1
|
Shah MV, Arber DA, Hiwase DK. TP53 -Mutated Myeloid Neoplasms: 2024 Update on Diagnosis, Risk-Stratification, and Management. Am J Hematol 2025; 100 Suppl 4:88-115. [PMID: 40066944 PMCID: PMC12067166 DOI: 10.1002/ajh.27655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
Alterations in the tumor suppressor gene TP53 are common in human cancers and are associated with an aggressive nature. Approximately 8%-12% of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) harbor TP53 mutations (TP53 mut) and present immense challenges due to inherent chemoresistance and poor outcomes. As TP53 mut are more common in older individuals and those with secondary/therapy-related myeloid neoplasms (MN), their incidence is expected to increase with an aging population and rising proportion of cancer survivors. Treatments used for other MN-intensive chemotherapy, hypomethylating agents, and the BCL-2 inhibitor venetoclax-do not improve the survival of TP53 mut MN patients meaningfully. Additionally, further development of many promising agents has been discontinued, highlighting the challenges. Widespread acknowledgment of these problems led to the recognition of TP53 mut MN as a distinct entity in the 5th edition of the World Health Organization and International Consensus Classifications. However, critical discrepancies between the two classifications may lead to under- or overestimation of the prognostic risk. Here, we review recent advances in the biology, diagnosis, and treatment of TP53 mut MN. The development of TP53 mut MN is positioned at the intersection of age, hereditary predisposition, and anti-cancer therapies. Precursor TP53 mut clones can be detected years prior to the eventual leukemic transformation-raising the possibility of early intervention. We discuss the two classification systems and the bearing of the discrepancies between the two on timely and effective management. We provide novel evidence in the areas of discrepancies. Finally, we review the current therapeutic landscape and the obvious limitations of the currently used therapies.
Collapse
Affiliation(s)
| | - Daniel A. Arber
- Department of PathologyUniversity of ChicagoChicagoIllinoisUSA
| | - Devendra K. Hiwase
- Department of Haematology, Royal Adelaide HospitalCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Zhang P, Whipp EC, Skuli SJ, Gharghabi M, Saygin C, Sher SA, Carroll M, Pan X, Eisenmann ED, Lai TH, Harrington BK, Chan WK, Youssef Y, Chen B, Penson A, Lewis AM, Castro CR, Fox N, Cihan A, Le Luduec JB, DeWolf S, Kauffman T, Mims AS, Canfield D, Phillips H, Williams KE, Shaffer J, Lozanski A, Doong TJ, Lozanski G, Mao C, Walker CJ, Blachly JS, Daniyan AF, Alinari L, Baiocchi RA, Yang Y, Grieselhuber NR, Campbell MJ, Baker SD, Blaser BW, Abdel-Wahab O, Lapalombella R. TP53 mutations and TET2 deficiency cooperate to drive leukemogenesis and establish an immunosuppressive environment. J Clin Invest 2025; 135:e184021. [PMID: 40111422 PMCID: PMC12077897 DOI: 10.1172/jci184021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Mutations and deletions in TP53 are associated with adverse outcomes in patients with myeloid malignancies, and there is an urgent need for the development of improved therapies for TP53-mutant leukemias. Here, we identified mutations in TET2 as the most common co-occurring mutation in patients with TP53-mutant acute myeloid leukemia (AML). In mice, combined hematopoietic-specific deletion of TET2 and TP53 resulted in enhanced self-renewal compared with deletion of either gene alone. Tp53/Tet2 double-KO mice developed serially transplantable AML. Both mice and patients with AML with combined TET2/TP53 alterations upregulated innate immune signaling in malignant granulocyte-monocyte progenitors, which had leukemia-initiating capacity. A20 governs the leukemic maintenance by triggering aberrant noncanonical NF-κB signaling. Mice with Tp53/Tet2 loss had expansion of monocytic myeloid-derived suppressor cells (MDSCs), which impaired T cell proliferation and activation. Moreover, mice and patients with AML with combined TP53/TET2 alterations displayed increased expression of the TIGIT ligand, CD155, on malignant cells. TIGIT-blocking antibodies augmented NK cell-mediated killing of Tp53/Tet2 double-mutant AML cells, reduced leukemic burden, and prolonged survival in Tp53/Tet2 double-KO mice. These findings describe a leukemia-promoting link between TET2 and TP53 mutations and highlight therapeutic strategies to overcome the immunosuppressive bone marrow environment in this adverse subtype of AML.
Collapse
Affiliation(s)
- Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ethan C. Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sarah J. Skuli
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mehdi Gharghabi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Caner Saygin
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Steven A. Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Martin Carroll
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiangyu Pan
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Tzung-Huei Lai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bonnie K. Harrington
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bingyi Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Alex Penson
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Alexander M. Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Cynthia R. Castro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Nina Fox
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Ali Cihan
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Susan DeWolf
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Tierney Kauffman
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Daniel Canfield
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Hannah Phillips
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Katie E. Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jami Shaffer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Arletta Lozanski
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Tzyy-Jye Doong
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Gerard Lozanski
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Charlene Mao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Christopher J. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Nicole R. Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Moray J. Campbell
- Division of Cancer Biology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Bradley W. Blaser
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Bowman RL, Dunbar AJ, Mishra T, Xiao W, Waarts MR, Maestre IF, Eisman SE, Cai L, Mowla S, Shah N, Youn A, Bennett L, Fontenard S, Gounder S, Gandhi A, Bowman M, O'Connor K, Zaroogian Z, Sánchez-Vela P, Martinez Benitez AR, Werewski M, Park Y, Csete IS, Krishnan A, Lee D, Boorady N, Potts CR, Jenkins MT, Cai SF, Carroll MP, Meyer SE, Miles LA, Ferrell PB, Trowbridge JJ, Levine RL. In vivo models of subclonal oncogenesis and dependency in hematopoietic malignancy. Cancer Cell 2024; 42:1955-1969.e7. [PMID: 39532065 PMCID: PMC11561369 DOI: 10.1016/j.ccell.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Cancer evolution is a multifaceted process leading to dysregulation of cellular expansion and differentiation through somatic mutations and epigenetic dysfunction. Clonal expansion and evolution is driven by cell-intrinsic and -extrinsic selective pressures, which can be captured with increasing resolution by single-cell and bulk DNA sequencing. Despite the extensive genomic alterations revealed in profiling studies, there remain limited experimental systems to model and perturb evolutionary processes. Here, we integrate multi-recombinase tools for reversible, sequential mutagenesis from premalignancy to leukemia. We demonstrate that inducible Flt3 mutations differentially cooperate with Dnmt3a, Idh2, and Npm1 mutant alleles, and that changing the order of mutations influences cellular and transcriptional landscapes. We next use a generalizable, reversible approach to demonstrate that mutation reversion results in rapid leukemic regression with distinct differentiation patterns depending upon co-occurring mutations. These studies provide a path to experimentally model sequential mutagenesis, investigate mechanisms of transformation and probe oncogenic dependency in disease evolution.
Collapse
Affiliation(s)
- Robert L Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrew J Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanmay Mishra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael R Waarts
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Inés Fernández Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shira E Eisman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Louise Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai Shah
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela Youn
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Bennett
- Department of Cell and Developmental Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suean Fontenard
- Department of Cell and Developmental Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shreeya Gounder
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anushka Gandhi
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Bowman
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kavi O'Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Zaroogian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pablo Sánchez-Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony R Martinez Benitez
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Werewski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Young Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle S Csete
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Darren Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nayla Boorady
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad R Potts
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Matthew T Jenkins
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Sheng F Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Martin P Carroll
- Department of Medicine, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara E Meyer
- Department of Cancer Biology, Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Linde A Miles
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - P Brent Ferrell
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Fernandes P, Waldron N, Chatzilygeroudi T, Naji NS, Karantanos T. Acute Erythroid Leukemia: From Molecular Biology to Clinical Outcomes. Int J Mol Sci 2024; 25:6256. [PMID: 38892446 PMCID: PMC11172574 DOI: 10.3390/ijms25116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Acute Erythroid Leukemia (AEL) is a rare and aggressive subtype of Acute Myeloid Leukemia (AML). In 2022, the World Health Organization (WHO) defined AEL as a biopsy with ≥30% proerythroblasts and erythroid precursors that account for ≥80% of cellularity. The International Consensus Classification refers to this neoplasm as "AML with mutated TP53". Classification entails ≥20% blasts in blood or bone marrow biopsy and a somatic TP53 mutation (VAF > 10%). This type of leukemia is typically associated with biallelic TP53 mutations and a complex karyotype, specifically 5q and 7q deletions. Transgenic mouse models have implicated several molecules in the pathogenesis of AEL, including transcriptional master regulator GATA1 (involved in erythroid differentiation), master oncogenes, and CDX4. Recent studies have also characterized AEL by epigenetic regulator mutations and transcriptome subgroups. AEL patients have overall poor clinical outcomes, mostly related to their poor response to the standard therapies, which include hypomethylating agents and intensive chemotherapy. Allogeneic bone marrow transplantation (AlloBMT) is the only potentially curative approach but requires deep remission, which is very challenging for these patients. Age, AlloBMT, and a history of antecedent myeloid neoplasms further affect the outcomes of these patients. In this review, we will summarize the diagnostic criteria of AEL, review the current insights into the biology of AEL, and describe the treatment options and outcomes of patients with this disease.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
| | - Natalie Waldron
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
| | - Theodora Chatzilygeroudi
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| | - Nour Sabiha Naji
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| | - Theodoros Karantanos
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| |
Collapse
|
5
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
6
|
Santini V, Stahl M, Sallman DA. TP53 Mutations in Acute Leukemias and Myelodysplastic Syndromes: Insights and Treatment Updates. Am Soc Clin Oncol Educ Book 2024; 44:e432650. [PMID: 38768424 DOI: 10.1200/edbk_432650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
TP53 mutations are found in 5%-10% of de novo myelodysplastic syndrome (MDS) and AML cases. By contrast, in therapy related MDS and AML, mutations in TP53 are found in up to 30%-40% of patients. The majority of inactivating mutations observed in MDS and AML are missense mutations localized in a few prevalent hotspots. TP53 missense mutations together with truncating mutations or chromosomal loss of TP53 determine a loss-of-function effect on normal p53 function. Clonal expansion of TP53-mutant clones is observed under the selection pressure of chemotherapy or MDM2 inhibitor therapy. TP53-mutant clones are resistant to current chemotherapy, and when responses to treatment have been observed, they have correlated poorly with overall survival. The most heavily investigated and targeted agent for patients with TP53-mutant MDS and AML has been APR-246 (eprenetapopt) a p53 reactivator, in combination with azacitidine, but also in triplets with venetoclax. Despite positive results in phase II trials, a phase III trial did not confirm superior response or improved survival. Other agents, like magrolimab (anti-CD47 antibody), failed to demonstrate improved activity in TP53-mutant MDS and AML. Agents whose activity is not dependent on a functional apoptosis system like anti-CD123 antibodies or cellular therapies are in development and may hold promises. Delivering prognostic information in a dismal disease like TP53-mutated MDS and AML is particularly challenging. The physician should balance hope and realism, describing the trajectory of possible treatments and at the same time indicating the poor outcome, together with promoting adaptive coping in patients and elaborating on the nature of the disease.
