1
|
Vinayak V, Basir R, Golloshi R, Toth J, Sant'Anna L, Lakadamyali M, McCord RP, Shenoy VB. Polymer model integrates imaging and sequencing to reveal how nanoscale heterochromatin domains influence gene expression. Nat Commun 2025; 16:3816. [PMID: 40268925 PMCID: PMC12019571 DOI: 10.1038/s41467-025-59001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
Chromatin organization regulates gene expression, with nanoscale heterochromatin domains playing a fundamental role. Their size varies with microenvironmental stiffness and epigenetic interventions, but how these factors regulate their formation and influence transcription remains unclear. To address this, we developed a sequencing-informed copolymer model that simulates chromatin evolution through diffusion and active epigenetic reactions. Our model predicts the formation of nanoscale heterochromatin domains and quantifies how domain size scales with epigenetic reaction rates, showing that epigenetic and compaction changes primarily occur at domain boundaries. We validated these predictions via Hi-C and super-resolution imaging of hyperacetylated melanoma cells and identified differential expression of metastasis-related genes through RNA-seq. We validated our findings in hMSCs, where epigenetic reaction rates respond to microenvironmental stiffness. Conclusively, our simulations reveal that heterochromatin domain boundaries regulate gene expression and epigenetic memory. These findings demonstrate how external cues drive chromatin organization and transcriptional memory in development and disease.
Collapse
Affiliation(s)
- Vinayak Vinayak
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramin Basir
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rosela Golloshi
- Departments of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Giovanis Institute for Translational Cell Biology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Joshua Toth
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas Sant'Anna
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Trouth A, Ravichandran K, Gafken PR, Martire S, Boyle GE, Veronezi GMB, La V, Namciu SJ, Banaszynski LA, Sarthy JF, Ramachandran S. The length of G1 phase is an essential determinant of H3K27me3 landscape across diverse cell types. PLoS Biol 2025; 23:e3003119. [PMID: 40245079 DOI: 10.1371/journal.pbio.3003119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Stem cells have lower facultative heterochromatin as defined by trimethylation of histone H3 lysine 27 (H3K27me3) compared to differentiated cells. However, the mechanisms underlying these differential H3K27me3 levels remain elusive. Because H3K27me3 levels are diluted 2-fold in every round of replication and then restored through the rest of the cell cycle, we reasoned that the cell cycle length could be a key regulator of total H3K27me3 levels. Here, we propose that a short G1 phase restricts H3K27me3 levels in stem cells. To test this model, we determined changes to H3K27me3 levels in mouse embryonic stem cells (mESCs) globally and at specific loci upon G1 phase lengthening - accomplished by thymidine block or growth in the absence of serum (with the "2i medium"). H3K27me3 levels in mESCs increase with G1 arrest when grown in serum and in 2i medium. Additionally, we observed via CUT&RUN and ChIP-seq that regions that gain H3K27me3 in G1 arrest and 2i media overlap, supporting our model of G1 length as a critical regulator of the stem cell epigenome. Furthermore, we demonstrate the inverse effect - that G1 shortening in differentiated human HEK293 cells results in a loss of H3K27me3 levels. Finally, in human tumor cells with extreme H3K27me3 loss, lengthening of the G1 phase leads to H3K27me3 recovery despite the presence of the dominant negative, sub-stoichiometric H3.K27M mutation. Our results indicate that G1 length is an essential determinant of H3K27me3 landscapes across diverse cell types.
Collapse
Affiliation(s)
- Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kamesh Ravichandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Philip R Gafken
- Proteomics and Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Sara Martire
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Gabriel E Boyle
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Van La
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stephanie J Namciu
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Laura A Banaszynski
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jay F Sarthy
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
3
|
Ouyang J, Wu D, Gan Y, Tang Y, Wang H, Huang J. Unraveling the metabolic‒epigenetic nexus: a new frontier in cardiovascular disease treatment. Cell Death Dis 2025; 16:183. [PMID: 40102393 PMCID: PMC11920384 DOI: 10.1038/s41419-025-07525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/16/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Cardiovascular diseases are the leading causes of death worldwide. However, there are still shortcomings in the currently employed treatment methods for these diseases. Therefore, exploring the molecular mechanisms underlying cardiovascular diseases is an important avenue for developing new treatment strategies. Previous studies have confirmed that metabolic and epigenetic alterations are often involved in cardiovascular diseases across patients. Moreover, metabolic and epigenetic factors interact with each other and affect the progression of cardiovascular diseases in a coordinated manner. Lactylation is a novel posttranslational modification (PTM) that links metabolism with epigenetics and affects disease progression. Therefore, analyzing the crosstalk between cellular metabolic and epigenetic factors in cardiovascular diseases is expected to provide insights for the development of new treatment strategies. The purpose of this review is to describe the relationship between metabolic and epigenetic factors in heart development and cardiovascular diseases such as heart failure, myocardial infarction, and atherosclerosis, with a focus on acylation and methylation, and to propose potential therapeutic measures.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Deping Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yumei Gan
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuming Tang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Davis BEM, Snedeker J, Ranjan R, Wooten M, Barton SS, Blundon J, Chen X. Increased levels of lagging strand polymerase α in an adult stem cell lineage affect replication-coupled histone incorporation. SCIENCE ADVANCES 2025; 11:eadu6799. [PMID: 40020063 PMCID: PMC11870066 DOI: 10.1126/sciadv.adu6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Stem cells display asymmetric histone inheritance, while nonstem progenitor cells exhibit symmetric patterns in the Drosophila male germ line. Here, we report that components involved in lagging strand synthesis, DNA polymerases α and δ, have substantially reduced levels in stem cells compared to progenitor cells, and this promotes local asymmetry of parental histone incorporation at the replication fork. Compromising Polα genetically induces the local replication-coupled histone incorporation pattern in progenitor cells to resemble that in stem cells, seen by both nuclear localization patterns and chromatin fibers. This is recapitulated using a Polα inhibitor in a concentration-dependent manner. The local old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S phase and M phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in nonstem cells to resemble those in stem cells.
Collapse
Affiliation(s)
- Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Savannah Sáde Barton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Kollenstart L, Biran A, Alcaraz N, Reverón-Gómez N, Solis-Mezarino V, Völker-Albert M, Jenkinson F, Flury V, Groth A. Disabling leading and lagging strand histone transmission results in parental histones loss and reduced cell plasticity and viability. SCIENCE ADVANCES 2025; 11:eadr1453. [PMID: 39970210 PMCID: PMC11837984 DOI: 10.1126/sciadv.adr1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
In the process of DNA replication, the first steps in restoring the chromatin landscape involve parental histone recycling and new histone deposition. Disrupting histone recycling to either the leading or lagging strand induces asymmetric histone inheritance, affecting epigenome maintenance and cellular identity. However, the order and kinetics of these effects remain elusive. Here, we use inducible mutants to dissect the early and late consequences of impaired histone recycling. Simultaneous disruption of both leading (POLE4) and lagging strand (MCM2-2A) recycling pathways impairs the transmission of parental histones to newly synthesized DNA, releasing some parental histones to the soluble pool. Subsequently, H3K27me3 accumulates aberrantly during chromatin restoration in a manner preceding gene expression changes. Loss of histone inheritance and the ensuing chromatin restoration defects alter gene expression in embryonic stem cells and challenge differentiation programs and cell viability. Our findings demonstrate the importance of efficient transmission of histone-based information during DNA replication for maintaining chromatin landscapes, differentiation potential, and cellular viability.
