7-mediated methylation on parasite development and virulence. Our data reveals that higher levels of LmjPRMT7 can impair parasite pathogenicity, and that deletion of this enzyme rescues the pathogenic phenotype of an attenuated strain of L. major. Interestingly, lesion formation caused by LmjPRMT7 knockout parasites is associated with an exacerbated inflammatory reaction in the tissue correlated with an excessive neutrophil recruitment. Moreover, the absence of LmjPRMT7 also impairs parasite development within the sand fly vector Phlebotomus duboscqi. Finally, a transcriptome analysis shed light onto possible genes affected by depletion of this enzyme. Taken together, this study highlights how post-transcriptional regulation can affect different aspects of the parasite biology. Understanding the genetics of Leishmania, a protozoan parasite causing leishmaniasis, is relevant for understanding fundamental questions on the pathogen’s biology and its interaction with hosts. We explore mechanisms used by Leishmania to promptly adapt to different hosts investigating the control of gene expression occurring at the post-transcriptional level in the parasite. Methylation of arginine performed by Protein Arginine Methyltransferase (PRMTs), among other post-translational modifications, may alter the function and interactions of target proteins, some of them are RNA binding proteins, known regulators of gene expression. In this study, we unveil the impact of PRMT7 on parasite development and pathogenicity. In addition to a negative correlation between the levels of LmjPRMT7 and parasite pathogenicity, we observed an impairment of the parasite development in the sand fly vector. Remarkably, despite a severe lesion development in mice, we observed no differences in parasite burden between infections with the pathogenic LmjPRMT7 knockout parasite or the attenuated parental line. Instead, the severe pathology observed is associated with an exacerbated inflammatory response correlated with excessive neutrophil recruitment.
Collapse
Affiliation(s)
- Juliana Alcoforado Diniz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana M. Chaves
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Slavica Vaselek
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Rubens D. Miserani Magalhães
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Ricci-Azevedo
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renan V. H. de Carvalho
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas B. Lorenzon
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tiago R. Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Dario Zamboni
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
42
|
Wang W, Ma Y, Huang M, Liang W, Zhao X, Li Q, Wang S, Hu Z, He L, Gao T, Chen J, Pan F, Guo Z. Asymmetrical arginine dimethylation of histone H4 by 8-oxog/OGG1/PRMT1 is essential for oxidative stress-induced transcription activation. Free Radic Biol Med 2021; 164:175-186. [PMID: 33418111 DOI: 10.1016/j.freeradbiomed.2020.12.457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023]
Abstract
It has been established that 8-oxoguanine DNA glycosylase 1 (OGG1) is the main enzyme removing oxidized guanine under oxidative stress. However, increasing evidence has shown that OGG1 is not only a base excision repair protein but also a new transcriptional coactivator involved in oxidative stress-induced gene expression. Its downstream target genes and the underlying regulatory mechanisms still need to be discerned. Here, it was discovered that c-Myc is a downstream target of OGG1 under oxidative stress and that H4R3me2a is involved in this transcriptional regulation. The increased level of H4R3me2a induced by H2O2 is regulated by OGG1, which may directly interact with the specific arginine methyltransferase PRMT1 and promote the asymmetrical dimethylation of H4R3me1. H4R3me2a enrichment on the promoter of c-Myc can recruit YY1 and activate c-Myc transcription. Moreover, knocking down OGG1 or PRMT1 suppresses c-Myc transcription under oxidative stress by downregulating H4R3me2a formation. Furthermore, the overexpression of wild type (WT) H4R3 promotes c-Myc transcription, but the expression of mutant H4R3Q does not have this effect. Taken together, our data show that the 8-oxoG/OGG1/PRMT1/H4R3me2a/YY1 axis senses oxidative stress and promotes gene transcription.
