1
|
Goncu E, Tinartas EP, Gunay B, Ordu T, Turgay Izzetoglu G. Role of Atg3, Atg5 and Atg12 in the crosstalk between apoptosis and autophagy in the posterior silk gland of Bombyx mori. INSECT MOLECULAR BIOLOGY 2025. [PMID: 39910402 DOI: 10.1111/imb.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Autophagy is a cellular mechanism that enhances cell survival in response to various stressors, including nutrient deprivation; however, it also plays a pivotal role in the regulation of programmed cell death. This study examined the effects of autophagy-related genes Atg3, Atg5 and Atg12 on apoptosis and autophagy during the degeneration of the posterior silk gland in Bombyx mori, employing RNA interference techniques. Apoptosis-specific markers and autophagic processes were evaluated in both control and treatment groups. The knockdown of all three genes resulted in a significant reduction in autophagy, modifications in the apoptosis process, aberrant expression of p53 and impaired lysosomal function. It was determined that Atg3 is involved in the regulation of intracellular mitochondrial homeostasis. Following the silencing of Atg5, evidence was obtained indicating the gene's role in regulating lysosomal pH. Notably, the loss of Atg3 and Atg5 was associated with an increase in apoptotic markers, whereas the silencing of Atg12 inhibited apoptosis. Elevated levels of the p53 transcription factor following gene silencing suggested a potential interaction between these genes and p53. Our findings further underscore the importance of autophagy-mediated cell death, involving Atg3, Atg5 and Atg12, in the proper progression of degeneration in the posterior silk gland. A comprehensive understanding of the molecular mechanisms that mediate the interaction between apoptosis and autophagy is essential for elucidating their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Ebru Goncu
- Faculty of Science, Department of Biology, Ege University, Bornova, İzmir, Türkiye
| | - Esen Poyraz Tinartas
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Muradiye, Manisa, Türkiye
| | - Busra Gunay
- Faculty of Science, Department of Biology, Ege University, Bornova, İzmir, Türkiye
| | - Tugce Ordu
- Faculty of Science, Department of Biology, Ege University, Bornova, İzmir, Türkiye
| | | |
Collapse
|
2
|
Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y, Tang J. SKP1-CUL1-F-box: Key molecular targets affecting disease progression. FASEB J 2025; 39:e70326. [PMID: 39812503 PMCID: PMC11734646 DOI: 10.1096/fj.202402816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors. This paper provides a comprehensive overview of the functional characteristics of SCF complexes, encompassing their assembly, disassembly, and regulatory factors. Furthermore, we discuss the diverse effects of SCF on crucial cellular processes such as cell cycle progression, DNA replication, oxidative stress response, cell proliferation, apoptosis, cell differentiation, maintenance of stem cell characteristics, tissue development, circadian rhythm regulation, and immune response modulation. Additionally, we summarize the associations between SCF and the onset, progression, and prognosis of malignant tumors. By synthesizing current knowledge, this review aims to offer a novel perspective for a holistic and systematic understanding of SCF complexes and their multifaceted functions in cellular physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Xiangrong Zeng
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Juan Xu
- Department of Critical Care MedicinThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Hunan Cancer HospitalChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiChina
| | - Chen Long
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingqiong Tang
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
4
|
Lieu DJ, Crowder MK, Kryza JR, Tamilselvam B, Kaminski PJ, Kim IJ, Li Y, Jeong E, Enkhbaatar M, Chen H, Son SB, Mok H, Bradley KA, Phillips H, Blanke SR. Autophagy suppression in DNA damaged cells occurs through a newly identified p53-proteasome-LC3 axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595139. [PMID: 38826216 PMCID: PMC11142043 DOI: 10.1101/2024.05.21.595139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Macroautophagy is thought to have a critical role in shaping and refining cellular proteostasis in eukaryotic cells recovering from DNA damage. Here, we report a mechanism by which autophagy is suppressed in cells exposed to bacterial toxin-, chemical-, or radiation-mediated sources of genotoxicity. Autophagy suppression is directly linked to cellular responses to DNA damage, and specifically the stabilization of the tumor suppressor p53, which is both required and sufficient for regulating the ubiquitination and proteasome-dependent reduction in cellular pools of microtubule-associated protein 1 light chain 3 (LC3A/B), a key precursor of autophagosome biogenesis and maturation, in both epithelial cells and an ex vivo organoid model. Our data indicate that suppression of autophagy, through a newly identified p53-proteasome-LC3 axis, is a conserved cellular response to multiple sources of genotoxicity. Such a mechanism could potentially be important for realigning proteostasis in cells undergoing DNA damage repair.
Collapse
|
5
|
Palanivel C, Madduri LSV, Hein AL, Jenkins CB, Graff BT, Camero AL, Zhou S, Enke CA, Ouellette MM, Yan Y. PR55α-controlled protein phosphatase 2A inhibits p16 expression and blocks cellular senescence induction by γ-irradiation. Aging (Albany NY) 2024; 16:4116-4137. [PMID: 38441530 PMCID: PMC10968692 DOI: 10.18632/aging.205619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lepakshe S. V. Madduri
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashley L. Hein
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher B. Jenkins
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brendan T. Graff
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alison L. Camero
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Charles A. Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michel M. Ouellette
- Department of Internal Medicine - Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Wu M, Ying J, Lin X, Xu C, Zheng X, Zheng Y, Fang Z, Yan B, Zhang N, Mou Y, Tan F. Toxoplasma gondii autophagy-related protein ATG7 maintains apicoplast inheritance by stabilizing and lipidating ATG8. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166891. [PMID: 37739091 DOI: 10.1016/j.bbadis.2023.166891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
ATG8/LC3-mediated autophagosome formation is a key rate-limiting step in the process of autophagy. The parasitic protist Toxoplasma gondii possesses a single ATG8 homolog (TgATG8), which can localize to either cytosolic autophagosome involved in delivery of autophagic material in bradyzoites, or the outermost membrane of apicoplast, a nonphotosynthetic plastid-like organelle, responsible for maintaining homeostasis in tachyzoites. However, mechanisms that regulate TgATG8 remain insufficiently understood. Here, a TgATG7 conditional knockdown line that we have generated is severely impaired in parasite's growth and exhibits significant defects in the organelle level, strikingly with a fragmentation of the mitochondrial network and a loss of the apicoplast. Specific TgATG7C1133S point mutant complemented line showed that these defects were associated with its E1-type enzyme activity. Both depletion of TgATG7 and mutation of its catalytic cysteine 1133 hindered TgATG8 lipidation and apicoplast localization. Unexpectedly, we also found that depletion of TgATG7 reduced the unlipidated TgATG8 protein level. Subsequently, we determined that TgATG7 was able to interact with TgATG8 directly via its C-terminal domain and multi-monoubiquitination stimulated proteasome-dependent degradation of TgATG8, while TgATG7 could inhibit the degradation through stabilization of TgATG8. Additionally, we identified a putative TgATG8 interacting fragment of TgATG7, 1281-1290aa. Depletion of the fragment impaired the parasite growth and apicoplast inheritance. To our knowledge, our study is the first to elucidate the role of TgATG7 and the ubiquitin-proteasome system in synergistically regulating the non-lipidated pool of TgATG8, suggesting a potential homeostatic mechanism responsible for balancing autophagic activity in T. gondii.
Collapse
Affiliation(s)
- Mimi Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaqi Ying
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuejing Lin
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaozi Zheng
- Teaching Center of Morphological Experiment, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zheng
- Laser Confocal Microscope Lab, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouxi Fang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baolong Yan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nu Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yani Mou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Feng Tan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Renna FJ, Enriqué Steinberg JH, Gonzalez CD, Manifava M, Tadic MS, Orquera T, Vecino CV, Ropolo A, Guardavaccaro D, Rossi M, Ktistakis NT, Vaccaro MI. Ubiquitination Is a Novel Post-Translational Modification of VMP1 in Autophagy of Human Tumor Cells. Int J Mol Sci 2023; 24:12981. [PMID: 37629161 PMCID: PMC10455450 DOI: 10.3390/ijms241612981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Autophagy is a tightly regulated catabolic process involved in the degradation and recycling of proteins and organelles. Ubiquitination plays an important role in the regulation of autophagy. Vacuole Membrane Protein 1 (VMP1) is an essential autophagy protein. The expression of VMP1 in pancreatic cancer stem cells carrying the activated Kirsten rat sarcoma viral oncogene homolog (KRAS) triggers autophagy and enables therapy resistance. Using biochemical and cellular approaches, we identified ubiquitination as a post-translational modification of VMP1 from the initial steps in autophagosome biogenesis. VMP1 remains ubiquitinated as part of the autophagosome membrane throughout autophagic flux until autolysosome formation. However, VMP1 is not degraded by autophagy, nor by the ubiquitin-proteasomal system. Mass spectrometry and immunoprecipitation showed that the cell division cycle protein cdt2 (Cdt2), the substrate recognition subunit of the E3 ligase complex associated with cancer, cullin-RING ubiquitin ligase complex 4 (CRL4), is a novel interactor of VMP1 and is involved in VMP1 ubiquitination. VMP1 ubiquitination decreases under the CRL inhibitor MLN4924 and increases with Cdt2 overexpression. Moreover, VMP1 recruitment and autophagosome formation is significantly affected by CRL inhibition. Our results indicate that ubiquitination is a novel post-translational modification of VMP1 during autophagy in human tumor cells. VMP1 ubiquitination may be of clinical relevance in tumor-cell-therapy resistance.
