1
|
Xu Z, Sziraki A, Lee J, Zhou W, Cao J. Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. Nat Biotechnol 2024; 42:1218-1223. [PMID: 37749268 PMCID: PMC10961254 DOI: 10.1038/s41587-023-01948-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
We present a combinatorial indexing method, PerturbSci-Kinetics, for capturing whole transcriptomes, nascent transcriptomes and single guide RNA (sgRNA) identities across hundreds of genetic perturbations at the single-cell level. Profiling a pooled CRISPR screen targeting various biological processes, we show the gene expression regulation during RNA synthesis, processing and degradation, miRNA biogenesis and mitochondrial mRNA processing, systematically decoding the genome-wide regulatory network that underlies RNA temporal dynamics at scale.
Collapse
Affiliation(s)
- Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Sokolov V, Kyrchanova O, Klimenko N, Fedotova A, Ibragimov A, Maksimenko O, Georgiev P. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res 2024; 52:6886-6905. [PMID: 38769058 PMCID: PMC11229372 DOI: 10.1093/nar/gkae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.
Collapse
Affiliation(s)
- Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
3
|
Kamalyan S, Kyrchanova O, Klimenko N, Babosha V, Vasileva Y, Belova E, Fursenko D, Maksimenko O, Georgiev P. The N-terminal dimerization domains of human and Drosophila CTCF have similar functionality. Epigenetics Chromatin 2024; 17:9. [PMID: 38561749 PMCID: PMC10983669 DOI: 10.1186/s13072-024-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.
Collapse
Affiliation(s)
- Sofia Kamalyan
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Yulia Vasileva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Dariya Fursenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia.
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia.
| |
Collapse
|
4
|
Xu Z, Sziraki A, Lee J, Zhou W, Cao J. PerturbSci-Kinetics: Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526143. [PMID: 36778497 PMCID: PMC9915486 DOI: 10.1101/2023.01.29.526143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we described PerturbSci-Kinetics, a novel combinatorial indexing method for capturing three-layer single-cell readout (i.e., whole transcriptomes, nascent transcriptomes, sgRNA identities) across hundreds of genetic perturbations. Through PerturbSci-Kinetics profiling of pooled CRISPR screens targeting a variety of biological processes, we were able to decipher the complexity of RNA regulations at multiple levels (e.g., synthesis, processing, degradation), and revealed key regulators involved in miRNA and mitochondrial RNA processing pathways. Our technique opens the possibility of systematically decoding the genome-wide regulatory network underlying RNA temporal dynamics at scale and cost-effectively.
Collapse
|
5
|
Griffin KN, Walters BW, Li H, Wang H, Biancon G, Tebaldi T, Kaya CB, Kanyo J, Lam TT, Cox AL, Halene S, Chung JJ, Lesch BJ. Widespread association of the Argonaute protein AGO2 with meiotic chromatin suggests a distinct nuclear function in mammalian male reproduction. Genome Res 2022; 32:1655-1668. [PMID: 36109149 PMCID: PMC9528986 DOI: 10.1101/gr.276578.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Argonaute 2 (AGO2) is a ubiquitously expressed protein critical for regulation of mRNA translation and vital to animal development. AGO2 protein is found in both cytoplasmic and nuclear compartments, and although its cytoplasmic role is well studied, the biological relevance of nuclear AGO2 is unclear. Here, we address this problem in vivo using spermatogenic cells as a model. We find that AGO2 transiently binds both chromatin and nucleus-specific mRNA transcripts of hundreds of genes required for sperm production during male meiosis in mice, and that germline conditional knockout (cKO) of Ago2 causes depletion of the encoded proteins. Correspondingly, Ago2 cKO males show abnormal sperm head morphology and reduced sperm count, along with reduced postnatal viability of offspring. Together, our data reveal an unexpected nuclear role for AGO2 in enhancing expression of developmentally important genes during mammalian male reproduction.
Collapse
Affiliation(s)
- Kimberly N Griffin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | - Haixin Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Carolyn B Kaya
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Andy L Cox
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Pathology, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Bluma J Lesch
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
6
|
Chen S, Rosin LF, Pegoraro G, Moshkovich N, Murphy PJ, Yu G, Lei EP. NURF301 contributes to gypsy chromatin insulator-mediated nuclear organization. Nucleic Acids Res 2022; 50:7906-7924. [PMID: 35819192 PMCID: PMC9371915 DOI: 10.1093/nar/gkac600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Chromatin insulators are DNA-protein complexes that can prevent the spread of repressive chromatin and block communication between enhancers and promoters to regulate gene expression. In Drosophila, the gypsy chromatin insulator complex consists of three core proteins: CP190, Su(Hw), and Mod(mdg4)67.2. These factors concentrate at nuclear foci termed insulator bodies, and changes in insulator body localization have been observed in mutants defective for insulator function. Here, we identified NURF301/E(bx), a nucleosome remodeling factor, as a novel regulator of gypsy insulator body localization through a high-throughput RNAi imaging screen. NURF301 promotes gypsy-dependent insulator barrier activity and physically interacts with gypsy insulator proteins. Using ChIP-seq, we found that NURF301 co-localizes with insulator proteins genome-wide, and NURF301 promotes chromatin association of Su(Hw) and CP190 at gypsy insulator binding sites. These effects correlate with NURF301-dependent nucleosome repositioning. At the same time, CP190 and Su(Hw) both facilitate recruitment of NURF301 to chromatin. Finally, Oligopaint FISH combined with immunofluorescence revealed that NURF301 promotes 3D contact between insulator bodies and gypsy insulator DNA binding sites, and NURF301 is required for proper nuclear positioning of gypsy binding sites. Our data provide new insights into how a nucleosome remodeling factor and insulator proteins cooperatively contribute to nuclear organization.
Collapse
Affiliation(s)
- Shue Chen
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leah F Rosin
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nellie Moshkovich
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Murphy
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guoyun Yu
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Keränen SVE, Villahoz-Baleta A, Bruno AE, Halfon MS. REDfly: An Integrated Knowledgebase for Insect Regulatory Genomics. INSECTS 2022; 13:618. [PMID: 35886794 PMCID: PMC9323752 DOI: 10.3390/insects13070618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
We provide here an updated description of the REDfly (Regulatory Element Database for Fly) database of transcriptional regulatory elements, a unique resource that provides regulatory annotation for the genome of Drosophila and other insects. The genomic sequences regulating insect gene expression-transcriptional cis-regulatory modules (CRMs, e.g., "enhancers") and transcription factor binding sites (TFBSs)-are not currently curated by any other major database resources. However, knowledge of such sequences is important, as CRMs play critical roles with respect to disease as well as normal development, phenotypic variation, and evolution. Characterized CRMs also provide useful tools for both basic and applied research, including developing methods for insect control. REDfly, which is the most detailed existing platform for metazoan regulatory-element annotation, includes over 40,000 experimentally verified CRMs and TFBSs along with their DNA sequences, their associated genes, and the expression patterns they direct. Here, we briefly describe REDfly's contents and data model, with an emphasis on the new features implemented since 2020. We then provide an illustrated walk-through of several common REDfly search use cases.