Collapse
Affiliation(s)
- Wentao Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Miaoling Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Weichu Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Qianwen Li
- Department of Radiotherapy, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, 210000, China
| | - Shiwei Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Jinfei Chen
- Department of Radiotherapy, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, 210000, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China.
| |
Collapse
|
43
|
Ostrop J, Zwiggelaar RT, Terndrup Pedersen M, Gerbe F, Bösl K, Lindholm HT, Díez-Sánchez A, Parmar N, Radetzki S, von Kries JP, Jay P, Jensen KB, Arrowsmith C, Oudhoff MJ. A Semi-automated Organoid Screening Method Demonstrates Epigenetic Control of Intestinal Epithelial Differentiation. Front Cell Dev Biol 2021; 8:618552. [PMID: 33575256 PMCID: PMC7872100 DOI: 10.3389/fcell.2020.618552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal organoids are an excellent model to study epithelial biology. Yet, the selection of analytical tools to accurately quantify heterogeneous organoid cultures remains limited. Here, we developed a semi-automated organoid screening method, which we applied to a library of highly specific chemical probes to identify epigenetic regulators of intestinal epithelial biology. The role of epigenetic modifiers in adult stem cell systems, such as the intestinal epithelium, is still undefined. Based on this resource dataset, we identified several targets that affected epithelial cell differentiation, including HDACs, EP300/CREBBP, LSD1, and type I PRMTs, which were verified by complementary methods. For example, we show that inhibiting type I PRMTs, which leads enhanced epithelial differentiation, blocks the growth of adenoma but not normal organoid cultures. Thus, epigenetic probes are powerful tools to study intestinal epithelial biology and may have therapeutic potential.
Collapse
Affiliation(s)
- Jenny Ostrop
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Rosalie T. Zwiggelaar
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Marianne Terndrup Pedersen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - François Gerbe
- Cancer Biology Department, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Korbinian Bösl
- Department of Bioinformatics, Computational Biological Unit, University of Bergen, Bergen, Norway
| | - Håvard T. Lindholm
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Silke Radetzki
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Jens Peter von Kries
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Philippe Jay
- Cancer Biology Department, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Kim B. Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Menno J. Oudhoff
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
44
|
Sundaravel S, Steidl U, Wickrema A. Epigenetic modifiers in normal and aberrent erythropoeisis. Semin Hematol 2021; 58:15-26. [PMID: 33509439 PMCID: PMC7883935 DOI: 10.1053/j.seminhematol.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Erythroid differentiation program is comprised of lineage commitment, erythroid progenitor proliferation, and termination differentiation. Each stage of the differentiation program is heavily influenced by epigenetic modifiers that alter the epigenome in a dynamic fashion influenced by cytokines/humeral factors and are amicable to target by drugs. The epigenetic modifiers can be classified as DNA modifiers (DNMT, TET), mRNA modifiers (RNA methylases and demethylases) and histone protein modifiers (methyltransferases, acetyltransferases, demethylases, and deacetylases). Here we describe mechanisms by which these epigenetic modifiers influence and guide erythroid-lineage differentiation during normal and malignant erythropoiesis and also benign diseases that arise from their altered structure or function.