Collapse
Affiliation(s)
- Valeria Santini
- MDS Unit, Hematology, DMSC, AOUC University of Florence, Florence, Italy
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - David A Sallman
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
7
|
Burocziova M, Danek P, Oravetzova A, Chalupova Z, Alberich-Jorda M, Macurek L. Ppm1d truncating mutations promote the development of genotoxic stress-induced AML. Leukemia 2023; 37:2209-2220. [PMID: 37709843 PMCID: PMC10624630 DOI: 10.1038/s41375-023-02030-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Hematopoietic stem cells (HSCs) ensure blood cell production during the life-time of an organism, and to do so they need to balance self-renewal, proliferation, differentiation, and migration in a steady state as well as in response to stress or injury. Importantly, aberrant proliferation of HSCs leads to hematological malignancies, and thus, tight regulation by various tumor suppressor pathways, including p53, is essential. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and promotes cell survival upon induction of genotoxic stress. Truncating mutations in the last exon of PPM1D lead to the production of a stable, enzymatically active protein and are commonly associated with clonal hematopoiesis. Using a transgenic mouse model, we demonstrate that truncated PPM1D reduces self-renewal of HSCs in basal conditions but promotes the development of aggressive AML after exposure to ionizing radiation. Inhibition of PPM1D suppressed the colony growth of leukemic stem and progenitor cells carrying the truncated PPM1D, and remarkably, it provided protection against irradiation-induced cell growth. Altogether, we demonstrate that truncated PPM1D affects HSC maintenance, disrupts normal hematopoiesis, and that its inhibition could be beneficial in the context of therapy-induced AML.
Collapse
Affiliation(s)
- Monika Burocziova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Anna Oravetzova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Zuzana Chalupova
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, V Uvalu 84, Praha, 150 06, Czech Republic.
| | - Libor Macurek
- Department Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Prague, Czech Republic.
| |
Collapse
|
8
|
Chang YT, Chiu I, Wang Q, Bustamante J, Jiang W, Rycaj K, Yi S, Li J, Kowalski-Muegge J, Matsui W. Loss of p53 enhances the tumor-initiating potential and drug resistance of clonogenic multiple myeloma cells. Blood Adv 2023; 7:3551-3560. [PMID: 37042949 PMCID: PMC10368840 DOI: 10.1182/bloodadvances.2022009387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Tumor relapse and drug resistance are major factors that limit the curability of multiple myeloma (MM). New regimens have improved overall MM survival rates, but patients with high-risk features continue to have inferior outcomes. Chromosome 17p13 deletion (del17p) that includes the loss of the TP53 gene is a high-risk cytogenetic abnormality and is associated with poor clinical outcomes owing to relatively short remissions and the development of pan-drug resistant disease. Increased relapse rates suggest that del17p enhances clonogenic growth, and we found that the loss of p53 increased both the frequency and drug resistance of tumor-initiating MM cells (TICs). Subsequent RNA sequencing (RNA-seq) studies demonstrated significant activation of the Notch signaling pathway and upregulation of inhibitor of DNA binding (ID1/ID2) genes in p53-knock out (p53-KO) cells. We found that the loss of ID1 or HES-1 expression or treatment with a gamma-secretase inhibitor (GSI) significantly decreased the clonogenic growth of p53-KO but not p53 wild-type cells. GSI treatment in a small set of MM specimens also reduced the clonogenic growth in del17p samples but not in non-del17p samples. This effect was specific as overexpression of the Notch intracellular domain (NICD) rescued the effects of GSI treatment. Our study demonstrates that the Notch signaling and ID1 expression are required for TIC expansion in p53-KO MM cells. These findings also suggest that GSI may be specifically active in patients with p53 mutant MM.
Collapse
Affiliation(s)
- Yu-Tai Chang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Ian Chiu
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
- College of Natural Sciences, The University of Texas at Austin, Austin, TX
| | - Qiuju Wang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Jorge Bustamante
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Wenxuan Jiang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Kiera Rycaj
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Song Yi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Joey Li
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeanne Kowalski-Muegge
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - William Matsui
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
9
|
Qin G, Han X. The Prognostic Value of TP53 Mutations in Adult Acute Myeloid Leukemia: A Meta-Analysis. Transfus Med Hemother 2023; 50:234-244. [PMID: 37435002 PMCID: PMC10331159 DOI: 10.1159/000526174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/24/2022] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE Mutations of the tumor protein p53 (TP53) gene were considered to be associated with an unfavorable prognosis in acute myeloid leukemia (AML). This meta-analysis aimed to systematically elucidate the prognostic value of TP53 mutation in adult patients with AML. METHOD A comprehensive literature search was conducted for eligible studies published before August 2021. The primary endpoint was overall survival (OS). Pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) were calculated for prognostic parameters. Subgroup analyses based on intensive treatment were performed. RESULTS Thirty-two studies with 7,062 patients were included. As compared to wild-type carriers, AML patients with TP53 mutations had significantly shorter OS (HR: 2.40, 95% CI: 2.16-2.67, I2: 46.6%). Similar results were found in DFS (HR: 2.87, 95% CI: 1.88-4.38), EFS (HR: 2.56, 95% CI: 1.97-3.31), and RFS (HR: 2.40, 95% CI: 1.79-3.22). Mutant TP53 predicted inferior OS (HR: 2.77, 95% CI: 2.41-3.18) in the intensively treated AML subgroup, compared with the non-intensively treated group (HR: 1.89, 95% CI: 1.58-2.26). Among intensively-treated AML patients, the age of 65 did not affect the prognostic value of TP53 mutations. Besides, TP53 mutation was also strongly associated with an elevated risk of adverse cytogenetics, which conferred a dismal OS in AML patients (HR: 2.03, 95% CI: 1.74-2.37). CONCLUSION TP53 mutation exhibits a promising potential for discriminating AML patients with a worse prognosis, thus being capable of serving as a novel tool for prognostication and therapeutic decision-making in the management of AML.
Collapse
Affiliation(s)
- Guoxiang Qin
- Department of Hematology, Jincheng People's Hospital, Jincheng, China
| | - Xueling Han
- Hospital Office, Zezhou People's Hospital, Jincheng, China
| |
Collapse
|
10
|
Kleinova R, Rajendra V, Leuchtenberger AF, Lo Giudice C, Vesely C, Kapoor U, Tanzer A, Derdak S, Picardi E, Jantsch MF. The ADAR1 editome reveals drivers of editing-specificity for ADAR1-isoforms. Nucleic Acids Res 2023; 51:4191-4207. [PMID: 37026479 PMCID: PMC10201426 DOI: 10.1093/nar/gkad265] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 04/08/2023] Open
Abstract
Adenosine deaminase acting on RNA ADAR1 promotes A-to-I conversion in double-stranded and structured RNAs. ADAR1 has two isoforms transcribed from different promoters: cytoplasmic ADAR1p150 is interferon-inducible while ADAR1p110 is constitutively expressed and primarily localized in the nucleus. Mutations in ADAR1 cause Aicardi - Goutières syndrome (AGS), a severe autoinflammatory disease associated with aberrant IFN production. In mice, deletion of ADAR1 or the p150 isoform leads to embryonic lethality driven by overexpression of interferon-stimulated genes. This phenotype is rescued by deletion of the cytoplasmic dsRNA-sensor MDA5 indicating that the p150 isoform is indispensable and cannot be rescued by ADAR1p110. Nevertheless, editing sites uniquely targeted by ADAR1p150 remain elusive. Here, by transfection of ADAR1 isoforms into ADAR-less mouse cells we detect isoform-specific editing patterns. Using mutated ADAR variants, we test how intracellular localization and the presence of a Z-DNA binding domain-α affect editing preferences. These data show that ZBDα only minimally contributes to p150 editing-specificity while isoform-specific editing is primarily directed by the intracellular localization of ADAR1 isoforms. Our study is complemented by RIP-seq on human cells ectopically expressing tagged-ADAR1 isoforms. Both datasets reveal enrichment of intronic editing and binding by ADAR1p110 while ADAR1p150 preferentially binds and edits 3'UTRs.