Collapse
Affiliation(s)
| | - Angel Villahoz-Baleta
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.V.-B.); (A.E.B.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Andrew E. Bruno
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.V.-B.); (A.E.B.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Marc S. Halfon
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
8
|
Chetverina D, Vorobyeva NE, Mazina MY, Fab LV, Lomaev D, Golovnina A, Mogila V, Georgiev P, Ziganshin RH, Erokhin M. Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cell Mol Life Sci 2022; 79:353. [PMID: 35676368 PMCID: PMC11072172 DOI: 10.1007/s00018-022-04383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) proteins are key epigenetic regulators controlling the silenced and active states of genes in multicellular organisms, respectively. In Drosophila, PcG/TrxG proteins are recruited to the chromatin via binding to specific DNA sequences termed polycomb response elements (PREs). While precise mechanisms of the PcG/TrxG protein recruitment remain unknown, the important role is suggested to belong to sequence-specific DNA-binding factors. At the same time, it was demonstrated that the PRE DNA-binding proteins are not exclusively localized to PREs but can bind other DNA regulatory elements, including enhancers, promoters, and boundaries. To gain an insight into the PRE DNA-binding protein regulatory network, here, using ChIP-seq and immuno-affinity purification coupled to the high-throughput mass spectrometry, we searched for differences in abundance of the Combgap, Zeste, Psq, and Adf1 PRE DNA-binding proteins. While there were no conspicuous differences in co-localization of these proteins with other functional transcription factors, we show that Combgap and Zeste are more tightly associated with the Polycomb repressive complex 1 (PRC1), while Psq interacts strongly with the TrxG proteins, including the BAP SWI/SNF complex. The Adf1 interactome contained Mediator subunits as the top interactors. In addition, Combgap efficiently interacted with AGO2, NELF, and TFIID. Combgap, Psq, and Adf1 have architectural proteins in their networks. We further investigated the existence of direct interactions between different PRE DNA-binding proteins and demonstrated that Combgap-Adf1, Psq-Dsp1, and Pho-Spps can interact in the yeast two-hybrid assay. Overall, our data suggest that Combgap, Psq, Zeste, and Adf1 are associated with the protein complexes implicated in different regulatory activities and indicate their potential multifunctional role in the regulation of transcription.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Mazina
- Group of Hormone-Dependent Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Alexandra Golovnina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Vladic Mogila
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
9
|
Müller M, Schaefer M, Fäh T, Spies D, Hermes V, Ngondo RP, Peña-Hernández R, Santoro R, Ciaudo C. Argonaute proteins regulate a specific network of genes through KLF4 in mouse embryonic stem cells. Stem Cell Reports 2022; 17:1070-1080. [PMID: 35452597 PMCID: PMC9133645 DOI: 10.1016/j.stemcr.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
The Argonaute proteins (AGOs) are well known for their role in post-transcriptional gene silencing in the microRNA (miRNA) pathway. Here we show that in mouse embryonic stem cells, AGO1&2 serve additional functions that go beyond the miRNA pathway. Through the combined deletion of both Agos, we identified a specific set of genes that are uniquely regulated by AGOs but not by the other miRNA biogenesis factors. Deletion of Ago2&1 caused a global reduction of the repressive histone mark H3K27me3 due to downregulation at protein levels of Polycomb repressive complex 2 components. By integrating chromatin accessibility, prediction of transcription factor binding sites, and chromatin immunoprecipitation sequencing data, we identified the pluripotency factor KLF4 as a key modulator of AGO1&2-regulated genes. Our findings revealed a novel axis of gene regulation that is mediated by noncanonical functions of AGO proteins that affect chromatin states and gene expression using mechanisms outside the miRNA pathway. AGO1&2 regulate a specific set of genes in mESCs, independently of the miRNA pathway PRC2 proteins are downregulated in Ago2&1_KO mESCs, leading to H3K27me3 global loss AGO1&2 regulate gene expression through the pluripotency factor KLF4
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Chair of RNAi and Genome Integrity, Zurich, Switzerland; Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Moritz Schaefer
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Chair of RNAi and Genome Integrity, Zurich, Switzerland; Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Tara Fäh
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Daniel Spies
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Rodrigo Peña-Hernández
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences, Chair of RNAi and Genome Integrity, Zurich, Switzerland.
| |
Collapse
|
10
|
Dori M, Caroli J, Forcato M. Circr, a Computational Tool to Identify miRNA:circRNA Associations. FRONTIERS IN BIOINFORMATICS 2022; 2:852834. [PMID: 36304313 PMCID: PMC9580875 DOI: 10.3389/fbinf.2022.852834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 08/21/2023] Open
Abstract
Circular RNAs (circRNAs) are known to act as important regulators of the microRNA (miRNA) activity. Yet, computational resources to identify miRNA:circRNA interactions are mostly limited to already annotated circRNAs or affected by high rates of false positive predictions. To overcome these limitations, we developed Circr, a computational tool for the prediction of associations between circRNAs and miRNAs. Circr combines three publicly available algorithms for de novo prediction of miRNA binding sites on target sequences (miRanda, RNAhybrid, and TargetScan) and annotates each identified miRNA:target pairs with experimentally validated miRNA:RNA interactions and binding sites for Argonaute proteins derived from either ChIPseq or CLIPseq data. The combination of multiple tools for the identification of a single miRNA recognition site with experimental data allows to efficiently prioritize candidate miRNA:circRNA interactions for functional studies in different organisms. Circr can use its internal annotation database or custom annotation tables to enhance the identification of novel and not previously annotated miRNA:circRNA sites in virtually any species. Circr is written in Python 3.6 and is released under the GNU GPL3.0 License at https://github.com/bicciatolab/Circr.
Collapse
Affiliation(s)
- Martina Dori
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
| |
Collapse
|
11
|
Fallatah B, Shuaib M, Adroub S, Paytuví-Gallart A, Della Valle F, Nadeef S, Lanzuolo C, Orlando V. Ago1 controls myogenic differentiation by regulating eRNA-mediated CBP-guided epigenome reprogramming. Cell Rep 2021; 37:110066. [PMID: 34852230 DOI: 10.1016/j.celrep.2021.110066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
The role of chromatin-associated RNAi components in the nucleus of mammalian cells and in particular in the context of developmental programs remains to be elucidated. Here, we investigate the function of nuclear Argonaute 1 (Ago1) in gene expression regulation during skeletal muscle differentiation. We show that Ago1 is required for activation of the myogenic program by supporting chromatin modification mediated by developmental enhancer activation. Mechanistically, we demonstrate that Ago1 directly controls global H3K27 acetylation (H3K27ac) by regulating enhancer RNA (eRNA)-CREB-binding protein (CBP) acetyltransferase interaction, a key step in enhancer-driven gene activation. In particular, we show that Ago1 is specifically required for myogenic differentiation 1 (MyoD) and downstream myogenic gene activation, whereas its depletion leads to failure of CBP acetyltransferase activation and blocking of the myogenic program. Our work establishes a role of the mammalian enhancer-associated RNAi component Ago1 in epigenome regulation and activation of developmental programs.
Collapse
Affiliation(s)
- Bodor Fallatah
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Muhammad Shuaib
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Sabir Adroub
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | | | - Francesco Della Valle
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Seba Nadeef
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, 20090 Milan, Italy; National Institute of Molecular Genetics (INGM) "Romeo ed Enrica Invernizzi," Chromatin and Nuclear Architecture Laboratory, 20122 Milan, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST Environmental Epigenetics Research Program, Biological and Environmental Sciences and Engineering Division, Thuwal 23955, Saudi Arabia.
| |
Collapse
|
12
|
Nazer E, Gómez Acuña L, Kornblihtt AR. Seeking the truth behind the myth: Argonaute tales from "nuclearland". Mol Cell 2021; 82:503-513. [PMID: 34856122 DOI: 10.1016/j.molcel.2021.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Argonaute proteins have been traditionally characterized as a highly evolutionary conserved family engaged in post-transcriptional gene silencing pathways. The Argonaute family is mainly grouped into the AGO and PIWI clades. The canonical role of Argonaute proteins relies on their ability to bind small-RNAs that recognize complementary sequences on target mRNAs to induce either mRNA degradation or translational repression. However, there is an increasing amount of evidence supporting that Argonaute proteins also exert multiple nuclear functions that subsequently regulate gene expression. In this line, genome-wide studies showed that members from the AGO clade regulate transcription, 3D chromatin organization, and splicing of active loci located within euchromatin. Here, we discuss recent work based on high-throughput technologies that have significantly contributed to shed light on the multivariate nuclear functions of AGO proteins in different model organisms. We also analyze data supporting that AGO proteins are able to execute these nuclear functions independently from small RNA pathways. Finally, we integrate these mechanistic insights with recent reports highlighting the clinical importance of AGO in breast and prostate cancer development.
