1
|
Guo Y, Huang H, Yang L, Shen Q, Liu Z, Wang Q, Chen S, Pan J, Zhai H, Li Y, Xu L, Yu C, Xu C. Amyloid precursor protein promotes MASH progression by upregulating death receptor 6-mediated hepatocyte apoptosis. J Biol Chem 2025; 301:108285. [PMID: 39938799 PMCID: PMC11923821 DOI: 10.1016/j.jbc.2025.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a complicated process that contributes to end-stage liver disease and, eventually, hepatocellular carcinoma. Hepatocyte apoptosis, a well-defined form of cell death in MASH, is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in MASH remain largely unclear. We explored the proapoptotic effect of hepatocyte amyloid precursor protein (APP) in MASH. C57BL/6J mice were fed a Western diet plus sugar water, a high-fat high-fructose diet, or a methionine and choline deficiency diet to induce MASH. APP expression was analyzed in murine MASH specimens. App-/- mice and mice with adeno-associated virus-mediated APP overexpression were established to study the role of APP in MASH. Palmitic acid was used to mimic lipotoxicity-induced MASH in AML12 cells. We identified a dramatic increase in APP expression in hepatocytes of patients with MASH and three different mouse models. Suppression of APP attenuated hepatic steatosis, inflammation, and fibrosis in MASH mice, whereas its restoration activated MASH pathogenesis. Furthermore, increased death receptor 6 (DR6) was observed in MASH mouse livers. Mechanistically, APP interacted with DR6, a tumor necrosis factor receptor, to facilitate DR6 expression and activation. Activated DR6 increased apoptosis in hepatocytes, which was associated with an increase in proapoptotic effectors (cleaved-caspase 3/7). Our results highlight the role of the APP-DR6 axis in hepatocyte apoptosis, inflammation activation, and fibrosis formation in murine MASH model, providing new insights into therapeutic strategies for MASH.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hangkai Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qien Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhening Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinqiu Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghui Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Pan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoliang Zhai
- Department of Gastroenterology, Haining Branch, The First Affiliated Hospital, Zhejiang University School of Medicine, Haining, China
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Huang X, Qi J, Su Y, Zhou Y, Wang Q, Huang T, Xue D, Zeng Y, Verkhratsky A, Zhou B, Chen H, Yi C. Endothelial DR6 in blood-brain barrier malfunction in Alzheimer's disease. Cell Death Dis 2024; 15:258. [PMID: 38609388 PMCID: PMC11014957 DOI: 10.1038/s41419-024-06639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The impairment of the blood-brain barrier (BBB) has been increasingly recognised as a critical element in the early pathogenesis of Alzheimer's disease (AD), prompting a focus on brain endothelial cells (BECs), which serve as the primary constituents of the BBB. Death receptor 6 (DR6) is highly expressed in brain vasculature and acts downstream of the Wnt/β-catenin pathway to promote BBB formation during development. Here, we found that brain endothelial DR6 levels were significantly reduced in a murine model of AD (APPswe/PS1dE9 mice) at the onset of amyloid-β (Aβ) accumulation. Toxic Aβ25-35 oligomer treatment recapitulated the reduced DR6 in cultured BECs. We further showed that suppressing DR6 resulted in BBB malfunction in the presence of Aβ25-35 oligomers. In contrast, overexpressing DR6 increased the level of BBB functional proteins through the activation of the Wnt/β-catenin and JNK pathways. More importantly, DR6 overexpression in BECs was sufficient to rescue BBB dysfunction in vitro. In conclusion, our findings provide new insight into the role of endothelial DR6 in AD pathogenesis, highlighting its potential as a therapeutic target to tackle BBB dysfunction in early-stage AD progression.