Collapse
Affiliation(s)
- Renata Kleinova
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Vinod Rajendra
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Alina F Leuchtenberger
- Center for Integrative Bioinformatics Vienna (CIBIV) Max Perutz Labs, University of Vienna and Medical University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Claudio Lo Giudice
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, University Campus “Ernesto Quagliariello”, Via Orabona 4, Bari, Italy
| | - Cornelia Vesely
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Utkarsh Kapoor
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Andrea Tanzer
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Sophia Derdak
- Core Facilities Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| | - Ernesto Picardi
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, University Campus “Ernesto Quagliariello”, Via Orabona 4, Bari, Italy
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via Amendola 122, Bari, Italy
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Huang BJ, Shannon K. NFIA-ETO2, TP53, and erythroid leukemogenesis. Blood 2023; 141:2168-2170. [PMID: 37140954 DOI: 10.1182/blood.2023019856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
|
12
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
13
|
Lopez-Perez G, Wijayatunge R, McCrum KB, Holmstrom SR, Mgbemena VE, Ross TS. BRCA1 and TP53 codeficiency causes a PARP inhibitor-sensitive erythroproliferative neoplasm. JCI Insight 2022; 7:158257. [PMID: 36346676 PMCID: PMC9869974 DOI: 10.1172/jci.insight.158257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Mutations in the BRCA1 tumor suppressor gene, such as 5382insC (BRCA1insC), give carriers an increased risk for breast, ovarian, prostate, and pancreatic cancers. We have previously reported that, in mice, Brca1 deficiency in the hematopoietic system leads to pancytopenia and, as a result, early lethality. We explored the cellular consequences of Brca1-null and BRCA1insC alleles in combination with Trp53 deficiency in the murine hematopoietic system. We found that Brca1 and Trp53 codeficiency led to a highly penetrant erythroproliferative disorder that is characterized by hepatosplenomegaly and by expanded megakaryocyte erythroid progenitor (MEP) and immature erythroid blast populations. The expanded erythroid progenitor populations in both BM and spleen had the capacity to transmit the disease into secondary mouse recipients, suggesting that Brca1 and Trp53 codeficiency provides a murine model of hematopoietic neoplasia. This Brca1/Trp53 model replicated Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib sensitivity seen in existing Brca1/Trp53 breast cancer models and had the benefits of monitoring disease progression and drug responses via peripheral blood analyses without sacrificing experimental animals. In addition, this erythroid neoplasia developed much faster than murine breast cancer, allowing for increased efficiency of future preclinical studies.
Collapse
|
14
|
Xu Y, Tran L, Tang J, Nguyen V, Sewell E, Xiao J, Hino C, Wasnik S, Francis-Boyle OL, Zhang KK, Xie L, Zhong JF, Baylink DJ, Chen CS, Reeves ME, Cao H. FBP1-Altered Carbohydrate Metabolism Reduces Leukemic Viability through Activating P53 and Modulating the Mitochondrial Quality Control System In Vitro. Int J Mol Sci 2022; 23:ijms231911387. [PMID: 36232688 PMCID: PMC9570078 DOI: 10.3390/ijms231911387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML)—the most frequent form of adult blood cancer—is characterized by heterogeneous mechanisms and disease progression. Developing an effective therapeutic strategy that targets metabolic homeostasis and energy production in immature leukemic cells (blasts) is essential for overcoming relapse and improving the prognosis of AML patients with different subtypes. With respect to metabolic regulation, fructose-1,6-bisphosphatase 1 (FBP1) is a gluconeogenic enzyme that is vital to carbohydrate metabolism, since gluconeogenesis is the central pathway for the production of important metabolites and energy necessary to maintain normal cellular activities. Beyond its catalytic activity, FBP1 inhibits aerobic glycolysis—known as the “Warburg effect”—in cancer cells. Importantly, while downregulation of FBP1 is associated with carcinogenesis in major human organs, restoration of FBP1 in cancer cells promotes apoptosis and prevents disease progression in solid tumors. Recently, our large-scale sequencing analyses revealed FBP1 as a novel inducible therapeutic target among 17,757 vitamin-D-responsive genes in MV4-11 or MOLM-14 blasts in vitro, both of which were derived from AML patients with FLT3 mutations. To investigate FBP1′s anti-leukemic function in this study, we generated a new AML cell line through lentiviral overexpression of an FBP1 transgene in vitro (named FBP1-MV4-11). Results showed that FBP1-MV4-11 blasts are more prone to apoptosis than MV4-11 blasts. Mechanistically, FBP1-MV4-11 blasts have significantly increased gene and protein expression of P53, as confirmed by the P53 promoter assay in vitro. However, enhanced cell death and reduced proliferation of FBP1-MV4-11 blasts could be reversed by supplementation with post-glycolytic metabolites in vitro. Additionally, FBP1-MV4-11 blasts were found to have impaired mitochondrial homeostasis through reduced cytochrome c oxidase subunit 2 (COX2 or MT-CO2) and upregulated PTEN-induced kinase (PINK1) expressions. In summary, this is the first in vitro evidence that FBP1-altered carbohydrate metabolism and FBP1-activated P53 can initiate leukemic death by activating mitochondrial reprogramming in AML blasts, supporting the clinical potential of FBP1-based therapies for AML-like cancers.
Collapse
Affiliation(s)
- Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence: ; Tel.: +1-909-651-5887
| | - Lily Tran
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Janet Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Elisabeth Sewell
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Christopher Hino
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Olivia L. Francis-Boyle
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA
| | - Jiang F. Zhong
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
15
|
Dutta S, Moritz J, Pregartner G, Thallinger GG, Brandstätter I, Lind K, Rezania S, Lyssy F, Reinisch A, Zebisch A, Berghold A, Wölfler A, Sill H. Comparison of acute myeloid leukemia and myelodysplastic syndromes with TP53 aberrations. Ann Hematol 2022; 101:837-846. [PMID: 35083527 PMCID: PMC8913568 DOI: 10.1007/s00277-022-04766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
TP53 aberrations are found in approximately 10% of patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) and are considered early driver events affecting leukemia stem cells. In this study, we compared features of a total of 84 patients with these disorders seen at a tertiary cancer center. Clinical and cytogenetic characteristics as well as immunophenotypes of immature blast cells were similar between AML and MDS patients. Median overall survival (OS) was 226 days (95% confidence interval [CI], 131-300) for the entire cohort with an estimated 3-year OS rate of 11% (95% CI, 6-22). OS showed a significant difference between MDS (median, 345 days; 95% CI, 235-590) and AML patients (median, 91 days; 95% CI, 64-226) which is likely due to a different co-mutational pattern as revealed by next-generation sequencing. Transformation of TP53 aberrant MDS occurred in 60.5% of cases and substantially reduced their survival probability. Cox regression analysis revealed treatment class and TP53 variant allele frequency as prognostically relevant parameters but not the TP53-specific prognostic scores EAp53 and RFS. These data emphasize similarities between TP53 aberrant AML and MDS and support previous notions that they should be classified and treated as a distinct disorder.
