1
|
Lv Z, Jiao J, Xue W, Shi X, Wang R, Wu J. Activation-induced cytidine deaminase in tertiary lymphoid structures: dual roles and implications in cancer prognosis. Front Oncol 2025; 15:1555491. [PMID: 40270606 PMCID: PMC12014437 DOI: 10.3389/fonc.2025.1555491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
Activation-induced cytidine deaminase (AID) serves as a critical molecular orchestrator in the germinal center (GC) reaction within secondary lymphoid organs (SLOs), driving the production of high-affinity antibodies through somatic hypermutation. While its pathological implications are well-documented - including ectopic expression in non-B cell populations and transcriptional dysregulation linked to hematological malignancies and solid tumorigenesis - the cellular provenance of AID in solid tumors remains an unresolved paradox. This review advances two principal hypotheses: (1) AID may derive from tertiary lymphoid structures (TLSs), ectopic immune niches mirroring SLO organization, and (2) exhibits context-dependent transcriptional duality, capable of both potentiating and suppressing gene expression based on microenvironmental cues. Through systematic analysis of AID/GC involvement across cancer subtypes, we delineate mechanistic connections between lymphoid neogenesis and tumor progression. Our examination extends to TLS architecture, revealing three critical dimensions: (i) structural organization and cellular heterogeneity, (ii) developmental trajectories, and (iii) bidirectional interactions with tumor microenvironments. Crucially, we establish functional parallels between tumor-infiltrating B cells (TIL-Bs) in SLOs versus TLSs, while elucidating the differential roles of AID in canonical GC versus TLS-associated GC formation. This synthesis ultimately proposes that AID's functional dichotomy - acting as both oncogenic collaborator and tumor suppressor - underlies the paradoxical prognostic associations observed with TLS presence across malignancies. The review thereby provides a conceptual framework reconciling AID's dual functionality with the context-dependent immunobiology of tumor-associated lymphoid structures.
Collapse
Affiliation(s)
- Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, China
| | - Wuyang Xue
- Department of Laboratory Medicine, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyu Shi
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruihan Wang
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinhua Wu
- School of Junji College, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Wu L, Yadavalli AD, Senigl F, Matos-Rodrigues G, Xu D, Pintado-Urbanc AP, Simon MD, Wu W, Nussenzweig A, Schatz DG. Transcription elongation factor ELOF1 is required for efficient somatic hypermutation and class switch recombination. Mol Cell 2025; 85:1296-1310.e7. [PMID: 40049160 PMCID: PMC11972161 DOI: 10.1016/j.molcel.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 03/12/2025]
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) diversify immunoglobulin (Ig) genes and are initiated by the activation-induced deaminase (AID), a single-stranded DNA cytidine deaminase thought to engage its substrate during RNA polymerase II (RNAPII) transcription. Through a genetic screen, we identified numerous potential factors involved in SHM, including elongation factor 1 homolog (ELOF1), a component of the RNAPII elongation complex that functions in transcription-coupled nucleotide excision repair (TC-NER) and transcription elongation. Loss of ELOF1 compromises SHM, CSR, and AID action in mammalian B cells and alters RNAPII transcription by reducing RNAPII pausing downstream of transcription start sites and levels of serine 5 but not serine 2 phosphorylated RNAPII throughout transcribed genes. ELOF1 must bind to RNAPII to be a proximity partner for AID and to function in SHM and CSR, and TC-NER is not required for SHM. We propose that ELOF1 helps create the appropriate stalled RNAPII substrate on which AID acts.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Anurupa Devi Yadavalli
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Filip Senigl
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | | | - Dijin Xu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, New Haven, CT, USA
| | - Andreas P Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA; Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Wei Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA.
| |
Collapse
|
3
|
Dai P, Tan Y, Luo Y, Liu T, Huang Y, Shang Y, Huang ME, Liu X, Zhang S, Wang Y, Li QX, Li N, Li L, Qin Y, Liu J, Liu LD, Xie X, Cai Y, Chen FX, Zheng X, Yeap LS, Wang J, Hu J, Meng FL. Transcription-coupled AID deamination damage depends on ELOF1-associated RNA polymerase II. Mol Cell 2025; 85:1280-1295.e9. [PMID: 40049162 DOI: 10.1016/j.molcel.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 02/07/2025] [Indexed: 04/06/2025]
Abstract
In adaptive immunity, transcription-coupled damage (TCD) is introduced into antibody genes by activation-induced cytidine deaminase (AID) to diversify antibody repertoire. However, the coordination between transcription and DNA damage/repair remains elusive. Here, we find that transcription elongation factor 1 (ELOF1) stabilizes paused RNA polymerase II (RNAPII) at transcription barriers, providing a platform for transcription-coupled DNA damage/repair. Using a genetic screen, we discover that ELOF1 is required for AID targeting and that ELOF1 deficiency results in defective antibody class switch recombination and somatic hypermutation in mice. While downstream transcription-coupled repair factors are dispensable for AID damage, ELOF1 mechanistically facilitates both TCD and repair by stabilizing chromatin-bound RNAPII. In ELOF1-deficient cells, paused RNAPII tends to detach from chromatin and fails to recruit factors to induce or repair DNA damage. Our study places ELOF1 at the center of transcription-coupled DNA metabolism processes and suggests a transition of RNAPII from elongation to a DNA damage/repair scaffold.