Collapse
Affiliation(s)
- Felipe J. Renna
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Juliana H. Enriqué Steinberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar C1006ACC, Argentina
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Claudio D. Gonzalez
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Maria Manifava
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Mariana S. Tadic
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Tamara Orquera
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Carolina V. Vecino
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Alejandro Ropolo
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | | | - Mario Rossi
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar C1006ACC, Argentina
| | | | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| |
Collapse
|
8
|
Bai L, Wu Q, Zhang X, Zhao Y. Autosis as a selective type of cell death. Front Cell Dev Biol 2023; 11:1164681. [PMID: 37091978 PMCID: PMC10120328 DOI: 10.3389/fcell.2023.1164681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
|
9
|
Zhang X, Liu Y, Zhang T, Tan Y, Dai X, Yang YG, Zhang X. Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases. Front Immunol 2023; 14:1125224. [PMID: 37006236 PMCID: PMC10064048 DOI: 10.3389/fimmu.2023.1125224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating the stability and subsequent activity of a large number of important proteins responsible for the development and progression of various diseases, including autoimmune diseases (AIDs). However, the detailed mechanisms of the pathogenesis of AIDs are complicated and involve multiple signaling pathways. An in-depth understanding of the underlying regulatory mechanisms of the initiation and progression of AIDs will aid in the development of effective therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by affecting the key inflammation-associated pathways such as NF-κB, JAK/STAT, and TGF-β. In this review, we summarize and discuss the potential roles of CRLs in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore, advances in the development of novel therapeutic strategies for AIDs through targeting CRLs are also highlighted.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| |
Collapse
|
10
|
Autophagy/Mitophagy Regulated by Ubiquitination: A Promising Pathway in Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15041112. [PMID: 36831455 PMCID: PMC9954143 DOI: 10.3390/cancers15041112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition. The regulation of mitophagy and autophagy depend upon tumor type and stage. In tumors, mitophagy has dual roles: it removes damaged mitochondria to maintain healthy mitochondria and energy production, which are necessary for tumor growth. In contrast, mitophagy has been shown to inhibit tumor growth by mitigating excessive ROS production, thus preventing mutation and chromosomal instability. Ubiquitination and deubiquitination are important modifications that regulate autophagy. Multiple E3 ubiquitin ligases and DUBs modulate the activity of the autophagy and mitophagy machinery, thereby influencing cancer progression. In this review, we summarize the mechanistic association between cancer development and autophagy/mitophagy activities regulated by the ubiquitin modification of autophagic proteins. In addition, we discuss the function of multiple proteins involved in autophagy/mitophagy in tumors that may represent potential therapeutic targets.
Collapse
|
11
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
12
|
Du R, Xiao Q, Huang J, Feng W, Zheng X, Yi T. A Seven-Autophagy-Related Long Non-Coding RNA Signature Can Accurately Predict the Prognosis of Patients with Renal Cell Carcinoma. Int J Gen Med 2022; 15:8143-8157. [DOI: 10.2147/ijgm.s381027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
|
13
|
Zheng N, Fang J, Xue G, Wang Z, Li X, Zhou M, Jin G, Rahman MM, McFadden G, Lu Y. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance. Cancer Cell 2022; 40:973-985.e7. [PMID: 36027915 PMCID: PMC9489043 DOI: 10.1016/j.ccell.2022.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/28/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
Cytotoxicity of tumor-specific T cells requires tumor cell-to-T cell contact-dependent induction of classic tumor cell apoptosis and pyroptosis. However, this may not trigger sufficient primary responses of solid tumors to adoptive cell therapy or prevent tumor antigen escape-mediated acquired resistance. Here we test myxoma virus (MYXV)-infected tumor-specific T (TMYXV) cells expressing chimeric antigen receptor (CAR) or T cell receptor (TCR), which systemically deliver MYXV into solid tumors to overcome primary resistance. In addition to T cell-induced apoptosis and pyroptosis, tumor eradication by CAR/TCR-TMYXV cells is also attributed to tumor cell autosis induction, a special type of cell death. Mechanistically, T cell-derived interferon γ (IFNγ)-protein kinase B (AKT) signaling synergizes with MYXV-induced M-T5-SKP-1-VPS34 signaling to trigger robust tumor cell autosis. CAR/TCR-TMYXV-elicited autosis functions as a type of potent bystander killing to restrain antigen escape. We uncover an unexpected synergy between T cells and MYXV to bolster solid tumor cell autosis that reinforces tumor clearance.
Collapse
Affiliation(s)
- Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jing Fang
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Gang Xue
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ziyu Wang
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Mengshi Zhou
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Guangxu Jin
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Masmudur M Rahman
- Biodesign Center for Immunotherapy Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA.
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
14
|
Sun R, Lim SO. FBXL20-mediated ubiquitination triggers the proteasomal degradation of 4-1BB. FEBS J 2022; 289:4549-4563. [PMID: 35112462 DOI: 10.1111/febs.16383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
4-1BB [tumor necrosis factor receptor superfamily (TNFRSF9), CD137) is a critical immune stimulator that sustains T cell activity and antitumor immune response. The strategy to eliminate cancers by agonistically targeting 4-1BB is under clinical investigation. As a protein expressed in an inducible manner, 4-1BB is under tight control on both transcription and translation levels to maintain its homeostasis. So far, the mechanisms underlying the transcriptional activation of 4-1BB have been well-interpreted; however, it remains inexplicit how 4-1BB is regulated on the protein level. In this study, we presented experimental evidence supporting that 4-1BB, especially the heavily N-glycosylated (mature) form, is polyubiquitinated and subjected to the ubiquitin-proteasomal system for degradation. By performing proximity-dependent biotin identification screening coupled with biochemical assays, we identified that F-box/LRR-repeat protein 20 acts as the E3 ligase that promotes the polyubiquitination of 4-1BB at the intracellular domain. Our data provided mechanistic insight into 4-1BB regulation on the protein level by unmasking, for the first time, a posttranslational mechanism governing 4-1BB abundance in cells. The findings of this study could potentially guide the development of 4-1BB-targeted therapy for cancers as well as other immune disorders.
Collapse
Affiliation(s)
- Ruoxuan Sun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Drug Discovery, Purdue University, West Lafayette, IN, USA.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
15
|
Degradation Mechanism of Autophagy-Related Proteins and Research Progress. Int J Mol Sci 2022; 23:ijms23137301. [PMID: 35806307 PMCID: PMC9266641 DOI: 10.3390/ijms23137301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, autophagy is the main pathway for nutrient recycling, which encapsulates parts of the cytoplasm and organelles in double-membrane vesicles, and then fuses with lysosomes/vacuoles to degrade them. Autophagy is a highly dynamic and relatively complex process influenced by multiple factors. Under normal growth conditions, it is maintained at basal levels. However, when plants are subjected to biotic and abiotic stresses, such as pathogens, drought, waterlogging, nutrient deficiencies, etc., autophagy is activated to help cells to survive under stress conditions. At present, the regulation of autophagy is mainly reflected in hormones, second messengers, post-transcriptional regulation, and protein post-translational modification. In recent years, the degradation mechanism of autophagy-related proteins has attracted much attention. In this review, we have summarized how autophagy-related proteins are degraded in yeast, animals, and plants, which will help us to have a more comprehensive and systematic understanding of the regulation mechanisms of autophagy. Moreover, research progress on the degradation of autophagy-related proteins in plants has been discussed.