Collapse
Affiliation(s)
- Ezequiel Nazer
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| | - Luciana Gómez Acuña
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
13
|
Chen D, McManus CE, Radmanesh B, Matzat LH, Lei EP. Temporal inhibition of chromatin looping and enhancer accessibility during neuronal remodeling. Nat Commun 2021; 12:6366. [PMID: 34737269 PMCID: PMC8568962 DOI: 10.1038/s41467-021-26628-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
During development, looping of an enhancer to a promoter is frequently observed in conjunction with temporal and tissue-specific transcriptional activation. The chromatin insulator-associated protein Alan Shepard (Shep) promotes Drosophila post-mitotic neuronal remodeling by repressing transcription of master developmental regulators, such as brain tumor (brat), specifically in maturing neurons. Since insulator proteins can promote looping, we hypothesized that Shep antagonizes brat promoter interaction with an as yet unidentified enhancer. Using chromatin conformation capture and reporter assays, we identified two enhancer regions that increase in looping frequency with the brat promoter specifically in pupal brains after Shep depletion. The brat promoters and enhancers function independently of Shep, ruling out direct repression of these elements. Moreover, ATAC-seq in isolated neurons demonstrates that Shep restricts chromatin accessibility of a key brat enhancer as well as other enhancers genome-wide in remodeling pupal but not larval neurons. These enhancers are enriched for chromatin targets of Shep and are located at Shep-inhibited genes, suggesting direct Shep inhibition of enhancer accessibility and gene expression during neuronal remodeling. Our results provide evidence for temporal regulation of chromatin looping and enhancer accessibility during neuronal maturation.
Collapse
Affiliation(s)
- Dahong Chen
- Nuclear Organization and Gene Expression Section, Bethesda, MD, USA
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Catherine E McManus
- Nuclear Organization and Gene Expression Section, Bethesda, MD, USA
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Behram Radmanesh
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Leah H Matzat
- Nuclear Organization and Gene Expression Section, Bethesda, MD, USA
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, Bethesda, MD, USA.
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Kyrchanova O, Klimenko N, Postika N, Bonchuk A, Zolotarev N, Maksimenko O, Georgiev P. Drosophila architectural protein CTCF is not essential for fly survival and is able to function independently of CP190. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194733. [PMID: 34311130 DOI: 10.1016/j.bbagrm.2021.194733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
CTCF is the most likely ancestor of proteins that contain large clusters of C2H2 zinc finger domains (C2H2) and is conserved among most bilateral organisms. In mammals, CTCF functions as the main architectural protein involved in the organization of topology-associated domains (TADs). In vertebrates and Drosophila, CTCF is involved in the regulation of homeotic genes. Previously, it was found that null mutations in the dCTCF gene died as pharate adults, which failed to eclose from their pupal case, or shortly after hatching of adults. Here, we obtained several new null dCTCF mutations and found that the complete inactivation of dCTCF appears is limited mainly to phenotypic manifestations of the Abd-B gene and fertility of adult flies. Many modifiers that are not associated with an independent phenotypic manifestation can significantly enhance the expressivity of the null dCTCF mutations, indicating that other architectural proteins are able to functionally compensate for dCTCF inactivation in Drosophila. We also mapped the 715-735 aa region of dCTCF as being essential for the interaction with the BTB (Broad-Complex, Tramtrack, and Bric a brac) and microtubule-targeting (M) domains of the CP190 protein, which binds to many architectural proteins. However, the mutational analysis showed that the interaction with CP190 was not important for the functional activity of dCTCF in vivo.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Zolotarev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.
| |
Collapse
|
15
|
M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity. Nat Commun 2021; 12:4170. [PMID: 34234130 PMCID: PMC8263732 DOI: 10.1038/s41467-021-24407-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Genome organization is driven by forces affecting transcriptional state, but the relationship between transcription and genome architecture remains unclear. Here, we identified the Drosophila transcription factor Motif 1 Binding Protein (M1BP) in physical association with the gypsy chromatin insulator core complex, including the universal insulator protein CP190. M1BP is required for enhancer-blocking and barrier activities of the gypsy insulator as well as its proper nuclear localization. Genome-wide, M1BP specifically colocalizes with CP190 at Motif 1-containing promoters, which are enriched at topologically associating domain (TAD) borders. M1BP facilitates CP190 chromatin binding at many shared sites and vice versa. Both factors promote Motif 1-dependent gene expression and transcription near TAD borders genome-wide. Finally, loss of M1BP reduces chromatin accessibility and increases both inter- and intra-TAD local genome compaction. Our results reveal physical and functional interaction between CP190 and M1BP to activate transcription at TAD borders and mediate chromatin insulator-dependent genome organization. Transcriptional state plays a role in genome organization, however factors that link these processes are not well known. Here, the authors show Drosophila transcription factor Motif 1-binding protein (M1BP) interacts with the insulator protein CP190 to promote insulator function and activate Motif 1-dependent transcription at topologically associating domain (TAD) borders.
Collapse
|
16
|
Asma H, Halfon MS. Annotating the Insect Regulatory Genome. INSECTS 2021; 12:591. [PMID: 34209769 PMCID: PMC8305585 DOI: 10.3390/insects12070591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
An ever-growing number of insect genomes is being sequenced across the evolutionary spectrum. Comprehensive annotation of not only genes but also regulatory regions is critical for reaping the full benefits of this sequencing. Driven by developments in sequencing technologies and in both empirical and computational discovery strategies, the past few decades have witnessed dramatic progress in our ability to identify cis-regulatory modules (CRMs), sequences such as enhancers that play a major role in regulating transcription. Nevertheless, providing a timely and comprehensive regulatory annotation of newly sequenced insect genomes is an ongoing challenge. We review here the methods being used to identify CRMs in both model and non-model insect species, and focus on two tools that we have developed, REDfly and SCRMshaw. These resources can be paired together in a powerful combination to facilitate insect regulatory annotation over a broad range of species, with an accuracy equal to or better than that of other state-of-the-art methods.
Collapse
Affiliation(s)
- Hasiba Asma
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA;
| | - Marc S. Halfon
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA;
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
17
|
Gómez Acuña LI, Nazer E, Rodríguez-Seguí SA, Pozzi B, Buggiano V, Marasco LE, Agirre E, He C, Alló M, Kornblihtt AR. Nuclear role for human Argonaute-1 as an estrogen-dependent transcription coactivator. J Cell Biol 2020; 219:e201908097. [PMID: 32673398 PMCID: PMC7480116 DOI: 10.1083/jcb.201908097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
In mammals, argonaute (AGO) proteins have been characterized for their roles in small RNA-mediated posttranscriptional and also in transcriptional gene silencing. Here, we report a different role for AGO1 in estradiol-triggered transcriptional activation in human cells. We show that in MCF-7 mammary gland cells, AGO1 associates with transcriptional enhancers of estrogen receptor α (ERα) and that this association is up-regulated by treating the cells with estrogen (E2), displaying a positive correlation with the activation of these enhancers. Moreover, we show that AGO1 interacts with ERα and that this interaction is also increased by E2 treatment, but occurs in the absence of RNA. We show that AGO1 acts positively as a coactivator in estradiol-triggered transcription regulation by promoting ERα binding to its enhancers. Consistently, AGO1 depletion decreases long-range contacts between ERα enhancers and their target promoters. Our results point to a role of AGO1 in transcriptional regulation in human cells that is independent from small RNA binding.
Collapse
Affiliation(s)
- Luciana I Gómez Acuña
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Ezequiel Nazer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Santiago A Rodríguez-Seguí
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Valeria Buggiano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Luciano E Marasco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | | | - Cody He
- Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Mariano Alló
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| |
Collapse
|
18
|
The CXCR4-Dependent LASP1-Ago2 Interaction in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092455. [PMID: 32872485 PMCID: PMC7564666 DOI: 10.3390/cancers12092455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
The CXCR4-LASP1 axis is an emerging target in the field of breast cancer metastasis. C-X-C chemokine receptor type 4 (CXCR4) mediates directed cell migration when activated by its cognate ligand CXCL12. LIM and SH3 Protein 1 (LASP1) is a critical node in the CXCR4 signaling pathway, as its deficiency blocks CXCR4-dependent Matrigel invasion. The mechanism by which LASP1 facilitates this invasive ability of tumor cells when CXCR4 is activated is unknown. Our previous proteomics work had revealed several components of the RNA interference (RNAi) machinery as being potential LASP1 interacting proteins. Here we report that argonaute 2 (Ago2), a protein with central involvement in RNAi, associates with LASP1 in triple-negative breast cancer (TNBC) cells. We demonstrate that LASP1 co-immunoprecipitates with Ago2 endogenously in a CXCL12-dependent manner, with further confirmation of this interaction by proximity ligation assay. Furthermore, this association is specific to CXCR4 as it can be abrogated by the CXCR4 antagonist, AMD3465. By GST-pulldown approach, we identify that LASP1 directly binds to Ago2 through its LIM and SH3 domains, and that this binding is dictated by the S146 and Y171 phosphorylation sites of LASP1. Additionally, the phosphorylation status of LASP1 affected tumor suppressor microRNA (miRNA) Let-7a-guided Ago2 activity. Levels of several endogenous targets of Let-7a were found to be altered including C-C chemokine receptor type 7 (CCR7), which is another critical chemokine receptor involved in metastasis to lymph nodes. Our results suggest a novel role for the LASP1-Ago2 module in shaping the RNAi landscape, functionally impacting the invasive ability of cancer cells.