Collapse
Affiliation(s)
- Pengfei Dai
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanqing Tan
- Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yifeng Luo
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tingting Liu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanchao Huang
- Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yafang Shang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Min Emma Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaojing Liu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Senxin Zhang
- Shanghai Institute of Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yanyan Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Xi Li
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Niu Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Lulu Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Yining Qin
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Junqi Liu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Liu Daisy Liu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Xie
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanni Cai
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Jinchuan Hu
- Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Fei-Long Meng
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Academy of Natural Sciences (SANS), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
4
|
Chen Y, Sun S, Lu C, Li Y, Fang B, Tang X, Li X, Yu W, Lei Y, Sun L, Zhang M, Sun J, Liu P, Luo Y, Zhao X, Zhan J, Liu L, Liu R, Huang J, Yi Z, Yu Y, Xiao W, Ding Z, Li L, Su D, Ren F, Cao C, Wang R, Shi W, Chen J. The RNA Binding Protein Bcas2 is Required for Antibody Class Switch in Activated‐B Cells. EXPLORATION 2025. [DOI: 10.1002/exp.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 03/18/2025]
Abstract
ABSTRACTIn children, hyper‐IgM syndrome type 1 (HIGM1) is a type of severe antibody disorder, the pathogenesis of which remains unclear. The antibody diversity is partially determined by the alternative splicing (AS) in the germline, which is mainly regulated by RNA‐binding proteins, including Breast cancer amplified sequence 2 (Bcas2). However, the effect of Bcas2 on AS and antibody production in activated B cells, the main immune cell type in the germline, remains unknown. To fill this gap, we created a conditional knockout (cKO, B cell‐specific AID‐Cre Bcas2fl/fl) mouse model and performed integrated mechanistic analysis on alternative splicing (AS) and CSR in B cells through the RNA‐sequencing approach, cross‐linking immunoprecipitation and sequencing (CLIP‐seq) analysis, and interactome proteomics. The results demonstrate that Bcas2‐cKO significantly decreased CSR in activated B cells without inhibiting the B cell development. Mechanistically, Bcas2 interacts with SRSF7 at a conservative circular domain, forming a complex to regulate the AS of genes involved in the post‐switch transcription, thereby causing broad‐spectrum changes in antibody production. Importantly, we identified GAAGAA as the binding motif of Bcas2 to RNAs and revealed its essential role in the regulation of Bcas2‐dependent AS and CSR. In addition, we detected a mutation of at the 3’UTR of Bcas2 gene in children with HIGM1 and observed similar patterns of AS events and CSR in the patient that were discovered in the Bcas2‐cKO B cells. Combined, our study elucidates the mechanism by which Bcas2‐mediated AS affects CSR, offering potential insights into the clinical implications of Bcas2 in HIGM1.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Chenxu Lu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Xiangfeng Tang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology Beijing Key Laboratory of Pediatric Organ Failure Department of Pediatrics The Seventh Medical Center of PLA General Hospital Beijing China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University Liaoning China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding College of Biological Sciences China Agricultural University Beijing China
| | - Ming Zhang
- School of Food and Health Beijing Technology and Business University Beijing China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Xingwang Zhao
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Libing Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Ziwei Yi
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yifei Yu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Weihan Xiao
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Dan Su
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Wenbiao Shi
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| |
Collapse
|
5
|
Wu L, Yadavalli AD, Matos-Rodrigues G, Xu D, Pintado-Urbanc AP, Simon MD, Wu W, Nussenzweig A, Schatz DG. Transcription elongation factor ELOF1 is required for efficient somatic hypermutation and class switch recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614732. [PMID: 39386505 PMCID: PMC11463689 DOI: 10.1101/2024.09.24.614732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) diversify immunoglobulin (Ig) genes and are initiated by the activation induced deaminase (AID), a single-stranded DNA cytidine deaminase that is thought to engage its substrate in the context of RNA polymerase II (RNAPII) transcription. Through a loss of function genetic screen, we identified numerous potential factors involved in SHM including ELOF1, a component of the RNAPII elongation complex that has been shown to function in DNA repair and transcription elongation. Loss of ELOF1 strongly compromises SHM, CSR, and AID targeting and alters RNAPII transcription by reducing RNAPII pausing downstream of transcription start sites and levels of serine 5 but not serine 2 phosphorylated RNAPII throughout transcribed genes. ELOF1 must bind to RNAPII to be a proximity partner for AID and to function in SHM and CSR. We propose that ELOF1 helps create the appropriate stalled RNAPII substrate on which AID acts.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Anurupa Devi Yadavalli
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | | | - Dijin Xu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Andreas P. Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Wei Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - David G. Schatz
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
- Lead contact
| |
Collapse
|
6
|
Lauring MC, Basu U. Somatic hypermutation mechanisms during lymphomagenesis and transformation. Curr Opin Genet Dev 2024; 85:102165. [PMID: 38428317 DOI: 10.1016/j.gde.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
B cells undergoing physiologically programmed or aberrant genomic alterations provide an opportune system to study the causes and consequences of genome mutagenesis. Activated B cells in germinal centers express activation-induced cytidine deaminase (AID) to accomplish physiological somatic hypermutation (SHM) of their antibody-encoding genes. In attempting to diversify their immunoglobulin (Ig) heavy- and light-chain genes, several B-cell clones successfully optimize their antigen-binding affinities. However, SHM can sometimes occur at non-Ig loci, causing genetic alternations that lay the foundation for lymphomagenesis, particularly diffuse large B-cell lymphoma. Thus, SHM acts as a double-edged sword, bestowing superb humoral immunity at the potential risk of initiating disease. We refer to off-target, non-Ig AID mutations - that are often but not always associated with disease - as aberrant SHM (aSHM). A key challenge in understanding SHM and aSHM is determining how AID targets and mutates specific DNA sequences in the Ig loci to generate antibody diversity and non-Ig genes to initiate lymphomagenesis. Herein, we discuss some current advances regarding the regulation of AID's DNA mutagenesis activity in B cells.