Collapse
Affiliation(s)
- Sayantanee Dutta
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Jennifer Moritz
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ilona Brandstätter
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Karin Lind
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Simin Rezania
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | | | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
- Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
16
|
Liu K, Gao X, Kang B, Liu Y, Wang D, Wang Y. The Role of Tumor Stem Cell Exosomes in Cancer Invasion and Metastasis. Front Oncol 2022; 12:836548. [PMID: 35350566 PMCID: PMC8958025 DOI: 10.3389/fonc.2022.836548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are lipid membrane bilayer-encapsulated vesicles secreted by cells into the extracellular space. They carry abundant inclusions (such as nucleic acids, proteins, and lipids) that play pivotal roles in intercellular communication. Tumor stem cells are capable of self-renewal and are crucial for survival, proliferation, drug resistance, metastasis, and recurrence of tumors. The miRNAs (microRNAs) in exosomes have various functions, such as participating in inflammatory response, cell migration, proliferation, apoptosis, autophagy, and epithelial-mesenchymal transition. Tumor stem cells secrete exosomes that act as important messengers involved in various tumor processes and several studies provide increasing evidence supporting the importance of these exosomes in tumor recurrence and metastasis. This review primarily focuses on the production and secretion of exosomes from tumors and tumor stem cells and their effects on cancer progression. Cancer stem cancer derived exosome play an important massager in the tumor microenvironment. It also emphasizes on the study of tumor stem cell exosomes in the light of cancer metastasis and recurrence aiming to provide valuable insights and novel perspectives, which could be beneficial for developing effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xin Gao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Baoqiang Kang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dingding Wang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| |
Collapse
|
17
|
Sivakumar S, Qi S, Cheng N, Sathe AA, Kanchwala M, Kumar A, Evers BM, Xing C, Yu H. TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling. Cell Rep 2022; 38:110395. [PMID: 35172133 PMCID: PMC8904926 DOI: 10.1016/j.celrep.2022.110395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Aneuploidy, defective differentiation, and inactivation of the tumor suppressor TP53 all occur frequently during tumorigenesis. Here, we probe the potential links among these cancer traits by inactivating TP53 in human embryonic stem cells (hESCs). TP53-/- hESCs exhibit increased proliferation rates, mitotic errors, and low-grade structural aneuploidy; produce poorly differentiated immature teratomas in mice; and fail to differentiate into neural progenitor cells (NPCs) in vitro. Genome-wide CRISPR screen reveals requirements of ciliogenesis and sonic hedgehog (Shh) pathways for hESC differentiation into NPCs. TP53 deletion causes abnormal ciliogenesis in neural rosettes. In addition to restraining cell proliferation through CDKN1A, TP53 activates the transcription of BBS9, which encodes a ciliogenesis regulator required for proper Shh signaling and NPC formation. This developmentally regulated transcriptional program of TP53 promotes ciliogenesis, restrains Shh signaling, and commits hESCs to neural lineages.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Shutao Qi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ningyan Cheng
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Adwait A Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Kurtz KJ, Conneely SE, O'Keefe M, Wohlan K, Rau RE. Murine Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:854973. [PMID: 35756660 PMCID: PMC9214208 DOI: 10.3389/fonc.2022.854973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and genetically heterogeneous hematologic malignancy. Extensive sequencing efforts have mapped the genomic landscape of adult and pediatric AML revealing a number of biologically and prognostically relevant driver lesions. Beyond identifying recurrent genetic aberrations, it is of critical importance to fully delineate the complex mechanisms by which they contribute to the initiation and evolution of disease to ultimately facilitate the development of targeted therapies. Towards these aims, murine models of AML are indispensable research tools. The rapid evolution of genetic engineering techniques over the past 20 years has greatly advanced the use of murine models to mirror specific genetic subtypes of human AML, define cell-intrinsic and extrinsic disease mechanisms, study the interaction between co-occurring genetic lesions, and test novel therapeutic approaches. This review summarizes the mouse model systems that have been developed to recapitulate the most common genomic subtypes of AML. We will discuss the strengths and weaknesses of varying modeling strategies, highlight major discoveries emanating from these model systems, and outline future opportunities to leverage emerging technologies for mechanistic and preclinical investigations.
Collapse
Affiliation(s)
- Kristen J Kurtz
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Madeleine O'Keefe
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
19
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
20
|
TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. Int J Mol Sci 2021; 22:ijms221910782. [PMID: 34639121 PMCID: PMC8509740 DOI: 10.3390/ijms221910782] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML). TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy, particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional chemotherapy and only a modest improvement in outcome with hypomethylation-based interventions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body of evidence indicating that p53 mutants differ in functionality and form from typical AML cases and subsequently display inconsistent responses to therapy at the cellular level. Understanding this pathobiological activity is imperative to the development of effective therapeutic strategies. This review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation in AML management.
Collapse
|
21
|
Haines E, Nishida Y, Carr MI, Montoya RH, Ostermann LB, Zhang W, Zenke FT, Blaukat A, Andreeff M, Vassilev LT. DNA-PK inhibitor peposertib enhances p53-dependent cytotoxicity of DNA double-strand break inducing therapy in acute leukemia. Sci Rep 2021; 11:12148. [PMID: 34108527 PMCID: PMC8190296 DOI: 10.1038/s41598-021-90500-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Peposertib (M3814) is a potent and selective DNA-PK inhibitor in early clinical development. It effectively blocks non-homologous end-joining repair of DNA double-strand breaks (DSB) and strongly potentiates the antitumor effect of ionizing radiation (IR) and topoisomerase II inhibitors. By suppressing DNA-PK catalytic activity in the presence of DNA DSB, M3814 potentiates ATM/p53 signaling leading to enhanced p53-dependent antitumor activity in tumor cells. Here, we investigated the therapeutic potential of M3814 in combination with DSB-inducing agents in leukemia cells and a patient-derived tumor. We show that in the presence of IR or topoisomerase II inhibitors, M3814 boosts the ATM/p53 response in acute leukemia cells leading to the elevation of p53 protein levels as well as its transcriptional activity. M3814 synergistically sensitized p53 wild-type, but not p53-deficient, AML cells to killing by DSB-inducing agents via p53-dependent apoptosis involving both intrinsic and extrinsic effector pathways. The antileukemic effect was further potentiated by enhancing daunorubicin-induced myeloid cell differentiation. Further, combined with the fixed-ratio liposomal formulation of daunorubicin and cytarabine, CPX-351, M3814 enhanced the efficacy against leukemia cells in vitro and in vivo without increasing hematopoietic toxicity, suggesting that DNA-PK inhibition could offer a novel clinical strategy for harnessing the anticancer potential of p53 in AML therapy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Proliferation
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA-Activated Protein Kinase/antagonists & inhibitors
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Pyridazines/pharmacology
- Quinazolines/pharmacology
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Eric Haines
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc, Billerica, MA, USA
| | - Yuki Nishida
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael I Carr
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc, Billerica, MA, USA
| | - Rafael Heinz Montoya
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lauren B Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Weiguo Zhang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank T Zenke
- Translational Innovation Platform Oncology and Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Andree Blaukat
- Translational Innovation Platform Oncology and Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Lyubomir T Vassilev
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc, Billerica, MA, USA.
| |
Collapse
|
22
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Mumberg D, Henderson D, Győrffy B, Regenbrecht CRA, Keilholz U, Schäfer R, Lange M. RNA sequencing of long-term label-retaining colon cancer stem cells identifies novel regulators of quiescence. iScience 2021; 24:102618. [PMID: 34142064 PMCID: PMC8185225 DOI: 10.1016/j.isci.2021.102618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Recent data suggest that therapy-resistant quiescent cancer stem cells (qCSCs) are the source of relapse in colon cancer. Here, using colon cancer patient-derived organoids and xenografts, we identify rare long-term label-retaining qCSCs that can re-enter the cell cycle to generate new tumors. RNA sequencing analyses demonstrated that these cells display the molecular hallmarks of quiescent tissue stem cells, including expression of p53 signaling genes, and are enriched for transcripts common to damage-induced quiescent revival stem cells of the regenerating intestine. In addition, we identify negative regulators of cell cycle, downstream of p53, that we show are indicators of poor prognosis and may be targeted for qCSC abolition in both p53 wild-type and mutant tumors. These data support the temporal inhibition of downstream targets of p53 signaling, in combination with standard-of-care treatments, for the elimination of qCSCs and prevention of relapse in colon cancer. Colon tumors contain therapy-resistant quiescent cancer stem cells (qCSCs) qCSC gene expression mirrors that of quiescent stem cells of the regenerating gut qCSCs are enriched for p53 signaling genes qCSC elimination may be achieved by inhibiting downstream targets of p53 signaling
Collapse
Affiliation(s)
- Joseph L Regan
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria.,Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary.,TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R A Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,CELLphenomics GmbH, 13125 Berlin, Germany.,Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research & Development, Pharmaceuticals, 13342 Berlin, Germany.,Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
23
|
Abstract
Malignancies of the erythroid lineage are rare but aggressive diseases. Notably, the first insights into their biology emerged over half a century ago from avian and murine tumor viruses-induced erythroleukemia models providing the rationale for several transgenic mouse models that unraveled the transforming potential of signaling effectors and transcription factors in the erythroid lineage. More recently, genetic roadmaps have fueled efforts to establish models that are based on the epigenomic lesions observed in patients with erythroid malignancies. These models, together with often unexpected erythroid phenotypes in genetically modified mice, provided further insights into the molecular mechanisms of disease initiation and maintenance. Here, we review how the increasing knowledge of human erythroleukemia genetics combined with those from various mouse models indicate that the pathogenesis of the disease is based on the interplay between signaling mutations, impaired TP53 function, and altered chromatin organization. These alterations lead to aberrant activity of erythroid transcriptional master regulators like GATA1, indicating that erythroleukemia will most likely require combinatorial targeting for efficient therapeutic interventions.