Collapse
|
19
|
Fresán U, Rodríguez-Sánchez MA, Reina O, Corces VG, Espinàs ML. Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing. PLoS Genet 2020; 16:e1008962. [PMID: 32750047 PMCID: PMC7428214 DOI: 10.1371/journal.pgen.1008962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Haspin, a highly conserved kinase in eukaryotes, has been shown to be responsible for phosphorylation of histone H3 at threonine 3 (H3T3ph) during mitosis, in mammals and yeast. Here we report that haspin is the kinase that phosphorylates H3T3 in Drosophila melanogaster and it is involved in sister chromatid cohesion during mitosis. Our data reveal that haspin also phosphorylates H3T3 in interphase. H3T3ph localizes in broad silenced domains at heterochromatin and lamin-enriched euchromatic regions. Loss of haspin compromises insulator activity in enhancer-blocking assays and triggers a decrease in nuclear size that is accompanied by changes in nuclear envelope morphology. We show that haspin is a suppressor of position-effect variegation involved in heterochromatin organization. Our results also demonstrate that haspin is necessary for pairing-sensitive silencing and it is required for robust Polycomb-dependent homeotic gene silencing. Haspin associates with the cohesin complex in interphase, mediates Pds5 binding to chromatin and cooperates with Pds5-cohesin to modify Polycomb-dependent homeotic transformations. Therefore, this study uncovers an unanticipated role for haspin kinase in genome organization of interphase cells and demonstrates that haspin is required for homeotic gene regulation.
Collapse
Affiliation(s)
- Ujué Fresán
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
- Institute for Research in Biomedicine IRB, Barcelona, Spain
| | | | - Oscar Reina
- Bioinformatics and Biostatistics Unit, Institute for Research in Biomedicine IRB, Barcelona, Spain
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - M. Lluisa Espinàs
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
- Institute for Research in Biomedicine IRB, Barcelona, Spain
| |
Collapse
|
20
|
Zaytseva O, Mitchell NC, Guo L, Marshall OJ, Parsons LM, Hannan RD, Levens DL, Quinn LM. Transcriptional repression of Myc underlies the tumour suppressor function of AGO1 in Drosophila. Development 2020; 147:147/11/dev190231. [PMID: 32527935 PMCID: PMC7295588 DOI: 10.1242/dev.190231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022]
Abstract
Here, we report novel tumour suppressor activity for the Drosophila Argonaute family RNA-binding protein AGO1, a component of the miRNA-dependent RNA-induced silencing complex (RISC). The mechanism for growth inhibition does not, however, involve canonical roles as part of the RISC; rather, AGO1 controls cell and tissue growth by functioning as a direct transcriptional repressor of the master regulator of growth, Myc. AGO1 depletion in wing imaginal discs drives a significant increase in ribosome biogenesis, nucleolar expansion and cell growth in a manner dependent on Myc abundance. Moreover, increased Myc promoter activity and elevated Myc mRNA in AGO1-depleted animals requires RNA polymerase II transcription. Further support for transcriptional AGO1 functions is provided by physical interaction with the RNA polymerase II transcriptional machinery (chromatin remodelling factors and Mediator Complex), punctate nuclear localisation in euchromatic regions and overlap with Polycomb Group transcriptional silencing loci. Moreover, significant AGO1 enrichment is observed on the Myc promoter and AGO1 interacts with the Myc transcriptional activator Psi. Together, our data show that Drosophila AGO1 functions outside of the RISC to repress Myc transcription and inhibit developmental cell and tissue growth. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: In the Drosophila wing, the Argonaute family protein AGO1 acts independently of the miRNA-silencing pathway to restrict tissue growth by directly repressing transcription of the master growth regulator Myc.
Collapse
Affiliation(s)
- Olga Zaytseva
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Naomi C Mitchell
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Linna Guo
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | | | | | - Ross D Hannan
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - David L Levens
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Leonie M Quinn
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
21
|
Rivera J, Keränen SVE, Gallo SM, Halfon MS. REDfly: the transcriptional regulatory element database for Drosophila. Nucleic Acids Res 2020; 47:D828-D834. [PMID: 30329093 PMCID: PMC6323911 DOI: 10.1093/nar/gky957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
The REDfly database provides a comprehensive curation of experimentally-validated Drosophila transcriptional cis-regulatory elements and includes information on DNA sequence, experimental evidence, patterns of regulated gene expression, and more. Now in its thirteenth year, REDfly has grown to over 23 000 records of tested reporter gene constructs and 2200 tested transcription factor binding sites. Recent developments include the start of curation of predicted cis-regulatory modules in addition to experimentally-verified ones, improved search and filtering, and increased interaction with the authors of curated papers. An expanded data model that will capture information on temporal aspects of gene regulation, regulation in response to environmental and other non-developmental cues, sexually dimorphic gene regulation, and non-endogenous (ectopic) aspects of reporter gene expression is under development and expected to be in place within the coming year. REDfly is freely accessible at http://redfly.ccr.buffalo.edu, and news about database updates and new features can be followed on Twitter at @REDfly_database.
Collapse
Affiliation(s)
- John Rivera
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | - Steven M Gallo
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Marc S Halfon
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
22
|
Li X, Wang X, Cheng Z, Zhu Q. AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol 2020; 55:33-53. [DOI: 10.1080/10409238.2020.1738331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaojing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Pasquier C, Agnel S, Robichon A. Transcriptome-wide-scale-predicted dsRNAs potentially involved in RNA homoeostasis are remarkably excluded from genes with no/very low expression in all developmental stages. RNA Biol 2020; 17:554-570. [PMID: 31971862 DOI: 10.1080/15476286.2020.1717154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi) refers to a conserved posttranscriptional mechanism for the degradation of RNA by short dsRNAs. A genome-wide analysis of mRNAs that are complementary to RNAs of variable length that are transcribed from the full transcriptome and susceptible to being loaded onto Argonaute type 2 was performed through computational searches in the Drosophila model. We report the segments of RNAs that are complementary to mRNAs originating from introns, the exons of mRNAs and lncRNAs as a potential source of siRNAs. A full catalogue of the mRNAs that fulfill these criteria is presented, along with the quantification of multiple annealing. The catalogue was assessed for biological validation using three published lists: two for Ago2-associated RNAs and one for dsRNAs isolated from a crude extract. A broad spectrum of mRNAs were found to theoretically form intermolecular segmental dsRNAs, which should qualify them as Dicer/Ago2 substrates if they exist in vivo. These results suggest a genome-wide scale of mRNA homoeostasis via RNAi metabolism and could extend the known roles of canonical miRNAs and hairpin RNAs. The distribution of the genes for which transcripts are engaged in intermolecular segmental pairing is largely lacking in the gene collections defined as showing no expression in each individual developmental stage from early embryos to adulthood. This trend was also observed for the genes showing very low expression from the 8-12-hour embryonic to larval stage 2. This situation was also suggested by the 3 lists generated with minimal 20-, 25- and 30-base pairing lengths.
Collapse
Affiliation(s)
- Claude Pasquier
- Laboratoire d'informatique, signaux et système (I3S) CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Sandra Agnel
- Agrobiotech Institute (ISA)INRA, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| | - Alain Robichon
- Agrobiotech Institute (ISA)INRA, CNRS, Université Côte d'Azur, Sophia Antipolis, France
| |
Collapse
|
24
|
Li H, Fan J, Zhao Y, Zhang X, Dai B, Zhan J, Yin Z, Nie X, Fu XD, Chen C, Wang DW. Nuclear miR-320 Mediates Diabetes-Induced Cardiac Dysfunction by Activating Transcription of Fatty Acid Metabolic Genes to Cause Lipotoxicity in the Heart. Circ Res 2019; 125:1106-1120. [PMID: 31638474 PMCID: PMC6903355 DOI: 10.1161/circresaha.119.314898] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Diabetes mellitus is often associated with cardiovascular complications, which is the leading cause of morbidity and mortality among patients with diabetes mellitus, but little is known about the mechanism that connects diabetes mellitus to the development of cardiovascular dysfunction.