Collapse
Affiliation(s)
- Max C Lauring
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York 10032, USA.
| |
Collapse
|
7
|
Laffleur B, Batista CR, Zhang W, Lim J, Yang B, Rossille D, Wu L, Estrella J, Rothschild G, Pefanis E, Basu U. RNA exosome drives early B cell development via noncoding RNA processing mechanisms. Sci Immunol 2022; 7:eabn2738. [PMID: 35658015 DOI: 10.1126/sciimmunol.abn2738] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B cell development is linked to successful V(D)J recombination, allowing B cell receptor expression and ultimately antibody secretion for adaptive immunity. Germline noncoding RNAs (ncRNAs) are produced at immunoglobulin (Ig) loci during V(D)J recombination, but their function and posttranscriptional regulation are incompletely understood. Patients with trichohepatoenteric syndrome, characterized by RNA exosome pathway component mutations, exhibit lymphopenia, thus demonstrating the importance of ncRNA surveillance in B cell development in humans. To understand the role of RNA exosome in early B cell development in greater detail, we generated mouse models harboring a B cell-specific cre allele (Mb1cre), coupled to conditional inversion-deletion alleles of one RNA exosome core component (Exosc3) or RNase catalytic subunits (Exosc10 or Dis3). We noticed increased expression of RNA exosome subunits during V(D)J recombination, whereas a B cell developmental blockade at the pro-B cell stage was observed in the different knockout mice, overlapping with a lack of productive rearrangements of VDJ genes at the Ig heavy chain (Igh). This unsuccessful recombination prevented differentiation into pre-B cells, with accumulation of ncRNAs and up-regulation of the p53 pathway. Introduction of a prearranged Igh VDJ allele partly rescued the pre-B cell population in Dis3-deficient cells, although V-J recombination defects were observed at Ig light chain kappa (Igκ), preventing subsequent B cell development. These observations demonstrated that the RNA exosome complex is important for Igh and Igκ recombination and establish the relevance of RNA processing for optimal diversification at these loci during B cell development.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carolina R Batista
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Biao Yang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Delphine Rossille
- Universite of Rennes, INSERM, EFS Bretagne, CHU Rennes, UMR 1236, Rennes, France
| | - Lijing Wu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jerson Estrella
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Rimkus TK, Arrigo AB, Zhu D, Carpenter RL, Sirkisoon S, Doheny D, Regua AT, Wong GL, Manore S, Wagner C, Lin HK, Jin G, Ruiz J, Chan M, Debinski W, Lo HW. NEDD4 degrades TUSC2 to promote glioblastoma progression. Cancer Lett 2022; 531:124-135. [PMID: 35167936 PMCID: PMC8920049 DOI: 10.1016/j.canlet.2022.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Whether tumor suppressor candidate 2 (TUSC2) plays an important role in glioblastoma (GBM) progression is largely unknown. Whether TUSC2 undergoes polyubiquitination is unknown. Herein, we report that TUSC2 protein expression is reduced/lost in GBM compared to normal brain due to protein destabilization; TUSC2 mRNA is equally expressed in both tissues. NEDD4 E3 ubiquitin ligase polyubiquitinates TUSC2 at residue K71, and the TUSC2-K71R mutant is resistant to NEDD4-mediated proteasomal degradation. Analysis of GBM specimens showed NEDD4 protein is highly expressed in GBM and the level is inversely correlated with TUSC2 protein levels. Furthermore, TUSC2 restoration induces apoptosis and inhibits patient-derived glioma stem cells (PD-GSCs) in vitro and in vivo. Conversely, TUSC2-knockout promotes PD-GSCs in vitro and in vivo. RNA-Seq analysis and subsequent validations showed GBM cells with TUSC2-knockout expressed increased Bcl-xL and were more resistant to apoptosis induced by a Bcl-xL-specific BH3 mimetic. A TUSC2-knockout gene signature created from the RNA-seq data predicts poor patient survival. Together, these findings establish that NEDD4-mediated polyubiquitination is a novel mechanism for TUSC2 degradation in GBM and that TUSC2 loss promotes GBM progression in part through Bcl-xL upregulation.