Collapse
|
24
|
Clonal hematopoiesis and risk for hematologic malignancy. Blood 2021; 136:1599-1605. [PMID: 32736382 DOI: 10.1182/blood.2019000991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Clonal hematopoiesis (CH) is common in older persons and is associated with an increased risk of hematologic cancer. Here, we review studies establishing an association between CH and hematopoietic malignancy, discuss features of CH that are predictive of leukemic progression, and explore the role of hematopoietic stressors in the evolution of CH to acute myeloid leukemia or myelodysplastic syndrome. CH due to point mutations or structural variants such as copy-number alterations is associated with an ∼10-fold increased risk of hematopoietic malignancy. Although the absolute risk of hematopoietic malignancy is low, certain features of CH may confer a higher risk of transformation, including the presence of TP53 or spliceosome gene mutations, a variant allele fraction >10%, the presence of multiple mutations, and altered red blood indices. CH in the setting of peripheral blood cytopenias carries a very high risk of progression to a myeloid malignancy and merits close observation. There is emerging evidence suggesting that hematopoietic stressors contribute to both the development of CH and progression to hematopoietic malignancy. Specifically, there is evidence that genotoxic stress from chemotherapy or radiation therapy, ribosome biogenesis stress, and possibly inflammation may increase the risk of transformation from CH to a myeloid malignancy. Models that incorporate features of CH along with an assessment of hematopoietic stressors may eventually help predict and prevent the development of hematopoietic malignancies.
Collapse
|
25
|
The Agglutinin of Common Nettle (Urtica dioica L.) Plant Effects on Gene Expression Related to Apoptosis of Human Acute Myeloid Leukemia Cell Line. Biochem Genet 2021; 59:1049-1064. [PMID: 33675488 DOI: 10.1007/s10528-020-10024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Treatment of acute myeloid leukemia (AML) requires new drugs as result of a rise in new cases and high disease relapse. Plant lectins with the ability to bind carbohydrates on the cell surface have the potential to treat cancer. Urtica dioica L. agglutinin (UDA) is a low weight lectin with anti-benign prostatic hyperplasia (BPH) impact. Here, we examine the impact of UDA on HL-60 cell line. Cytotoxicity and cytostatic effects were assessed in HL-60 cells treated with UDA and vincristine (positive control). The effects of the lectin on cell cycle phases and cell death mechanism were surveyed by propidium iodide (PI) staining and annexin V/PI, respectively. The activation status of the apoptosis pathway was determined by western blotting. Finally, the expression levels of 84 genes were examined by the Human cancer drug target gene PCR array kit. The results indicated that the increase in UDA concentration inhibited the proliferation of HL-60 cells as well as apoptosis induction. Cell cycle analysis showed that the number of sub G1 cells increased essentially. Experimental observations showed that UDA can induce cell apoptosis through a caspase 9-dependent pathway. The expression changes of 21 genes confirmed the apoptotic events in HL-60 cells treated with UDA. In this, we have presented the first investigation on the cytotoxic and apoptotic effects of a lectin isolated from rhizomes and roots of Urtica dioica L. on human AML cells. Generally, the results suggest that UDA may have therapeutic value for leukemia and would be studied further as a new drug for AML later on.
Collapse
|
26
|
Latif AL, Newcombe A, Li S, Gilroy K, Robertson NA, Lei X, Stewart HJS, Cole J, Terradas MT, Rishi L, McGarry L, McKeeve C, Reid C, Clark W, Campos J, Kirschner K, Davis A, Lopez J, Sakamaki JI, Morton JP, Ryan KM, Tait SWG, Abraham SA, Holyoake T, Higgins B, Huang X, Blyth K, Copland M, Chevassut TJT, Keeshan K, Adams PD. BRD4-mediated repression of p53 is a target for combination therapy in AML. Nat Commun 2021; 12:241. [PMID: 33431824 PMCID: PMC7801601 DOI: 10.1038/s41467-020-20378-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a typically lethal molecularly heterogeneous disease, with few broad-spectrum therapeutic targets. Unusually, most AML retain wild-type TP53, encoding the pro-apoptotic tumor suppressor p53. MDM2 inhibitors (MDM2i), which activate wild-type p53, and BET inhibitors (BETi), targeting the BET-family co-activator BRD4, both show encouraging pre-clinical activity, but limited clinical activity as single agents. Here, we report enhanced toxicity of combined MDM2i and BETi towards AML cell lines, primary human blasts and mouse models, resulting from BETi's ability to evict an unexpected repressive form of BRD4 from p53 target genes, and hence potentiate MDM2i-induced p53 activation. These results indicate that wild-type TP53 and a transcriptional repressor function of BRD4 together represent a potential broad-spectrum synthetic therapeutic vulnerability for AML.
Collapse
Affiliation(s)
| | - Ashley Newcombe
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sha Li
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Kathryn Gilroy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Neil A Robertson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Xue Lei
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Helen J S Stewart
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - John Cole
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Loveena Rishi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Claire McKeeve
- West of Scotland Genomics Services (Laboratories), Queen Elizabeth University Hospital, Glasgow, UK
| | - Claire Reid
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Joana Campos
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Andrew Davis
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jonathan Lopez
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Stephen W G Tait
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sheela A Abraham
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department Of Biomedical And Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tessa Holyoake
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brian Higgins
- Pharma Research and Early Development, Roche Innovation Center-New York, New York, USA
| | - Xu Huang
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Karen Keeshan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
| |
Collapse
|
27
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
28
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
29
|
Sill H, Zebisch A, Haase D. Acute Myeloid Leukemia and Myelodysplastic Syndromes with TP53 Aberrations - A Distinct Stem Cell Disorder. Clin Cancer Res 2020; 26:5304-5309. [PMID: 32816950 PMCID: PMC7116522 DOI: 10.1158/1078-0432.ccr-20-2272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 exerts pivotal roles in hematopoietic stem cell (HSC) homeostasis. Mutations of the TP53 gene have recently been described in individuals with clonal hematopoiesis conferring substantial risk of developing blood cancers. In patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), TP53 aberrations-mutations, deletions, and a combination thereof-are encountered at a constant frequency of approximately 10%. These aberrations affect HSCs transforming them into preleukemic stem cells, pinpointing their central role in leukemogenesis. AML and MDS with TP53 aberrations are characterized by complex chromosomal aberrations. Respective patients experience a dismal long-term outcome following treatment with both intensive and nonintensive regimens including novel agents like venetoclax combinations or even allogeneic HSC transplantation. However, according to the 2016 WHO classification, AML and MDS with TP53 aberrations are still regarded as separate disease entities. On the basis of their common biological and clinical features, we propose to classify AML and MDS with TP53 aberrations as a single, distinct stem cell disorder with a unique genetic make-up, comparable with the WHO classification of "AML with recurrent genetic abnormalities." This approach will have implications for basic and translational research endeavors, aid in harmonization of current treatment strategies, and facilitate the development of master trials targeting a common deleterious driver event.
Collapse
Affiliation(s)
- Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria.
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
- Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Austria
| | - Detlef Haase
- Clinics of Hematology and Medical Oncology, University Medical Center, Georg-August-University, Goettingen, Germany
| |
Collapse
|
30
|
Ball B, Stein EM. Which are the most promising targets for minimal residual disease-directed therapy in acute myeloid leukemia prior to allogeneic stem cell transplant? Haematologica 2020; 104:1521-1531. [PMID: 31366466 PMCID: PMC6669154 DOI: 10.3324/haematol.2018.208587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Minimal residual disease has emerged as an important prognostic factor for relapse and survival in acute myeloid leukemia. Eradication of minimal residual disease may increase the number of patients with long-term survival; however, to date, strategies that specifically target minimal residual disease are limited. Consensus guidelines on minimal residual disease detection by immunophenotypic and molecular methods are an essential initial step for clinical trials evaluating minimal residual disease. Here, we review promising targets of minimal residual disease prior to allogeneic stem cell transplantation. Specifically, the focus of this review is on the rationale and clinical development of therapies targeting: oncogenic driver mutations, apoptosis, methylation, and leukemic immune targets. We review the progress made in the clinical development of therapies against each target and the challenges that lie ahead.
Collapse
Affiliation(s)
- Brian Ball
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan M Stein
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
31
|
Min S, Wang X, Du Q, Gong H, Yang Y, Wang T, Wu N, Liu X, Li W, Zhao C, Shen Y, Chen Y, Wang X. Chetomin, a Hsp90/HIF1α pathway inhibitor, effectively targets lung cancer stem cells and non-stem cells. Cancer Biol Ther 2020; 21:698-708. [PMID: 32489150 DOI: 10.1080/15384047.2020.1763147] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains recalcitrant to effective treatment due to tumor relapse and acquired resistance. Cancer stem cells (CSCs) are believed to be one mechanism for relapse and resistance and are consequently considered promising drug targets. We report that chetomin, an active component of Chaetomium globosum, blocks heat shock protein 90/hypoxia-inducible factor 1 alpha (Hsp90/HIF1α) pathway activity. Chetomin also attenuated sphere-forming, a stem cell-like characteristic, of NSCLC CSCs (at ~ nM range) and the proliferation of non-CSCs NSCLC cultures and chemoresistant sublines (at ~ μM range). At these concentrations, chetomin exerted a marginal influence on noncancerous cells originating from several organs. Chetomin markedly decreased in vivo tumor formation in a spontaneous Kras LA1 lung cancer model, flank xenograft models, and a tumor propagation flank implanted model at doses that did not produce an observable toxicity to the animals. Chetomin blocked Hsp90/HIF1α pathway activity via inhibiting the Hsp90-HIF1α binding interaction without affecting Hsp90 or Hsp70 protein levels. This study advocates chetomin as a Hsp90/HIF1α pathway inhibitor and a potent, nontoxic NSCLC CSC-targeting molecule.
