1
|
Choi I, Baek I. Single-molecule imaging for investigating the transcriptional control. Mol Cells 2025; 48:100179. [PMID: 39814141 PMCID: PMC11847471 DOI: 10.1016/j.mocell.2025.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Transcription is an essential biological process involving numerous factors, including transcription factors (TFs), which play a central role in this process by binding to their cognate DNA motifs. Although cells must tightly regulate the kinetics of factor association and dissociation during transcription, factor dynamics during transcription remain poorly characterized, primarily because of the reliance on ensemble experiments that average out molecular heterogeneity. Recent advances in single-molecule fluorescence imaging techniques have enabled the exploration of TF dynamics at unprecedented resolution. Findings on the temporal dynamics of individual TFs have challenged classical models and provided new insights into transcriptional regulation. Single-molecule imaging has also elucidated the assembly kinetics of transcription complexes. In this review, we describe the single-molecule fluorescence imaging methods widely used to determine factor dynamics during transcription. We highlight new findings on TF binding to chromatin, TF target search, and the assembly order of transcription complexes. Additionally, we discuss the remaining challenges in achieving a comprehensive understanding of the temporal regulation of transcription.
Collapse
Affiliation(s)
- Insung Choi
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Inwha Baek
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
2
|
Elson EC. Embryo Development in a Stochastic Universe. Bioelectricity 2024; 6:196-203. [PMID: 39372089 PMCID: PMC11447481 DOI: 10.1089/bioe.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Despite the elucidation of the many processes by which a single eukaryotic cell develops into a complex mature organism, it is still puzzling to some biologists how it is that an unvarying, interconnected set of processes becomes coordinated and insulated from a stochastic universe. This article suggests that electromagnetic processes deriving from the chemistry of an organism may provide such coordination. Specifically, the author develops the pacemaker concept, the periodic, autonomous electrical signal to the entire embryo, the result of which, after each pulse, is to alter or enlarge the transcriptome to produce the next level of complexity and maturity of the organism.
Collapse
Affiliation(s)
- Edward C. Elson
- Division of Neuropsychiatry, Microwave Bioeffects and Hazards Laboratory, Walter Reed Army Institute of Research, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Kupkova K, Shetty SJ, Hoffman EA, Bekiranov S, Auble DT. Genome-scale chromatin binding dynamics of RNA Polymerase II general transcription machinery components. EMBO J 2024; 43:1799-1821. [PMID: 38565951 PMCID: PMC11066129 DOI: 10.1038/s44318-024-00089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
A great deal of work has revealed, in structural detail, the components of the preinitiation complex (PIC) machinery required for initiation of mRNA gene transcription by RNA polymerase II (Pol II). However, less-well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining how rates of in vivo RNA synthesis are established. We used competition ChIP in budding yeast to obtain genome-scale estimates of the residence times for five general transcription factors (GTFs): TBP, TFIIA, TFIIB, TFIIE and TFIIF. While many GTF-chromatin interactions were short-lived ( < 1 min), there were numerous interactions with residence times in the range of several minutes. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism, offering a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription.
Collapse
Affiliation(s)
- Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Savera J Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Elizabeth A Hoffman
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
4
|
Hwang DW, Maekiniemi A, Singer RH, Sato H. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat Rev Genet 2024; 25:272-285. [PMID: 38195868 DOI: 10.1038/s41576-023-00684-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.
Collapse
Affiliation(s)
- Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anna Maekiniemi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Hanae Sato
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
5
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
6
|
Hannon CE, Eisen MB. Intrinsic protein disorder is insufficient to drive subnuclear clustering in embryonic transcription factors. eLife 2024; 12:RP88221. [PMID: 38275292 PMCID: PMC10945700 DOI: 10.7554/elife.88221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Modern microscopy has revealed that core nuclear functions, including transcription, replication, and heterochromatin formation, occur in spatially restricted clusters. Previous work from our lab has shown that subnuclear high-concentration clusters of transcription factors may play a role in regulating RNA synthesis in the early Drosophila embryo. A nearly ubiquitous feature of eukaryotic transcription factors is that they contain intrinsically disordered regions (IDRs) that often arise from low complexity amino acid sequences within the protein. It has been proposed that IDRs within transcription factors drive co-localization of transcriptional machinery and target genes into high-concentration clusters within nuclei. Here, we test that hypothesis directly, by conducting a broad survey of the subnuclear localization of IDRs derived from transcription factors. Using a novel algorithm to identify IDRs in the Drosophila proteome, we generated a library of IDRs from transcription factors expressed in the early Drosophila embryo. We used this library to perform a high-throughput imaging screen in Drosophila Schneider-2 (S2) cells. We found that while subnuclear clustering does not occur when the majority of IDRs are expressed alone, it is frequently seen in full-length transcription factors. These results are consistent in live Drosophila embryos, suggesting that IDRs are insufficient to drive the subnuclear clustering behavior of transcription factors. Furthermore, the clustering of transcription factors in living embryos was unaffected by the deletion of IDR sequences. Our results demonstrate that IDRs are unlikely to be the primary molecular drivers of the clustering observed during transcription, suggesting a more complex and nuanced role for these disordered protein sequences.