Collapse
|
9
|
Sharad S, Dobi A, Srivastava S, Srinivasan A, Li H. PMEPA1 Gene Isoforms: A Potential Biomarker and Therapeutic Target in Prostate Cancer. Biomolecules 2020; 10:biom10091221. [PMID: 32842649 PMCID: PMC7565192 DOI: 10.3390/biom10091221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of prostate transmembrane protein androgen induced 1 (PMEPA1), an androgen responsive gene, came initially from the studies of androgen regulatory gene networks in prostate cancer. It was soon followed by the documentation of the expression and functional analysis of transmembrane prostate androgen-induced protein (TMEPAI)/PMEPA1 in other solid tumors including renal, colon, breast, lung, and ovarian cancers. Further elucidation of PMEPA1 gene expression and sequence analysis revealed the presence of five isoforms with distinct extracellular domains (isoforms a, b, c, d, and e). Notably, the predicted amino acid sequences of PMEPA1 isoforms show differences at the N-termini, a conserved membrane spanning and cytoplasmic domains. PMEPA1 serves as an essential regulator of multiple signaling pathways including androgen and TGF-β signaling in solid tumors. Structure-function studies indicate that specific motifs present in the cytoplasmic domain (PY, SIM, SH3, and WW binding domains) are utilized to mediate isoform-specific functions through interactions with other proteins. The understanding of the “division of labor” paradigm exhibited by PMEPA1 isoforms further expands our knowledge of gene’s multiple functions in tumorigenesis. In this review, we aim to summarize the most recent advances in understanding of PMEPA1 isoform-specific functions and their associations with prostate cancer progression, highlighting the potentials as biomarker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| | - Albert Dobi
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| |
Collapse
|
10
|
Manning J, Windley SP, Sandow JJ, Shah SS, Western P, Wilhelm D, Kumar S. Identification of novel interacting partners of the NEDD4 ubiquitin ligase in mouse testis. J Proteomics 2020; 223:103830. [PMID: 32450490 DOI: 10.1016/j.jprot.2020.103830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/14/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Posttranslational modification by ubiquitination targets proteins for degradation, recycling, stabilization or altered trafficking, and as such can alter cellular signaling pathways. The substrate specificity of this multistep process is controlled by ubiquitin ligases, including those of the HECT domain-containing NEDD4 family. In the testis, ubiquitination of many proteins contributes to organ development and maturation of spermatozoa and NEDD4 is known to be important in the control of spermatogonial stem cell homeostasis. However, a comprehensive understanding of NEDD4 substrates in testis development is lacking. Here we demonstrate high expression of Nedd4 in somatic cells of the mouse testis and in the murine Leydig cell-like cell line TM3. Immunoprecipitation of NEDD4 tagged with GFP at either the amino or carboxyl terminus was subjected to proteomic analysis for interacting proteins. We identified a substantial list of potential interaction partners, including known NEDD4 substrates, proteins involved in ubiquitination and proteins important for testis development and spermatogenesis. We confirmed the interaction of NEDD4 with a subset of these putative interacting proteins, validating the integrity of the dataset. These potential interactors may be further explored to reveal important roles of NEDD4-mediated ubiquitination in the testis. SIGNIFICANCE: Ubiquitination is important for testis development and function, and NEDD4 is known to ubiquitinate various proteins to affect cellular signaling and development, including those implicated in spermatogenesis. However, substrates of NEDD4 that are important during testis development remain to be identified. Here we report NEDD4 expression in the developing testis and TM3 testicular cell line. This study identifies a substantial list of NEDD4 interacting proteins in the TM3 testicular cell line, with validation of some of these interactions. Hence, this provides novel NEDD4 targets that may contribute to testis development and function that may be further explored.
Collapse
Affiliation(s)
- JantinaA Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia.
| | - Simon P Windley
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sonia S Shah
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Patrick Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3800, Australia
| | - Dagmar Wilhelm
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia.
| |
Collapse
|
11
|
Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol 2020; 21:123-136. [PMID: 32020081 DOI: 10.1038/s41580-019-0209-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mammalian genome is transcribed, generating long non-coding RNAs (lncRNAs) that can undergo post-transcriptional surveillance whereby only a subset of the non-coding transcripts is allowed to attain sufficient stability to persist in the cellular milieu and control various cellular functions. Paralleling protein turnover by the proteasome complex, lncRNAs are also likely to exist in a dynamic equilibrium that is maintained through constant monitoring by the RNA surveillance machinery. In this Review, we describe the RNA surveillance factors and discuss the vital role of lncRNA surveillance in orchestrating various biological processes, including the protection of genome integrity, maintenance of pluripotency of embryonic stem cells, antibody-gene diversification, coordination of immune cell activation and regulation of heterochromatin formation. We also discuss examples of human diseases and developmental defects associated with the failure of RNA surveillance mechanisms, further highlighting the importance of lncRNA surveillance in maintaining cell and organism functions and health.