Collapse
Affiliation(s)
- Xiaomin Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhua Qi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ying Zhou
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Qi Wang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Taida Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dongdong Xue
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yunxin Zeng
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
3
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
5
|
Gomari MM, Abkhiz S, Pour TG, Lotfi E, Rostami N, Monfared FN, Ghobari B, Mosavi M, Alipour B, Dokholyan NV. Peptidomimetics in cancer targeting. Mol Med 2022; 28:146. [PMID: 36476230 PMCID: PMC9730693 DOI: 10.1186/s10020-022-00577-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
The low efficiency of treatment strategies is one of the main obstacles to developing cancer inhibitors. Up to now, various classes of therapeutics have been developed to inhibit cancer progression. Peptides due to their small size and easy production compared to proteins are highly regarded in designing cancer vaccines and oncogenic pathway inhibitors. Although peptides seem to be a suitable therapeutic option, their short lifespan, instability, and low binding affinity for their target have not been widely applicable against malignant tumors. Given the peptides' disadvantages, a new class of agents called peptidomimetic has been introduced. With advances in physical chemistry and biochemistry, as well as increased knowledge about biomolecule structures, it is now possible to chemically modify peptides to develop efficient peptidomimetics. In recent years, numerous studies have been performed to the evaluation of the effectiveness of peptidomimetics in inhibiting metastasis, angiogenesis, and cancerous cell growth. Here, we offer a comprehensive review of designed peptidomimetics to diagnose and treat cancer.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Abkhiz
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taha Ghantab Pour
- grid.411746.10000 0004 4911 7066Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Lotfi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Rostami
- grid.411425.70000 0004 0417 7516Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Fatemeh Nafe Monfared
- grid.411705.60000 0001 0166 0922Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ghobari
- grid.412831.d0000 0001 1172 3536Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mona Mosavi
- grid.411746.10000 0004 4911 7066Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behruz Alipour
- grid.411705.60000 0001 0166 0922Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikolay V. Dokholyan
- grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA USA
| |
Collapse
|
6
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France
| |
Collapse
|
7
|
Ren X, Lin Z, Yuan W. A Structural and Functional Perspective of Death Receptor 6. Front Pharmacol 2022; 13:836614. [PMID: 35401228 PMCID: PMC8987162 DOI: 10.3389/fphar.2022.836614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a member of the tumor necrosis factor receptor superfamily (TNFRSF), death receptor 6 (DR6) has a similar structural architecture to other family members. The extracellular region of DR6 contains four cysteine-rich domains, followed by a single-pass transmembrane domain and an intracellular region. Since its discovery, DR6 has become an orphan receptor ubiquitously expressed to transduce unique signaling pathways. Although the free ectodomains of β-amyloid precursor protein (APP) can bind to DR6 to induce apoptotic signals, the natural ligands of DR6 still remain largely unknown. In this review, we focus on recent research progress of structural and functional studies on DR6 for better understanding DR6-mediated signaling and the treatment of DR6-related diseases.
Collapse
Affiliation(s)
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Wang L, Shen Q, Liao H, Fu H, Wang Q, Yu J, Zhang W, Chen C, Dong Y, Yang X, Guo Q, Zhang J, Zhang J, Zhang W, Lin H, Duan Y. Multi-Arm PEG/Peptidomimetic Conjugate Inhibitors of DR6/APP Interaction Block Hematogenous Tumor Cell Extravasation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003558. [PMID: 34105277 PMCID: PMC8188212 DOI: 10.1002/advs.202003558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/16/2021] [Indexed: 05/05/2023]
Abstract
The binding of amyloid precursor protein (APP) expressed on tumor cells to death receptor 6 (DR6) could initiate the necroptosis pathway, which leads to necroptotic cell death of vascular endothelial cells (ECs) and results in tumor cells (TCs) extravasation and metastasis. This study reports the first inhibitor of DR6/APP interaction as a novel class of anti-hematogenous metastatic agent. By rationally utilizing three combined strategies including selection based on phage display library, d-retro-inverso modification, and multiple conjugation of screened peptidomimetic with 4-arm PEG, the polymer-peptidomimetic conjugate PEG-tAHP-DRI (tetra-(D-retro-inverso isomer of AHP-12) substitued 4-arm PEG5k ) is obtained as the most promising agent with the strongest binding potency (KD = 51.12 × 10-9 m) and excellent pharmacokinetic properties. Importantly, PEG-tAHP-DRI provides efficient protection against TC-induced ECs necroptosis both in vitro and in vivo. Moreover, this ligand exhibits prominent anti-hematogenous metastatic activity in serval different metastatic mouse models (B16F10, 4T1, CT26, and spontaneous lung metastasis of 4T1 orthotopic tumor model) and displays no apparent detrimental effects in preliminary safety evaluation. Collectively, this study demonstrates the feasibility of exploiting DR6/APP interaction to regulate hematogenous tumor cells transendothelial migration and provides PEG-tAHP-DRI as a novel and promising inhibitor of DR6/APP interaction for developments of anti-hematogenous metastatic therapies.