Collapse
Affiliation(s)
- Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | | | | | - Fion Jenkinson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
7
|
Segura J, Gómez M. Replication-transcription symbiosis in the mammalian nucleus: The art of living together. Curr Opin Cell Biol 2025; 93:102479. [PMID: 39938136 DOI: 10.1016/j.ceb.2025.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Similarly to life in our planet, where thousands of species inhabit the same ecosystem, the cell nucleus hosts different essential processes that share the same territory, making the interaction between them unavoidable. DNA replication and transcription are essential processes that copy and decode the information contained in our genomes, sharing -and competing for- the same chromatin template. Both activities are executed by large macromolecular machines with similar requirements to access the DNA, remodel the nucleosomes ahead of them and reassemble the chromatin make-up behind. Mechanistically, both processes cannot simultaneously act on the same DNA sequence, but emerging evidence shows that they frequently interact. Here we revise recent data on how transcription and replication occur in chromatin highlighting the symbiotic relationship between both processes, which might help explain how their activities contribute to shape the structure and function of the mammalian genome.
Collapse
Affiliation(s)
- Joana Segura
- Functional Organization of the Genome Group, Centro de Biología Molecular Severo Ochoa, CBM (CSIC/UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - María Gómez
- Functional Organization of the Genome Group, Centro de Biología Molecular Severo Ochoa, CBM (CSIC/UAM), Nicolás Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
9
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
López-Hernández L, Toolan-Kerr P, Bannister AJ, Millán-Zambrano G. Dynamic histone modification patterns coordinating DNA processes. Mol Cell 2025; 85:225-237. [PMID: 39824165 DOI: 10.1016/j.molcel.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
Significant effort has been spent attempting to unravel the causal relationship between histone post-translational modifications and fundamental DNA processes, including transcription, replication, and repair. However, less attention has been paid to understanding the reciprocal influence-that is, how DNA processes, in turn, shape the distribution and patterns of histone modifications and how these changes convey information, both temporally and spatially, from one process to another. Here, we review how histone modifications underpin the widespread bidirectional crosstalk between different DNA processes, which allow seemingly distinct phenomena to operate as a unified whole.
Collapse
Affiliation(s)
- Laura López-Hernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain
| | - Patrick Toolan-Kerr
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
11
|
Ferrand J, Dabin J, Chevallier O, Kane-Charvin M, Kupai A, Hrit J, Rothbart SB, Polo SE. Mitotic chromatin marking governs the segregation of DNA damage. Nat Commun 2025; 16:746. [PMID: 39820273 PMCID: PMC11739639 DOI: 10.1038/s41467-025-56090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
The faithful segregation of intact genetic material and the perpetuation of chromatin states through mitotic cell divisions are pivotal for maintaining cell function and identity across cell generations. However, most exogenous mutagens generate long-lasting DNA lesions that are segregated during mitosis. How this segregation is controlled is unknown. Here, we uncover a mitotic chromatin-marking pathway that governs the segregation of UV-induced damage in human cells. Our mechanistic analyses reveal two layers of control: histone ADP-ribosylation, and the incorporation of newly synthesized histones at UV damage sites, that both prevent local mitotic phosphorylations on histone H3 serine residues. Functionally, this chromatin-marking pathway controls the segregation of UV damage in the cell progeny with consequences on daughter cell fate. We propose that this mechanism may help preserve the integrity of stem cell compartments during asymmetric cell divisions.
Collapse
Affiliation(s)
- Juliette Ferrand
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| | - Juliette Dabin
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| | - Odile Chevallier
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| | - Matteo Kane-Charvin
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| | - Ariana Kupai
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Sophie E Polo
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France.
| |
Collapse
|
12
|
Tehrani SSH, Kogan A, Mikulski P, Jansen LET. Remembering foods and foes: emerging principles of transcriptional memory. Cell Death Differ 2025; 32:16-26. [PMID: 37563261 PMCID: PMC11748651 DOI: 10.1038/s41418-023-01200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Transcriptional memory is characterized by a primed cellular state, induced by an external stimulus that results in an altered expression of primed genes upon re-exposure to the inducing signal. Intriguingly, the primed state is heritably maintained across somatic cell divisions even after the initial stimulus and target gene transcription cease. This phenomenon is widely observed across various organisms and appears to enable cells to retain a memory of external signals, thereby adapting to environmental changes. Signals range from nutrient supplies (food) to a variety of stress signals, including exposure to pathogens (foes), leading to long-term memory such as in the case of trained immunity in plants and mammals. Here, we review these priming phenomena and our current understanding of transcriptional memory. We consider different mechanistic models for how memory can work and discuss existing evidence for potential carriers of memory. Key molecular signatures include: the poising of RNA polymerase II machinery, maintenance of histone marks, as well as alterations in nuclear positioning and long-range chromatin interactions. Finally, we discuss the potential adaptive roles of transcriptional memory in the organismal response to its environment from nutrient sensing to trained immunity.
Collapse
Affiliation(s)
- Sahar S H Tehrani
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | - Anna Kogan
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | - Pawel Mikulski
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
| |
Collapse
|
13
|
Graff S, Cutler R, Sidoli S. Automated Sample Preparation for the Unbiased Analysis of Histone Posttranslational Modifications Via Mass Spectrometry. Methods Mol Biol 2025; 2919:67-82. [PMID: 40257557 DOI: 10.1007/978-1-0716-4486-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Histone proteins are the structural components of nucleosomes, which form chromatin. Histone proteins are typically modified with many posttranslational modifications (PTMs), which affect chromatin accessibility, and by extension, modulate gene transcription, and other DNA-related processes. Mass spectrometry has become the reference technology to quantify global levels of hundreds of histone PTMs in single experiments. The advancement of high throughput has paved the way to new possibilities, including experimental design that include large cohort of samples. In this chapter, we describe a protocol for the unbiased analysis of histone PTMs assisted by a robotic liquid handler. The implementation of a simple-to-use script for automated histone derivatization and digestion reduces the number of manual steps needed to prepare histone peptides for mass spectrometry analysis and improves consistency of resulting data.
Collapse
Affiliation(s)
- Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ronald Cutler
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
14
|
Dreyer J, Ricci G, van den Berg J, Bhardwaj V, Funk J, Armstrong C, van Batenburg V, Sine C, VanInsberghe MA, Tjeerdsma RB, Marsman R, Mandemaker IK, di Sanzo S, Costantini J, Manzo SG, Biran A, Burny C, van Vugt MATM, Völker-Albert M, Groth A, Spencer SL, van Oudenaarden A, Mattiroli F. Acute multi-level response to defective de novo chromatin assembly in S-phase. Mol Cell 2024; 84:4711-4728.e10. [PMID: 39536749 DOI: 10.1016/j.molcel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of chromatin assembly factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyper-accessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. In turn, histone variants' usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a p53-dependent cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, indicating how at later times the epigenome and cell fate can be altered.