Collapse
Affiliation(s)
- Colleen E Hannon
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
| | - Michael B Eisen
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
| |
Collapse
|
7
|
Randolph K, Hyder U, Challa A, Perez E, D’Orso I. Functional Analysis of KAP1/TRIM28 Requirements for HIV-1 Transcription Activation. Viruses 2024; 16:116. [PMID: 38257816 PMCID: PMC10819576 DOI: 10.3390/v16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
HIV-1 latency maintenance and reactivation are regulated by several viral and host factors. One such factor is Krüppel-associated box (KRAB)-associated protein 1 (KAP1: also named TRIM28 or TIF1β). While initial studies have revealed KAP1 to be a positive regulator of latency reversal in transformed and primary CD4+ T cells, subsequent studies have proposed KAP1 to be a repressor required for latency maintenance. Given this discrepancy, in this study, we re-examine KAP1 transcription regulatory functions using a chemical genetics strategy to acutely deplete KAP1 expression to avoid the accumulation of indirect effects. Notably, KAP1 acute loss partially decreased HIV-1 promoter activity in response to activating signals, a function that can be restored upon complementation with exogenous KAP1, thus revealing that KAP1-mediated activation is on target. By combining comprehensive KAP1 domain deletion and mutagenesis in a cell-based reporter assay, we genetically defined the RING finger domain and an Intrinsically Disordered Region as key activating features. Together, our study solidifies the notion that KAP1 activates HIV-1 transcription by exploiting its multi-domain protein arrangement via previously unknown domains and functions.
Collapse
Affiliation(s)
| | | | | | | | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.R.); (U.H.)
| |
Collapse
|
8
|
O'Brien MJ, Ansari A. Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140968. [PMID: 37863410 PMCID: PMC10872477 DOI: 10.1016/j.bbapap.2023.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Although TFIIB is widely regarded as an initiation factor, recent reports have implicated it in multiple aspects of eukaryotic transcription. To investigate the broader role of TFIIB in transcription, we performed quantitative proteomic analysis of yeast TFIIB. We purified two different populations of TFIIB; one from soluble cell lysate, which is not engaged in transcription, and the other from the chromatin fraction which yields the transcriptionally active form of the protein. TFIIB purified from the chromatin exhibits several interactions that explain its non-canonical roles in transcription. RNAPII, TFIIF and TFIIH were the only components of the preinitiation complex with a significant presence in chromatin TFIIB. A notable feature was enrichment of all subunits of CF1 and Rat1 3' end processing-termination complexes in chromatin-TFIIB preparation. Subunits of the CPF termination complex were also detected in both chromatin and soluble derived TFIIB preparations. These results may explain the presence of TFIIB at the 3' end of genes during transcription as well as its role in promoter-termination interaction.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America
| | - Athar Ansari
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
9
|
Kwan JZ, Nguyen TF, Teves SS. TBP facilitates RNA Polymerase I transcription following mitosis. RNA Biol 2024; 21:42-51. [PMID: 38958280 PMCID: PMC11225926 DOI: 10.1080/15476286.2024.2375097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The TATA-box binding protein (TBP) is the sole transcription factor common in the initiation complexes of the three major eukaryotic RNA Polymerases (Pol I, II and III). Although TBP is central to transcription by the three RNA Pols in various species, the emergence of TBP paralogs throughout evolution has expanded the complexity in transcription initiation. Furthermore, recent studies have emerged that questioned the centrality of TBP in mammalian cells, particularly in Pol II transcription, but the role of TBP and its paralogs in Pol I transcription remains to be re-evaluated. In this report, we show that in murine embryonic stem cells TBP localizes onto Pol I promoters, whereas the TBP paralog TRF2 only weakly associates to the Spacer Promoter of rDNA, suggesting that it may not be able to replace TBP for Pol I transcription. Importantly, acute TBP depletion does not fully disrupt Pol I occupancy or activity on ribosomal RNA genes, but TBP binding in mitosis leads to efficient Pol I reactivation following cell division. These findings provide a more nuanced role for TBP in Pol I transcription in murine embryonic stem cells.