Collapse
|
16
|
Class III PI3K Biology. Curr Top Microbiol Immunol 2022; 436:69-93. [DOI: 10.1007/978-3-031-06566-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Madduri LSV, Brandquist ND, Palanivel C, Talmon GA, Baine MJ, Zhou S, Enke CA, Johnson KR, Ouellette MM, Yan Y. p53/FBXL20 axis negatively regulates the protein stability of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase. Neoplasia 2021; 23:1192-1203. [PMID: 34731788 PMCID: PMC8570931 DOI: 10.1016/j.neo.2021.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
We have previously reported an important role of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, in the support of critical oncogenic pathways required for oncogenesis and the malignant phenotype of pancreatic cancer. The studies in this report reveal a novel mechanism by which the p53 tumor suppressor inhibits the protein-stability of PR55α via FBXL20, a p53-target gene that serves as a substrate recognition component of the SCF (Skp1_Cullin1_F-box) E3 ubiquitin ligase complex that promotes proteasomal degradation of its targeted proteins. Our studies show that inactivation of p53 by siRNA-knockdown, gene-deletion, HPV-E6-mediated degradation, or expression of the loss-of-function mutant p53R175H results in increased PR55α protein stability, which is accompanied by reduced protein expression of FBXL20 and decreased ubiquitination of PR55α. Subsequent studies demonstrate that knockdown of FBXL20 by siRNA mimics p53 deficiency, reducing PR55α ubiquitination and increasing PR55α protein stability. Functional tests indicate that ectopic p53R175H or PR55α expression results in an increase of c-Myc protein stability with concomitant dephosphorylation of c-Myc-T58, which is a PR55α substrate, whose phosphorylation otherwise promotes c-Myc degradation. A significant increase in anchorage-independent proliferation is also observed in normal human pancreatic cells expressing p53R175H or, to a greater extent, overexpressing PR55α. Consistent with the common loss of p53 function in pancreatic cancer, FBXL20 mRNA expression is significantly lower in pancreatic cancer tissues compared to pancreatic normal tissues and low FBXL20 levels correlate with poor patient survival. Collectively, these studies delineate a novel mechanism by which the p53/FBXL20 axis negatively regulates PR55α protein stability.
Collapse
Affiliation(s)
- Lepakshe S V Madduri
- Department of Radiation Oncology, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, NE 68198-6850, USA
| | - Nichole D Brandquist
- Department of Radiation Oncology, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, NE 68198-6850, USA
| | - Chitra Palanivel
- Department of Radiation Oncology, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, NE 68198-6850, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, NE 68198-6850, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, NE 68198-6850, USA
| | - Charles A Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, NE 68198-6850, USA
| | - Keith R Johnson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; College of Dentistry-Oral Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michel M Ouellette
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, 986850 Nebraska Medical Center, Omaha, NE 68198-6850, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
18
|
Ge Y, Zhou M, Chen C, Wu X, Wang X. Role of AMPK mediated pathways in autophagy and aging. Biochimie 2021; 195:100-113. [PMID: 34838647 DOI: 10.1016/j.biochi.2021.11.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023]
Abstract
AMPK is an important kinase regulating energy homeostasis and also a key protein involved in a variety of signal transduction pathways. It plays a vitally regulatory role in cellular senescence. Activation of AMPK can delay or block the aging process, which is of great significance in the treatment of cardiovascular diseases and other aging related diseases, and provides a potential target for new indications such as Alzheimer's disease. Therefore, AMPK signaling pathway plays an important role in aging research. The in-depth study of AMPK activators will provide more new directions for the treatment of age-related maladies and the development of innovative drugs. Autophagy is a process that engulfs and degrades own cytoplasm or organelles. Thereby, meeting the metabolic demands and updating certain organelles of the cell has become a hotspot in the field of anti-aging in recent years. AMPK plays an important role between autophagy and senescence. In our review, the relationship among AMPK signaling, autophagy and aging will be clarified through the interaction between AMPK and mTOR, ULK1, FOXO, p53, SIRT1, and NF -κB.
Collapse
Affiliation(s)
- Yuchen Ge
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Cui Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaojian Wu
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province, 530007, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| |
Collapse
|
19
|
Tasnin MN, Ito K, Katsuta H, Takuma T, Sharmin T, Ushimaru T. The PI3 Kinase Complex II-PI3P-Vps27 Axis on Vacuolar Membranes is Critical for Microautophagy Induction and Nutrient Stress Adaptation. J Mol Biol 2021; 434:167360. [PMID: 34798133 DOI: 10.1016/j.jmb.2021.167360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol 3-phosphate (PI3P), a scaffold of membrane-associated proteins required for diverse cellular events, is produced by Vps34-containing phosphatidylinositol 3-kinase (PI3K). PI3K complex I (PI3KCI)-generated PI3P is required for macroautophagy, whereas PI3K complex II (PI3KCII)-generated PI3P is required for endosomal sorting complex required for transport (ESCRT)-mediated multi-vesicular body (MVB) formation in late endosomes. ESCRT also promotes vacuolar membrane remodeling in microautophagy after nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase in budding yeast. Whereas PI3KCI and macroautophagy are critical for the nutrient starvation response, the physiological roles of PI3KCII and microautophagy during starvation are largely unknown. Here, we showed that PI3KCII-produced PI3P on vacuolar membranes is required for microautophagy induction and survival in nutrient-stressed conditions. PI3KCII is required for Vps27 (an ESCRT-0 component) recruitment and ESCRT-0 complex formation on vacuolar surfaces after TORC1 inactivation. Forced recruitment of Vps27 onto vacuolar membranes rescued the defect in microautophagy induction in PI3KCII-deficient cells, indicating that a critical role of PI3P on microautophagy induction is Vps27 recruitment onto vacuolar surfaces. Finally, vacuolar membrane-associated Vps27 was able to recover survival during nutrient starvation in cells lacking PI3KCII or Vps27. This study revealed that the PI3KCII-PI3P-Vps27 axis on vacuolar membranes is critical for ESCRT-mediated microautophagy induction and nutrient stress adaptation.
Collapse
Affiliation(s)
- Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Kisara Ito
- Department of Bioscience, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Haruko Katsuta
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Tsuneyuki Takuma
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Tasnuva Sharmin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan; Department of Bioscience, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan.
| |
Collapse
|
20
|
Tau oligomers accumulation sensitizes prostate cancer cells to docetaxel treatment. J Cancer Res Clin Oncol 2021; 147:1957-1971. [PMID: 33811272 PMCID: PMC8164592 DOI: 10.1007/s00432-021-03598-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/11/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Human tau is a highly dynamic, multifunctional protein expressed in different isoforms and conformers, known to modulate microtubule turnover. Tau oligomers are considered pathologic forms of the protein able to initiate specific protein accumulation diseases, called tauopathies. In our study, we investigated the potential association between autophagy and tau oligomers accumulation and its role in the response of prostate cancer cells to docetaxel. METHODS We evaluated in vitro the expression of tau oligomers in prostate cancer cell lines, PC3 and DU145, in presence of autophagy inhibitors and investigated the role of tau oligomers accumulation in resistance to docetaxel treatment. RESULTS Tau protein was basally expressed in prostate cancer lines as several monomeric and oligomeric forms. The pharmacologic inhibition of autophagy induced in cancer cells the accumulation of tau protein, with a prevalent expression of oligomeric forms. Immunofluorescence analysis of untreated cells revealed that tau was visible mainly in dividing cells where it was localized on the mitotic spindle. Inhibition of autophagy determined an evident upregulation of tau signal in dividing cells and the presence of aberrant monoastral mitotic spindles. The accumulation of tau oligomers was associated with DNA DSB and increased cytotoxic effect by docetaxel. CONCLUSIONS Our data indicate that autophagy could exert a promoting role in cancer growth and during chemotherapy facilitating degradation of tau protein and thus blocking the antimitotic effect of accumulated tau oligomers. Thus, therapeutic strategies aimed at stimulating tau oligomers formation, such as autophagy inhibition, could be an effective adjuvant in cancer therapy.
Collapse
|
21
|
Xie W, Jin S, Wu Y, Xian H, Tian S, Liu DA, Guo Z, Cui J. Auto-ubiquitination of NEDD4-1 Recruits USP13 to Facilitate Autophagy through Deubiquitinating VPS34. Cell Rep 2021; 30:2807-2819.e4. [PMID: 32101753 DOI: 10.1016/j.celrep.2020.01.088] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/27/2019] [Accepted: 01/24/2020] [Indexed: 11/18/2022] Open
Abstract
The class III phosphoinositide 3-kinase vacuolar protein sorting 34 (VPS34) is a core protein of autophagy initiation, yet the regulatory mechanisms responsible for its stringent control remain poorly understood. Here, we report that the E3 ubiquitin ligase NEDD4-1 promotes the autophagy flux by targeting VPS34. NEDD4-1 undergoes lysine 29 (K29)-linked auto-ubiquitination at K1279 and serves as a scaffold for recruiting the ubiquitin-specific protease 13 (USP13) to form an NEDD4-1-USP13 deubiquitination complex, which subsequently stabilizes VPS34 to promote autophagy through removing the K48-linked poly-ubiquitin chains from VPS34 at K419. Knockout of either NEDD4-1 or USP13 increased K48-linked ubiquitination and degradation of VPS34, thus attenuating the formation of the autophagosome. Our results identify an essential role for NEDD4-1 in regulating autophagy, which provides molecular insights into the mechanisms by which ubiquitination regulates autophagy flux.