Collapse
Affiliation(s)
- Jan Dreyer
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jeroen van den Berg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Vivek Bhardwaj
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Janina Funk
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Vincent van Batenburg
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Chance Sine
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Michael A VanInsberghe
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rinskje B Tjeerdsma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Richard Marsman
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Imke K Mandemaker
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Simone di Sanzo
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Juliette Costantini
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Stefano G Manzo
- Oncode Institute, Utrecht, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Claire Burny
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute, KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
15
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programmes and repeats in pluripotent cells. Nat Cell Biol 2024; 26:2115-2128. [PMID: 39482359 DOI: 10.1038/s41556-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
H3K9me3 heterochromatin, established by lysine methyltransferases (KMTs) and compacted by heterochromatin protein 1 (HP1) isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3 heterochromatin stability is presently limited to individual domains and DNA repeats. Here we engineered Suv39h2-knockout mouse embryonic stem cells to degrade remaining two H3K9me3 KMTs within 1 hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A 'binary switch' governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMT depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening and exit from pluripotency within 12 h. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3 heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael B Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Song A, Wang Y, Liu C, Yu J, Zhang Z, Lan L, Lin H, Zhao J, Li G. Replication-coupled inheritance of chromatin states. CELL INSIGHT 2024; 3:100195. [PMID: 39391004 PMCID: PMC11462216 DOI: 10.1016/j.cellin.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/12/2024]
Abstract
During the development of eukaryote, faithful inheritance of chromatin states is central to the maintenance of cell fate. DNA replication poses a significant challenge for chromatin state inheritance because every nucleosome in the genome is disrupted as the replication fork passes. It has been found that many factors including DNA polymerases, histone chaperones, as well as, RNA Pol II and histone modifying enzymes coordinate spatially and temporally to maintain the epigenome during this progress. In this review, we provide a summary of the detailed mechanisms of replication-coupled nucleosome assembly and post-replication chromatin maturation, highlight the inheritance of chromatin states and epigenome during these processes, and discuss the future directions and challenges in this field.
Collapse
Affiliation(s)
- Aoqun Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunting Wang
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zixu Zhang
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liting Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Lin
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Guohong Li
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Movilla Miangolarra A, Howard M. Theory of epigenetic switching due to stochastic histone mark loss during DNA replication. Phys Biol 2024; 22:016005. [PMID: 39556945 PMCID: PMC11605279 DOI: 10.1088/1478-3975/ad942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
How much information does a cell inherit from its ancestors beyond its genetic sequence? What are the epigenetic mechanisms that allow this? Despite the rise in available epigenetic data, how such information is inherited through the cell cycle is still not fully understood. Often, epigenetic marks can display bistable behaviour and their bistable state is transmitted to daughter cells through the cell cycle, providing the cell with a form of memory. However, loss-of-memory events also take place, where a daughter cell switches epigenetic state (with respect to the mother cell). Here, we develop a framework to compute these epigenetic switching rates, for the case when they are driven by DNA replication, i.e. the frequency of loss-of-memory events due to replication. We consider the dynamics of histone modifications during the cell cycle deterministically, except at DNA replication, where nucleosomes are randomly distributed between the two daughter DNA strands, which is therefore implemented stochastically. This hybrid stochastic-deterministic approach enables an analytic derivation of the replication-driven switching rate. While retaining great simplicity, this framework can explain experimental switching rate data, establishing its biological importance as a framework to quantitatively study epigenetic inheritance.
Collapse
Affiliation(s)
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
18
|
Nelligan A, Dungrawala H. SNF2L suppresses nascent DNA gap formation to promote DNA synthesis. Nucleic Acids Res 2024; 52:13003-13018. [PMID: 39413208 PMCID: PMC11602140 DOI: 10.1093/nar/gkae903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Nucleosome remodelers at replication forks function in the assembly and maturation of chromatin post DNA synthesis. The ISWI chromatin remodeler SNF2L (or SMARCA1) travels with replication forks but its contribution to DNA replication remains largely unknown. We find that fork elongation is curtailed when SNF2L is absent. SNF2L deficiency elevates replication stress and causes fork collapse due to remodeling activities by fork reversal enzymes. Mechanistically, SNF2L regulates nucleosome assembly to suppress post-replicative ssDNA gap accumulation. Gap induction is not dependent on fork remodeling and PRIMPOL. Instead, gap synthesis is driven by MRE11 and EXO1 indicating susceptibility of nascent DNA to nucleolytic cleavage and resection when SNF2L is removed. Additionally, nucleosome remodeling by SNF2L protects nascent chromatin from MNase digestion and gap induction highlighting a critical role of SNF2L in chromatin assembly post DNA synthesis to maintain unperturbed replication.
Collapse
Affiliation(s)
- Anthony Nelligan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
19
|
Trouth A, Veronezi GMB, Ramachandran S. The impact of cell states on heterochromatin dynamics. Biochem J 2024; 481:1519-1533. [PMID: 39422321 DOI: 10.1042/bcj20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Establishing, maintaining, and removing histone post-translational modifications associated with heterochromatin is critical for shaping genomic structure and function as a cell navigates different stages of development, activity, and disease. Dynamic regulation of the repressive chromatin landscape has been documented in several key cell states - germline cells, activated immune cells, actively replicating, and quiescent cells - with notable variations in underlying mechanisms. Here, we discuss the role of cell states of these diverse contexts in directing and maintaining observed chromatin landscapes. These investigations reveal heterochromatin architectures that are highly responsive to the functional context of a cell's existence and, in turn, their contribution to the cell's stable identity.
Collapse
Affiliation(s)
- Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| |
Collapse
|
20
|
Khalid S, Kearney M, McReynolds DE. Can social adversity alter the epigenome, trigger oral disease, and affect future generations? Ir J Med Sci 2024; 193:2597-2606. [PMID: 38740675 PMCID: PMC11450135 DOI: 10.1007/s11845-024-03697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
The nature versus nurture debate has intrigued scientific circles for decades. Although extensive research has established a clear relationship between genetics and disease development, recent evidence has highlighted the insufficiency of attributing adverse health outcomes to genetic factors alone. In fact, it has been suggested that environmental influences, such as socioeconomic position (SEP), may play a much larger role in the development of disease than previously thought, with extensive research suggesting that low SEP is associated with adverse health conditions. In relation to oral health, a higher prevalence of caries (tooth decay) exists among those of low SEP. Although little is known about the biological mechanisms underlying this relationship, epigenetic modifications resulting from environmental influences have been suggested to play an important role. This review explores the intersection of health inequalities and epigenetics, the role of early-life social adversity and its long-term epigenetic impacts, and how those living within the lower hierarchies of the socioeconomic pyramid are indeed at higher risk of developing diseases, particularly in relation to oral health. A deeper understanding of these mechanisms could lead to the development of targeted interventions for individuals of low SEP to improve oral health or identify those who are at higher risk of developing oral disease.
Collapse
Affiliation(s)
- Sakr Khalid
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Michaela Kearney
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - David E McReynolds
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Ferrand J, Dabin J, Chevallier O, Kane-Charvin M, Kupai A, Hrit J, Rothbart SB, Polo SE. Mitotic chromatin marking governs asymmetric segregation of DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.04.556166. [PMID: 37732208 PMCID: PMC10508772 DOI: 10.1101/2023.09.04.556166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The faithful segregation of intact genetic material and the perpetuation of chromatin states through mitotic cell divisions are pivotal for maintaining cell function and identity across cell generations. However, most exogenous mutagens generate long-lasting DNA lesions that are segregated during mitosis. How this segregation is controlled is unknown. Here, we uncover a mitotic chromatin-marking pathway that governs the segregation of UV-induced damage in human cells. Our mechanistic analyses reveal two layers of control: histone ADP-ribosylation, and the incorporation of newly synthesized histones at UV damage sites, that both prevent local mitotic phosphorylations on histone H3 serine residues. Functionally, this chromatin-marking pathway drives the asymmetric segregation of UV damage in the cell progeny with consequences on daughter cell fate. We propose that this mechanism may help preserve the integrity of stem cell compartments during asymmetric cell divisions.