Collapse
Affiliation(s)
- Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical center, Bronx, NY
| | | |
Collapse
|
45
|
Fulton MD, Dang T, Brown T, Zheng YG. Effects of substrate modifications on the arginine dimethylation activities of PRMT1 and PRMT5. Epigenetics 2020; 17:1-18. [PMID: 33380261 DOI: 10.1080/15592294.2020.1864170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone arginine methylation is a prevalent posttranslational modification (PTM) in eukaryotic cells and contributes to the histone codes for epigenetic regulation of gene transcription. In this study, we determined how local changes on adjacent residues in the histone H4 substrate regulate arginine asymmetric dimethylation and symmetric dimethylation catalysed by the major protein arginine methyltransferase (PRMT) enzymes PRMT1 and PRMT5, respectively. We found that phosphorylation at histone H4 Ser-1 site (H4S1) was inhibitory to activities of PRMT1 and PRMT5 in both monomethylating and dimethylating H4R3. Also, a positively charged H4K5 was important for PRMT1 catalysis because acetylation of H4K5 or the loss of the H4K5 ε-amine had a similar effect in reducing the catalytic efficiency of asymmetric dimethylation of H4R3. An opposite effect was observed in that acetylation of H4K5 or the loss of the H4K5 ε-amine enhanced PRMT5-mediated symmetric dimethylation of H4R3. Furthermore, we observed that N-terminal acetylation of H4 modestly decreased asymmetric dimethylation of H4R3 by PRMT1 and symmetric dimethylation of H4R3 by PRMT5. This work highlights the significance of local chemical changes in the substrate to regulating PRMT activity and unravels the pattern complexities and subtleties of histone codes.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Tran Dang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| |
Collapse
|
46
|
Stability of tuberous sclerosis complex 2 is controlled by methylation at R1457 and R1459. Sci Rep 2020; 10:21160. [PMID: 33273660 PMCID: PMC7713242 DOI: 10.1038/s41598-020-78274-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022] Open
Abstract
Mutations in genes that encode components of tuberous sclerosis complex 2 (TSC2) are associated with tuberous sclerosis complex disease. TSC2 interacts with tuberous sclerosis complex 1 to form a complex that negatively regulates cell growth and proliferation via the inactivation of mechanistic target of rapamycin complex 1. The activity of TSC2 is mainly regulated via posttranslational modifications such as phosphorylation. However, the control of TSC2 activity is not entirely achieved by phosphorylation. In this study, we show that TSC2 is methylated at R1457 and R1459 by protein arginine methyltransferase 1 (PRMT1). Methylation of these two residues can affect the phosphorylation status through protein kinase B (Akt) of TSC2 at T1462 and is essential for TSC2 stability. Taken together, these findings indicate that novel posttranslational modifications are important for the regulation of TSC2 stability through PRMT1-mediated methylation.
Collapse
|
47
|
Zhai W, Sun H, Li Z, Li L, Jin A, Li Y, Chen J, Yang X, Sun Q, Lu S, Roth M. PRMT1 Modulates Processing of Asthma-Related Primary MicroRNAs (Pri-miRNAs) into Mature miRNAs in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:11-22. [PMID: 33239422 DOI: 10.4049/jimmunol.2000887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Protein arginine methyltransferase-1 (PRMT1) is an important epigenetic regulator of cell function and contributes to inflammation and remodeling in asthma in a cell type-specific manner. Disease-specific expression patterns of microRNAs (miRNA) are associated with chronic inflammatory lung diseases, including asthma. The de novo synthesis of miRNA depends on the transcription of primary miRNA (pri-miRNA) transcript. This study assessed the role of PRMT1 on pri-miRNA to mature miRNA process in lung epithelial cells. Human airway epithelial cells, BEAS-2B, were transfected with the PRMT1 expression plasmid pcDNA3.1-PRMT1 for 48 h. Expression profiles of miRNA were determined by small RNA deep sequencing. Comparing these miRNAs with datasets of microarrays from five asthma patients (Gene Expression Omnibus dataset), 12 miRNAs were identified that related to PRMT1 overexpression and to asthma. The overexpression or knockdown of PRMT1 modulated the expression of the asthma-related miRNAs and their pri-miRNAs. Coimmunoprecipitation showed that PRMT1 formed a complex with STAT1 or RUNX1 and thus acted as a coactivator, stimulating the transcription of pri-miRNAs. Stimulation with TGF-β1 promoted the interaction of PRMT1 with STAT1 or RUNX1, thereby upregulating the transcription of two miRNAs: let-7i and miR-423. Subsequent chromatin immunoprecipitation assays revealed that the binding of the PRMT1/STAT1 or PRMT1/RUNX1 coactivators to primary let-7i (pri-let-7i) and primary miR (pri-miR) 423 promoter was critical for pri-let-7i and pri-miR-423 transcription. This study describes a novel role of PRMT1 as a coactivator for STAT1 or RUNX1, which is essential for the transcription of pri-let-7i and pri-miR-423 in epithelial cells and might be relevant to epithelium dysfunction in asthma.