Collapse
Affiliation(s)
- Weihong Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Huifang Xian
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shuo Tian
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Di-Ao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
22
|
Chen YH, Huang TY, Lin YT, Lin SY, Li WH, Hsiao HJ, Yan RL, Tang HW, Shen ZQ, Chen GC, Wu KP, Tsai TF, Chen RH. VPS34 K29/K48 branched ubiquitination governed by UBE3C and TRABID regulates autophagy, proteostasis and liver metabolism. Nat Commun 2021; 12:1322. [PMID: 33637724 PMCID: PMC7910580 DOI: 10.1038/s41467-021-21715-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are two major quality control processes whose impairment is linked to a wide variety of diseases. The coordination between UPS and autophagy remains incompletely understood. Here, we show that ubiquitin ligase UBE3C and deubiquitinating enzyme TRABID reciprocally regulate K29/K48-branched ubiquitination of VPS34. We find that this ubiquitination enhances the binding of VPS34 to proteasomes for degradation, thereby suppressing autophagosome formation and maturation. Under ER and proteotoxic stresses, UBE3C recruitment to phagophores is compromised with a concomitant increase of its association with proteasomes. This switch attenuates the action of UBE3C on VPS34, thereby elevating autophagy activity to facilitate proteostasis, ER quality control and cell survival. Specifically in the liver, we show that TRABID-mediated VPS34 stabilization is critical for lipid metabolism and is downregulated during the pathogenesis of steatosis. This study identifies a ubiquitination type on VPS34 and elucidates its cellular fate and physiological functions in proteostasis and liver metabolism.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Tung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsin Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Jung Hsiao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruei-Liang Yan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Wen Tang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
23
|
A Destiny for Degradation: Interplay between Cullin-RING E3 Ligases and Autophagy. Trends Cell Biol 2021; 31:432-444. [PMID: 33573849 DOI: 10.1016/j.tcb.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Autophagy and the ubiquitin-proteasome system (UPS) are two major pathways for protein degradation. The cullin-RING E3 ligases (CRLs) are the largest E3 ligase family and have key biological functions in maintaining protein homeostasis. We provide an updated review of the interactions between CRLs and autophagy, focusing on the regulatory effects of CRLs on the core autophagy machinery that consists of several autophagy-related protein (ATG) complexes and their key upstream signaling pathways. The involvement of such functional interactions in health and disease is also discussed. Understanding the role of CRLs in autophagy is helpful for the development of therapeutic strategies for diseases in which CRLs and autophagy are dysregulated, such as cancer and neurodegenerative conditions.
Collapse
|
24
|
Gene commander in the trash heap: Transcriptional regulation and ubiquitination modification mediated by RNF6 in carcinogenesis. Exp Cell Res 2021; 401:112396. [PMID: 33485842 DOI: 10.1016/j.yexcr.2020.112396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Abstract
RING finger protein 6 (RNF6), a RING finger protein, has been identified as a potential tumor promoter in several cancers. However, the exact mechanism of RNF6 in cancer remains elusive. As in various diseases, RNF6 may be involved in regulating cell growth, cell proliferation, invasion, cell cycle progression, apoptosis and cell adhesion through E3 ligase-mediated ubiquitination. Thus, the research on RNF6 is mainly focused on the ubiquitination of RNF6 in recent years. This article summarizes the role of RNF6 ubiquitination in various physiological and pathological mechanisms, such as Akt/mTOR signaling pathway, Wnt/β-catenin pathway, RNF6/ERα/Bcl-xL axis, and provides knowledge and understanding for the treatment of diseases.
Collapse
|
25
|
Abstract
The ubiquitin–proteasome system (UPS) is responsible for the rapid targeting of proteins for degradation at 26S proteasomes and requires the orchestrated action of E1, E2 and E3 enzymes in a well-defined cascade. F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases that determine which proteins are ubiquitinated. To date, around 70 FBPs have been identified in humans and can be subdivided into distinct families, based on the protein-recruiting domains they possess. The FBXL subfamily is defined by the presence of multiple leucine-rich repeat (LRR) protein-binding domains. But how the 22 FBPs of the FBXL family achieve their individual specificities, despite having highly similar structural domains to recruit their substrates, is not clear. Here, we review and explore the FBXL family members in detail highlighting their structural and functional similarities and differences and how they engage their substrates through their LRRs to adopt unique interactomes.
Collapse
Affiliation(s)
- Bethany Mason
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
| |
Collapse
|
26
|
Li GM, Li L, Li MQ, Chen X, Su Q, Deng ZJ, Liu HB, Li B, Zhang WH, Jia YX, Wang WJ, Ma JY, Zhang HL, Xie D, Zhu XF, He YL, Guan XY, Bi J. DAPK3 inhibits gastric cancer progression via activation of ULK1-dependent autophagy. Cell Death Differ 2020; 28:952-967. [PMID: 33037394 DOI: 10.1038/s41418-020-00627-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of the balance between cell proliferation and cell death is a central feature of malignances. Death-associated protein kinase 3 (DAPK3) regulates programmed cell death including apoptosis and autophagy. Our previous study showed that DAPK3 downregulation was detected in more than half of gastric cancers (GCs), which was related to tumor invasion, metastasis, and poor prognosis. However, the precise molecular mechanism underlying DAPK3-mediated tumor suppression remains unclear. Here, we showed that the tumor suppressive function of DAPK3 was dependent on autophagy process. Mass spectrometry, in vitro kinase assay, and immunoprecipitation revealed that DAPK3 increased ULK1 activity by direct ULK1 phosphorylation at Ser556. ULK1 phosphorylation by DAPK3 facilitates the ULK1 complex formation, the VPS34 complex activation, and autophagy induction upon starvation. The kinase activity of DAPK3 and ULK1 Ser556 phosphorylation were required for DAPK3-modulated tumor suppression. The coordinate expression of DAPK3 with ULK1 Ser556 phosphorylation was confirmed in clinical GC samples, and this co-expression was correlated with favorable survival outcomes in patients. Collectively, these findings indicate that the tumor-suppressor roles of DAPK3 in GC are associated with autophagy and that DAPK3 is a novel autophagy regulator, which can directly phosphorylate ULK1 and activate ULK1. Thus, DAPK3 might be a promising prognostic autophagy-associated marker.
Collapse
Affiliation(s)
- Guan-Man Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, 510080, China
| | - Lei Li
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, China
| | - Meng-Qing Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiao Su
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-Juan Deng
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Ultrasound Medical Center, the First people's Hospital of Chenzhou, Chenzhou, 423000, China
| | - Hai-Bo Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510630, China
| | - Bin Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Hui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong-Xu Jia
- Department of Clinical Oncology, The First Affiliated Hospital,, Zhengzhou University, Zhengzhou, 450001, China.,Gastro-Intestinal Cancer Center of Henan Province, Zhengzhou, 450001, China
| | - Wen-Jian Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie-Yi Ma
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu-Long He
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, China. .,State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
28
|
Zheng S, Fu Y. Age-related copy number variations and expression levels of F-box protein FBXL20 predict ovarian cancer prognosis. Transl Oncol 2020; 13:100863. [PMID: 32898767 PMCID: PMC7486480 DOI: 10.1016/j.tranon.2020.100863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/04/2022] Open
Abstract
About 70% of ovarian cancer (OvCa) cases are diagnosed at advanced stages (stage III/IV) with only 20–40% of them survive over 5 years after diagnosis. A reliably screening marker could enable a paradigm shift in OvCa early diagnosis and risk stratification. Age is one of the most significant risk factors for OvCa. Older women have much higher rates of OvCa diagnosis and poorer clinical outcomes. In this article, we studied the correlation between aging and genetic alterations in The Cancer Genome Atlas Ovarian Cancer dataset. We demonstrated that copy number variations (CNVs) and expression levels of the F-Box and Leucine-Rich Repeat Protein 20 (FBXL20), a substrate recognizing protein in the SKP1-Cullin1-F-box-protein E3 ligase, can predict OvCa overall survival, disease-free survival and progression-free survival. More importantly, FBXL20 copy number loss predicts the diagnosis of OvCa at a younger age, with over 60% of patients in that subgroup have OvCa diagnosed at age less than 60 years. Clinicopathological studies further demonstrated malignant histological and radiographical features associated with elevated FBXL20 expression levels. This study has thus identified a potential biomarker for OvCa prognosis.
Collapse
Affiliation(s)
- Shuhua Zheng
- Nova Southeastern University, College of Osteopathic Medicine, Florida 33314, USA.
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
29
|
The Roles of Ubiquitin in Mediating Autophagy. Cells 2020; 9:cells9092025. [PMID: 32887506 PMCID: PMC7564124 DOI: 10.3390/cells9092025] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Ubiquitination, the post-translational modification essential for various intracellular processes, is implicated in multiple aspects of autophagy, the major lysosome/vacuole-dependent degradation pathway. The autophagy machinery adopted the structural architecture of ubiquitin and employs two ubiquitin-like protein conjugation systems for autophagosome biogenesis. Ubiquitin chains that are attached as labels to protein aggregates or subcellular organelles confer selectivity, allowing autophagy receptors to simultaneously bind ubiquitinated cargos and autophagy-specific ubiquitin-like modifiers (Atg8-family proteins). Moreover, there is tremendous crosstalk between autophagy and the ubiquitin-proteasome system. Ubiquitination of autophagy-related proteins or regulatory components plays significant roles in the precise control of the autophagy pathway. In this review, we summarize and discuss the molecular mechanisms and functions of ubiquitin and ubiquitination, in the process and regulation of autophagy.