Collapse
|
12
|
Tan Y, Jin C, Ma W, Hu Y, Tanasa B, Oh S, Gamliel A, Ma Q, Yao L, Zhang J, Ohgi K, Liu W, Aggarwal AK, Rosenfeld MG. Dismissal of RNA Polymerase II Underlies a Large Ligand-Induced Enhancer Decommissioning Program. Mol Cell 2019; 71:526-539.e8. [PMID: 30118678 PMCID: PMC6149533 DOI: 10.1016/j.molcel.2018.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 05/10/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Nuclear receptors induce both transcriptional activation and repression programs responsible for development, homeostasis, and disease. Here, we report a previously overlooked enhancer decommissioning strategy underlying a large estrogen receptor alpha (ERα)-dependent transcriptional repression program. The unexpected signature for this E2-induced program resides in indirect recruitment of ERα to a large cohort of pioneer factor basally active FOXA1-bound enhancers that lack cognate ERα DNA-binding elements. Surprisingly, these basally active estrogen-repressed (BAER) enhancers are decommissioned by ERα-dependent recruitment of the histone demethylase KDM2A, functioning independently of its demethylase activity. Rather, KDM2A tethers the E3 ubiquitin-protein ligase NEDD4 to ubiquitylate/dismiss Pol II to abrogate eRNA transcription, with consequent target gene downregulation. Thus, our data reveal that Pol II ubiquitylation/dismissal may serve as a potentially broad strategy utilized by indirectly bound nuclear receptors to abrogate large programs of pioneer factor-mediated, eRNA-producing enhancers.
Collapse
Affiliation(s)
- Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chunyu Jin
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wubin Ma
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yiren Hu
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Bogdan Tanasa
- Stanford University School of Medicine, 265 Campus Drive, LLSCR Building, Stanford, CA 94305, USA
| | - Soohwan Oh
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amir Gamliel
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yao
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jie Zhang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kenny Ohgi
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wen Liu
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Aneel K Aggarwal
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
14
|
Abstract
In this review, Boothby et al. summarize some salient advances toward elucidation of the molecular programming of the fate choices and function of B cells in the periphery. They also note unanswered questions that pertain to differences among subsets of B lymphocytes and plasma cells. Mature B lymphocytes are crucial components of adaptive immunity, a system essential for the evolutionary fitness of mammals. Adaptive lymphocyte function requires an initially naïve cell to proliferate extensively and its progeny to have the capacity to assume a variety of fates. These include either terminal differentiation (the long-lived plasma cell) or metastable transcriptional reprogramming (germinal center and memory B cells). In this review, we focus principally on the regulation of differentiation and functional diversification of the “B2” subset. An overview is combined with an account of more recent advances, including initial work on mechanisms that eliminate DNA methylation and potential links between intracellular metabolites and chromatin editing.
Collapse
|
15
|
Abstract
Long-term survivors of human immunodeficiency virus (HIV) infection have been shown to have a greatly increased incidence of B cell lymphomas. This increased lymphomagenesis suggests some link between HIV infection and the destabilization of the host B cell genome, a phenomenon also suggested by the extraordinary high frequency of mutation, insertion, and deletion in the broadly neutralizing HIV antibodies. Since HIV does not infect B cells, the molecular mechanisms of this genomic instability remain to be fully defined. Here, we demonstrate that the cell membrane-permeable HIV Tat proteins enhance activation-induced deaminase (AID)-mediated somatic hypermutation (SHM) of antibody V regions through their modulation of the endogenous polymerase II (Pol II) transcriptional process. Extremely small amounts of Tat that could come from bystander HIV-infected cells were sufficient to promote SHM. Our data suggest HIV Tat is one missing link between HIV infection and the overall B cell genomic instability in AIDS patients. Although the introduction of antiretroviral therapy (ART) has successfully controlled primary effects of human immunodeficiency virus (HIV) infection, such as HIV proliferation and HIV-induced immune deficiency, it did not eliminate the increased susceptibility of HIV-infected patients to B cell lymphomas. We find that a secreted HIV protein, Tat, enhances the intrinsic antibody diversification mechanism by increasing the AID-induced somatic mutations at the heavy-chain variable (VH) regions in human B cells. This could contribute to the high rate of mutation in the variable regions of broadly neutralizing anti-HIV antibodies and the genomewide mutations leading to B cell malignancies in HIV carriers.
Collapse
|
16
|
Abstract
The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance.
Collapse
|
17
|
Milagre I, Stubbs TM, King MR, Spindel J, Santos F, Krueger F, Bachman M, Segonds-Pichon A, Balasubramanian S, Andrews SR, Dean W, Reik W. Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming. Cell Rep 2017; 18:1079-1089. [PMID: 28147265 PMCID: PMC5300890 DOI: 10.1016/j.celrep.2017.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.