Collapse
Affiliation(s)
- Liting Wang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Qing Shen
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Hongze Liao
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Jian Zhang
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Wei Zhang
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Houwen Lin
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| |
Collapse
|
9
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
10
|
Guo Y, Wang Q, Chen S, Xu C. Functions of amyloid precursor protein in metabolic diseases. Metabolism 2021; 115:154454. [PMID: 33248065 DOI: 10.1016/j.metabol.2020.154454] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Amyloid precursor protein (APP) is a transmembrane precursor protein that is widely expressed in the central nervous system and peripheral tissues in the liver and pancreas, adipose tissue, and myotubes. APP can be cleaved by proteases in two different ways to produce a variety of short peptides, each with different physiological properties and functions. APP peptides generated by non-amyloidogenic processing can positively influence metabolism, while the peptides produced by amyloidogenic processing have the opposite effects. Here, we summarize the regulatory effects of APP and its cleavage peptides on metabolism in the central nervous system and peripheral tissues. In addition, abnormal expression and function of APP and APP-derived peptides are associated with metabolic diseases, such as type 2 diabetes, obesity, non-alcoholic fatty liver disease, and cardiovascular disease, and cancers. Pharmacological intervention of APP function or reduction of the production of peptides derived from amyloidogenic processing may be effective strategies for the prevention and treatment of Alzheimer's disease, and they may also provide new guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qinqiu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shenghui Chen
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
11
|
Mishra V, Re DB, Le Verche V, Alvarez MJ, Vasciaveo A, Jacquier A, Doulias PT, Greco TM, Nizzardo M, Papadimitriou D, Nagata T, Rinchetti P, Perez-Torres EJ, Politi KA, Ikiz B, Clare K, Than ME, Corti S, Ischiropoulos H, Lotti F, Califano A, Przedborski S. Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow. Nat Commun 2020; 11:5579. [PMID: 33149111 PMCID: PMC7642391 DOI: 10.1038/s41467-020-19177-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2020] [Indexed: 12/31/2022] Open
Abstract
Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Networks (SEARCHIN) to identify ligand-mediated interactions between distinct cellular compartments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication mechanisms.
Collapse
Affiliation(s)
- Vartika Mishra
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Spark Therapeutics, 3737 Market Street, Philadelphia, PA, 19104, USA
| | - Diane B Re
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Virginia Le Verche
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Center for Gene Therapy, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
- DarwinHealth Inc., New York, NY, 10032, USA
| | - Alessandro Vasciaveo
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Arnaud Jacquier
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Paschalis-Tomas Doulias
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd M Greco
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Monica Nizzardo
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Dimitra Papadimitriou
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Henry Dunant Hospital, BRFAA, Athens, Greece
| | - Tetsuya Nagata
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Paola Rinchetti
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Eduardo J Perez-Torres
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
| | - Kristin A Politi
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
| | - Burcin Ikiz
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
| | - Kevin Clare
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
- New York Medical College, Valhalla, NY, 10595, USA
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany
| | - Stefania Corti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Harry Ischiropoulos
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Francesco Lotti
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA
| | - Andrea Califano
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA.
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Serge Przedborski
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
- Center for Motor Neuron Biology and Diseases, Columbia University, New York, NY, 10032, USA.
- Departments of Neurology and Neuroscience, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Li Z, Yuan W, Lin Z. Functional roles in cell signaling of adaptor protein TRADD from a structural perspective. Comput Struct Biotechnol J 2020; 18:2867-2876. [PMID: 33163147 PMCID: PMC7593343 DOI: 10.1016/j.csbj.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
TRADD participates in various receptor signaling pathways and plays vital roles in many biological activities, including cell survival and apoptosis, in different cellular contexts. TRADD has two distinct functional domains, a TRAF-binding domain at the N-terminus and a death domain (DD) at the C-terminus. The TRAF binding domain of TRADD folds into an α-β plait topology and is mainly responsible for binding TRAF2, while the TRADD-DD can interact with a variety of DD-containing proteins, including receptors and intracellular signaling molecules. After activation of specific receptors such as TNFR1 and DR3, TRADD can bind to the receptor through DD-DD interaction, creating a membrane-proximal platform for the recruitment of downstream molecules to propagate cellular signals. In this review, we highlight recent advances in the studies of the structural mechanism of TRADD adaptor functions for NF-κB activation and apoptosis induction. We also provide suggestions for future structure research related to TRADD-mediated signaling pathways.