Collapse
Affiliation(s)
- Juliette Ferrand
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| | - Juliette Dabin
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| | - Odile Chevallier
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| | - Matteo Kane-Charvin
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| | - Ariana Kupai
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott B. Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Sophie E. Polo
- Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France
| |
Collapse
|
22
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
23
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programs and repeats in pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613328. [PMID: 39345615 PMCID: PMC11429881 DOI: 10.1101/2024.09.16.613328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
H3K9me3-heterochromatin, established by lysine methyltransferases (KMTs) and compacted by HP1 isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3-heterochromatin stability is presently limited to individual domains and DNA repeats. We engineered Suv39h2 KO mouse embryonic stem cells to degrade remaining two H3K9me3-KMTs within one hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A "binary switch" governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMTs' depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening, and exit from pluripotency within 12 hr. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3-heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael B. Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
24
|
Charlton SJ, Flury V, Kanoh Y, Genzor AV, Kollenstart L, Ao W, Brøgger P, Weisser MB, Adamus M, Alcaraz N, Delvaux de Fenffe CM, Mattiroli F, Montoya G, Masai H, Groth A, Thon G. The fork protection complex promotes parental histone recycling and epigenetic memory. Cell 2024; 187:5029-5047.e21. [PMID: 39094569 PMCID: PMC11383432 DOI: 10.1016/j.cell.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/16/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
Collapse
Affiliation(s)
- Sebastian Jespersen Charlton
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yutaka Kanoh
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Wantong Ao
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Marek Adamus
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
25
|
Mojica EA, Petcu KA, Kültz D. Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae013. [PMID: 39372708 PMCID: PMC11452309 DOI: 10.1093/eep/dvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
This study sheds new light on the timescale through which histone post-translational modifications (PTMs) respond to environmental stimuli, demonstrating that the histone PTM response does not necessarily precede the proteomic response or acclimation. After a variety of salinity treatments were administered to Mozambique tilapia (Oreochromis mossambicus) throughout their lifetimes, we quantified 343 histone PTMs in the gills of each fish. We show here that histone PTMs differ dramatically between fish exposed to distinct environmental conditions for 18 months, and that the majority of these histone PTM alterations persist for at least 4 weeks, irrespective of further salinity changes. However, histone PTMs respond minimally to 4-week-long periods of salinity acclimation during adulthood. The results of this study altogether signify that patterns of histone PTMs in individuals reflect their prolonged exposure to environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Kathleen A Petcu
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| |
Collapse
|
26
|
Trouth A, Ravichandran K, Gafken PR, Martire S, Boyle GE, Veronezi GMB, La V, Namciu SJ, Banaszynski LA, Sarthy JF, Ramachandran S. G1 length dictates H3K27me3 landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.05.570186. [PMID: 38106207 PMCID: PMC10723301 DOI: 10.1101/2023.12.05.570186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Stem cells have lower facultative heterochromatin as defined by trimethylation of histone H3 lysine 27 (H3K27me3) compared to differentiated cells. However, the mechanisms underlying these differential H3K27me3 levels remain elusive. Because H3K27me3 levels are diluted two-fold in every round of replication and then restored through the rest of the cell cycle, we reasoned that the cell cycle length could be a key regulator of total H3K27me3 levels. Here, we propose that a fast cell cycle restricts H3K27me3 levels in stem cells. To test this model, we determined changes to H3K27me3 levels in mESCs globally and at specific loci upon G1 phase lengthening - accomplished by thymidine block or growth in the absence of serum (with the "2i medium"). H3K27me3 levels in mESC increase with G1 arrest when grown in serum and in 2i medium. Additionally, we observed via CUT&RUN and ChIP-seq that regions that gain H3K27me3 in G1 arrest and 2i media overlap, supporting our model of cell cycle length as a critical regulator of the stem cell epigenome and cellular identity. Furthermore, we demonstrate the inverse effect - that G1 shortening in differentiated cells results in a loss of H3K27me3 levels. Finally, in tumor cells with extreme H3K27me3 loss, lengthening of the G1 phase leads to H3K27me3 recovery despite the presence of the dominant negative, sub-stoichiometric H3.1K27M mutation. Our results indicate that G1 length is an essential determinant of H3K27me3 landscapes across diverse cell types.
Collapse
|
27
|
Ma W, Ding X, Xu J, Poon TCW. CHHM: a Manually Curated Catalogue of Human Histone Modifications Revealing Hotspot Regions and Unique Distribution Patterns. Int J Biol Sci 2024; 20:3760-3772. [PMID: 39113691 PMCID: PMC11302869 DOI: 10.7150/ijbs.95954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Histone modification is one of the key elements in epigenetic control and plays important roles in regulation of biological processes and disease development. Currently, records of human histone modifications with various levels of confidence in evidence are scattered in various knowledgebases and databases. In the present study, a curated catalogue of human histone modifications, CHHM, was obtained by manual retrieval, evidence assessment, and integration of modification records from 10 knowledgebases/databases and 3 complementary articles. CHHM contains 6612 nonredundant modification entries covering 31 types of modifications (including 9 types of emerging modifications) and 2 types of histone-DNA crosslinks, that were identified in 11 H1 variants, 21 H2A variants, 21 H2B variants, 9 H3 variants, and 2 H4 variants. For ease of visualization and accessibility, modification entries are presented with aligned protein sequences in an Excel file. Confidence level in evidence is provided for each entry. Acylation modifications contribute to the highest number of modification entries in CHHM. This supports that cellular metabolic status plays a very important role in epigenetic control. CHHM reveals modification hotspot regions and uneven distribution of the modification entries across the histone families. Such uneven distribution may suggest that a particular histone family is more susceptible to certain types of modifications. CHHM not only serves as an important and user-friendly resource for biomedical and clinical researches involving histone modifications and transcriptional regulation, but also provides new insights for basic researches in the mechanism of human histone modifications and epigenetic control.
Collapse
Affiliation(s)
| | | | | | - Terence Chuen Wai Poon
- Institute of Translational Medicine, Centre for Precision Medicine Research and Training, MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| |
Collapse
|
28
|
Baduel P, Sammarco I, Barrett R, Coronado‐Zamora M, Crespel A, Díez‐Rodríguez B, Fox J, Galanti D, González J, Jueterbock A, Wootton E, Harney E. The evolutionary consequences of interactions between the epigenome, the genome and the environment. Evol Appl 2024; 17:e13730. [PMID: 39050763 PMCID: PMC11266121 DOI: 10.1111/eva.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale SupérieurePSL University, CNRSParisFrance
| | - Iris Sammarco
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Rowan Barrett
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | | | | | | | - Janay Fox
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Dario Galanti
- Institute of Evolution and Ecology (EvE)University of TuebingenTübingenGermany
| | | | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Eric Wootton
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Ewan Harney
- Institute of Evolutionary BiologyCSIC, UPFBarcelonaSpain
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
29
|
Fajri N, Petryk N. Monitoring and quantifying replication fork dynamics with high-throughput methods. Commun Biol 2024; 7:729. [PMID: 38877080 PMCID: PMC11178896 DOI: 10.1038/s42003-024-06412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Before each cell division, eukaryotic cells must replicate their chromosomes to ensure the accurate transmission of genetic information. Chromosome replication involves more than just DNA duplication; it also includes chromatin assembly, inheritance of epigenetic marks, and faithful resumption of all genomic functions after replication. Recent progress in quantitative technologies has revolutionized our understanding of the complexity and dynamics of DNA replication forks at both molecular and genomic scales. Here, we highlight the pivotal role of these novel methods in uncovering the principles and mechanisms of chromosome replication. These technologies have illuminated the regulation of genome replication programs, quantified the impact of DNA replication on genomic mutations and evolutionary processes, and elucidated the mechanisms of replication-coupled chromatin assembly and epigenome maintenance.