Collapse
Affiliation(s)
- Inês Milagre
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
| | - Thomas M Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Michelle R King
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Julia Spindel
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Fátima Santos
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Martin Bachman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Simon R Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Wendy Dean
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
18
|
Lingering Questions about Enhancer RNA and Enhancer Transcription-Coupled Genomic Instability. Trends Genet 2017; 33:143-154. [PMID: 28087167 DOI: 10.1016/j.tig.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/22/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Intergenic and intragenic enhancers found inside topologically associated regulatory domains (TADs) express noncoding RNAs, known as enhancer RNAs (eRNAs). Recent studies have indicated these eRNAs play a role in gene regulatory networks by controlling promoter and enhancer interactions and topology of higher-order chromatin structure. Misregulation of enhancer and promoter associated noncoding RNAs (ncRNAs) could stabilize deleterious secondary DNA structures, noncoding RNA associated DNA/RNA hybrid formation, and promote collisions of transcription complexes with replisomes. It is revealing that many chromosomal aberrations, some associated with malignancies, are present inside enhancer and/or promoter sequences. Here, we expand on current concepts to discuss enhancer RNAs and enhancer transcription, and how enhancer transcription influences genomic organization and integrity.
Collapse
|
19
|
Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, Federation A, Chao J, Elliott O, Liu ZP, Economides AN, Bradner JE, Rabadan R, Basu U. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2016; 161:774-89. [PMID: 25957685 DOI: 10.1016/j.cell.2015.04.034] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/11/2015] [Accepted: 04/20/2015] [Indexed: 01/19/2023]
Abstract
We have ablated the cellular RNA degradation machinery in differentiated B cells and pluripotent embryonic stem cells (ESCs) by conditional mutagenesis of core (Exosc3) and nuclear RNase (Exosc10) components of RNA exosome and identified a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) with emergent functionality. Unexpectedly, eRNA-expressing regions accumulate R-loop structures upon RNA exosome ablation, thus demonstrating the role of RNA exosome in resolving deleterious DNA/RNA hybrids arising from active enhancers. We have uncovered a distal divergent eRNA-expressing element (lncRNA-CSR) engaged in long-range DNA interactions and regulating IgH 3' regulatory region super-enhancer function. CRISPR-Cas9-mediated ablation of lncRNA-CSR transcription decreases its chromosomal looping-mediated association with the IgH 3' regulatory region super-enhancer and leads to decreased class switch recombination efficiency. We propose that the RNA exosome protects divergently transcribed lncRNA expressing enhancers by resolving deleterious transcription-coupled secondary DNA structures, while also regulating long-range super-enhancer chromosomal interactions important for cellular function.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Jiguang Wang
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jianbo Sun
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Jaime Chao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Oliver Elliott
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Aris N Economides
- Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - James E Bradner
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Raul Rabadan
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17:227-39. [PMID: 26726035 DOI: 10.1038/nrm.2015.15] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
Collapse
|
21
|
Khair L, Baker RE, Linehan EK, Schrader CE, Stavnezer J. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells. PLoS Genet 2015; 11:e1005438. [PMID: 26263206 PMCID: PMC4532491 DOI: 10.1371/journal.pgen.1005438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID. Activation-induced cytidine deaminase (AID) is required for diversifying antibodies during immune responses, and it does this by introducing mutations and DNA breaks into antibody genes. How AID is targeted is not understood, and it induces chromosomal translocations, mutations, and double-strand breaks (DSBs) at sites other than antibody genes in activated B cells. To determine what makes an off-target DNA site a target for AID-induced DSBs, we identify and characterize hundreds of genome-wide DSBs induced by AID during B cell activation. Interestingly, many of the DSBs are within or adjacent to two types of tandemly repeated simple sequences, which have characteristics that might explain why they are targeted. We find that most of the DSBs are two-ended, consistent with their generation during G1 phase of the cell cycle, which is when AID induces DNA breaks in antibody genes. However, a minority is one-ended, consistent with replication encountering an AID-induced single-strand break, thereby creating a DSB. Both types of off-target DSBs, but especially those present during S phase of the cell cycle, lead to chromosomal translocations, deletions and gene amplifications that can promote B cell lymphomagenesis.
Collapse
Affiliation(s)
- Lyne Khair
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Erin K. Linehan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Carol E. Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
23
|
Stavnezer J, Schrader CE. IgH chain class switch recombination: mechanism and regulation. THE JOURNAL OF IMMUNOLOGY 2015; 193:5370-8. [PMID: 25411432 DOI: 10.4049/jimmunol.1401849] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
24
|
Liang G, Liu G, Kitamura K, Wang Z, Chowdhury S, Monjurul AM, Wakae K, Koura M, Shimadu M, Kinoshita K, Muramatsu M. TGF-β suppression of HBV RNA through AID-dependent recruitment of an RNA exosome complex. PLoS Pathog 2015; 11:e1004780. [PMID: 25836330 PMCID: PMC4383551 DOI: 10.1371/journal.ppat.1004780] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/03/2015] [Indexed: 01/15/2023] Open
Abstract
Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner.