Collapse
Affiliation(s)
- Zhen Li
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China.,Department of Physiology, National University of Singapore, 117456, Singapore.,Life Sciences Institute, National University of Singapore, 117456, Singapore
| |
Collapse
|
13
|
Martínez-Mármol R, Mohannak N, Qian L, Wang T, Gormal RS, Ruitenberg MJ, Vanhaesebroeck B, Coulson EJ, Meunier FA. p110δ PI3-Kinase Inhibition Perturbs APP and TNFα Trafficking, Reduces Plaque Burden, Dampens Neuroinflammation, and Prevents Cognitive Decline in an Alzheimer's Disease Mouse Model. J Neurosci 2019; 39:7976-7991. [PMID: 31363064 PMCID: PMC6774409 DOI: 10.1523/jneurosci.0674-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is associated with the cleavage of the amyloid precursor protein (APP) to produce the toxic amyloid-β (Aβ) peptide. Accumulation of Aβ, together with the concomitant inflammatory response, ultimately leads to neuronal death and cognitive decline. Despite AD progression being underpinned by both neuronal and immunological components, therapeutic strategies based on dual targeting of these systems remains unexplored. Here, we report that inactivation of the p110δ isoform of phosphoinositide 3-kinase (PI3K) reduces anterograde axonal trafficking of APP in hippocampal neurons and dampens secretion of the inflammatory cytokine tumor necrosis factor-alpha by microglial cells in the familial AD APPswe/PS1ΔE9 (APP/PS1) mouse model. Moreover, APP/PS1 mice with kinase-inactive PI3Kδ (δD910A) had reduced Aβ peptides levels and plaques in the brain and an abrogated inflammatory response compared with APP/PS1 littermates. Mechanistic investigations reveal that PI3Kδ inhibition decreases the axonal transport of APP by eliciting the formation of highly elongated tubular-shaped APP-containing carriers, reducing the levels of secreted Aβ peptide. Importantly, APP/PS1/δD910A mice exhibited no spatial learning or memory deficits. Our data highlight inhibition of PI3Kδ as a new approach to protect against AD pathology due to its dual action of dampening microglial-dependent neuroinflammation and reducing plaque burden by inhibition of neuronal APP trafficking and processing.SIGNIFICANCE STATEMENT During Alzheimer's disease (AD), the accumulation of the toxic amyloid-β (Aβ) peptide in plaques is associated with a chronic excessive inflammatory response. Uncovering new drug targets that simultaneously reduce both Aβ plaque load and neuroinflammation holds therapeutic promise. Using a combination of genetic and pharmacological approaches, we found that the p110δ isoform of phosphoinositide 3-kinase (PI3K) is involved in anterograde trafficking of the amyloid precursor protein in neurons and in the secretion of tumor necrosis factor-alpha from microglial cells. Genetic inactivation of PI3Kδ reduces Aβ plaque deposition and abrogates the inflammatory response, resulting in a complete rescue of the life span and spatial memory performance. We conclude that inhibiting PI3Kδ represents a novel therapeutic approach to ameliorate AD pathology by dampening plaque accumulation and microglial-dependent neuroinflammation.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Nika Mohannak
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Lei Qian
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia, and
| | - Tong Wang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia, and
| | - Bart Vanhaesebroeck
- Cell Signalling, University College London Cancer Institute, London WC1E 6DD, United Kingdom
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia, and
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,
| |
Collapse
|
14
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
15
|
Hollville E, Deshmukh M. Physiological functions of non-apoptotic caspase activity in the nervous system. Semin Cell Dev Biol 2017; 82:127-136. [PMID: 29199140 DOI: 10.1016/j.semcdb.2017.11.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Caspases are cysteine proteases that play important and well-defined roles in apoptosis and inflammation. Increasing evidence point to alternative functions of caspases where restricted and localized caspase activation within neurons allows for a variety of non-apoptotic and non-inflammatory processes required for brain development and function. In this review, we highlight sublethal caspase functions in axon and dendrite pruning, neurite outgrowth and dendrite branches formation, as well as in long-term depression and synaptic plasticity. Importantly, as non-apoptotic activity of caspases is often confined in space and time in neurons, we also discuss the mechanisms that restrict caspase activity in order to maintain the neuronal networks in a healthy and functional state.