Collapse
Affiliation(s)
- Nora Fajri
- UMR9019 - CNRS, Intégrité du Génome et Cancers, Université Paris-Saclay, Gustave Roussy, Villejuif, France, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Nataliya Petryk
- UMR9019 - CNRS, Intégrité du Génome et Cancers, Université Paris-Saclay, Gustave Roussy, Villejuif, France, 114 rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|
30
|
Afanasyev AY, Kim Y, Tolokh IS, Sharakhov IV, Onufriev AV. The probability of chromatin to be at the nuclear lamina has no systematic effect on its transcription level in fruit flies. Epigenetics Chromatin 2024; 17:13. [PMID: 38705995 PMCID: PMC11071202 DOI: 10.1186/s13072-024-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Multiple studies have demonstrated a negative correlation between gene expression and positioning of genes at the nuclear envelope (NE) lined by nuclear lamina, but the exact relationship remains unclear, especially in light of the highly stochastic, transient nature of the gene association with the NE. RESULTS In this paper, we ask whether there is a causal, systematic, genome-wide relationship between the expression levels of the groups of genes in topologically associating domains (TADs) of Drosophila nuclei and the probabilities of TADs to be found at the NE. To investigate the nature of this possible relationship, we combine a coarse-grained dynamic model of the entire Drosophila nucleus with genome-wide gene expression data; we analyze the TAD averaged transcription levels of genes against the probabilities of individual TADs to be in contact with the NE in the control and lamins-depleted nuclei. Our findings demonstrate that, within the statistical error margin, the stochastic positioning of Drosophila melanogaster TADs at the NE does not, by itself, systematically affect the mean level of gene expression in these TADs, while the expected negative correlation is confirmed. The correlation is weak and disappears completely for TADs not containing lamina-associated domains (LADs) or TADs containing LADs, considered separately. Verifiable hypotheses regarding the underlying mechanism for the presence of the correlation without causality are discussed. These include the possibility that the epigenetic marks and affinity to the NE of a TAD are determined by various non-mutually exclusive mechanisms and remain relatively stable during interphase. CONCLUSIONS At the level of TADs, the probability of chromatin being in contact with the nuclear envelope has no systematic, causal effect on the transcription level in Drosophila. The conclusion is reached by combining model-derived time-evolution of TAD locations within the nucleus with their experimental gene expression levels.
Collapse
Affiliation(s)
- Alexander Y Afanasyev
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Yoonjin Kim
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor S Tolokh
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
31
|
Snedeker J, Davis BEM, Ranjan R, Wooten M, Blundon J, Chen X. Reduced Levels of Lagging Strand Polymerases Shape Stem Cell Chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591383. [PMID: 38746451 PMCID: PMC11092439 DOI: 10.1101/2024.04.26.591383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells display asymmetric histone inheritance while non-stem progenitor cells exhibit symmetric patterns in the Drosophila male germline lineage. Here, we report that components involved in lagging strand synthesis, such as DNA polymerase α and δ (Polα and Polδ), have significantly reduced levels in stem cells compared to progenitor cells. Compromising Polα genetically induces the replication-coupled histone incorporation pattern in progenitor cells to be indistinguishable from that in stem cells, which can be recapitulated using a Polα inhibitor in a concentration-dependent manner. Furthermore, stem cell-derived chromatin fibers display a higher degree of old histone recycling by the leading strand compared to progenitor cell-derived chromatin fibers. However, upon reducing Polα levels in progenitor cells, the chromatin fibers now display asymmetric old histone recycling just like GSC-derived fibers. The old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S-phase and M-phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in non-stem cells in a manner similar to that in stem cells.
Collapse
Affiliation(s)
- Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Current address: Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Veronezi GMB, Ramachandran S. Nucleation and spreading maintain Polycomb domains every cell cycle. Cell Rep 2024; 43:114090. [PMID: 38607915 PMCID: PMC11179494 DOI: 10.1016/j.celrep.2024.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Gene repression by the Polycomb pathway is essential for metazoan development. Polycomb domains, characterized by trimethylation of histone H3 lysine 27 (H3K27me3), carry the memory of repression and hence need to be maintained to counter the dilution of parental H3K27me3 with unmodified H3 during replication. Yet, how locus-specific H3K27me3 is maintained through replication is unclear. To understand H3K27me3 recovery post-replication, we first define nucleation sites within each Polycomb domain in mouse embryonic stem cells. To map dynamics of H3K27me3 domains across the cell cycle, we develop CUT&Flow (coupling cleavage under target and tagmentation with flow cytometry). We show that post-replication recovery of Polycomb domains occurs by nucleation and spreading, using the same nucleation sites used during de novo domain formation. By using Polycomb repressive complex 2 (PRC2) subunit-specific inhibitors, we find that PRC2 targets nucleation sites post-replication independent of pre-existing H3K27me3. Thus, competition between H3K27me3 deposition and nucleosome turnover drives both de novo domain formation and maintenance during every cell cycle.
Collapse
Affiliation(s)
- Giovana M B Veronezi
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
33
|
Faivre L, Kinscher NF, Kuhlmann AB, Xu X, Kaufmann K, Schubert D. Cold stress induces rapid gene-specific changes in the levels of H3K4me3 and H3K27me3 in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1390144. [PMID: 38685963 PMCID: PMC11056581 DOI: 10.3389/fpls.2024.1390144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
When exposed to low temperatures, plants undergo a drastic reprogramming of their transcriptome in order to adapt to their new environmental conditions, which primes them for potential freezing temperatures. While the involvement of transcription factors in this process, termed cold acclimation, has been deeply investigated, the potential contribution of chromatin regulation remains largely unclear. A large proportion of cold-inducible genes carries the repressive mark histone 3 lysine 27 trimethylation (H3K27me3), which has been hypothesized as maintaining them in a silenced state in the absence of stress, but which would need to be removed or counteracted upon stress perception. However, the fate of H3K27me3 during cold exposure has not been studied genome-wide. In this study, we offer an epigenome profiling of H3K27me3 and its antagonistic active mark H3K4me3 during short-term cold exposure. Both chromatin marks undergo rapid redistribution upon cold exposure, however, the gene sets undergoing H3K4me3 or H3K27me3 differential methylation are distinct, refuting the simplistic idea that gene activation relies on a switch from an H3K27me3 repressed chromatin to an active form enriched in H3K4me3. Coupling the ChIP-seq experiments with transcriptome profiling reveals that differential histone methylation only weakly correlates with changes in expression. Interestingly, only a subset of cold-regulated genes lose H3K27me3 during their induction, indicating that H3K27me3 is not an obstacle to transcriptional activation. In the H3K27me3 methyltransferase curly leaf (clf) mutant, many cold regulated genes display reduced H3K27me3 levels but their transcriptional activity is not altered prior or during a cold exposure, suggesting that H3K27me3 may serve a more intricate role in the cold response than simply repressing the cold-inducible genes in naïve conditions.