Collapse
Affiliation(s)
- Huaping Li
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., X.N., C.C., D.W.W.)
| | - Jiahui Fan
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., X.N., C.C., D.W.W.)
| | - Yanru Zhao
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., X.N., C.C., D.W.W.)
| | - Xiaorong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing (X.Z.)
| | - Beibei Dai
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., X.N., C.C., D.W.W.)
| | - Jiabing Zhan
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., X.N., C.C., D.W.W.)
| | - Zhongwei Yin
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.)
| | - Xiang Nie
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., X.N., C.C., D.W.W.)
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, La Jolla, San Diego (X.-D.F.)
| | - Chen Chen
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., X.N., C.C., D.W.W.)
| | - Dao Wen Wang
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., Z.Y., X.N., C.C., D.W.W.).,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.L., J.F., Y.Z., B.D., J.Z., X.N., C.C., D.W.W.)
| |
Collapse
|
25
|
Shuaib M, Parsi KM, Thimma M, Adroub SA, Kawaji H, Seridi L, Ghosheh Y, Fort A, Fallatah B, Ravasi T, Carninci P, Orlando V. Nuclear AGO1 Regulates Gene Expression by Affecting Chromatin Architecture in Human Cells. Cell Syst 2019; 9:446-458.e6. [PMID: 31629687 DOI: 10.1016/j.cels.2019.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
The impact of mammalian RNA interference components, particularly, Argonaute proteins, on chromatin organization is unexplored. Recent reports indicate that AGO1 association with chromatin appears to influence gene expression. To uncover the role of AGO1 in the nucleus, we used a combination of genome-wide approaches in control and AGO1-depleted HepG2 cells. We found that AGO1 strongly associates with active enhancers and RNA being produced at those sites. Hi-C analysis revealed AGO1 enrichment at the boundaries of topologically associated domains (TADs). By Hi-C in AGO1 knockdown cells, we observed changes in chromatin organization, including TADs and A/B compartment mixing, specifically in AGO1-bound regions. Distinct groups of genes and especially eRNA transcripts located within differentially interacting loci showed altered expression upon AGO1 depletion. Moreover, AGO1 association with enhancers is dependent on eRNA transcription. Collectively, our data suggest that enhancer-associated AGO1 contributes to the fine-tuning of chromatin architecture and gene expression in human cells.
Collapse
Affiliation(s)
- Muhammad Shuaib
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Krishna Mohan Parsi
- IRCSS Fondazione, Santa Lucia, Epigenetics and Genome Reprogramming, Rome, Italy
| | - Manjula Thimma
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Sabir Abdu Adroub
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Loqmane Seridi
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Yanal Ghosheh
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Fort
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Bodor Fallatah
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Valerio Orlando
- King Abdullah University Science and Technology (KAUST), BESE Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia; IRCSS Fondazione, Santa Lucia, Epigenetics and Genome Reprogramming, Rome, Italy.
| |
Collapse
|
26
|
Giraud G, Terrone S, Bourgeois CF. Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation. BMB Rep 2019. [PMID: 30293550 PMCID: PMC6330936 DOI: 10.5483/bmbrep.2018.51.12.234] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Guillaume Giraud
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Sophie Terrone
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| |
Collapse
|
27
|
Bag I, Dale RK, Palmer C, Lei EP. The zinc-finger protein CLAMP promotes gypsy chromatin insulator function in Drosophila. J Cell Sci 2019; 132:jcs.226092. [PMID: 30718365 DOI: 10.1242/jcs.226092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 01/31/2023] Open
Abstract
Chromatin insulators are DNA-protein complexes that establish independent higher-order DNA domains to influence transcription. Insulators are functionally defined by two properties: they can block communication between an enhancer and a promoter, and also act as a barrier between heterochromatin and euchromatin. In Drosophila, the gypsy insulator complex contains three core components; Su(Hw), CP190 and Mod(mdg4)67.2. Here, we identify a novel role for Chromatin-linked adaptor for MSL proteins (CLAMP) in promoting gypsy chromatin insulator function. When clamp is knocked down, gypsy-dependent enhancer-blocking and barrier activities are strongly reduced. CLAMP associates physically with the core gypsy insulator complex, and ChIP-seq analysis reveals extensive overlap, particularly with promoter-bound CP190 on chromatin. Depletion of CLAMP disrupts CP190 binding at a minority of shared sites, whereas depletion of CP190 results in extensive loss of CLAMP chromatin association. Finally, reduction of CLAMP disrupts CP190 localization within the nucleus. Our results support a positive functional relationship between CLAMP and CP190 to promote gypsy chromatin insulator activity.
Collapse
Affiliation(s)
- Indira Bag
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cameron Palmer
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA .,Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Shep RNA-Binding Capacity Is Required for Antagonism of gypsy Chromatin Insulator Activity. G3-GENES GENOMES GENETICS 2019; 9:749-754. [PMID: 30630880 PMCID: PMC6404607 DOI: 10.1534/g3.118.200923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chromatin insulators are DNA-protein complexes that regulate chromatin structure and gene expression in a wide range of organisms. These complexes also harbor enhancer blocking and barrier activities. Increasing evidence suggests that RNA molecules are integral components of insulator complexes. However, how these RNA molecules are involved in insulator function remains unclear. The Drosophila RNA-binding protein Shep associates with the gypsy insulator complex and inhibits insulator activities. By mutating key residues in the RRM domains, we generated a Shep mutant protein incapable of RNA-binding, and this mutant lost the ability to inhibit barrier activity. In addition, we found that one of many wildtype Shep isoforms but not RRM mutant Shep was sufficient to repress enhancer blocking activities. Finally, wildtype Shep rescued synthetic lethality of shep, mod(mdg4) double-mutants and developmental defects of shep mutant neurons, whereas mutant Shep failed to do so. These results indicate that the RNA-binding ability of Shep is essential for its ability to antagonize insulator activities and promote neuronal maturation. Our findings suggest that regulation of insulator function by RNA-binding proteins relies on RNA-mediated interactions.
Collapse
|
29
|
MicroRNA-1224 Splicing CircularRNA-Filip1l in an Ago2-Dependent Manner Regulates Chronic Inflammatory Pain via Targeting Ubr5. J Neurosci 2019; 39:2125-2143. [PMID: 30651325 DOI: 10.1523/jneurosci.1631-18.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.
Collapse
|
30
|
Lee SK, Xue Y, Shen W, Zhang Y, Joo Y, Ahmad M, Chinen M, Ding Y, Ku WL, De S, Lehrmann E, Becker KG, Lei EP, Zhao K, Zou S, Sharov A, Wang W. Topoisomerase 3β interacts with RNAi machinery to promote heterochromatin formation and transcriptional silencing in Drosophila. Nat Commun 2018; 9:4946. [PMID: 30470739 PMCID: PMC6251927 DOI: 10.1038/s41467-018-07101-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Topoisomerases solve topological problems during DNA metabolism, but whether they participate in RNA metabolism remains unclear. Top3β represents a family of topoisomerases carrying activities for both DNA and RNA. Here we show that in Drosophila, Top3β interacts biochemically and genetically with the RNAi-induced silencing complex (RISC) containing AGO2, p68 RNA helicase, and FMRP. Top3β and RISC mutants are similarly defective in heterochromatin formation and transcriptional silencing by position-effect variegation assay. Moreover, both Top3β and AGO2 mutants exhibit reduced levels of heterochromatin protein HP1 in heterochromatin. Furthermore, expression of several genes and transposable elements in heterochromatin is increased in the Top3β mutant. Notably, Top3β mutants defective in either RNA binding or catalytic activity are deficient in promoting HP1 recruitment and silencing of transposable elements. Our data suggest that Top3β may act as an RNA topoisomerase in siRNA-guided heterochromatin formation and transcriptional silencing. Topoisomerases solve topological problems during DNA metabolism, but their role in RNA metabolism remains unclear. Here the authors provide evidence that in Drosophila, Topoisomerase 3β interacts biochemically and genetically with the RNAi-induced silencing complex (RISC) to promote heterochromatin formation and transcriptional silencing.