Collapse
Affiliation(s)
- Shengping Min
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Xiaoxu Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Qianyu Du
- Department of Medical Oncology, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Huiyuan Gong
- Department of Thoracic Surgery, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Yan Yang
- Department of Medical Oncology, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Tao Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Nan Wu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Xincheng Liu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Wei Li
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Chengling Zhao
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Yuanbing Shen
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Yuqing Chen
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease; Department of Respiration, First Affiliated Hospital, Bengbu Medical College , Bengbu, Anhui Province, China
| |
Collapse
|
32
|
Mandhair HK, Arambasic M, Novak U, Radpour R. Molecular modulation of autophagy: New venture to target resistant cancer stem cells. World J Stem Cells 2020; 12:303-322. [PMID: 32547680 PMCID: PMC7280868 DOI: 10.4252/wjsc.v12.i5.303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly regulated catabolic process in which superfluous, damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance, autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation via modulation of essential signaling pathways or by promoting resistance to chemotherapeutics. Autophagy has been implicated in a cross talk with apoptosis. Understanding the complex interactions provides an opportunity to improve cancer therapy and the clinical outcome for the cancer patients. In this review, we provide a comprehensive view on the current knowledge on autophagy and its role in cancer cells with a particular focus on cancer stem cell homeostasis.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Miroslav Arambasic
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
33
|
Oh CK, Ha M, Han ME, Heo HJ, Myung K, Lee Y, Oh SO, Kim YH. FAM213A is linked to prognostic significance in acute myeloid leukemia through regulation of oxidative stress and myelopoiesis. Hematol Oncol 2020; 38:381-389. [PMID: 32124993 DOI: 10.1002/hon.2728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
Accurate prediction of malignancies is important in choosing therapeutic strategies. Although there are many genetic and cytogenetic prognostic factors for acute myeloid leukemia (AML), prognosis is difficult to predict because of the heterogeneity of AML. Prognostic factors, including messenger RNA (mRNA) expression, have been determined for other malignancies, but not for AML. A total of 402 patients from The Cancer Genome Atlas, GSE12417 (GPL96, 97), and GSE12417 (GPL570) were included in this study. In Kaplan-Meier curve analyses, high expression of family with sequence similarity 213 member A (FAM213A), which activates antioxidant proteins, was associated with worse prognosis of AML. Similar to the results of the survival curve, C-indices and area under the curve values were high. Current prognostic factors of AML, unlike those of other cancers, do not take mRNA expression into consideration. Thus, the development of mRNA-based prognostic factors would be beneficial for accurate prediction of the survival of AML patients. Additionally, in vivo validation using zebrafish revealed that fam213a is important for myelopoiesis at the developmental stage and is a negative regulator of the p53 tumor suppressor gene. The findings implicate fam213a as a novel prognostic factor for AML patients.
Collapse
Affiliation(s)
- Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Mihyang Ha
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hye J Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
34
|
Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:875-888. [PMID: 31393631 PMCID: PMC12042961 DOI: 10.1002/gcc.22796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor gene TP53 is one of the most frequently mutated genes in human cancer. The central role of the TP53 protein in several fundamental processes such as cancer, aging, senescence, and DNA repair has ensured enormous attention. However, the role of TP53 in acute myeloid leukemia (AML) is enigmatic. Unlike many other human cancers, a vast majority of AMLs display no genomic TP53 alterations. There is now growing appreciation of the fact that the unaltered TP53 status of tumor cells can be exploited therapeutically. As most AMLs have an intact TP53 gene, its physiological tumor-suppressive roles could be harnessed. Therefore, the use of pharmacological activators of the TP53 pathway may provide clinical benefit in AML. Conversely, even though the frequency of TP53 mutations in AML is substantially lower than in other human cancers, TP53 mutations are associated with chemoresistance and high risk of relapse. In patients with TP53 mutations, these alterations may lead to novel, selective vulnerabilities, creating opportunities for therapeutic targeting of TP53 mutant AML. The mutational status of TP53 therefore poses challenges and opportunities in terms of advancing effective treatment strategies in AML. An increasing armamentarium of small-molecule activators of the TP53 pathway, and a growing understanding of molecular pathways triggered by mutant TP53 have accelerated efforts aimed at targeting TP53 function in AML. In combination with standard AML chemotherapy or emerging targeted therapies, pharmacological targeting of the TP53 pathway may provide therapeutic benefit in AML.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Sha Li
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
35
|
Carvajal LA, Neriah DB, Senecal A, Benard L, Thiruthuvanathan V, Yatsenko T, Narayanagari SR, Wheat JC, Todorova TI, Mitchell K, Kenworthy C, Guerlavais V, Annis DA, Bartholdy B, Will B, Anampa JD, Mantzaris I, Aivado M, Singer RH, Coleman RA, Verma A, Steidl U. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med 2019; 10:10/436/eaao3003. [PMID: 29643228 DOI: 10.1126/scitranslmed.aao3003] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/12/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022]
Abstract
The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell-enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.
Collapse
Affiliation(s)
- Luis A Carvajal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daniela Ben Neriah
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adrien Senecal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lumie Benard
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tatyana Yatsenko
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swathi-Rao Narayanagari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Justin C Wheat
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tihomira I Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles Kenworthy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jesus D Anampa
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ioannis Mantzaris
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. .,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
36
|
Rodriguez-Ramirez C, Nör JE. p53 and Cell Fate: Sensitizing Head and Neck Cancer Stem Cells to Chemotherapy. Crit Rev Oncog 2019; 23:173-187. [PMID: 30311573 DOI: 10.1615/critrevoncog.2018027353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head and neck cancers are deadly diseases that are diagnosed annually in approximately half a million individuals worldwide. Growing evidence supporting a role for cancer stem cells (CSCs) in the pathobiology of head and neck cancers has led to increasing interest in identifying therapeutics to target these cells. Apart from the canonical tumor-suppressor functions of p53, emerging research supports a significant role for this protein in physiological stem cell and CSC maintenance and reprogramming. Therefore, p53 has become a promising target to sensitize head and neck CSCs to chemotherapy. In this review, we highlight the role of p53 in stem cell maintenance and discuss potential implications of targeting p53 to treat patients with head and neck cancers.
Collapse
Affiliation(s)
- Christie Rodriguez-Ramirez
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
37
|
Erba HP, Becker PS, Shami PJ, Grunwald MR, Flesher DL, Zhu M, Rasmussen E, Henary HA, Anderson AA, Wang ES. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv 2019; 3:1939-1949. [PMID: 31253596 PMCID: PMC6616264 DOI: 10.1182/bloodadvances.2019030916] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
This open-label, phase 1 study evaluated the safety, pharmacokinetics, and maximum tolerated dose of AMG 232, an investigational oral, selective mouse double minute 2 homolog inhibitor in relapsed/refractory acute myeloid leukemia (AML). AMG 232 was administered orally once daily for 7 days every 2 weeks (7 on/off) at 60, 120, 240, 360, 480, or 960 mg as monotherapy (arm 1) or at 60 mg with trametinib 2 mg (arm 2). Dose-limiting toxicities (DLTs), adverse events (AEs), pharmacokinetics, clinical and pharmacodynamic response, and expression of p53 target genes were assessed. All 36 patients received AMG 232. No DLTs occurred in arm 1, and 360 mg was the highest test dose; dose escalation was halted due to gastrointestinal AEs at higher doses. One of ten patients in arm 2 had a DLT (grade 3 fatigue); 60 mg was the highest dose tested with trametinib. Common treatment-related AEs (any grade) included nausea (58%), diarrhea (56%), vomiting (33%), and decreased appetite (25%). AMG 232 exhibited linear pharmacokinetics unaffected by coadministration with trametinib. Serum macrophage inhibitor cytokine-1 and bone marrow expression of BAX, PUMA, P21, and MDM2 increased during treatment. Of 30 evaluable patients, 1 achieved complete remission, 4 had morphologic leukemia-free state, and 1 had partial remission. Four of 13 (31%) TP53-wild-type patients and 0 of 3 (0%) TP53-mutant patients were responders. AMG 232 was associated with gastrointestinal AEs at higher doses but had acceptable pharmacokinetics, on-target effects, and promising clinical activity warranting further investigation in patients with relapsed/refractory AML. This trial was registered at www.clinicaltrials.gov as #NCT02016729.