Collapse
Affiliation(s)
- Léa Faivre
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | | | | | - Xiaocai Xu
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Ghimire P, Motamedi M, Joh R. Mathematical model for the role of multiple pericentromeric repeats on heterochromatin assembly. PLoS Comput Biol 2024; 20:e1012027. [PMID: 38598558 PMCID: PMC11034663 DOI: 10.1371/journal.pcbi.1012027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.
Collapse
Affiliation(s)
- Puranjan Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, Boston, Massachusetts, United States of America
| | - Richard Joh
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond Virginia, United States of America
| |
Collapse
|
35
|
Flury V, Groth A. Safeguarding the epigenome through the cell cycle: a multitasking game. Curr Opin Genet Dev 2024; 85:102161. [PMID: 38447236 DOI: 10.1016/j.gde.2024.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Sustaining cell identity and function across cell division is germane to human development, healthspan, and cancer avoidance. This relies significantly on propagation of chromatin organization between cell generations, as chromatin presents a barrier to cell fate and cell state conversions. Inheritance of chromatin states across the many cell divisions required for development and tissue homeostasis represents a major challenge, especially because chromatin is disrupted to allow passage of the DNA replication fork to synthesize the two daughter strands. This process also leads to a twofold dilution of epigenetic information in histones, which needs to be accurately restored for faithful propagation of chromatin states across cell divisions. Recent research has identified distinct multilayered mechanisms acting to propagate epigenetic information to daughter strands. Here, we summarize key principles of how epigenetic information in parental histones is transferred across DNA replication and how new histones robustly acquire the same information postreplication, representing a core component of epigenetic cell memory.
Collapse
Affiliation(s)
- Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark. https://twitter.com/@ValeFlury
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Dreyer J, Ricci G, van den Berg J, Bhardwaj V, Funk J, Armstrong C, van Batenburg V, Sine C, VanInsberghe MA, Marsman R, Mandemaker IK, di Sanzo S, Costantini J, Manzo SG, Biran A, Burny C, Völker-Albert M, Groth A, Spencer SL, van Oudenaarden A, Mattiroli F. Acute multi-level response to defective de novo chromatin assembly in S-phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586291. [PMID: 38585916 PMCID: PMC10996472 DOI: 10.1101/2024.03.22.586291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of Chromatin Assembly Factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live-microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyperaccessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. As a result, histone variants usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, explaining how at later times the epigenome and cell fate can be altered.
Collapse
Affiliation(s)
- Jan Dreyer
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jeroen van den Berg
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Vivek Bhardwaj
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Janina Funk
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Vincent van Batenburg
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Chance Sine
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Michael A. VanInsberghe
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Richard Marsman
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Imke K. Mandemaker
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Simone di Sanzo
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | - Juliette Costantini
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Stefano G. Manzo
- Oncode Institute, The Netherlands
- Division of Gene Regulation, Netherlands Cancer Institute, The Netherlands
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Claire Burny
- MOLEQLAR Analytics GmbH, Rosenheimer Street 141 h, 81671 Munich, Germany
| | | | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabrina L. Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Oncode Institute, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
37
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
38
|
Bandau S, Alvarez V, Jiang H, Graff S, Sundaramoorthy R, Gierlinski M, Toman M, Owen-Hughes T, Sidoli S, Lamond A, Alabert C. RNA polymerase II promotes the organization of chromatin following DNA replication. EMBO Rep 2024; 25:1387-1414. [PMID: 38347224 PMCID: PMC10933433 DOI: 10.1038/s44319-024-00085-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
Understanding how chromatin organisation is duplicated on the two daughter strands is a central question in epigenetics. In mammals, following the passage of the replisome, nucleosomes lose their defined positioning and transcription contributes to their re-organisation. However, whether transcription plays a greater role in the organization of chromatin following DNA replication remains unclear. Here we analysed protein re-association with newly replicated DNA upon inhibition of transcription using iPOND coupled to quantitative mass spectrometry. We show that nucleosome assembly and the re-establishment of most histone modifications are uncoupled from transcription. However, RNAPII acts to promote the re-association of hundreds of proteins with newly replicated chromatin via pathways that are not observed in steady-state chromatin. These include ATP-dependent remodellers, transcription factors and histone methyltransferases. We also identify a set of DNA repair factors that may handle transcription-replication conflicts during normal transcription in human non-transformed cells. Our study reveals that transcription plays a greater role in the organization of chromatin post-replication than previously anticipated.
Collapse
Affiliation(s)
- Susanne Bandau
- MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Vanesa Alvarez
- MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Hao Jiang
- Laboratory of Quantitative Proteomics, MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Sarah Graff
- Department of Biochemistry at the Albert Einstein College of Medicine, New York, NY, USA
| | | | - Marek Gierlinski
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Matt Toman
- Laboratory of Chromatin Structure and Function, MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Tom Owen-Hughes
- Laboratory of Chromatin Structure and Function, MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Simone Sidoli
- Department of Biochemistry at the Albert Einstein College of Medicine, New York, NY, USA
| | - Angus Lamond
- Laboratory of Quantitative Proteomics, MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Constance Alabert
- MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK.
| |
Collapse
|
39
|
Ramos-Alonso L, Chymkowitch P. Maintaining transcriptional homeostasis during cell cycle. Transcription 2024; 15:1-21. [PMID: 37655806 PMCID: PMC11093055 DOI: 10.1080/21541264.2023.2246868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Werner M, Hamperl S. A quick restart: RNA polymerase jumping onto post-replicative chromatin. Mol Cell 2024; 84:186-188. [PMID: 38242096 DOI: 10.1016/j.molcel.2023.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
Two recent studies in Molecular Cell1 and Nature2 show that evicted RNA polymerases reassociate rapidly with post-replicative chromatin and proceed into an unusual transcription cycle, bypassing regular controls and creating a temporary window for altered gene expression.
Collapse
Affiliation(s)
- Marcel Werner
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany.
| |
Collapse
|
41
|
Bruno F, Coronel-Guisado C, González-Aguilera C. Collisions of RNA polymerases behind the replication fork promote alternative RNA splicing in newly replicated chromatin. Mol Cell 2024; 84:221-233.e6. [PMID: 38151016 DOI: 10.1016/j.molcel.2023.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
DNA replication produces a global disorganization of chromatin structure that takes hours to be restored. However, how these chromatin rearrangements affect the regulation of gene expression and the maintenance of cell identity is not clear. Here, we use ChOR-seq and ChrRNA-seq experiments to analyze RNA polymerase II (RNAPII) activity and nascent RNA synthesis during the first hours after chromatin replication in human cells. We observe that transcription elongation is rapidly reactivated in nascent chromatin but that RNAPII abundance and distribution are altered, producing heterogeneous changes in RNA synthesis. Moreover, this first wave of transcription results in RNAPII blockages behind the replication fork, leading to changes in alternative splicing. Altogether, our results deepen our understanding of how transcriptional programs are regulated during cell division and uncover molecular mechanisms that explain why chromatin replication is an important source of gene expression variability.