Collapse
Affiliation(s)
- Seung Kyu Lee
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yutong Xue
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Weiping Shen
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yongqing Zhang
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yuyoung Joo
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Muzammil Ahmad
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Madoka Chinen
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive Kidney Diseases, Bethesda, MD, 20892, USA
| | - Yi Ding
- System Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wai Lim Ku
- System Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Supriyo De
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Elin Lehrmann
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kevin G Becker
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Elissa P Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive Kidney Diseases, Bethesda, MD, 20892, USA
| | - Keji Zhao
- System Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sige Zou
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Alexei Sharov
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Weidong Wang
- Lab of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
31
|
Argonaute2 attenuates active transcription by limiting RNA Polymerase II elongation in Drosophila melanogaster. Sci Rep 2018; 8:15685. [PMID: 30356106 PMCID: PMC6200757 DOI: 10.1038/s41598-018-34115-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing lines of evidence support that Argonaute2 (AGO2) harbors several nuclear functions in metazoa. In particular, Drosophila AGO2 modulates transcription of developmentally regulated genes; however, the molecular mechanisms behind AGO2 recruitment into chromatin and its function in transcription have not been deeply explored. In this study, we show that Drosophila AGO2 chromatin association depends on active transcription. In order to gain insight into how AGO2 controls transcription, we performed differential ChIP-seq analysis for RNA Polymerase II (Pol II) upon depletion of AGO2. Remarkably, we find specific accumulation of the elongating but not initiating form of Pol II after AGO2 knockdown, suggesting that AGO2 impairs transcription elongation. Finally, AGO2 also affects Negative Elongation Factor (NELF) chromatin association but not the Cyclin Dependent Kinase 9 (CDK9). Altogether, these results provide key insights into the molecular role of AGO2 in attenuating elongation of certain actively transcribed genes.
Collapse
|
32
|
Pong SK, Gullerova M. Noncanonical functions of microRNA pathway enzymes - Drosha, DGCR8, Dicer and Ago proteins. FEBS Lett 2018; 592:2973-2986. [PMID: 30025156 DOI: 10.1002/1873-3468.13196] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory noncoding RNAs that are generated in the canonical RNA interference (RNAi) pathway. Drosha, DiGeorge syndrome critical region 8 (DGCR8) and Dicer are key players in miRNA biogenesis. Argonaute (Ago) proteins bind to miRNAs and are guided by them to find messenger RNA targets and carry out post-transcriptional silencing of protein-coding genes. Recently, emerging evidence suggests that RNAi factors have a range of noncanonical functions that are beyond miRNA biogenesis. These functions pertain to various biological processes, such as development, transcriptional regulation, RNA processing and maintenance of genome integrity. Here, we review recent literature reporting miRNA-independent, noncanonical functions of Drosha, DGCR8, Dicer and Ago proteins and discuss the importance of these functions.
Collapse
Affiliation(s)
- Sheng K Pong
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | |
Collapse
|
33
|
La Fortezza M, Grigolon G, Cosolo A, Pindyurin A, Breimann L, Blum H, van Steensel B, Classen AK. DamID profiling of dynamic Polycomb-binding sites in Drosophila imaginal disc development and tumorigenesis. Epigenetics Chromatin 2018; 11:27. [PMID: 29871666 PMCID: PMC5987561 DOI: 10.1186/s13072-018-0196-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tracking dynamic protein–chromatin interactions in vivo is key to unravel transcriptional and epigenetic transitions in development and disease. However, limited availability and heterogeneous tissue composition of in vivo source material impose challenges on many experimental approaches. Results Here we adapt cell-type-specific DamID-seq profiling for use in Drosophila imaginal discs and make FLP/FRT-based induction accessible to GAL driver-mediated targeting of specific cell lineages. In a proof-of-principle approach, we utilize ubiquitous DamID expression to describe dynamic transitions of Polycomb-binding sites during wing imaginal disc development and in a scrib tumorigenesis model. We identify Atf3 and Ets21C as novel Polycomb target genes involved in scrib tumorigenesis and suggest that target gene regulation by Atf3 and AP-1 transcription factors, as well as modulation of insulator function, plays crucial roles in dynamic Polycomb-binding at target sites. We establish these findings by DamID-seq analysis of wing imaginal disc samples derived from 10 larvae. Conclusions Our study opens avenues for robust profiling of small cell population in imaginal discs in vivo and provides insights into epigenetic changes underlying transcriptional responses to tumorigenic transformation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0196-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco La Fortezza
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Giovanna Grigolon
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Andrea Cosolo
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
| | - Alexey Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Laura Breimann
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center Munich, Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Bas van Steensel
- Division Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anne-Kathrin Classen
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany. .,Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.
| |
Collapse
|
34
|
Nazer E, Dale RK, Chinen M, Radmanesh B, Lei EP. Argonaute2 and LaminB modulate gene expression by controlling chromatin topology. PLoS Genet 2018. [PMID: 29529026 PMCID: PMC5864089 DOI: 10.1371/journal.pgen.1007276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drosophila Argonaute2 (AGO2) has been shown to regulate expression of certain loci in an RNA interference (RNAi)-independent manner, but its genome-wide function on chromatin remains unknown. Here, we identified the nuclear scaffolding protein LaminB as a novel interactor of AGO2. When either AGO2 or LaminB are depleted in Kc cells, similar transcription changes are observed genome-wide. In particular, changes in expression occur mainly in active or potentially active chromatin, both inside and outside LaminB-associated domains (LADs). Furthermore, we identified a somatic target of AGO2 transcriptional repression, no hitter (nht), which is immersed in a LAD located within a repressive topologically-associated domain (TAD). Null mutation but not catalytic inactivation of AGO2 leads to ectopic expression of nht and downstream spermatogenesis genes. Depletion of either AGO2 or LaminB results in reduced looping interactions within the nht TAD as well as ectopic inter-TAD interactions, as detected by 4C-seq analysis. Overall, our findings reveal coordination of AGO2 and LaminB function to dictate genome architecture and thereby regulate gene expression. Argonaute proteins are an evolutionarily conserved protein family engaged in gene silencing. The key RNA interference (RNAi) pathway protein AGO2 interacts with small RNAs to regulate gene silencing in the cytoplasm. In addition, AGO2 has been shown to regulate gene expression by functioning in the nucleus. In this study, we determined that AGO2 forms a nuclear complex with LaminB, a nuclear scaffolding protein, as well as the transcription machinery. Together, AGO2 and LaminB limit transcription in active or potentially active regions that either do or do not interact directly with the nuclear lamina. We focused on nht, a master control gene of the sperm developmental program, which is up-regulated in the absence of AGO2 or LaminB. The nht gene interacts with the nuclear lamina in somatic cells, and we determined that AGO2 and LaminB control the three-dimensional configuration of the chromatin region in which nht is located. We conclude that AGO2 and LaminB work in concert to regulate how genes are turned on or off by controlling how the genome is folded within the nucleus, and therefore can affect key developmental processes such as the production of sperm.
Collapse
Affiliation(s)
- Ezequiel Nazer
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD, United States of America
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD, United States of America
| | - Ryan K. Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD, United States of America
| | - Madoka Chinen
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD, United States of America
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD, United States of America
| | - Behram Radmanesh
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD, United States of America
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rockville Pike, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
35
|
Liu C, Xin Y, Xu L, Cai Z, Xue Y, Liu Y, Xie D, Liu Y, Qi Y. Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Dev Cell 2017; 44:348-361.e7. [PMID: 29290588 DOI: 10.1016/j.devcel.2017.12.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
Abstract
Conventional RNA interference (RNAi) pathways suppress eukaryotic gene expression at the transcriptional or post-transcriptional level. At the core of RNAi are small RNAs (sRNAs) and effector Argonaute (AGO) proteins. Arabidopsis AGO1 is known to bind microRNAs (miRNAs) and post-transcriptionally repress target genes in the cytoplasm. Here, we report that AGO1 also binds to the chromatin of active genes and promotes their transcription. We show that sRNAs and SWI/SNF complexes associate with nuclear AGO1 and are required for AGO1 binding to chromatin. Moreover, we show that various stimuli, including plant hormones and stresses, specifically trigger AGO1 binding to stimulus-responsive genes. Finally, we show that AGO1 facilitates the induction of genes in jasmonate (JA) signaling pathways and the activation of JA responses. Our findings suggest that, by binding and facilitating the expression of stimuli-specific genes, AGO1 may regulate diverse signaling pathways and associated biological processes.