Collapse
|
30
|
Kan LLY, Liu D, Chan BCL, Tsang MSM, Hou T, Leung PC, Lam CWK, Wong CK. The flavonoids of Sophora flavescens exerts anti-inflammatory activity via promoting autophagy of Bacillus Calmette-Guérin-stimulated macrophages. J Leukoc Biol 2020; 108:1615-1629. [PMID: 32794339 DOI: 10.1002/jlb.3ma0720-682rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis (TB), a highly infectious air-borne disease, has remained a global health problem. Conventional treatment and preventions such as antibiotics and Bacilli Calmette-Guerin (BCG) vaccine can be unreliable. In view of the increasing prevalence of anti-TB drug resistance, adjunctive therapy may be necessary to shorten the recovery time. We have previously shown that flavonoids in the medicinal herb Sophora flavescens exhibit anti-inflammatory and bactericidal activities. The aim of this study was to investigate the molecular and cellular characteristics of flavonoids of S. flavescens (FSF) in BCG-stimulated macrophages for assessing their roles in anti-inflammation and autophagy. Mouse alveolar macrophage (MH-S) cell line and primary mouse peritoneal macrophages were stimulated in vitro with heat-inactivated BCG and treated with FSF, with or without autophagy inhibitor Bafilomycin A1 (BafA1). Gene expression was analyzed using quantitative PCR, and cytokine/chemokine release was analyzed by Milliplex assay and ELISA. Autophagy-related proteins were quantified by Western blot and flow cytometry, and autophagolysosomes were detected using fluorescence microscopy. In both MH-S cell line and mouse peritoneal macrophages stimulated by heat-inactivated BCG, FSF was found to up-regulate autophagy-related proteins microtubule-associated protein 1A/1B-light chain 3 (LC3) and protein 62 (p62), and suppress the induced proinflammatory cytokine TNF-α, CCL5, and IL-6. FSF actively modulates immune processes through suppressing BCG-mediated inflammation by promoting autophagy in MH-S cells and mouse peritoneal macrophages. We suggest that FSF may be useful as an adjunctive therapeutic agent for TB infection by modulating cell survival through autophagy and reducing inflammation.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Dehua Liu
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tianheng Hou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ping Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Huang R, Gao S, Han Y, Ning H, Zhou Y, Guan H, Liu X, Yan S, Zhou PK. BECN1 promotes radiation-induced G2/M arrest through regulation CDK1 activity: a potential role for autophagy in G2/M checkpoint. Cell Death Discov 2020; 6:70. [PMID: 32802407 PMCID: PMC7406511 DOI: 10.1038/s41420-020-00301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Authophagy and G2/M arrest are two important mechanistic responses of cells to ionizing radiation (IR), in particular the IR-induced fibrosis. However, what interplayer and how it links the autophagy and the G2/M arrest remains elusive. Here, we demonstrate that the autophagy-related protein BECN1 plays a critical role in ionizing radiation-induced G2/M arrest. The treatment of cells with autophagy inhibitor 3-methyladenine (3-MA) at 0-12 h but not 12 h postirradiation significantly sensitized them to IR, indicating a radio-protective role of autophagy in the early response of cells to radiation. 3-MA and BECN1 disruption inactivated the G2/M checkpoint following IR by abrogating the IR-induced phosphorylation of phosphatase CDC25C and its target CDK1, a key mediator of the G2/M transition in coordination with CCNB1. Irradiation increased the nuclear translocation of BECN1, and this process was inhibited by 3-MA. We confirmed that BECN1 interacts with CDC25C and CHK2, and which is mediated the amino acids 89-155 and 151-224 of BECN1, respectively. Importantly, BECN1 deficiency disrupted the interaction of CHK2 with CDC25C and the dissociation of CDC25C from CDK1 in response to irradiation, resulting in the dephosphorylation of CDK1 and overexpression of CDK1. In summary, IR induces the translocation of BECN1 to the nucleus, where it mediates the interaction between CDC25C and CHK2, resulting in the phosphorylation of CDC25C and its dissociation from CDK1. Consequently, the mitosis-promoting complex CDK1/CCNB1 is inactivated, resulting in the arrest of cells at the G2/M transition. Our findings demonstrated that BECN1 plays a role in promotion of radiation-induced G2/M arrest through regulation of CDK1 activity. Whether such functions of BECN1 in G2/M arrest is dependent or independent on its autophagy-related roles is necessary to further identify.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078 Changsha, Hunan Province China
| | - Shanshan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Yanqin Han
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Huacheng Ning
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078 Changsha, Hunan Province China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078 Changsha, Hunan Province China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Shuang Yan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850 Beijing, China
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, 511436 Guangzhou, P. R. China
| |
Collapse
|
32
|
Chu Y, Kang Y, Yan C, Yang C, Zhang T, Huo H, Liu Y. LUBAC and OTULIN regulate autophagy initiation and maturation by mediating the linear ubiquitination and the stabilization of ATG13. Autophagy 2020; 17:1684-1699. [PMID: 32543267 DOI: 10.1080/15548627.2020.1781393] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy/autophagy is a membrane-mediated intracellular degradation pathway, through which bulky cytoplasmic content is digested in lysosomes. How the autophagy initiation and maturation steps are regulated is not clear. In this study, we found an E3 ubiquitin ligase complex, linear ubiquitin chain assembly complex (LUBAC) and a deubiquitinating enzyme (DUB) OTULIN localize to the phagophore area to control autophagy initiation and maturation. LUBAC key component RNF31/HOIP translocates to the LC3 puncta area when autophagy is induced. RNF31 knockdown inhibits autophagy initiation, and cells are more sensitive to bacterial infection. OTULIN knockdown, however, promotes autophagy initiation but blocks autophagy maturation. In OTULIN knockdown cells, excessive ubiquitinated ATG13 protein was recruited to the phagophore for prolonged expansion, and therefore inhibits autophagosome maturation. Together, our study provides evidence that LUBAC and OTULIN cooperatively regulate autophagy initiation and autophagosome maturation by mediating the linear ubiquitination and the stabilization of ATG13.Abbreviations: ATG: autophagy-related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CQ: chloroquine; CUL1-FBXL20: cullin 1-F-box and leucine rich repeat protein 20; CUL3-KLHL20: cullin 3-kelch like family member 20; CUL4-AMBRA1: cullin 4-autophagy and beclin 1 regulator 1; CYLD: CYLD lysine 63 deubiquitinase; DAPI: 4',6-diamidino-2-phenylindole; DUB: deubiquitinating enzyme; EBSS: Earle's Balanced Salt Solution; GFP: green fluorescent protein; GST: glutathione S-transferase; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; LUBAC: linear ubiquitin chain assembly complex; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3B; MIM: MIT-interacting motif; mRFP: monomeric red fluorescent protein; NEDD4: NEDD4 E3 ubiquitin protein ligase; NFKB: NF-kappaB complex; OPTN: optineurin; OTULIN: OTU deubiquitinase with linear linkage specificity; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns: phosphatidylinositol; PtdIns3K: class III phosphatidylinositol 3-kinase complex; PtdIns3P: phosphatidylinositol 3-phosphate; RBCK1/HOIL1: RANBP2-type and C3HC4-type zinc finger containing 1; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RIPK1: receptor interacting serine/threonine kinase 1; RNF216: ring finger protein 216; RNF31/HOIP: ring finger protein 31; RT-PCR: reverse transcriptase polymerase chain reaction; S. Typhimurium: Salmonella enterica serovar Typhimurium; SHARPIN: SHANK associated RH domain interactor; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING: stimulator of interferon response cGAMP interactor 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; TNF/TNF-alpha: tumor necrosis factor; TNFAIP3/A20: TNF alpha induced protein 3; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; UBAN: ubiquitin binding in TNIP/ABIN and IKBKG/NEMO proteins; ULK1/2: unc-51 like autophagy activating kinase 1/2; USP: ubiquitin specific peptidase; UVRAG: UV radiation resistance associated; VCPIP1: valosin containing protein interacting protein 1; WIPI2: WD repeat domain, phosphoinositide interacting protein 2; ZBTB16-CUL3-RBX1: zinc finger and BTB domain containing protein 16-cullin 3-ring-box 1; ZRANB1: zinc finger RANBP2-type containing 1.