Collapse
Affiliation(s)
- Federica Bruno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Universidad Pablo de Olavide, 41092, Seville, Spain
| | - Cristóbal Coronel-Guisado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Universidad Pablo de Olavide, 41092, Seville, Spain
| | - Cristina González-Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Universidad Pablo de Olavide, 41092, Seville, Spain; Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013, Seville, Spain.
| |
Collapse
|
42
|
Ahmad K, Brahma S, Henikoff S. Epigenetic pioneering by SWI/SNF family remodelers. Mol Cell 2024; 84:194-201. [PMID: 38016477 PMCID: PMC10842064 DOI: 10.1016/j.molcel.2023.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
In eukaryotic genomes, transcriptional machinery and nucleosomes compete for binding to DNA sequences; thus, a crucial aspect of gene regulatory element function is to modulate chromatin accessibility for transcription factor (TF) and RNA polymerase binding. Recent structural studies have revealed multiple modes of TF engagement with nucleosomes, but how initial "pioneering" results in steady-state DNA accessibility for further TF binding and RNA polymerase II (RNAPII) engagement has been unclear. Even less well understood is how distant sites of open chromatin interact with one another, such as when developmental enhancers activate promoters to release RNAPII for productive elongation. Here, we review evidence for the centrality of the conserved SWI/SNF family of nucleosome remodeling complexes, both in pioneering and in mediating enhancer-promoter contacts. Consideration of the nucleosome unwrapping and ATP hydrolysis activities of SWI/SNF complexes, together with their architectural features, may reconcile steady-state TF occupancy with rapid TF dynamics observed by live imaging.
Collapse
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sandipan Brahma
- University of Nebraska Medical Center, Department of Genetics, Cell Biology & Anatomy, Omaha, NE, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
43
|
Tirado-Class N, Hathaway C, Nelligan A, Nguyen T, Dungrawala H. DCAF14 regulates CDT2 to promote SET8-dependent replication fork protection. Life Sci Alliance 2024; 7:e202302230. [PMID: 37940188 PMCID: PMC10631547 DOI: 10.26508/lsa.202302230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
DDB1- and CUL4-associated factors (DCAFs) CDT2 and DCAF14 are substrate receptors for Cullin4-RING E3 ubiquitin ligase (CRL4) complexes. CDT2 is responsible for PCNA-coupled proteolysis of substrates CDT1, p21, and SET8 during S-phase of cell cycle. DCAF14 functions at stalled replication forks to promote genome stability, but the mechanism is unknown. We find that DCAF14 mediates replication fork protection by regulating CRL4CDT2 activity. Absence of DCAF14 causes increased proteasomal degradation of CDT2 substrates. When forks are challenged with replication stress, increased CDT2 function causes stalled fork collapse and impairs fork recovery in DCAF14-deficient conditions. We further show that stalled fork protection is dependent on CDT2 substrate SET8 and does not involve p21 and CDT1. Like DCAF14, SET8 blocks nuclease-mediated digestion of nascent DNA at remodeled replication forks. Thus, unregulated CDT2-mediated turnover of SET8 triggers nascent strand degradation when DCAF14 is absent. We propose that DCAF14 controls CDT2 activity at stalled replication forks to facilitate SET8 function in safeguarding genomic integrity.
Collapse
Affiliation(s)
- Neysha Tirado-Class
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Caitlin Hathaway
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Anthony Nelligan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Thuan Nguyen
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
44
|
Gurnani B, Kaur K. Molecular and epigenetic mechanisms governing ocular surface squamous neoplasia: opportunities for diagnostics. Expert Rev Mol Diagn 2023:1-15. [PMID: 38131180 DOI: 10.1080/14737159.2023.2298681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Ocular surface squamous neoplasia (OSSN) is the most common ocular malignancy; the pathophysiology is influenced by molecular, genetic, and epigenetic mechanisms. The incidence of OSSN is associated with the anatomy and physiology of the ocular surface, limbal stem cell configuration, limbal vulnerability, cancer stem cells, dysplasia, neoplasia, angiogenesis, invasion, and metastasis. The key etiological factors involved are human papillomavirus (HPV), human immunodeficiency virus (HIV), immunosuppression, p53 tumor suppressor gene, hypovitaminosis A, and failure of Deoxyribonucleic acid (DNA) repair mechanisms. AREAS COVERED This special report is a focussed attempt to understand the molecular mechanism, genetic and epigenetic mechanism, and diagnostic modalities for OSSN. EXPERT OPINION While these mechanisms contribute to genome instability, promoter-specific hypermethylation might facilitate and promote tumor formation by silencing tumor suppressor genes. OSSN understanding has improved with increased literature available on various genetic, molecular, and epigenetic mechanisms, although the exact genetic and epigenetic mechanisms still need to be elucidated. It is important to note that the molecular mechanisms of OSSN can vary among individuals, and further research is required to elucidate the underlying processes fully. Understanding these mechanisms is crucial for the development of targeted therapies and improved management of OSSN.
Collapse
Affiliation(s)
- Bharat Gurnani
- Cataract, Cornea, Refractive Services, Trauma, External Diseases, Contact Lens and Ocular Surface, Sadguru Netra Chikitsalya, Shri Sadguru Seva Sangh Trust, Chitrakoot, India
| | - Kirandeep Kaur
- Children Eye Care Centre, Department of Pediatric Ophthalmology and Strabismus, Sadguru Netra Chikitsalya, Shri Sadguru Seva Sangh Trust, Janaki Kund, Chitrakoot, India
| |
Collapse
|
45
|
Singh A, Chakrabarti S. Diffusion controls local versus dispersed inheritance of histones during replication and shapes epigenomic architecture. PLoS Comput Biol 2023; 19:e1011725. [PMID: 38109423 PMCID: PMC10760866 DOI: 10.1371/journal.pcbi.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The dynamics of inheritance of histones and their associated modifications across cell divisions can have major consequences on maintenance of the cellular epigenomic state. Recent experiments contradict the long-held notion that histone inheritance during replication is always local, suggesting that active and repressed regions of the genome exhibit fundamentally different histone dynamics independent of transcription-coupled turnover. Here we develop a stochastic model of histone dynamics at the replication fork and demonstrate that differential diffusivity of histones in active versus repressed chromatin is sufficient to quantitatively explain these recent experiments. Further, we use the model to predict patterns in histone mark similarity between pairs of genomic loci that should be developed as a result of diffusion, but cannot originate from either PRC2 mediated mark spreading or transcriptional processes. Interestingly, using a combination of CHIP-seq, replication timing and Hi-C datasets we demonstrate that all the computationally predicted patterns are consistently observed for both active and repressive histone marks in two different cell lines. While direct evidence for histone diffusion remains controversial, our results suggest that dislodged histones in euchromatin and facultative heterochromatin may exhibit some level of diffusion within "Diffusion-Accessible-Domains" (DADs), leading to redistribution of epigenetic marks within and across chromosomes. Preservation of the epigenomic state across cell divisions therefore might be achieved not by passing on strict positional information of histone marks, but by maintaining the marks in somewhat larger DADs of the genome.
Collapse
Affiliation(s)
- Archit Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shaon Chakrabarti
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
46
|
Owen JA, Osmanović D, Mirny L. Design principles of 3D epigenetic memory systems. Science 2023; 382:eadg3053. [PMID: 37972190 PMCID: PMC11075759 DOI: 10.1126/science.adg3053] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
Cells remember their identities, in part, by using epigenetic marks-chemical modifications placed along the genome. How can mark patterns remain stable over cell generations despite their constant erosion by replication and other processes? We developed a theoretical model that reveals that three-dimensional (3D) genome organization can stabilize epigenetic memory as long as (i) there is a large density difference between chromatin compartments, (ii) modifying "reader-writer" enzymes spread marks in three dimensions, and (iii) the enzymes are limited in abundance relative to their histone substrates. Analogous to an associative memory that encodes memory in neuronal connectivity, mark patterns are encoded in a 3D network of chromosomal contacts. Our model provides a unified account of diverse observations and reveals a key role of 3D genome organization in epigenetic memory.