Collapse
Affiliation(s)
- Chang Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Ying Xin
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Liu
- Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Daoxin Xie
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
36
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
37
|
Reactivity of human AGO2 monoclonal antibody 11A9 with the SWI/SNF complex: A case study for rigorously defining antibody selectivity. Sci Rep 2017; 7:7278. [PMID: 28779093 PMCID: PMC5544689 DOI: 10.1038/s41598-017-07539-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
In this study, we originally aimed to characterize the potential role of Argonaute 2 (AGO2) in the nucleus, a key protein of the miRNA machinery. We combined Chromatin Immunoprecipitation (ChIP) with high throughput sequencing (ChIP-seq) and quantitative mass spectrometry (ChIP-MS) using the broadly used AGO2 11A9 antibody to determine interactions with chromatin and nuclear proteins. We found a previously described interaction between AGO2 and SWI/SNF on chromatin with ChIP-MS and observed enrichment at enhancers and transcription start sites using ChIP-seq. However, antibody specificity issues can produce misleading results for ChIP, RNA-seq and Mass spectrometry. Therefore, we developed a CRISPR/Cas9 engineered AGO2−/− HEK293T cell line to validate our findings. ChIP-qPCR and immunoprecipitation combined with MS (IP-MS) showed that the 11A9 antibody associates with chromatin and SWI/SNF in the absence of AGO2. Furthermore, stoichiometry, IP-MS and co-IP analysis suggests a direct interaction of this antibody with SMARCC1, a component of the SWI/SNF complex. For this reason, particular care should be taken in performing and interpreting experiments in which the 11A9 antibody is used to study a nuclear role of AGO2.
Collapse
|
38
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
39
|
Wang S, Sun X, Yi C, Zhang D, Lin X, Sun X, Chen H, Jin M. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300. Front Cell Infect Microbiol 2017; 7:195. [PMID: 28589097 PMCID: PMC5438986 DOI: 10.3389/fcimb.2017.00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viral infection triggers a series of signaling cascades and host innate immune responses, including interferon (IFN) production, which depends on coordinated activity of multiple transcription factors. IFN regulatory factor 3 (IRF3) and transcriptional coactivator CREB binding protein (CBP) and/or p300 are core factors that participate in transcriptional complex formation in the nucleus. In general, cells balance the production of IFNs through suppressive and stimulative mechanisms, but viral infections can disrupt such equilibrium. This study determined that H5N1 viral infection reduced the distribution of human argonaute 2 (AGO2) in A549 cell nucleus. AGO2 did not block phosphorylation, nuclear translocation, and DNA binding ability of IRF3 but inhibited its association with CBP. Therefore, this newly revealed mechanism shows that cellular response leads to transfer of AGO2 from cell nucleus and promotes IFN-β expression to increase host survival during viral infection.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiaomei Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| |
Collapse
|
40
|
Chinen M, Lei EP. Drosophila Argonaute2 turnover is regulated by the ubiquitin proteasome pathway. Biochem Biophys Res Commun 2017; 483:951-957. [PMID: 28087276 DOI: 10.1016/j.bbrc.2017.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 11/24/2022]
Abstract
Argonaute (AGO) proteins play a central role in the RNA interference (RNAi) pathway, which is a cytoplasmic mechanism important for post-transcriptional regulation of gene expression. In Drosophila, AGO2 also functions in the nucleus to regulate chromatin insulator activity and transcription. Although there are a number of studies focused on AGO2 function, the regulation of AGO2 turnover is not well understood. We found that mutation of T1149 or R1158 in the conserved PIWI domain causes AGO2 protein instability, but only T1149 affects RNAi activity. Mass spec analysis shows that several proteasome components co-purify with both wildtype and mutant AGO2, and knockdown of two proteasome pathway components results in AGO2 protein accumulation. Finally, AGO2 protein levels increase after treatment with the proteasome inhibitor MG132. Our results indicate that the ubiquitin-proteasome pathway is involved in AGO2 protein turnover.
Collapse
Affiliation(s)
- Madoka Chinen
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Kyrchanova O, Mogila V, Wolle D, Deshpande G, Parshikov A, Cléard F, Karch F, Schedl P, Georgiev P. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genet 2016; 12:e1006188. [PMID: 27428541 PMCID: PMC4948906 DOI: 10.1371/journal.pgen.1006188] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors. Boundary elements in the Bithorax complex have two seemingly contradictory activities. They must block crosstalk between neighboring regulatory domains, but at the same time be permissive (insulator bypass) for regulatory interactions between the domains and the BX-C homeotic genes. We have used a replacement strategy to investigate how they carry out these two functions. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site is sufficient to fully rescue a Fab-7 boundary deletion. It blocks crosstalk and supports bypass. As has been observed in transgene assays, blocking activity requires the Fab-8 dCTCF sites, while full bypass activity requires the dCTCF sites plus a small part of PTS. In transgene assays, bypass activity typically depends on the orientation of the two insulators relative to each other. A similar orientation dependence is observed for the Fab-8 replacement in BX-C. When the orientation of the Fab-8 boundary is reversed, bypass activity is lost, while blocking is unaffected. Interestingly, unlike what has been observed in mammals, reversing the orientation of only the Fab-8 dCTCF sites does not affect boundary function. This finding indicates that other Fab-8 factors must play a critical role in determining orientation. Taken together, our findings argue that carrying out the paradoxical functions of the BX-C boundaries does not require any unusual or special properties; rather BX-C boundaries utilize generic blocking and insulator bypass activities that are appropriately adapted to their regulatory context. Thus making them a good model for studying the functional properties of boundaries/insulators in their native setting.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| | - Vladic Mogila
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexander Parshikov
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Fabienne Cléard
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Francois Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Paul Schedl
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| |
Collapse
|
42
|
Azlan A, Dzaki N, Azzam G. Argonaute: The executor of small RNA function. J Genet Genomics 2016; 43:481-94. [PMID: 27569398 DOI: 10.1016/j.jgg.2016.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/08/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
Abstract
The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Najat Dzaki
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
43
|
Melnikova L, Shapovalov I, Kostyuchenko M, Georgiev P, Golovnin A. EAST affects the activity of Su(Hw) insulators by two different mechanisms in Drosophila melanogaster. Chromosoma 2016; 126:299-311. [PMID: 27136940 DOI: 10.1007/s00412-016-0596-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Recent data suggest that insulators organize chromatin architecture in the nucleus. The best characterized Drosophila insulator, found in the gypsy retrotransposon, contains 12 binding sites for the Su(Hw) protein. Enhancer blocking, along with Su(Hw), requires BTB/POZ domain proteins, Mod(mdg4)-67.2 and CP190. Inactivation of Mod(mdg4)-67.2 leads to a direct repression of the yellow gene promoter by the gypsy insulator. Here, we have shown that such repression is regulated by the level of the EAST protein, which is an essential component of the interchromatin compartment. Deletion of the EAST C-terminal domain suppresses Su(Hw)-mediated repression. Partial inactivation of EAST by mutations in the east gene suppresses the enhancer-blocking activity of the gypsy insulator. The binding of insulator proteins to chromatin is highly sensitive to the level of EAST expression. These results suggest that EAST, one of the main components of the interchromatin compartment, can regulate the activity of chromatin insulators.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Igor Shapovalov
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia.
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia.
| |
Collapse
|
44
|
Abstract
Epigenomics has grown exponentially, providing a better understanding of the mechanistic aspects of new and old phenomena originally described through genetics, as well as providing unexpected insights into the way chromatin modulates the genomic information. In this overview, some of the advances are selected for discussion and comment under six topics: (1) histone modifications, (2) weak interactions, (3) interplay with external inputs, (4) the role of RNA molecules, (5) chromatin folding and architecture, and, finally, (6) a view of the essential role of chromatin transactions in regulating the access to genomic DNA.