Collapse
Affiliation(s)
- James Z.J. Kwan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Thomas F. Nguyen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sheila S. Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Malik S, Roeder RG. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat Rev Genet 2023; 24:767-782. [PMID: 37532915 PMCID: PMC11088444 DOI: 10.1038/s41576-023-00630-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
The RNA polymerase II (Pol II) pre-initiation complex (PIC) is a critical node in eukaryotic transcription regulation, and its formation is the major rate-limiting step in transcriptional activation. Diverse cellular signals borne by transcriptional activators converge on this large, multiprotein assembly and are transduced via intermediary factors termed coactivators. Cryogenic electron microscopy, multi-omics and single-molecule approaches have recently offered unprecedented insights into both the structure and cellular functions of the PIC and two key PIC-associated coactivators, Mediator and TFIID. Here, we review advances in our understanding of how Mediator and TFIID interact with activators and affect PIC formation and function. We also discuss how their functions are influenced by their chromatin environment and selected cofactors. We consider how, through its multifarious interactions and functionalities, a Mediator-containing and TFIID-containing PIC can yield an integrated signal processing system with the flexibility to determine the unique temporal and spatial expression pattern of a given gene.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry & Molecular Biology, The Rockefeller University, New York, NY, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry & Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
11
|
Wu R, Zhou B, Wang W, Liu F. Regulatory Mechanisms for Transcriptional Bursting Revealed by an Event-Based Model. RESEARCH (WASHINGTON, D.C.) 2023; 6:0253. [PMID: 39290237 PMCID: PMC11407585 DOI: 10.34133/research.0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/01/2023] [Indexed: 09/19/2024]
Abstract
Gene transcription often occurs in discrete bursts, and it can be difficult to deduce the underlying regulatory mechanisms for transcriptional bursting with limited experimental data. Here, we categorize numerous states of single eukaryotic genes and identify 6 essential transcriptional events, each comprising a series of state transitions; transcriptional bursting is characterized as a sequence of 4 events, capable of being organized in various configurations, in addition to the beginning and ending events. By associating transcriptional kinetics with mean durations and recurrence probabilities of the events, we unravel how transcriptional bursting is modulated by various regulators including transcription factors. Through analytical derivation and numerical simulation, this study reveals key state transitions contributing to transcriptional sensitivity and specificity, typical characteristics of burst profiles, global constraints on intrinsic transcriptional noise, major regulatory modes in individual genes and across the genome, and requirements for fast gene induction upon stimulation. It is illustrated how biochemical reactions on different time scales are modulated to separately shape the durations and ordering of the events. Our results suggest that transcriptional patterns are essentially controlled by a shared set of transcriptional events occurring under specific promoter architectures and regulatory modes, the number of which is actually limited.
Collapse
Affiliation(s)
- Renjie Wu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Bangyan Zhou
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
12
|
Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1787. [PMID: 37042458 PMCID: PMC10524090 DOI: 10.1002/wrna.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Cellular machineries that drive and regulate gene expression often rely on the coordinated assembly and interaction of a multitude of proteins and RNA together called ribonucleoprotein complexes (RNPs). As such, it is challenging to fully reconstitute these cellular machines recombinantly and gain mechanistic understanding of how they operate and are regulated within the complex environment that is the cell. One strategy for overcoming this challenge is to perform single molecule fluorescence microscopy studies within crude or recombinantly supplemented cell extracts. This strategy enables elucidation of the interaction and kinetic behavior of specific fluorescently labeled biomolecules within RNPs under conditions that approximate native cellular environments. In this review, we describe single molecule fluorescence microcopy approaches that dissect RNP-driven processes within cellular extracts, highlighting general strategies used in these methods. We further survey biological advances in the areas of pre-mRNA splicing and transcription regulation that have been facilitated through this approach. Finally, we conclude with a summary of practical considerations for the implementation of the featured approaches to facilitate their broader future implementation in dissecting the mechanisms of RNP-driven cellular processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Elizabeth Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas Schmidt
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameya P Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Kupkova K, Shetty SJ, Hoffman EA, Bekiranov S, Auble DT. Genome-scale chromatin interaction dynamic measurements for key components of the RNA Pol II general transcription machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550532. [PMID: 37546819 PMCID: PMC10402067 DOI: 10.1101/2023.07.25.550532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background A great deal of work has revealed in structural detail the components of the machinery responsible for mRNA gene transcription initiation. These include the general transcription factors (GTFs), which assemble at promoters along with RNA Polymerase II (Pol II) to form a preinitiation complex (PIC) aided by the activities of cofactors and site-specific transcription factors (TFs). However, less well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining on a mechanistic level how rates of in vivo RNA synthesis are established and how cofactors and TFs impact them. Results We used competition ChIP to obtain genome-scale estimates of the residence times for five GTFs: TBP, TFIIA, TFIIB, TFIIE and TFIIF in budding yeast. While many GTF-chromatin interactions were short-lived (< 1 min), there were numerous interactions with residence times in the several minutes range. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. Conclusions The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism and therefore offer a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription. The relationships between gene function and GTF dynamics suggest that shared sets of TFs tune PIC assembly kinetics to ensure appropriate levels of expression.