Collapse
Affiliation(s)
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nat Commun 2017; 8:1522. [PMID: 29142315 PMCID: PMC5688069 DOI: 10.1038/s41467-017-01795-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
While beta-amyloid (Aβ), a classic hallmark of Alzheimer's disease (AD) and dementia, has long been known to be elevated in the human immunodeficiency virus type 1 (HIV-1)-infected brain, why and how Aβ is produced, along with its contribution to HIV-associated neurocognitive disorder (HAND) remains ill-defined. Here, we reveal that the membrane-associated amyloid precursor protein (APP) is highly expressed in macrophages and microglia, and acts as an innate restriction against HIV-1. APP binds the HIV-1 Gag polyprotein, retains it in lipid rafts and blocks HIV-1 virion production and spread. To escape this restriction, Gag promotes secretase-dependent cleavage of APP, resulting in the overproduction of toxic Aβ isoforms. This Gag-mediated Aβ production results in increased degeneration of primary cortical neurons, and can be prevented by γ-secretase inhibitor treatment. Interfering with HIV-1's evasion of APP-mediated restriction also suppresses HIV-1 spread, offering a potential strategy to both treat infection and prevent HAND.
Collapse
|
17
|
Prostaglandin J2 promotes O-GlcNAcylation raising APP processing by α- and β-secretases: relevance to Alzheimer's disease. Neurobiol Aging 2017; 62:130-145. [PMID: 29149631 DOI: 10.1016/j.neurobiolaging.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Regulation of the amyloid precursor protein (APP) processing by α- and β-secretases is of special interest to Alzheimer's disease (AD), as these proteases prevent or mediate amyloid beta formation, respectively. Neuroinflammation is also implicated in AD. Our data demonstrate that the endogenous mediator of inflammation prostaglandin J2 (PGJ2) promotes full-length APP (FL-APP) processing by α- and β-secretases. The decrease in FL-APP was independent of proteasomal, lysosomal, calpain, caspase, and γ-secretase activities. Moreover, PGJ2-treatment promoted cleavage of secreted APP, specifically sAPPα and sAPPβ, generated by α and β-secretase, respectively. Notably, PGJ2-treatment induced caspase-dependent cleavage of sAPPβ. Mechanistically, PGJ2-treatment selectively diminished mature (O- and N-glycosylated) but not immature (N-glycosylated only) FL-APP. PGJ2-treatment also increased the overall levels of protein O-GlcNAcylation, which occurs within the nucleocytoplasmic compartment. It is known that APP undergoes O-GlcNAcylation and that the latter protects proteins from proteasomal degradation. Our results suggest that by increasing protein O-GlcNAcylation levels, PGJ2 renders mature APP less prone to proteasomal degradation, thus shunting APP toward processing by α- and β-secretases.
Collapse
|
18
|
Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18:281-298. [PMID: 28360418 DOI: 10.1038/nrn.2017.29] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid precursor protein (APP) gives rise to the amyloid-β peptide and thus has a key role in the pathogenesis of Alzheimer disease. By contrast, the physiological functions of APP and the closely related APP-like proteins (APLPs) remain less well understood. Studying these physiological functions has been challenging and has required a careful long-term strategy, including the analysis of different App-knockout and Aplp-knockout mice. In this Review, we summarize these findings, focusing on the in vivo roles of APP family members and their processing products for CNS development, synapse formation and function, brain injury and neuroprotection, as well as ageing. In addition, we discuss the implications of APP physiology for therapeutic approaches.
Collapse
|
19
|
Gamage KK, Cheng I, Park RE, Karim MS, Edamura K, Hughes C, Spano AJ, Erisir A, Deppmann CD. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons. Curr Biol 2017; 27:890-896. [PMID: 28285993 DOI: 10.1016/j.cub.2017.01.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022]
Abstract
Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6-/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wlds and Sarm1-/- mice, preserved axons in DR6-/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration.
Collapse
Affiliation(s)
- Kanchana K Gamage
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Irene Cheng
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Rachel E Park
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mardeen S Karim
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Kazusa Edamura
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher Hughes
- Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807, USA
| | - Anthony J Spano
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
20
|
Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 2016; 536:215-8. [DOI: 10.1038/nature19076] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 07/04/2016] [Indexed: 02/08/2023]
|
21
|
Physiological role for amyloid precursor protein in adult experience-dependent plasticity. Proc Natl Acad Sci U S A 2016; 113:7912-7. [PMID: 27354516 DOI: 10.1073/pnas.1604299113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in neural circuits after experience-dependent plasticity are brought about by the formation of new circuits via axonal growth and pruning. Here, using a combination of electrophysiology, adeno-associated virus-delivered fluorescent proteins, analysis of mutant mice, and two-photon microscopy, we follow long-range horizontally projecting axons in primary somatosensory cortex before and after selective whisker plucking. Whisker plucking induces axonal growth and pruning of horizontal projecting axons from neurons located in the surrounding intact whisker representations. We report that amyloid precursor protein is crucial for axonal pruning and contributes in a cell autonomous way.
Collapse
|