Collapse
Affiliation(s)
- Guoxin Liang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
| | - Guangyan Liu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouichi Kitamura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Zhe Wang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Division of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Sajeda Chowdhury
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ahasan Md Monjurul
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miyuki Shimadu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
25
|
Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 2014; 514:389-93. [PMID: 25119026 DOI: 10.1038/nature13580] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
Abstract
The vast majority of the mammalian genome has the potential to express noncoding RNA (ncRNA). The 11-subunit RNA exosome complex is the main source of cellular 3'-5' exoribonucleolytic activity and potentially regulates the mammalian noncoding transcriptome. Here we generated a mouse model in which the essential subunit Exosc3 of the RNA exosome complex can be conditionally deleted. Exosc3-deficient B cells lack the ability to undergo normal levels of class switch recombination and somatic hypermutation, two mutagenic DNA processes used to generate antibody diversity via the B-cell mutator protein activation-induced cytidine deaminase (AID). The transcriptome of Exosc3-deficient B cells has revealed the presence of many novel RNA exosome substrate ncRNAs. RNA exosome substrate RNAs include xTSS-RNAs, transcription start site (TSS)-associated antisense transcripts that can exceed 500 base pairs in length and are transcribed divergently from cognate coding gene transcripts. xTSS-RNAs are most strongly expressed at genes that accumulate AID-mediated somatic mutations and/or are frequent translocation partners of DNA double-strand breaks generated at Igh in B cells. Strikingly, translocations near TSSs or within gene bodies occur over regions of RNA exosome substrate ncRNA expression. These RNA exosome-regulated, antisense-transcribed regions of the B-cell genome recruit AID and accumulate single-strand DNA structures containing RNA-DNA hybrids. We propose that RNA exosome regulation of ncRNA recruits AID to single-strand DNA-forming sites of antisense and divergent transcription in the B-cell genome, thereby creating a link between ncRNA transcription and overall maintenance of B-cell genomic integrity.
Collapse
|
26
|
A source of the single-stranded DNA substrate for activation-induced deaminase during somatic hypermutation. Nat Commun 2014; 5:4137. [PMID: 24923561 PMCID: PMC4154566 DOI: 10.1038/ncomms5137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/16/2014] [Indexed: 11/08/2022] Open
Abstract
During somatic hypermutation (SHM), activation-induced deaminase (AID) mutates deoxycytidine on single-stranded DNA (ssDNA) generated by the transcription machinery, but the detailed mechanism remains unclear. Here we report a higher abundance of RNA polymerase II (Pol II) at the immunoglobulin heavy-chain variable (Igh-V) region compared with the constant region and partially transcribed Igh RNAs, suggesting a slower Pol II progression at Igh-V that could result in some early/premature transcription termination after prolonged pausing/stalling of Pol II. Knocking down RNA-exosome complexes, which could decrease premature transcription termination, leads to decreased SHM. Knocking down Spt5, which can augment premature transcription termination, leads to increase in both, SHM and the abundance of ssDNA substrates. Collectively, our data support the model that, following the reduction of Pol II progression (pausing or stalling) at the Igh-V, additional steps such as premature transcription termination are involved in providing ssDNA substrates for AID during SHM.
Collapse
|
27
|
Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences. PLoS Biol 2014; 12:e1001831. [PMID: 24691034 PMCID: PMC3972084 DOI: 10.1371/journal.pbio.1001831] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
Immunoglobulin gene enhancers have a conserved function in targeting somatic hypermutation to immunoglobulin genes, thereby supporting the production of high affinity antibodies. Somatic hypermutation (SH) generates point mutations within rearranged immunoglobulin (Ig) genes of activated B cells, providing genetic diversity for the affinity maturation of antibodies. SH requires the activation-induced cytidine deaminase (AID) protein and transcription of the mutation target sequence, but how the Ig gene specificity of mutations is achieved has remained elusive. We show here using a sensitive and carefully controlled assay that the Ig enhancers strongly activate SH in neighboring genes even though their stimulation of transcription is negligible. Mutations in certain E-box, NFκB, MEF2, or Ets family binding sites—known to be important for the transcriptional role of Ig enhancers—impair or abolish the activity. Full activation of SH typically requires a combination of multiple Ig enhancer and enhancer-like elements. The mechanism is evolutionarily conserved, as mammalian Ig lambda and Ig heavy chain intron enhancers efficiently stimulate hypermutation in chicken cells. Our results demonstrate a novel regulatory function for Ig enhancers, indicating that they either recruit AID or alter the accessibility of the nearby transcription units. During the B cell immune response, immunoglobulin (Ig) genes are subject to a unique mutation process known as somatic hypermutation that allows the immune system to generate high-affinity antibodies. Somatic hypermutation preferentially affects Ig genes, relative to other genes, and this is important in preventing catastrophic levels of general genomic mutations that could lead to B cell cancers. We hypothesized that this preferential targeting of somatic hypermutation is assisted by specific DNA sequences in or near Ig genes that focus the action of the mutation machinery on those genes. In this study, we show that Ig genes across species—from human, mouse, and chicken—do indeed contain such mutation targeting sequences and that they coincide with transcriptional regulatory regions known as enhancers. We show that combinations of Ig enhancers cooperate to achieve strong mutation targeting and that this action depends on well-known transcription factor binding sites in these enhancer elements. Our findings establish an evolutionarily conserved function for enhancers in somatic hypermutation targeting, which operates by a mechanism distinct from the conventional enhancer function of increasing levels of transcription. We propose that combinations of Ig enhancers target somatic mutation to Ig genes by recruiting the mutation machinery and/or by making the Ig genes better substrates for mutation.