Collapse
Affiliation(s)
- Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Public Health Genomics, University of Virginia Health System, Charlottesville, VA 22908
| | - Savera J. Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - Elizabeth A. Hoffman
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
14
|
Dahal L, Walther N, Tjian R, Darzacq X, Graham TG. Single-molecule tracking (SMT): a window into live-cell transcription biochemistry. Biochem Soc Trans 2023; 51:557-569. [PMID: 36876879 PMCID: PMC10212543 DOI: 10.1042/bst20221242] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
How molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus. We also describe what SMT cannot yet tell us and how new technical advances seek to overcome its limitations. This ongoing progress will be imperative to address outstanding questions about how dynamic molecular machines function in live cells.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Nike Walther
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| |
Collapse
|
15
|
Loell K, Wu Y, Staller MV, Cohen B. Activation domains can decouple the mean and noise of gene expression. Cell Rep 2022; 40:111118. [PMID: 35858548 PMCID: PMC9912357 DOI: 10.1016/j.celrep.2022.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Regulatory mechanisms set a gene's average level of expression, but a gene's expression constantly fluctuates around that average. These stochastic fluctuations, or expression noise, play a role in cell-fate transitions, bet hedging in microbes, and the development of chemotherapeutic resistance in cancer. An outstanding question is what regulatory mechanisms contribute to noise. Here, we demonstrate that, for a fixed mean level of expression, strong activation domains (ADs) at low abundance produce high expression noise, while weak ADs at high abundance generate lower expression noise. We conclude that differences in noise can be explained by the interplay between a TF's nuclear concentration and the strength of its AD's effect on mean expression, without invoking differences between classes of ADs. These results raise the possibility of engineering gene expression noise independently of mean levels in synthetic biology contexts and provide a potential mechanism for natural selection to tune the noisiness of gene expression.
Collapse
Affiliation(s)
- Kaiser Loell
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Yawei Wu
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Max V. Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Barak Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.
| |
Collapse
|
16
|
Chen X, Xu Y. Structural insights into assembly of transcription preinitiation complex. Curr Opin Struct Biol 2022; 75:102404. [PMID: 35700575 DOI: 10.1016/j.sbi.2022.102404] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 01/24/2023]
Abstract
RNA polymerase II (Pol II)-mediated transcription in eukaryotic cells starts with assembly of preinitiation complex (PIC) on core promoter, a DNA sequence of ∼100 base pairs. The transcription PIC consists of Pol II and general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. Previous structural studies focused on PIC assembled on TATA box promoters with TFIID replaced by its subunit, TATA box-binding protein (TBP). However, the megadalton TFIID complex is essential for promoter recognition, TBP loading onto promoter, and PIC assembly for almost all Pol II-mediated transcription, especially on the TATA-less promoters, which account for ∼85% of core promoters of human coding genes. The functions of TFIID could not be replaced by TBP. The recent breakthrough in structure determination of TFIID-based PIC complexes in different assembly stages revealed mechanistic insights into PIC assembly on TATA box and TATA-less promotes and provided a framework for further investigation of transcription initiation.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China; Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China; Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
17
|
Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy. Cancers (Basel) 2022; 14:cancers14112649. [PMID: 35681629 PMCID: PMC9179543 DOI: 10.3390/cancers14112649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, the transcriptional response of a panel of radiation responsive genes was monitored over time in blood samples after radiation exposure in vivo. For this aim, cancer patients treated by radiotherapy were recruited after consent forms were obtained. Following the first fraction of radiotherapy, 2 mL blood samples were collected at different time points during the first 24h hours (before the second fraction was delivered) and at mid and end of treatment. Amongst the 9 genes studied, the gene FDXR stood out as the most sensitive and responsive to the low dose of radiation received from the localised radiation treatment by the circulating white blood cells. The activation of FDXR was found to depend on the volume of the body exposed with a peak of expression around 8–9 hours after irradiation was delivered. Finally results obtained ex vivo confirmed the results obtained in vivo. Abstract External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6–8, 16–18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038–0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6–8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors’ blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes.