Collapse
Affiliation(s)
- Weiqi Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuwen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; .,Pneumology and Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Michael Roth
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland; and
| |
Collapse
|
48
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
49
|
Ma Z, Wang W, Wang S, Zhao X, Ma Y, Wu C, Hu Z, He L, Pan F, Guo Z. Symmetrical dimethylation of H4R3: A bridge linking DNA damage and repair upon oxidative stress. Redox Biol 2020; 37:101653. [PMID: 32739156 PMCID: PMC7767741 DOI: 10.1016/j.redox.2020.101653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/27/2020] [Accepted: 07/20/2020] [Indexed: 01/31/2023] Open
Abstract
The DNA lesions caused by oxidative damage are principally repaired by the base excision repair (BER) pathway. 8-oxoguanine DNA glycosylase 1 (OGG1) initiates BER through recognizing and cleaving the oxidatively damaged nucleobase 8-oxo-7,8-dihydroguanine (8-oxoG). How the BER machinery detects and accesses lesions within the context of chromatin is largely unknown. Here, we found that the symmetrical dimethylarginine of histone H4 (producing H4R3me2s) serves as a bridge between DNA damage and subsequent repair. Intracellular H4R3me2s was significantly increased after treatment with the DNA oxidant reagent H2O2, and this increase was regulated by OGG1, which could directly interact with the specific arginine methyltransferase, PRMT5. Arginine-methylated H4R3 could associate with flap endonuclease 1 (FEN1) and enhance its nuclease activity and BER efficiency. Furthermore, cells with a decreased level of H4R3me2s were more susceptible to DNA-damaging agents and accumulated more DNA damage lesions in their genome. Taken together, these results demonstrate that H4R3me2s can be recognized as a reader protein that senses DNA damage and a writer protein that promotes DNA repair.
Collapse
Affiliation(s)
- Zhuang Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China; Institute of DNA Repair Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wentao Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China; Department of Health Technology, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Shiwei Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Congye Wu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68, Changle Road, Nanjing, 210006, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing, 210023, China.
| |
Collapse
|
50
|
Abe Y, Tanaka N. Fine-Tuning of GLI Activity through Arginine Methylation: Its Mechanisms and Function. Cells 2020; 9:cells9091973. [PMID: 32859041 PMCID: PMC7565022 DOI: 10.3390/cells9091973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma-associated oncogene (GLI) family consists of GLI1, GLI2, and GLI3 in mammals. This family has important roles in development and homeostasis. To achieve these roles, the GLI family has widespread outputs. GLI activity is therefore strictly regulated at multiple levels, including via post-translational modifications for context-dependent GLI target gene expression. The protein arginine methyl transferase (PRMT) family is also associated with embryogenesis, homeostasis, and cancer mainly via epigenetic modifications. In the PRMT family, PRMT1, PRMT5, and PRMT7 reportedly regulate GLI1 and GLI2 activity. PRMT1 methylates GLI1 to upregulate its activity and target gene expression. Cytoplasmic PRMT5 methylates GLI1 and promotes GLI1 protein stabilization. Conversely, nucleic PRMT5 interacts with MENIN to suppress growth arrest-specific protein 1 expression, which assists Hedgehog ligand binding to Patched, indirectly resulting in downregulated GLI1 activity. PRMT7-mediated GLI2 methylation upregulates its activity through the dissociation of GLI2 and Suppressor of Fused. Together, PRMT1, PRMT5, and PRMT7 regulate GLI activity at multiple revels. Furthermore, the GLI and PRMT families have strong links with various cancers through cancer stem cell maintenance. Therefore, PRMT-mediated regulation of GLI activity would have important roles in cancer stem cell maintenance.
Collapse
|