Collapse
Affiliation(s)
- Yuanyuan Chu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yingjin Kang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cong Yan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cuiwei Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huanhuan Huo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Tian S, Jin S, Wu Y, Liu T, Luo M, Ou J, Xie W, Cui J. High-throughput screening of functional deubiquitinating enzymes in autophagy. Autophagy 2020; 17:1367-1378. [PMID: 32453962 DOI: 10.1080/15548627.2020.1761652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Macroautophagy/autophagy, a eukaryotic homeostatic process that sequesters cytoplasmic constituents for lysosomal degradation, is orchestrated by a number of autophagy-related (ATG) proteins tightly controlled by post-translational modifications. However, the involvement of reversible ubiquitination in the regulation of autophagy remains largely unclear. Here, we performed a single-guide RNA-based screening assay to investigate the functions of deubiquitinating enzymes (DUBs) in regulating autophagy. We identified previously unrecognized roles of several DUBs in modulating autophagy at multiple levels by targeting various ATG proteins. Mechanistically, we demonstrated that STAMBP/AMSH (STAM-binding protein) promotes the stabilization of ULK1 by removing its lysine 48 (K48)-linked ubiquitination, whereas OTUD7B mediates the degradation of PIK3 C3 by enhancing its K48-linked ubiquitination, thus positively or negatively affects autophagy flux, respectively. Together, our study elaborated on the broad involvement of DUBs in regulating autophagy and uncovered the critical roles of the reversible ubiquitination in the modification of ATG proteins.Abbreviations: ATG: autophagy-related; Baf A1: bafilomycin A1; DUB: deubiquitinating enzyme; EBSS: Earle's balanced salt solution; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OTUD7B: OTU domain-containing protein 7B; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; sgRNA: single-guide RNA; SQSTM1/p62: sequestosome 1; STAMBP/AMSH: STAM-binding protein; ULK1: unc-51 like autophagy activating kinase 1; USP: ubiquitin specific peptidase.
Collapse
Affiliation(s)
- Shuo Tian
- The Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- The Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Liu
- The Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Man Luo
- The Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Ou
- The Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Weihong Xie
- The Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| |
Collapse
|
34
|
Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, Liu X, Piao HL, Liu H. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Am J Cancer Res 2020; 10:4150-4167. [PMID: 32226545 PMCID: PMC7086354 DOI: 10.7150/thno.42735] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
E3 ubiquitin ligases play a critical role in cellular mechanisms and cancer progression. F-box protein is the core component of the SKP1-cullin 1-F-box (SCF)-type E3 ubiquitin ligase and directly binds to substrates by various specific domains. According to the specific domains, F-box proteins are further classified into three sub-families: 1) F-box with leucine rich amino acid repeats (FBXL); 2) F-box with WD 40 amino acid repeats (FBXW); 3) F-box only with uncharacterized domains (FBXO). Here, we summarize the substrates of F-box proteins, discuss the important molecular mechanism and emerging role of F-box proteins especially from the perspective of cancer development and progression. These findings will shed new light on malignant tumor progression mechanisms, and suggest the potential role of F-box proteins as cancer biomarkers and therapeutic targets for future cancer treatment.
Collapse
|
35
|
Yang Q, Qiao X, Li D, Chen B, Zhang L, Yuan C, Lin H. Expression and association of IL-21, FBXL20 and tumour suppressor gene PTEN in laryngeal cancer. Saudi J Biol Sci 2019; 26:2048-2051. [PMID: 31889792 PMCID: PMC6923488 DOI: 10.1016/j.sjbs.2019.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To study the expression of three genes IL-21, FBXL20 and tumour suppressor gene PTEN in laryngeal cancer; analyse the differences in their expression in laryngeal cancer and adjacent tissues; by using pEGFP-N1-IL21 and pGPU/GFP/Neo-FBXL20 expression vectors, to analyse the characteristics in their expression in laryngeal cancer cells outside the body as well as the associations among them. METHODS The expression of the three genes in laryngeal cancer and adjacent tissues from 30 cases and in normal laryngeal tissues from 20 healthy persons was detected with the RT-PCR; laryngeal cancer cell line (HEp-2 cells) transfection was also performed with the pEGFP-N1-IL21 and pGPU/GFP/Neo-FBXL20 expression vectors we constructed, to detect the mRNA expression of the three genes. Cell proliferation, apoptosis and cell cycle were measured by the MTT assay. RESULTS The results of RT-PCR showed that the expression of IL-21 and FBXL20 was up-regulated in laryngeal cancer, while the expression of tumour suppressor gene PTEN was significantly decreased (p < 0.01). In HEp-2 cells transfected with pGPU/GFP/Neo-IL-21 and pGPU/GFP/Neo-FBXL20 expression vectors, the mRNA expression of PTEN was restored to some extent (p < 0.05); in addition, the ability of HEp-2 cells in proliferation and invasion was also reduced. CONCLUSIONS IL-21 and FBXL20 genes are important in the occurrence and development of laryngeal cancer; the expression of PTEN gene can suppress laryngeal cancer, and there's a certain association among IL-21, FBXL20 and PTEN.
Collapse
Affiliation(s)
- Qing Yang
- Department of Two Blood Transfusion, the First Hospital of Jilin University, Changchun 130000, China
| | - Xiaofeng Qiao
- Department of Otorhinolaryngology, Shanxi Provincial People’s Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Daguang Li
- Department of Two Blood Transfusion, the First Hospital of Jilin University, Changchun 130000, China
| | - Bo Chen
- Department of Two Blood Transfusion, the First Hospital of Jilin University, Changchun 130000, China
| | - Lingmin Zhang
- Department of Two Blood Transfusion, the First Hospital of Jilin University, Changchun 130000, China
| | - Cuiling Yuan
- Department of Two Blood Transfusion, the First Hospital of Jilin University, Changchun 130000, China
| | - Hua Lin
- Department of Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
36
|
Zhang LZ, Qi WH, Zhao G, Liu LX, Xue H, Hu WX, Wang QQ, Li CS. Correlation between PTEN and P62 gene expression in rat colorectal cancer cell. Saudi J Biol Sci 2019; 26:1986-1990. [PMID: 31885487 PMCID: PMC6921302 DOI: 10.1016/j.sjbs.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Autophagy is a cellular pathway that regulates the transportation and degradation of cytoplasmic macromolecules and organelles towards lysosome, which is often related to the tumorigenesis and tumor suppression. Here, we investigate the regulating effect of PTEN gene on autophagy-related protein P62 in rat colorectal cancer (CRC) cells and explore the application value of PTEN gene in clinic. METHODS Rat colorectal cancer was induced by intraperitoneal injection of 1,2-dimethyl hydrazine in male ACI rats. A total of 20 rats were randomly selected from those successfully induced with CRC as the experimental group, while 10 healthy rats as control. The rat CRC cells were isolated and cultured. After transfecting the rat CRC cells with pEGFP-N1-PTEN plasmid, RT-PCR was adopted to examine that gene expression of p62 and PTEN, while Western blotting was used to detect the protein expression of p62 and PTEN. Also, the proliferation of CRC cells was measured by MTT assay. RESULTS The expression of PTEN gene in the experimental group was significantly inhibited as compared with the control group, while the expression of P62 gene was significantly increased (p < 0.05). Western blotting demonstrated that the PTEN protein in the experimental group was lower, while the expression of P62 protein was higher. When the CRC cells were transfected with pEGFP-N1-PTEN plasmid, the PTEN expressions were elevated, while p62 was down-regulated. Also, the proliferation of CRC cells was inhibited. CONCLUSION The expression of PTEN gene is negatively correlated with the expression of P62 gene in rat CRC cells. And the expression of PTEN gene can inhibit the occurrence and development of colorectal cancer, thus providing theoretical basis for future clinical treatment.
Collapse
Affiliation(s)
- Li-ze Zhang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Wen-hai Qi
- Department of Anorectal Surgery, The Affiliated Hospital of Yan’an University, Yan’an 716000, China
| | - Gang Zhao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Lin-xun Liu
- Department of General Surgery, Qinghai Province People’s Hospital, Xining 410035, China
| | - Hui Xue
- Department of Gynecology, The Qingdao Hiser Hospital, Qingdao 266000, China
| | - Wen-xiu Hu
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Qian-qian Wang
- Department of Anorectal, Songshan Hospital of Qingdao University, Qingdao 266042, China
| | - Chun-sheng Li
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
37
|
Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 2019; 136:27-41. [DOI: 10.1016/j.yjmcc.2019.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
|
38
|
Chen RH, Chen YH, Huang TY. Ubiquitin-mediated regulation of autophagy. J Biomed Sci 2019; 26:80. [PMID: 31630678 PMCID: PMC6802350 DOI: 10.1186/s12929-019-0569-y] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a major degradation pathway that utilizes lysosome hydrolases to degrade cellular constituents and is often induced under cellular stress conditions to restore cell homeostasis. Another prime degradation pathway in the cells is ubiquitin-proteasome system (UPS), in which proteins tagged by certain types of polyubiquitin chains are selectively recognized and removed by proteasome. Although the two degradation pathways are operated independently with different sets of players, recent studies have revealed reciprocal cross talks between UPS and autophagy at multiple layers. In this review, we summarize the roles of protein ubiquitination and deubiquitination in controlling the initiation, execution, and termination of bulk autophagy as well as the role of ubiquitination in signaling certain types of selective autophagy. We also highlight how dysregulation of ubiquitin-mediated autophagy pathways is associated with a number of human diseases and the potential of targeting these pathways for disease intervention.