Collapse
|
18
|
de Jonge WJ, Patel HP, Meeussen JVW, Lenstra TL. Following the tracks: how transcription factor binding dynamics control transcription. Biophys J 2022; 121:1583-1592. [PMID: 35337845 PMCID: PMC9117886 DOI: 10.1016/j.bpj.2022.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Transcription, the process of copying genetic information from DNA to messenger RNA, is regulated by sequence-specific DNA binding proteins known as transcription factors (TFs). Recent advances in single-molecule tracking (SMT) technologies have enabled visualization of individual TF molecules as they diffuse and interact with the DNA in the context of living cells. These SMT studies have uncovered multiple populations of DNA binding events characterized by their distinctive DNA residence times. In this perspective, we review recent insights into how these residence times relate to specific and non-specific DNA binding, as well as the contribution of TF domains on the DNA binding dynamics. We discuss different models that aim to link transient DNA binding by TFs to bursts of transcription and present an outlook for how future advances in microscopy development may broaden our understanding of the dynamics of the molecular steps that underlie transcription activation.
Collapse
Affiliation(s)
- Wim J de Jonge
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Cassaro CJ, Uphoff S. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells. Methods Mol Biol 2022; 2476:191-208. [PMID: 35635706 DOI: 10.1007/978-1-0716-2221-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA-binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the genetic engineering and fluorescent labeling of strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types.
Collapse
Affiliation(s)
- Chloé J Cassaro
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
21
|
Abstract
To predict transcription, one needs a mechanistic understanding of how the numerous required transcription factors (TFs) explore the nuclear space to find their target genes, assemble, cooperate, and compete with one another. Advances in fluorescence microscopy have made it possible to visualize real-time TF dynamics in living cells, leading to two intriguing observations: first, most TFs contact chromatin only transiently; and second, TFs can assemble into clusters through their intrinsically disordered regions. These findings suggest that highly dynamic events and spatially structured nuclear microenvironments might play key roles in transcription regulation that are not yet fully understood. The emerging model is that while some promoters directly convert TF-binding events into on/off cycles of transcription, many others apply complex regulatory layers that ultimately lead to diverse phenotypic outputs. Cracking this kinetic code is an ongoing and challenging task that is made possible by combining innovative imaging approaches with biophysical models.
Collapse
Affiliation(s)
- Feiyue Lu
- Institute for Systems Genetics and Cell Biology Department, NYU School of Medicine, New York, New York 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics and Cell Biology Department, NYU School of Medicine, New York, New York 10016, USA
| |
Collapse
|
22
|
Bhat P, Honson D, Guttman M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol 2021; 22:653-670. [PMID: 34341548 DOI: 10.1038/s41580-021-00387-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Gene regulation requires the dynamic coordination of hundreds of regulatory factors at precise genomic and RNA targets. Although many regulatory factors have specific affinity for their nucleic acid targets, molecular diffusion and affinity models alone cannot explain many of the quantitative features of gene regulation in the nucleus. One emerging explanation for these quantitative properties is that DNA, RNA and proteins organize within precise, 3D compartments in the nucleus to concentrate groups of functionally related molecules. Recently, nucleic acids and proteins involved in many important nuclear processes have been shown to engage in cooperative interactions, which lead to the formation of condensates that partition the nucleus. In this Review, we discuss an emerging perspective of gene regulation, which moves away from classic models of stoichiometric interactions towards an understanding of how spatial compartmentalization can lead to non-stoichiometric molecular interactions and non-linear regulatory behaviours. We describe key mechanisms of nuclear compartment formation, including emerging roles for non-coding RNAs in facilitating their formation, and discuss the functional role of nuclear compartments in transcription regulation, co-transcriptional and post-transcriptional RNA processing, and higher-order chromatin regulation. More generally, we discuss how compartmentalization may explain important quantitative aspects of gene regulation.
Collapse
Affiliation(s)
- Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Drew Honson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
23
|
Nguyen VQ, Ranjan A, Liu S, Tang X, Ling YH, Wisniewski J, Mizuguchi G, Li KY, Jou V, Zheng Q, Lavis LD, Lionnet T, Wu C. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol Cell 2021; 81:3560-3575.e6. [PMID: 34375585 PMCID: PMC8420877 DOI: 10.1016/j.molcel.2021.07.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Transcription initiation by RNA polymerase II (RNA Pol II) requires preinitiation complex (PIC) assembly at gene promoters. In the dynamic nucleus, where thousands of promoters are broadly distributed in chromatin, it is unclear how multiple individual components converge on any target to establish the PIC. Here we use live-cell, single-molecule tracking in S. cerevisiae to visualize constrained exploration of the nucleoplasm by PIC components and Mediator's key role in guiding this process. On chromatin, TFIID/TATA-binding protein (TBP), Mediator, and RNA Pol II instruct assembly of a short-lived PIC, which occurs infrequently but efficiently within a few seconds on average. Moreover, PIC exclusion by nucleosome encroachment underscores regulated promoter accessibility by chromatin remodeling. Thus, coordinated nuclear exploration and recruitment to accessible targets underlies dynamic PIC establishment in yeast. Our study provides a global spatiotemporal model for transcription initiation in live cells.