Collapse
|
28
|
Vaidyanathan B, Yen WF, Pucella JN, Chaudhuri J. AIDing Chromatin and Transcription-Coupled Orchestration of Immunoglobulin Class-Switch Recombination. Front Immunol 2014; 5:120. [PMID: 24734031 PMCID: PMC3975107 DOI: 10.3389/fimmu.2014.00120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 12/29/2022] Open
Abstract
Secondary diversification of the antibody repertoire upon antigenic challenge, in the form of immunoglobulin heavy chain (IgH) class-switch recombination (CSR) endows mature, naïve B cells in peripheral lymphoid organs with a limitless ability to mount an optimal humoral immune response, thus expediting pathogen elimination. CSR replaces the default constant (CH) region exons (Cμ) of IgH with any of the downstream CH exons (Cγ, Cε, or Cα), thereby altering effector functions of the antibody molecule. This process depends on, and is orchestrated by, activation-induced deaminase (AID), a DNA cytidine deaminase that acts on single-stranded DNA exposed during transcription of switch (S) region sequences at the IgH locus. DNA lesions thus generated are processed by components of several general DNA repair pathways to drive CSR. Given that AID can instigate DNA lesions and genomic instability, stringent checks are imposed that constrain and restrict its mutagenic potential. In this review, we will discuss how AID expression and substrate specificity and activity is rigorously enforced at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and how the DNA-damage response is choreographed with precision to permit targeted activity while limiting bystander catastrophe.
Collapse
Affiliation(s)
- Bharat Vaidyanathan
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Wei-Feng Yen
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Joseph N Pucella
- Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Jayanta Chaudhuri
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| |
Collapse
|
29
|
Chao J, Rothschild G, Basu U. Ubiquitination events that regulate recombination of immunoglobulin Loci gene segments. Front Immunol 2014; 5:100. [PMID: 24653725 PMCID: PMC3949197 DOI: 10.3389/fimmu.2014.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/25/2014] [Indexed: 11/13/2022] Open
Abstract
Programed DNA mutagenesis events in the immunoglobulin (Ig) loci of developing B cells utilize the common and conserved mechanism of protein ubiquitination for subsequent proteasomal degradation to generate the required antigen-receptor diversity. Recombinase proteins RAG1 and RAG2, necessary for V(D)J recombination, and activation-induced cytidine deaminase, an essential mutator protein for catalyzing class switch recombination and somatic hypermutation, are regulated by various ubiquitination events that affect protein stability and activity. Programed DNA breaks in the Ig loci can be identified by various components of DNA repair pathways, also regulated by protein ubiquitination. Errors in the ubiquitination pathways for any of the DNA double-strand break repair proteins can lead to inefficient recombination and repair events, resulting in a compromised adaptive immune system or development of cancer.
Collapse
Affiliation(s)
- Jaime Chao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University , New York, NY , USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University , New York, NY , USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University , New York, NY , USA
| |
Collapse
|
30
|
Roberts SA, Gordenin DA. Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. Bioessays 2014; 36:382-393. [PMID: 24615916 DOI: 10.1002/bies.201300140] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gain of a selective advantage in cancer as well as the establishment of complex traits during evolution require multiple genetic alterations, but how these mutations accumulate over time is currently unclear. There is increasing evidence that a mutator phenotype perpetuates the development of many human cancers. While in some cases the increased mutation rate is the result of a genetic disruption of DNA repair and replication or environmental exposures, other evidence suggests that endogenous DNA damage induced by AID/APOBEC cytidine deaminases can result in transient localized hypermutation generating simultaneous, closely spaced (i.e. "clustered") multiple mutations. Here, we discuss mechanisms that lead to mutation cluster formation, the biological consequences of their formation in cancer and evidence suggesting that APOBEC mutagenesis can also occur genome-wide. This raises the possibility that dysregulation of these enzymes may enable rapid malignant transformation by increasing mutation rates without the loss of fitness associated with permanent mutators.
Collapse
Affiliation(s)
- Steven A Roberts
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | |
Collapse
|
31
|
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 2014; 122:1-57. [PMID: 24507154 PMCID: PMC4150736 DOI: 10.1016/b978-0-12-800267-4.00001-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as "Ch genes", e.g., Cγ, Cɛ, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Simin Zheng
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lauren J DiMenna
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|