Collapse
Affiliation(s)
- Ruey-Hwa Chen
- Academia Sinica, Institute of Biological Chemistry, Taipei, 115, Taiwan. .,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 100, Taiwan.
| | - Yu-Hsuan Chen
- Academia Sinica, Institute of Biological Chemistry, Taipei, 115, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 100, Taiwan
| | - Tzu-Yu Huang
- Academia Sinica, Institute of Biological Chemistry, Taipei, 115, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
39
|
Rangarajan N, Gordy CL, Askew L, Bevill SM, Elston TC, Errede B, Hurst JH, Kelley JB, Sheetz JB, Suzuki SK, Valentin NH, Young E, Dohlman HG. Systematic analysis of F-box proteins reveals a new branch of the yeast mating pathway. J Biol Chem 2019; 294:14717-14731. [PMID: 31399514 DOI: 10.1074/jbc.ra119.010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
The mating pathway in yeast Saccharomyces cerevisiae has long been used to reveal new mechanisms of signal transduction. The pathway comprises a pheromone receptor, a heterotrimeric G protein, and intracellular effectors of morphogenesis and transcription. Polarized cell growth, in the direction of a potential mating partner, is accomplished by the G-protein βγ subunits and the small G-protein Cdc42. Transcription induction, needed for cell-cell fusion, is mediated by Gβγ and the mitogen-activated protein kinase (MAPK) scaffold protein Ste5. A potential third pathway is initiated by the G-protein α subunit Gpa1. Gpa1 signaling was shown previously to involve the F-box adaptor protein Dia2 and an endosomal effector protein, the phosphatidylinositol 3-kinase Vps34. Vps34 is also required for proper vacuolar sorting and autophagy. Here, using a panel of reporter assays, we demonstrate that mating pheromone stimulates vacuolar targeting of a cytoplasmic reporter protein and that this process depends on Vps34. Through a systematic analysis of F-box deletion mutants, we show that Dia2 is required to sustain pheromone-induced vacuolar targeting. We also found that other F-box proteins selectively regulate morphogenesis (Ydr306, renamed Pfu1) and transcription (Ucc1). These findings point to the existence of a new and distinct branch of the pheromone-signaling pathway, one that likely leads to vacuolar engulfment of cytoplasmic proteins and recycling of cellular contents in preparation for mating.
Collapse
Affiliation(s)
- Nambirajan Rangarajan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Claire L Gordy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lauren Askew
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Samantha M Bevill
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jillian H Hurst
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joshua B Kelley
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joshua B Sheetz
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sara Kimiko Suzuki
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Natalie H Valentin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Everett Young
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
40
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
41
|
Tang J, Sun F, Deng XJ, Ma YL, Li KY, Tang Y, Chen GJ. Ubiquitination status does not affect Vps34 degradation. Genes Dis 2019; 7:401-407. [PMID: 32884994 PMCID: PMC7452542 DOI: 10.1016/j.gendis.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 01/15/2023] Open
Abstract
Vps34 (vacuolar protein-sorting 34) plays important role in autophagy and endosomal trafficking. These processes are closely associated protein ubiquitination and degradation. We have hypothesized that Vps34 ubiquitination status would also control its degradation. Here, we report that our results did not support this assumption. In cells transiently transfected with ubiquitin (UB) constructs contained different lysine residues (Ks), Vps34 ubiquitination could occur regardless of the presence of any Ks in UB. However, Vps34 protein levels were not significantly altered in cells transiently transfected with these UB mutants. We further found that Vps34 protein was altered by pharmacological manipulation of E2/E3 activity; yet this effect was not significantly affected by UB overexpression. In vivo experiments revealed that in APP/PS1 mice, an animal model of Alzheimer's disease (AD), although ubiquitination of Vps34 was significantly reduced, Vps34 protein levels remained unchanged. Vps34 indeed was subjected to proteasomal or lysosomal degradation, as prolonged treatment of proteasomal inhibitor MG132 or lysosomal inhibitor chloroquine elevated Vps34 protein levels. We conclude that unlike most of other proteins, Vps34 ubiquitination is not closely associated with its degradation.
Collapse
Affiliation(s)
- Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Yuan-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Kun-Yi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
42
|
Lu G, Yi J, Gubas A, Wang YT, Wu Y, Ren Y, Wu M, Shi Y, Ouyang C, Tan HWS, Wang T, Wang L, Yang ND, Deng S, Xia D, Chen RH, Tooze SA, Shen HM. Suppression of autophagy during mitosis via CUL4-RING ubiquitin ligases-mediated WIPI2 polyubiquitination and proteasomal degradation. Autophagy 2019; 15:1917-1934. [PMID: 30898011 DOI: 10.1080/15548627.2019.1596484] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Macroautophagy/autophagy is a cellular process in which cytosolic contents are degraded by lysosome in response to various stress conditions. Apart from its role in the maintenance of cellular homeostasis, autophagy also involves in regulation of cell cycle progression under nutrient-deprivation conditions. However, whether and how autophagy is regulated by the cell cycle especially during mitosis remains largely undefined. Here we show that WIPI2/ATG18B (WD repeat domain, phosphoinositide interacting 2), an autophagy-related (ATG) protein that plays a critical role in autophagosome biogenesis, is a direct substrate of CUL4-RING ubiquitin ligases (CRL4s). Upon mitosis induction, CRL4s are activated via neddylation, and recruit WIPI2 via DDB1 (damage specific DNA binding protein 1), leading to polyubiquitination and proteasomal degradation of WIPI2 and suppression of autophagy. The WIPI2 protein level and autophagy during mitosis could be rescued by knockdown of CRL4s or treatment with MLN4924/Pevonedistat, a selective inhibitor of CRLs, via suppression of NAE1 (NEDD8 activating enzyme E1 subunit 1). Moreover, restoration of WIPI2 rescues autophagy during mitosis and leads to mitotic slippage and cell senescence. Our study thus discovers a novel function of CRL4s in autophagy by targeting WIPI2 for polyubiquitination and proteasomal degradation during mitosis. Abbreviations: ACTB, actin beta; ATG, autophagy-related; AMPK, AMP-activated protein kinase; AURKB/ARK2, aurora kinase B; BafA1, bafilomycin A1; CCNB1, cyclin B1; CDK1, cyclin dependent kinase 1; CHX, cycloheximide; CQ, chloroquine; CRL4s, CUL4-RING ubiquitin ligases; DDB1, damage specific DNA binding protein 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; GST, glutathione S-transferase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; STK11/LKB1,serine/threonine kinase 11; MTORC1/MTOR complex 1, mechanistic target of rapamycin kinase complex 1; NAE1, NEDD8 activating enzyme E1 subunit 1; NOC, nocodazole; RING, really interesting new gene; RBX1, ring-box 1; SA-GLB1/β-gal, senescence-associated galactosidase beta 1; TSC2, TSC complex subunit 2; TUBA, tubulin alpha; WIPI2, WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Juan Yi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Andrea Gubas
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute , London UK
| | - Ya-Ting Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei , Taiwan
| | - Yihua Wu
- School of Public Health, Zhejiang University , Hangzhou , China
| | - Yi Ren
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Man Wu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yin Shi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Chenxi Ouyang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| | - Tianru Wang
- Life Sciences Program, Faculty of Arts and Sciences, University of Toronto , Toronto , Canada
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Nai-Di Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Dajing Xia
- School of Public Health, Zhejiang University , Hangzhou , China
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei , Taiwan
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute , London UK
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| |
Collapse
|
43
|
Zheng K, He Z, Kitazato K, Wang Y. Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics 2019; 9:104-125. [PMID: 30662557 PMCID: PMC6332805 DOI: 10.7150/thno.30308] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Aberrant function of cell cycle regulators results in uncontrolled cell proliferation, making them attractive therapeutic targets in cancer treatment. Indeed, survival of many cancers exclusively relies on these proteins, and several specific inhibitors are in clinical use. Although the ubiquitin-proteasome system is responsible for the periodic quality control of cell cycle proteins during cell cycle progression, increasing evidence clearly demonstrates the intimate interaction between cell cycle regulation and selective autophagy, important homeostasis maintenance machinery. However, these studies have often led to divergent rather than unifying explanations due to complexity of the autophagy signaling network, the inconsistent functions between general autophagy and selective autophagy, and the different characteristics of autophagic substrates. In this review, we highlight current data illustrating the contradictory and important role of cell cycle proteins in regulating autophagy. We also focus on how selective autophagy acts as a central mechanism to maintain orderly DNA repair and genome integrity by degrading specific cell cycle proteins, regulating cell division, and promoting DNA damage repair. We further discuss the ways in which selective autophagy may impact the cell cycle regulators, since failure to appropriately remove these can interfere with cell death-related processes, including senescence and autophagy-related cell death. Imbalanced cell proliferation is typically utilized by cancer cells to acquire resistance. Finally, we discuss the possibility of a potent anticancer therapeutic strategy that targets selective autophagy or autophagy and cell cycle together.