Collapse
Affiliation(s)
- Vu Q Nguyen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sheng Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiaona Tang
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yick Hin Ling
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jan Wisniewski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gaku Mizuguchi
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kai Yu Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vivian Jou
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothée Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
Lee CY, Myong S. Probing steps in DNA transcription using single-molecule methods. J Biol Chem 2021; 297:101086. [PMID: 34403697 PMCID: PMC8441165 DOI: 10.1016/j.jbc.2021.101086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
Transcriptional regulation is one of the key steps in determining gene expression. Diverse single-molecule techniques have been applied to characterize the stepwise progression of transcription, yielding complementary results. These techniques include, but are not limited to, fluorescence-based microscopy with single or multiple colors, force measuring and manipulating microscopy using magnetic field or light, and atomic force microscopy. Here, we summarize and evaluate these current methodologies in studying and resolving individual steps in the transcription reaction, which encompasses RNA polymerase binding, initiation, elongation, mRNA production, and termination. We also describe the advantages and disadvantages of each method for studying transcription.
Collapse
Affiliation(s)
- Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, Illinois, USA.
| |
Collapse
|
25
|
Baek I, Friedman LJ, Gelles J, Buratowski S. Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. Mol Cell 2021; 81:3576-3588.e6. [PMID: 34384542 DOI: 10.1016/j.molcel.2021.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023]
Abstract
RNA polymerase II (RNA Pol II) transcription reconstituted from purified factors suggests pre-initiation complexes (PICs) can assemble by sequential incorporation of factors at the TATA box. However, these basal transcription reactions are generally independent of activators and co-activators. To study PIC assembly under more realistic conditions, we used single-molecule microscopy to visualize factor dynamics during activator-dependent reactions in nuclear extracts. Surprisingly, RNA Pol II, TFIIF, and TFIIE can pre-assemble on enhancer-bound activators before loading into PICs, and multiple RNA Pol II complexes can bind simultaneously to create a localized cluster. Unlike TFIIF and TFIIE, TFIIH binding is singular and dependent on the basal promoter. Activator-tethered factors exhibit dwell times on the order of seconds. In contrast, PICs can persist on the order of minutes in the absence of nucleotide triphosphates, although TFIIE remains unexpectedly dynamic even after TFIIH incorporation. Our kinetic measurements lead to a new branched model for activator-dependent PIC assembly.
Collapse
Affiliation(s)
- Inwha Baek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Hoboth P, Šebesta O, Hozák P. How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription. Int J Mol Sci 2021; 22:6694. [PMID: 34206594 PMCID: PMC8269275 DOI: 10.3390/ijms22136694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Classical models of gene expression were built using genetics and biochemistry. Although these approaches are powerful, they have very limited consideration of the spatial and temporal organization of gene expression. Although the spatial organization and dynamics of RNA polymerase II (RNAPII) transcription machinery have fundamental functional consequences for gene expression, its detailed studies have been abrogated by the limits of classical light microscopy for a long time. The advent of super-resolution microscopy (SRM) techniques allowed for the visualization of the RNAPII transcription machinery with nanometer resolution and millisecond precision. In this review, we summarize the recent methodological advances in SRM, focus on its application for studies of the nanoscale organization in space and time of RNAPII transcription, and discuss its consequences for the mechanistic understanding of gene expression.
Collapse
Affiliation(s)
- Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic;
| | - Ondřej Šebesta
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic;
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
27
|
Wan Y, Anastasakis DG, Rodriguez J, Palangat M, Gudla P, Zaki G, Tandon M, Pegoraro G, Chow CC, Hafner M, Larson DR. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 2021; 184:2878-2895.e20. [PMID: 33979654 DOI: 10.1016/j.cell.2021.04.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/12/2020] [Accepted: 04/08/2021] [Indexed: 01/06/2023]
Abstract
The activities of RNA polymerase and the spliceosome are responsible for the heterogeneity in the abundance and isoform composition of mRNA in human cells. However, the dynamics of these megadalton enzymatic complexes working in concert on endogenous genes have not been described. Here, we establish a quasi-genome-scale platform for observing synthesis and processing kinetics of single nascent RNA molecules in real time. We find that all observed genes show transcriptional bursting. We also observe large kinetic variation in intron removal for single introns in single cells, which is inconsistent with deterministic splice site selection. Transcriptome-wide footprinting of the U2AF complex, nascent RNA profiling, long-read sequencing, and lariat sequencing further reveal widespread stochastic recursive splicing within introns. We propose and validate a unified theoretical model to explain the general features of transcription and pervasive stochastic splice site selection.