Collapse
Affiliation(s)
- Harry P Erba
- Division of Hematologic Malignancies and Cellular Therapy, Department of Internal Medicine, Duke University, Durham, NC
| | - Pamela S Becker
- Division of Hematology, University of Washington School of Medicine, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | | | - Min Zhu
- Amgen Inc., Thousand Oaks, CA; and
| | | | | | | | - Eunice S Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
38
|
Loizou E, Banito A, Livshits G, Ho YJ, Koche RP, Sánchez-Rivera FJ, Mayle A, Chen CC, Kinalis S, Bagger FO, Kastenhuber ER, Durham BH, Lowe SW. A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1. Cancer Discov 2019; 9:962-979. [PMID: 31068365 DOI: 10.1158/2159-8290.cd-18-1391] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Mutations in the TP53 tumor suppressor gene are common in many cancer types, including the acute myeloid leukemia (AML) subtype known as complex karyotype AML (CK-AML). Here, we identify a gain-of-function (GOF) Trp53 mutation that accelerates CK-AML initiation beyond p53 loss and, surprisingly, is required for disease maintenance. The Trp53R172H mutation (TP53R175H in humans) exhibits a neomorphic function by promoting aberrant self-renewal in leukemic cells, a phenotype that is present in hematopoietic stem and progenitor cells (HSPC) even prior to their transformation. We identify FOXH1 as a critical mediator of mutant p53 function that binds to and regulates stem cell-associated genes and transcriptional programs. Our results identify a context where mutant p53 acts as a bona fide oncogene that contributes to the pathogenesis of CK-AML and suggests a common biological theme for TP53 GOF in cancer. SIGNIFICANCE: Our study demonstrates how a GOF p53 mutant can hijack an embryonic transcription factor to promote aberrant self-renewal. In this context, mutant Trp53 functions as an oncogene to both initiate and sustain myeloid leukemia and suggests a potential convergent activity of mutant Trp53 across cancer types.This article is highlighted in the In This Issue feature, p. 813.
Collapse
Affiliation(s)
- Evangelia Loizou
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Ana Banito
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geulah Livshits
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allison Mayle
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chi-Chao Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Savvas Kinalis
- Center for Genomic Medicine, Rigshopitalet, University of Copenhagen, Copenhagen, Denmark
| | - Frederik O Bagger
- Center for Genomic Medicine, Rigshopitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedicine and Swiss Institute of Bioinformatics, UKBB Universitats-Kinderspital, Basel, Switzerland
| | - Edward R Kastenhuber
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York. .,Howard Hughes Medical Institute, New York, New York
| |
Collapse
|
39
|
Abstract
The three RAS genes - HRAS, NRAS and KRAS - are collectively mutated in one-third of human cancers, where they act as prototypic oncogenes. Interestingly, there are rather distinct patterns to RAS mutations; the isoform mutated as well as the position and type of substitution vary between different cancers. As RAS genes are among the earliest, if not the first, genes mutated in a variety of cancers, understanding how these mutation patterns arise could inform on not only how cancer begins but also the factors influencing this event, which has implications for cancer prevention. To this end, we suggest that there is a narrow window or 'sweet spot' by which oncogenic RAS signalling can promote tumour initiation in normal cells. As a consequence, RAS mutation patterns in each normal cell are a product of the specific RAS isoform mutated, as well as the position of the mutation and type of substitution to achieve an ideal level of signalling.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
40
|
Ignatius MS, Hayes MN, Moore FE, Tang Q, Garcia SP, Blackburn PR, Baxi K, Wang L, Jin A, Ramakrishnan A, Reeder S, Chen Y, Nielsen GP, Chen EY, Hasserjian RP, Tirode F, Ekker SC, Langenau DM. tp53 deficiency causes a wide tumor spectrum and increases embryonal rhabdomyosarcoma metastasis in zebrafish. eLife 2018; 7:37202. [PMID: 30192230 PMCID: PMC6128690 DOI: 10.7554/elife.37202] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
The TP53 tumor-suppressor gene is mutated in >50% of human tumors and Li-Fraumeni patients with germ line inactivation are predisposed to developing cancer. Here, we generated tp53 deleted zebrafish that spontaneously develop malignant peripheral nerve-sheath tumors, angiosarcomas, germ cell tumors, and an aggressive Natural Killer cell-like leukemia for which no animal model has been developed. Because the tp53 deletion was generated in syngeneic zebrafish, engraftment of fluorescent-labeled tumors could be dynamically visualized over time. Importantly, engrafted tumors shared gene expression signatures with predicted cells of origin in human tissue. Finally, we showed that tp53del/del enhanced invasion and metastasis in kRASG12D-induced embryonal rhabdomyosarcoma (ERMS), but did not alter the overall frequency of cancer stem cells, suggesting novel pro-metastatic roles for TP53 loss-of-function in human muscle tumors. In summary, we have developed a Li-Fraumeni zebrafish model that is amenable to large-scale transplantation and direct visualization of tumor growth in live animals.
Collapse
Affiliation(s)
- Myron S Ignatius
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts.,Center of Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts.,Harvard Stem Cell Institute, Boston, Massachusetts.,Department of Molecular Medicine, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Madeline N Hayes
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts.,Center of Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts.,Harvard Stem Cell Institute, Boston, Massachusetts
| | - Finola E Moore
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts.,Center of Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts.,Harvard Stem Cell Institute, Boston, Massachusetts
| | - Qin Tang
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts.,Center of Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts.,Harvard Stem Cell Institute, Boston, Massachusetts
| | - Sara P Garcia
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
| | - Kunal Baxi
- Department of Molecular Medicine, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Long Wang
- Department of Molecular Medicine, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Alexander Jin
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts
| | - Ashwin Ramakrishnan
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts
| | - Sophia Reeder
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts
| | - Yidong Chen
- Department of Molecular Medicine, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Gunnlaugur Petur Nielsen
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts.,Center of Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Eleanor Y Chen
- Department of Pathology, University of Washington, Seattle, United States
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts.,Center of Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Franck Tirode
- Department of Translational Research and Innovation, Université Claude Bernard Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - David M Langenau
- Department of Pathology, Massachusetts General Hospital Research Institute, Boston, Massachusetts.,Center of Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts.,Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
41
|
Keszei M, Kritikou JS, Sandfort D, He M, Oliveira MMS, Wurzer H, Kuiper RV, Westerberg LS. Wiskott-Aldrich syndrome gene mutations modulate cancer susceptibility in the p53 ± murine model. Oncoimmunology 2018; 7:e1468954. [PMID: 30393584 PMCID: PMC6209425 DOI: 10.1080/2162402x.2018.1468954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 12/23/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of the actin cytoskeleton in hematopoietic cells and mutated in two severe immunodeficiency diseases with high incidence of cancer. Wiskott-Aldrich syndrome (WAS) is caused by loss-of-function mutations in WASp and most frequently associated with lymphoreticular tumors of poor prognosis. X-linked neuropenia (XLN) is caused by gain-of-function mutations in WASp and associated with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). To understand the role of WASp in tumorigenesis, we bred WASp+, WASp−, and WASp-XLN mice onto tumor susceptible p53+/- background and sub-lethally irradiated them to enhance tumor development. We followed the cohorts for 24 weeks and tumors were characterized by histology and flow cytometry to define the tumor incidence, onset, and cell origin. We found that p53+/-WASp+ mice developed malignancies, including solid tumors and T cell lymphomas with 71.4% of survival 24 weeks after irradiation. p53+/-WASp− mice showed lower survival rate and developed various early onset malignancies. Surprisingly, the p53+/-WASp-XLN mice developed malignancy mostly with late onset, which caused delayed mortality in this colony. This study provides evidence for that loss-of-function and gain-of-function mutations in WASp influence tumor incidence and onset.
Collapse
Affiliation(s)
- Marton Keszei
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Joanna S Kritikou
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Deborah Sandfort
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Raoul V Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Wang Z, Yin W, Zhu L, Li J, Yao Y, Chen F, Sun M, Zhang J, Shen N, Song Y, Chang X. Iron Drives T Helper Cell Pathogenicity by Promoting RNA-Binding Protein PCBP1-Mediated Proinflammatory Cytokine Production. Immunity 2018; 49:80-92.e7. [PMID: 29958803 DOI: 10.1016/j.immuni.2018.05.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/27/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
Iron deposition is frequently observed in human autoinflammatory diseases, but its functional significance is largely unknown. Here we showed that iron promoted proinflammatory cytokine expression in T cells, including GM-CSF and IL-2, via regulating the stability of an RNA-binding protein PCBP1. Iron depletion or Pcbp1 deficiency in T cells inhibited GM-CSF production by attenuating Csf2 3' untranslated region (UTR) activity and messenger RNA stability. Pcbp1 deficiency or iron uptake blockade in autoreactive T cells abolished their capacity to induce experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis. Mechanistically, intracellular iron protected PCBP1 protein from caspase-mediated proteolysis, and PCBP1 promoted messenger RNA stability of Csf2 and Il2 by recognizing UC-rich elements in the 3' UTRs. Our study suggests that iron accumulation can precipitate autoimmune diseases by promoting proinflammatory cytokine production. RNA-binding protein-mediated iron sensing may represent a simple yet effective means to adjust the inflammatory response to tissue homeostatic alterations.