Collapse
|
44
|
Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life. Cells 2018; 7:cells7120278. [PMID: 30572663 PMCID: PMC6315530 DOI: 10.3390/cells7120278] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a lysosome-dependent cellular degradation program that responds to a variety of environmental and cellular stresses. It is an evolutionarily well-conserved and essential pathway to maintain cellular homeostasis, therefore, dysfunction of autophagy is closely associated with a wide spectrum of human pathophysiological conditions including cancers and neurodegenerative diseases. The discovery and characterization of the kingdom of autophagy proteins have uncovered the molecular basis of the autophagy process. In addition, recent advances on the various post-translational modifications of autophagy proteins have shed light on the multiple layers of autophagy regulatory mechanisms, and provide novel therapeutic targets for the treatment of the diseases.
Collapse
|
45
|
Bros M, Youns M, Kollek V, Buchmüller D, Bollmann F, Seo EJ, Schupp J, Montermann E, Usanova S, Kleinert H, Efferth T, Reske-Kunz AB. Differentially Tolerized Mouse Antigen Presenting Cells Share a Common miRNA Signature Including Enhanced mmu-miR-223-3p Expression Which Is Sufficient to Imprint a Protolerogenic State. Front Pharmacol 2018; 9:915. [PMID: 30174602 PMCID: PMC6108336 DOI: 10.3389/fphar.2018.00915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are pivotal for the induction and maintenance of antigen-specific tolerance and immunity. miRNAs mediate post-transcriptional gene regulation and control in part the differentiation and stimulation-induced immunogenic function of DCs. However, the relevance of miRNAs for the induction and maintenance of a tolerogenic state of DCs has scarcely been highlighted yet. We differentiated mouse bone marrow cells to conventional/myeloid DCs or to tolerogenic antigen presenting cells (APCs) by using a glucocorticoid (dexamethasone) or interleukin-10, and assessed the miRNA expression patterns of unstimulated and LPS-stimulated cell populations by array analysis and QPCR. Differentially tolerized mouse APCs convergingly down-regulated a set of miRNA species at either state of activation as compared with the corresponding control DC population (mmu-miR-9-5p, mmu-miR-9-3p, mmu-miR-155-5p). These miRNAs were also upregulated in control DCs in response to stimulation. In contrast, miRNAs that were convergingly upregulated in both tolerized APC groups at stimulated state (mmu-miR-223-3p, mmu-miR-1224-5p) were downregulated in control DCs in response to stimulation. Overexpression of mmu-miR-223-3p in DCs was sufficient to prevent stimulation-associated acquisition of potent T cell stimulatory capacity. Overexpression of mmu-miR-223-3p in a DC line resulted in attenuated expression of known (Cflar, Rasa1, Ras) mRNA targets of this miRNA species shown to affect pathways that control DC activation. Taken together, we identified sets of miRNAs convergingly regulated in differentially tolerized APCs, which may contribute to imprint stimulation-resistant tolerogenic function as demonstrated for mmu-miR-223-3p. Knowledge of miRNAs with protolerogenic function enables immunotherapeutic approaches aimed to modulate immune responses by regulating miRNA expression.
Collapse
Affiliation(s)
- Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Verena Kollek
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Diana Buchmüller
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franziska Bollmann
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ean-Jeong Seo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jonathan Schupp
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Svetlana Usanova
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Angelika B Reske-Kunz
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
46
|
Pi H, Li M, Xie J, Yang Z, Xi Y, Yu Z, Zhou Z. Transcription factor E3 protects against cadmium-induced apoptosis by maintaining the lysosomal-mitochondrial axis but not autophagic flux in Neuro-2a cells. Toxicol Lett 2018; 295:335-350. [PMID: 30030080 DOI: 10.1016/j.toxlet.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Cadmium (Cd), is a well-known environmental and occupational hazard with a potent neurotoxic action. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. Herein, we exposed Neuro-2a cells to different concentrations of cadmium chloride (CdCl2) (12.5, 25 and 50 μM) for 24 h and found that Cd significantly induced lysosomal membrane permeabilization (LMP) with the release of cathepsin B (CTSB) to the cytosol, which in turn caused the release of mitochondrial cytochrome c (Cyt c) and eventually triggered caspase-dependent apoptosis. Interestingly, Cd decreased TFE3 expression but induced the nuclear translocation of TFE3 and TFE3 target-gene expression, which might be associated with lysosomal stress mediated by Cd. Notably, Tfe3 overexpression protected against Cd-induced neurotoxicity by maintaining the lysosomal-mitochondrial axis, and the protective effect of TFE3 is not dependent on the restoration of autophagic flux. In conclusion, our study demonstrated for the first time that lysosomal-mitochondrial axis dependent apoptosis, a neglected mechanism, may be the most important reason for Cd-induced neurotoxicity and that manipulation of TFE3 signaling may be a potential therapeutic approach for treatment of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Min Li
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhiqi Yang
- Brain Research Center, Third Military Medical University, Chongqing, China; Department of Neurology, Army General Hospital in Lanzhou, Lanzhou, China
| | - Yu Xi
- Department of Occupational and Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Critical Care Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
47
|
Zhu J, Tsai HJ, Gordon MR, Li R. Cellular Stress Associated with Aneuploidy. Dev Cell 2018; 44:420-431. [PMID: 29486194 DOI: 10.1016/j.devcel.2018.02.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023]
Abstract
Aneuploidy, chromosome stoichiometry that deviates from exact multiples of the haploid compliment of an organism, exists in eukaryotic microbes, several normal human tissues, and the majority of solid tumors. Here, we review the current understanding about the cellular stress states that may result from aneuploidy. The topics of aneuploidy-induced proteotoxic, metabolic, replication, and mitotic stress are assessed in the context of the gene dosage imbalance observed in aneuploid cells. We also highlight emerging findings related to the downstream effects of aneuploidy-induced cellular stress on the immune surveillance against aneuploid cells.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hung-Ji Tsai
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Molly R Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
48
|
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018; 5:19. [PMID: 29594129 PMCID: PMC5859106 DOI: 10.3389/fmolb.2018.00019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic.
Collapse
Affiliation(s)
| | | | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
49
|
Liu J, Li M, Li L, Chen S, Wang X. Ubiquitination of the PI3-kinase VPS-34 promotes VPS-34 stability and phagosome maturation. J Cell Biol 2018; 217:347-360. [PMID: 29092895 PMCID: PMC5748982 DOI: 10.1083/jcb.201705116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
Apoptotic cells generated by programmed cell death are engulfed by phagocytes and enclosed within membrane-bound phagosomes. Maturation of apoptotic cell-containing phagosomes leads to formation of phagolysosomes where cell corpses are degraded. The class III phosphatidylinositol 3-kinase (PI3-kinase) VPS-34 coordinates with PIKI-1, a class II PI3-kinase, to produce PtdIns3P on phagosomes, thus promoting phagosome closure and maturation. Here, we identified UBC-13, an E2 ubiquitin-conjugating enzyme that functions in the same pathway with VPS-34 but in parallel to PIKI-1 to regulate PtdIns3P generation on phagosomes. Loss of ubc-13 affects early steps of phagosome maturation, causing accumulation of cell corpses. We found that UBC-13 functions with UEV-1, a noncatalytic E2 variant, and CHN-1, a U-box-containing E3 ubiquitin ligase, to catalyze K63-linked poly-ubiquitination on VPS-34 both in vitro and in Caenorhabditis elegans Loss of ubc-13, uev-1, or chn-1 disrupts ubiquitin modification of VPS-34 and causes significantly reduced VPS-34 protein levels. Our data suggest that K63-linked ubiquitin modification serves as a general mechanism to modulate VPS-34 stability in multiple processes.
Collapse
Affiliation(s)
- Jinchao Liu
- National Institute of Biological Sciences, Beijing, China
- Chinese Academy of Medical Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Peking Union Medical College, Beijing, China
| | - Meijiao Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiaochen Wang
- National Institute of Biological Sciences, Beijing, China
- Chinese Academy of Medical Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J 2017; 473:2251-71. [PMID: 27470591 DOI: 10.1042/bcj20160170] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
The Class III phosphoinositide 3-kinase Vps34 (vacuolar protein sorting 34) plays important roles in endocytic trafficking, macroautophagy, phagocytosis, cytokinesis and nutrient sensing. Recent studies have provided exciting new insights into the structure and regulation of this lipid kinase, and new cellular functions for Vps34 have emerged. This review critically examines the wealth of new data on this important enzyme, and attempts to integrate these findings with current models of Vps34 signalling.
Collapse
|