Collapse
Affiliation(s)
- Yihan Wan
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dimitrios G Anastasakis
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | | | - Murali Palangat
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Prabhakar Gudla
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - George Zaki
- Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mayank Tandon
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gianluca Pegoraro
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Carson C Chow
- Laboratory of Biological Modeling, NIDDK, Bethesda, MD, USA
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| | - Daniel R Larson
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Mylonas C, Lee C, Auld AL, Cisse II, Boyer LA. A dual role for H2A.Z.1 in modulating the dynamics of RNA polymerase II initiation and elongation. Nat Struct Mol Biol 2021; 28:435-442. [PMID: 33972784 DOI: 10.1038/s41594-021-00589-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
RNA polymerase II (RNAPII) pausing immediately downstream of the transcription start site is a critical rate-limiting step for the expression of most metazoan genes. During pause release, RNAPII encounters a highly conserved +1 H2A.Z nucleosome, yet how this histone variant contributes to transcription is poorly understood. Here, using an inducible protein degron system combined with genomic approaches and live cell super-resolution microscopy, we show that H2A.Z.1 modulates RNAPII dynamics across most genes in murine embryonic stem cells. Our quantitative analysis shows that H2A.Z.1 slows the rate of RNAPII pause release and consequently impacts negative elongation factor dynamics as well as nascent transcription. Consequently, H2A.Z.1 also impacts re-loading of the pre-initiation complex components TFIIB and TBP. Altogether, this work provides a critical mechanistic link between H2A.Z.1 and the proper induction of mammalian gene expression programs through the regulation of RNAPII dynamics and pause release.
Collapse
Affiliation(s)
- Constantine Mylonas
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Choongman Lee
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander L Auld
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
29
|
Chen X, Qi Y, Wu Z, Wang X, Li J, Zhao D, Hou H, Li Y, Yu Z, Liu W, Wang M, Ren Y, Li Z, Yang H, Xu Y. Structural insights into preinitiation complex assembly on core promoters. Science 2021; 372:science.aba8490. [PMID: 33795473 DOI: 10.1126/science.aba8490] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription. Proc Natl Acad Sci U S A 2020; 117:32348-32357. [PMID: 33293419 DOI: 10.1073/pnas.2011224117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In eukaryotes, RNA polymerase II (RNApII) transcribes messenger RNA from template DNA. Decades of experiments have identified the proteins needed for transcription activation, initiation complex assembly, and productive elongation. However, the dynamics of recruitment of these proteins to transcription complexes, and of the transitions between these steps, are poorly understood. We used multiwavelength single-molecule fluorescence microscopy to directly image and quantitate these dynamics in a budding yeast nuclear extract that reconstitutes activator-dependent transcription in vitro. A strong activator (Gal4-VP16) greatly stimulated reversible binding of individual RNApII molecules to template DNA. Binding of labeled elongation factor Spt4/5 to DNA typically followed RNApII binding, was NTP dependent, and was correlated with association of mRNA binding protein Hek2, demonstrating specificity of Spt4/5 binding to elongation complexes. Quantitative kinetic modeling shows that only a fraction of RNApII binding events are productive and implies a rate-limiting step, probably associated with recruitment of general transcription factors, needed to assemble a transcription-competent preinitiation complex at the promoter. Spt4/5 association with transcription complexes was slowly reversible, with DNA-bound RNApII molecules sometimes binding and releasing Spt4/5 multiple times. The average Spt4/5 residence time was of similar magnitude to the time required to transcribe an average length yeast gene. These dynamics suggest that a single Spt4/5 molecule remains associated during a typical transcription event, yet can dissociate from RNApII to allow disassembly of abnormally long-lived (i.e., stalled) elongation complexes.
Collapse
|
31
|
Abstract
Transcription in several organisms from certain bacteria to humans has been observed to be stochastic in nature: toggling between active and inactive states. Periods of active nascent RNA synthesis known as bursts represent individual gene activation events in which multiple polymerases are initiated. Therefore, bursting is the single locus illustration of both gene activation and repression. Although transcriptional bursting was originally observed decades ago, only recently have technological advances enabled the field to begin elucidating gene regulation at the single-locus level. In this review, we focus on how biochemical, genomic, and single-cell data describe the regulatory steps of transcriptional bursts.
Collapse
Affiliation(s)
- Joseph Rodriguez
- National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| | - Daniel R. Larson
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Roeder RG. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat Struct Mol Biol 2019; 26:783-791. [PMID: 31439941 DOI: 10.1038/s41594-019-0287-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
The landmark 1969 discovery of nuclear RNA polymerases I, II and III in diverse eukaryotes represented a major turning point in the field that, with subsequent elucidation of the distinct structures and functions of these enzymes, catalyzed an avalanche of further studies. In this Review, written from a personal and historical perspective, I highlight foundational biochemical studies that led to the discovery of an expanding universe of the components of the transcriptional and regulatory machineries, and a parallel complexity in gene-specific mechanisms that continue to be explored to the present day.