Collapse
Affiliation(s)
- Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
45
|
Li P, Meng J, Zhai Y, Zhang H, Yu L, Wang Z, Zhang X, Cao P, Chen X, Han Y, Zhang Y, Chen H, Ling Y, Li Y, Cui Y, Bei JX, Zeng YX, He F, Zhou G. Argonaute 2 and nasopharyngeal carcinoma: a genetic association study and functional analysis. BMC Cancer 2015; 15:862. [PMID: 26545861 PMCID: PMC4636795 DOI: 10.1186/s12885-015-1895-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Background Argonaute 2 (AGO2), a central component of RNA-induced silencing complex, plays critical roles in cancer. We examined whether the single nucleotide polymorphisms (SNPs) of AGO2 were related to the risk of nasopharyngeal carcinoma (NPC). Methods Twenty-five tag SNPs within AGO2 were genotyped in Guangxi population consisting of 855 NPC patients and 1036 controls. The SNPs significantly associated with NPC were further replicated in Guangdong population consisting of 996 NPC patients and 972 controls. Functional experiments were conducted to examine the biologic roles of AGO2 in NPC. Results A significantly increased risk of advanced lymph node metastasis of NPC was identified for the AGO2 rs3928672 GA + AA genotype compared with GG genotype in both the Guangxi and Guangdong populations (combined odd ratio = 2.08, 95 % confidence interval = 1.44-3.01, P = 8.60 × 10−5). Moreover, the AGO2 protein expression levels of rs3928672 GA + AA genotype carriers were higher than the GG genotype carriers in the NPC tissues (P = 0.041), and AGO2 was significantly over-expressed in NPC tissues compared with non-cancerous nasopharyngeal tissues (P = 0.011). In addition, AGO2 knockdown reduced cell proliferation, induced apoptosis, and inhibited migration of NPC cells. Furthermore, gene expression microarray showed that genes altered following AGO2 knockdown were clustered in tumorigenesis and metastasis relevant pathways. Conclusions Our findings suggest that the genetic polymorphism in AGO2 may be a risk factor for the advanced lymph node metastasis of NPC in Chinese populations, and AGO2 acts as an oncogene in the development of NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1895-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peiyao Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Jinfeng Meng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China. .,Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Basic Medical Sciences, Beijing, P.R. China.
| | - Yun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Lixia Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Zhifu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Xiaoai Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Pengbo Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Xi Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Yuqing Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Yang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Huipeng Chen
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Yan Ling
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Yuxia Li
- Laboratory of Microbial Genomics, Beijing Institute of Biotechnology, Beijing, P.R. China.
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning, P.R. China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No. 27, Taiping Road, Haidian District, Beijing, 100850, P.R. China.
| |
Collapse
|
46
|
Kyrchanova O, Mogila V, Wolle D, Magbanua JP, White R, Georgiev P, Schedl P. The boundary paradox in the Bithorax complex. Mech Dev 2015; 138 Pt 2:122-132. [PMID: 26215349 PMCID: PMC4890074 DOI: 10.1016/j.mod.2015.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023]
Abstract
The parasegment-specific expression of the three Drosophila Bithorax complex homeotic genes is orchestrated by nine functionally autonomous regulatory domains. Functional autonomy depends upon special elements called boundaries or insulators that are located between each domain. The boundaries ensure the independent activity of each domain by blocking adventitious interactions with initiators, enhancers and silencers in the neighboring domains. However, this blocking activity poses a regulatory paradox--the Bithorax boundaries are also able to insulate promoters from regulatory interactions with enhancers and silencers and six of the nine Bithorax regulatory domains are separated from their target genes by at least one boundary element. Here we consider several mechanisms that have been suggested for how the Bithorax regulatory domains are able to bypass intervening boundary elements and direct the appropriate parasegment-specific temporal and spatial expression of their target gene.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Nikolaev V.A. Sukhomlinsky National University, Department of Biology, Ukraine
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
47
|
The Differences Between Cis- and Trans-Gene Inactivation Caused by Heterochromatin in Drosophila. Genetics 2015; 202:93-106. [PMID: 26500261 DOI: 10.1534/genetics.115.181693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 11/18/2022] Open
Abstract
Position-effect variegation (PEV) is the epigenetic disruption of gene expression near the de novo-formed euchromatin-heterochromatin border. Heterochromatic cis-inactivation may be accompanied by the trans-inactivation of genes on a normal homologous chromosome in trans-heterozygous combination with a PEV-inducing rearrangement. We characterize a new genetic system, inversion In(2)A4, demonstrating cis-acting PEV as well as trans-inactivation of the reporter transgenes on the homologous nonrearranged chromosome. The cis-effect of heterochromatin in the inversion results not only in repression but also in activation of genes, and it varies at different developmental stages. While cis-actions affect only a few juxtaposed genes, trans-inactivation is observed in a 500-kb region and demonstrates а nonuniform pattern of repression with intermingled regions where no transgene repression occurs. There is no repression around the histone gene cluster and in some other euchromatic sites. trans-Inactivation is accompanied by dragging of euchromatic regions into the heterochromatic compartment, but the histone gene cluster, located in the middle of the trans-inactivated region, was shown to be evicted from the heterochromatin. We demonstrate that trans-inactivation is followed by de novo HP1a accumulation in the affected transgene; trans-inactivation is specifically favored by the chromatin remodeler SAYP and prevented by Argonaute AGO2.
Collapse
|
48
|
Abstract
The different dose of X chromosomes in males and females produces a potentially fatal imbalance in X-linked gene products. This imbalance is addressed by dosage compensation, a process that modulates expression from an entire X chromosome in one sex. Dosage compensation acts on thousands of genes with disparate expression patterns. Both flies and mammals accomplish this with remarkable specificity by targeting epigenetic chromatin modifications to a single chromosome. Long noncoding RNAs that are expressed from the X chromosome are essential elements of the targeting mechanism in both lineages. We recently discovered that the siRNA pathway, as well as small RNA from satellite repeats that are strikingly enriched on the fly X chromosome, also promote X recognition. In this article we review the current understanding of X recognition in flies and discuss potential mechanisms by which the siRNA pathway, repetitive elements and long noncoding RNAs might cooperate to promote X recognition.
Collapse
Affiliation(s)
- Debashish U Menon
- a Department of Genetics ; University of North Carolina ; Chapel Hill , NC USA
| | - Victoria H Meller
- b Department of Biological Sciences ; Wayne State University ; Detroit , MI USA
| |
Collapse
|
49
|
Matharu NK, Ahanger SH. Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture. Genes (Basel) 2015; 6:790-811. [PMID: 26340639 PMCID: PMC4584330 DOI: 10.3390/genes6030790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 01/21/2023] Open
Abstract
The spatial organization of metazoan genomes has a direct influence on fundamental nuclear processes that include transcription, replication, and DNA repair. It is imperative to understand the mechanisms that shape the 3D organization of the eukaryotic genomes. Chromatin insulators have emerged as one of the central components of the genome organization tool-kit across species. Recent advancements in chromatin conformation capture technologies have provided important insights into the architectural role of insulators in genomic structuring. Insulators are involved in 3D genome organization at multiple spatial scales and are important for dynamic reorganization of chromatin structure during reprogramming and differentiation. In this review, we will discuss the classical view and our renewed understanding of insulators as global genome organizers. We will also discuss the plasticity of chromatin structure and its re-organization during pluripotency and differentiation and in situations of cellular stress.
Collapse
Affiliation(s)
- Navneet K Matharu
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Sajad H Ahanger
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich 8952, Switzerland.
| |
Collapse
|
50
|
Argonaute 2 Binds Directly to tRNA Genes and Promotes Gene Repression in cis. Mol Cell Biol 2015; 35:2278-94. [PMID: 25918241 DOI: 10.1128/mcb.00076-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further our understanding of the RNAi machinery within the human nucleus, we analyzed the chromatin and RNA binding of Argonaute 2 (AGO2) within human cancer cell lines. Our data indicated that AGO2 binds directly to nascent tRNA and 5S rRNA, and to the genomic loci from which these RNAs are transcribed, in a small RNA- and DICER-independent manner. AGO2 chromatin binding was not observed at non-TFIIIC-dependent RNA polymerase III (Pol III) genes or at extra-TFIIIC (ETC) sites, indicating that the interaction is specific for TFIIIC-dependent Pol III genes. A genome-wide analysis indicated that loss of AGO2 caused a global increase in mRNA expression level among genes that flank AGO2-bound tRNA genes. This effect was shown to be distinct from that of the disruption of DICER, DROSHA, or CTCF. We propose that AGO2 binding to tRNA genes has a novel and important regulatory role in human cells.
Collapse
|