Collapse
Affiliation(s)
- Jeremy A. Owen
- Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Dino Osmanović
- Department of Mechanical and Aeronautical Engineering, UCLA; Los Angeles, USA
| | - Leonid Mirny
- Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| |
Collapse
|
47
|
Li Z, Duan S, Hua X, Xu X, Li Y, Menolfi D, Zhou H, Lu C, Zha S, Goff SP, Zhang Z. Asymmetric distribution of parental H3K9me3 in S phase silences L1 elements. Nature 2023; 623:643-651. [PMID: 37938774 PMCID: PMC11034792 DOI: 10.1038/s41586-023-06711-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
In eukaryotes, repetitive DNA sequences are transcriptionally silenced through histone H3 lysine 9 trimethylation (H3K9me3). Loss of silencing of the repeat elements leads to genome instability and human diseases, including cancer and ageing1-3. Although the role of H3K9me3 in the establishment and maintenance of heterochromatin silencing has been extensively studied4-6, the pattern and mechanism that underlie the partitioning of parental H3K9me3 at replicating DNA strands are unknown. Here we report that H3K9me3 is preferentially transferred onto the leading strands of replication forks, which occurs predominantly at long interspersed nuclear element (LINE) retrotransposons (also known as LINE-1s or L1s) that are theoretically transcribed in the head-on direction with replication fork movement. Mechanistically, the human silencing hub (HUSH) complex interacts with the leading-strand DNA polymerase Pol ε and contributes to the asymmetric segregation of H3K9me3. Cells deficient in Pol ε subunits (POLE3 and POLE4) or the HUSH complex (MPP8 and TASOR) show compromised H3K9me3 asymmetry and increased LINE expression. Similar results were obtained in cells expressing a MPP8 mutant defective in H3K9me3 binding and in TASOR mutants with reduced interactions with Pol ε. These results reveal an unexpected mechanism whereby the HUSH complex functions with Pol ε to promote asymmetric H3K9me3 distribution at head-on LINEs to suppress their expression in S phase.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Demis Menolfi
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Hui Zhou
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Chao Lu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Departments of Pathology and Cell Biology, Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen P Goff
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Departments of Biochemistry and Molecular Biophysics, Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Olivier M, Hesketh A, Pouch-Pélissier MN, Pélissier T, Huang Y, Latrasse D, Benhamed M, Mathieu O. RTEL1 is required for silencing and epigenome stability. Nucleic Acids Res 2023; 51:8463-8479. [PMID: 37471026 PMCID: PMC10484728 DOI: 10.1093/nar/gkad610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Transcriptional silencing is an essential mechanism for controlling the expression of genes, transgenes and heterochromatic repeats through specific epigenetic marks on chromatin that are maintained during DNA replication. In Arabidopsis, silenced transgenes and heterochromatic sequences are typically associated with high levels of DNA methylation, while silenced genes are enriched in H3K27me3. Reactivation of these loci is often correlated with decreased levels of these repressive epigenetic marks. Here, we report that the DNA helicase REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) is required for transcriptional silencing. RTEL1 deficiency causes upregulation of many genes enriched in H3K27me3 accompanied by a moderate decrease in this mark, but no loss of DNA methylation at reactivated heterochromatic loci. Instead, heterochromatin exhibits DNA hypermethylation and increased H3K27me3 in rtel1. We further find that loss of RTEL1 suppresses the release of heterochromatin silencing caused by the absence of the MOM1 silencing factor. RTEL1 is conserved among eukaryotes and plays a key role in resolving DNA secondary structures during DNA replication. Inducing such aberrant DNA structures using DNA cross-linking agents also results in a loss of transcriptional silencing. These findings uncover unappreciated roles for RTEL1 in transcriptional silencing and in stabilizing DNA methylation and H3K27me3 patterns.
Collapse
Affiliation(s)
- Margaux Olivier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Amy Hesketh
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Marie-Noëlle Pouch-Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Thierry Pélissier
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| | - Ying Huang
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université d’Évry, F-91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, F-75006 Paris, France
- Institut Universitaire de France (IUF), France
| | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France
| |
Collapse
|
49
|
Franco-Echevarría E, Nielsen M, Schulten A, Cheema J, Morgan TE, Bienz M, Dean C. Distinct accessory roles of Arabidopsis VEL proteins in Polycomb silencing. Genes Dev 2023; 37:801-817. [PMID: 37734835 PMCID: PMC7615239 DOI: 10.1101/gad.350814.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Polycomb repressive complex 2 (PRC2) mediates epigenetic silencing of target genes in animals and plants. In Arabidopsis, PRC2 is required for the cold-induced epigenetic silencing of the FLC floral repressor locus to align flowering with spring. During this process, PRC2 relies on VEL accessory factors, including the constitutively expressed VRN5 and the cold-induced VIN3. The VEL proteins are physically associated with PRC2, but their individual functions remain unclear. Here, we show an intimate association between recombinant VRN5 and multiple components within a reconstituted PRC2, dependent on a compact conformation of VRN5 central domains. Key residues mediating this compact conformation are conserved among VRN5 orthologs across the plant kingdom. In contrast, VIN3 interacts with VAL1, a transcriptional repressor that binds directly to FLC These associations differentially affect their role in H3K27me deposition: Both proteins are required for H3K27me3, but only VRN5 is necessary for H3K27me2. Although originally defined as vernalization regulators, VIN3 and VRN5 coassociate with many targets in the Arabidopsis genome that are modified with H3K27me3. Our work therefore reveals the distinct accessory roles for VEL proteins in conferring cold-induced silencing on FLC, with broad relevance for PRC2 targets generally.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Mathias Nielsen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Anna Schulten
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Tomos E Morgan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Caroline Dean
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
50
|
Wenger A, Biran A, Alcaraz N, Redó-Riveiro A, Sell AC, Krautz R, Flury V, Reverón-Gómez N, Solis-Mezarino V, Völker-Albert M, Imhof A, Andersson R, Brickman JM, Groth A. Symmetric inheritance of parental histones governs epigenome maintenance and embryonic stem cell identity. Nat Genet 2023; 55:1567-1578. [PMID: 37666988 PMCID: PMC10484787 DOI: 10.1038/s41588-023-01476-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
Modified parental histones are segregated symmetrically to daughter DNA strands during replication and can be inherited through mitosis. How this may sustain the epigenome and cell identity remains unknown. Here we show that transmission of histone-based information during DNA replication maintains epigenome fidelity and embryonic stem cell plasticity. Asymmetric segregation of parental histones H3-H4 in MCM2-2A mutants compromised mitotic inheritance of histone modifications and globally altered the epigenome. This included widespread spurious deposition of repressive modifications, suggesting elevated epigenetic noise. Moreover, H3K9me3 loss at repeats caused derepression and H3K27me3 redistribution across bivalent promoters correlated with misexpression of developmental genes. MCM2-2A mutation challenged dynamic transitions in cellular states across the cell cycle, enhancing naïve pluripotency and reducing lineage priming in G1. Furthermore, developmental competence was diminished, correlating with impaired exit from pluripotency. Collectively, this argues that epigenetic inheritance of histone modifications maintains a correctly balanced and dynamic chromatin landscape able to support mammalian cell differentiation.
Collapse
Affiliation(s)
- Alice Wenger
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Lexogen GmbH, Vienna, Austria
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alba Redó-Riveiro
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Annika Charlotte Sell
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Robert Krautz
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Moritz Völker-Albert
- EpiQMAx GmbH, Planegg, Germany
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Axel Imhof
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Robin Andersson
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|