Collapse
Affiliation(s)
- Zhizhang Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weijie Yin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lizhen Zhu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yikun Yao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feifei Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengmeng Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayuan Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Shen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Song
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Xing Chang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
43
|
USP22 deficiency leads to myeloid leukemia upon oncogenic Kras activation through a PU.1-dependent mechanism. Blood 2018; 132:423-434. [PMID: 29844011 DOI: 10.1182/blood-2017-10-811760] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Ras mutations are commonly observed in juvenile myelomonocytic leukemia (JMML) and chronic myelomonocytic leukemia (CMML). JMML and CMML transform into acute myeloid leukemia (AML) in about 10% and 50% of patients, respectively. However, how additional events cooperate with Ras to promote this transformation are largely unknown. We show that absence of the ubiquitin-specific peptidase 22 (USP22), a component of the Spt-Ada-GCN5-acetyltransferase chromatin-remodeling complex that is linked to cancer progression, unexpectedly promotes AML transformation in mice expressing oncogenic KrasG12D/+ USP22 deficiency in KrasG12D/+ mice resulted in shorter survival compared with control mice. This was due to a block in myeloid cell differentiation leading to the generation of AML. This effect was cell autonomous because mice transplanted with USP22-deficient KrasG12D/+ cells developed an aggressive disease and died rapidly. The transcriptome profile of USP22-deficient KrasG12D/+ progenitors resembled leukemic stem cells and was highly correlated with genes associated with poor prognosis in AML. We show that USP22 functions as a PU.1 deubiquitylase by positively regulating its protein stability and promoting the expression of PU.1 target genes. Reconstitution of PU.1 overexpression in USP22-deficient KrasG12D/+ progenitors rescued their differentiation. Our findings uncovered an unexpected role for USP22 in Ras-induced leukemogenesis and provide further insights into the function of USP22 in carcinogenesis.
Collapse
|
44
|
Li CW, Lai TY, Chen BS. Changes of signal transductivity and robustness of gene regulatory network in the carcinogenesis of leukemic subtypes via microarray sample data. Oncotarget 2018; 9:23636-23660. [PMID: 29805763 PMCID: PMC5955113 DOI: 10.18632/oncotarget.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
Mutation accumulation and epigenetic alterations in genes are important for carcinogenesis. Because leukemogenesis-related signal pathways have been investigated and microarray sample data have been produced in acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and normal cells, systems analysis in coupling pathways becomes possible. Based on system modeling and identification, we could construct the coupling pathways and their associated gene regulatory networks using microarray sample data. By applying system theory to the estimated system model in coupling pathways, we can then obtain transductivity sensitivity, basal sensitivity and error sensitivity of each protein to identify the potential impact of genetic mutations, epigenetic alterations and the coupling of other pathways from the perspective of energy, respectively. By comparing the results in AML, MDS and normal cells, we investigated the potential critical genetic mutations and epigenetic alterations that activate or repress specific cellular functions to promote MDS or AML leukemogenesis. We suggested that epigenetic modification of β-catenin and signal integration of CSLs, AP-2α, STATs, c-Jun and β-catenin could contribute to cell proliferation at AML and MDS. Epigenetic regulation of ERK and genetic mutation of p53 could lead to the repressed apoptosis, cell cycle arrest and DNA repair in leukemic cells. Genetic mutation of JAK, epigenetic regulation of ERK, and signal integration of C/EBPα could result in the promotion of MDS cell differentiation. According to the results, we proposed three drugs, decitabine, genistein, and monorden for preventing AML leukemogenesis, while three drugs, decitabine, thalidomide, and geldanamycin, for preventing MDS leukemogenesis.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Ying Lai
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
45
|
Abstract
Most human cancers harbor mutations in the gene encoding p53. As a result, research on p53 in the past few decades has focused primarily on its role as a tumor suppressor. One consequence of this focus is that the functions of p53 in development have largely been ignored. However, recent advances, such as the genomic profiling of embryonic stem cells, have uncovered the significance and mechanisms of p53 functions in mammalian cell differentiation and development. As we review here, these recent findings reveal roles that complement the well-established roles for p53 in tumor suppression.
Collapse
Affiliation(s)
- Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Stem Cell and Development Biology, Center for Cancer Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle Craig Barton
- Department of Epigenetics and Molecular Carcinogenesis, Center for Stem Cell and Development Biology, Center for Cancer Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
46
|
Koh AS, Miller EL, Buenrostro JD, Moskowitz DM, Wang J, Greenleaf WJ, Chang HY, Crabtree GR. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol 2018; 19:162-172. [PMID: 29335648 PMCID: PMC6049828 DOI: 10.1038/s41590-017-0032-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/07/2017] [Indexed: 01/23/2023]
Abstract
Aire mediates the expression of tissue-specific antigens in thymic epithelial cells to promote tolerance against self-reactive T lymphocytes. However, the mechanism that allows expression of tissue-specific genes at levels that prevent harm is unknown. Here we show that Brg1 generates accessibility at tissue-specific loci to impose central tolerance. We found that Aire has an intrinsic repressive function that restricts chromatin accessibility and opposes Brg1 across the genome. Aire exerted this repressive influence within minutes after recruitment to chromatin and restrained the amplitude of active transcription. Disease-causing mutations that impair Aire-induced activation also impair the protein's repressive function, which indicates dual roles for Aire. Together, Brg1 and Aire fine-tune the expression of tissue-specific genes at levels that prevent toxicity yet promote immune tolerance.
Collapse
Affiliation(s)
- Andrew S Koh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Erik L Miller
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Society of Fellows, Harvard University, Cambridge, MA, USA
| | - David M Moskowitz
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerburg Biohub, San Francisco, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
47
|
Abstract
The concept of differentiation therapy emerged from the fact that hormones or cytokines may promote differentiation ex vivo, thereby irreversibly changing the phenotype of cancer cells. Its hallmark success has been the treatment of acute promyelocytic leukaemia (APL), a condition that is now highly curable by the combination of retinoic acid (RA) and arsenic. Recently, drugs that trigger differentiation in a variety of primary tumour cells have been identified, suggesting that they are clinically useful. This Opinion article analyses the basis for the clinical successes of RA or arsenic in APL by assessing the respective roles of terminal maturation and loss of self-renewal. By reviewing other successful examples of drug-induced tumour cell differentiation, novel approaches to transform differentiating drugs into more efficient therapies are proposed.
Collapse
Affiliation(s)
- Hugues de Thé
- Collège de France, PSL Research University, 75005 Paris; Université Paris Diderot, Sorbonne Paris Cité (INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer; CNRS UMR 7212), Institut Universitaire d'Hématologie, 75010 Paris; and Assistance Publique/Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St Louis, 75010 Paris, France
| |
Collapse
|
48
|
Guarnerio J, Mendez LM, Asada N, Menon AV, Fung J, Berry K, Frenette PS, Ito K, Pandolfi PP. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun 2018; 9:66. [PMID: 29302031 PMCID: PMC5754357 DOI: 10.1038/s41467-017-02427-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/29/2017] [Indexed: 01/09/2023] Open
Abstract
Disease recurrence after therapy, due to the persistence of resistant leukemic cells, represents a fundamental problem in the treatment of leukemia. Elucidating the mechanisms responsible for the maintenance of leukemic cells, before and after treatment, is therefore critical to identify curative modalities. It has become increasingly clear that cell-autonomous mechanisms are not solely responsible for leukemia maintenance. Here, we report a role for Pml in mesenchymal stem cells (MSCs) in supporting leukemic cells of both CML and AML. Mechanistically, we show that Pml regulates pro-inflammatory cytokines within MSCs, and that this function is critical in sustaining CML-KLS and AML ckit+ leukemic cells non-cell autonomously.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Proliferation/genetics
- Cells, Cultured
- Cytokines/metabolism
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplastic Stem Cells/metabolism
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Stem Cell Niche
Collapse
Affiliation(s)
- Jlenia Guarnerio
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lourdes Maria Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Noboru Asada
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Medicine and Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jacqueline Fung
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kelsey Berry
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Medicine and Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Medicine and Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
49
|
Huang R, Liao X, Li Q. Identification of key pathways and genes in TP53 mutation acute myeloid leukemia: evidence from bioinformatics analysis. Onco Targets Ther 2017; 11:163-173. [PMID: 29343974 PMCID: PMC5749383 DOI: 10.2147/ott.s156003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Tumor protein p53 (TP53) mutations are not only a risk factor in acute myeloid leukemia (AML) but also a potential biomarker for individualized treatment options. This study aimed to investigate potential pathways and genes associated with TP53 mutations in adult de novo AML. Methods An RNA sequencing dataset of adult de novo AML was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) were identified by edgeR of the R platform. Key pathways and genes were identified using the following bioinformatics tools: gene set enrichment analysis (GSEA), gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection. Results GSEA suggested that TP53 mutations were significantly associated with cell differentiation, proliferation, cell adhesion biological processes, and MAPK pathway. In total, 1,287 genes were identified as DEGs. GO and KEGG analysis suggested that upregulation of DEGs was significantly enriched in categories associated with cell adhesion biological processes, Ras-associated protein 1, PI3K-Akt pathway, and cell adhesion molecules. The top ten genes ranked by degree, CDH1, BMP2, KDR, LEP, CASR, ITGA2B, APOE, MNX1, NMU, and TRH, were identified as hub genes from the protein-protein interaction network. Survival analysis suggested that patients with TP53 mutations had a significantly increased risk of death, while the mRNA expression level in patients with TP53 mutation was similar to those carrying TP53 wild type. Conclusion Our findings have indicated that multiple genes and pathways may play a crucial role in TP53 mutation AML, offering candidate targets and strategies for TP53 mutation AML individualized treatment.
Collapse
Affiliation(s)
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | |
Collapse
|
50
|
Senescence-associated reprogramming promotes cancer stemness. Nature 2017; 553:96-100. [DOI: 10.1038/nature25167] [Citation(s) in RCA: 753] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 11/24/2017] [Indexed: 12/29/2022]
|