Collapse
Affiliation(s)
- Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
33
|
Functional interaction of human Ssu72 with RNA polymerase II complexes. PLoS One 2019; 14:e0213598. [PMID: 30901332 PMCID: PMC6430399 DOI: 10.1371/journal.pone.0213598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of the C-terminal domain (CTD) of the large subunit of human RNA polymerase II (Pol II) is regulated during the transcription cycle by the combined action of specific kinases and phosphatases. Pol II enters into the preinitiation complex (PIC) unphosphorylated, but is quickly phosphorylated by Cdk7 during initiation. How phosphatases alter the pattern and extent of CTD phosphorylation at this early stage of transcription is not clear. We previously demonstrated the functional association of an early-acting, magnesium-independent phosphatase with early elongation complexes. Here we show that Ssu72 is responsible for that activity. We found that the phosphatase enters the transcription cycle during the formation of PICs and that Ssu72 is physically associated with very early elongation complexes. The association of Ssu72 with elongation complexes was stable to extensive washing with up to 200 mM KCl. Interestingly, Ssu72 ceased to function on complexes that contained RNA longer than 28 nt. However, when PICs were washed before initiation, the strict cutoff at 28 nt was lost. This suggests that factor(s) are important for the specific regulation of Ssu72 function during the transition between initiation and pausing. Overall, our results demonstrate when Ssu72 can act on early transcription complexes and suggest that Ssu72 may also function in the PIC prior to initiation.
Collapse
|
34
|
Galburt EA. The calculation of transcript flux ratios reveals single regulatory mechanisms capable of activation and repression. Proc Natl Acad Sci U S A 2018; 115:E11604-E11613. [PMID: 30463953 PMCID: PMC6294943 DOI: 10.1073/pnas.1809454115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of transcription allows cells to adjust the rate of RNA polymerases (RNAPs) initiated in a promoter-specific manner. Classically, transcription factors are directed to a subset of promoters via the recognition of DNA sequence motifs. However, a unique class of regulators is recruited directly through interactions with RNAP. Surprisingly, these factors may still possess promoter specificity, and it has been postulated that the same kinetic mechanism leads to different regulatory outcomes depending on a promoter's basal rate constants. However, mechanistic studies of regulation typically report factor activity in terms of changes in the thermodynamics or kinetics of individual steps or states while qualitatively linking these observations to measured changes in transcript production. Here, I present online calculators that allow for the direct testing of mechanistic hypotheses by calculating the steady-state transcript flux in the presence and absence of a factor as a function of initiation rate constants. By evaluating how the flux ratio of a single kinetic mechanism varies across promoter space, quantitative insights into the potential of a mechanism to generate promoter-specific regulatory outcomes are obtained. Using these calculations, I predict that the mycobacterial transcription factor CarD is capable of repression in addition to its known role as an activator of ribosomal genes. In addition, a modification of the mechanism of the stringent response factors DksA/guanosine 5'-diphosphate 3'-diphosphate (ppGpp) is proposed based on their ability to differentially regulate transcription across promoter space. Overall, I conclude that a multifaceted kinetic mechanism is a requirement for differential regulation by this class of factors.
Collapse
Affiliation(s)
- Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University in Saint Louis, Saint Louis, MO 63108
| |
Collapse
|
35
|
Zheng W, Wang C, Yan Y, Gao F, Doak TG, Song W. Insights into an Extensively Fragmented Eukaryotic Genome: De Novo Genome Sequencing of the Multinuclear Ciliate Uroleptopsis citrina. Genome Biol Evol 2018; 10:883-894. [PMID: 29608728 PMCID: PMC5863220 DOI: 10.1093/gbe/evy055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 02/04/2023] Open
Abstract
Ciliated protists are a large group of single-celled eukaryotes with separate germline and somatic nuclei in each cell. The somatic genome is developed from the zygotic nucleus through a series of chromosomal rearrangements, including fragmentation, DNA elimination, de novo telomere addition, and DNA amplification. This unique feature makes them perfect models for research in genome biology and evolution. However, genomic research of ciliates has been limited to a few species, owing to problems with DNA contamination and obstacles in cultivation. Here, we introduce a method combining telomere-primer PCR amplification and high-throughput sequencing, which can reduce DNA contamination and obtain genomic data efficiently. Based on this method, we report a draft somatic genome of a multimacronuclear ciliate, Uroleptopsis citrina. 1) The telomeric sequence in U. citrina is confirmed to be C4A4C4A4C4 by directly blunt-end cloning. 2) Genomic analysis of the resulting chromosomes shows a "one-gene one-chromosome" pattern, with a small number of multiple-gene chromosomes. 3) Amino acid usage is analyzed, and reassignment of stop codons is confirmed. 4) Chromosomal analysis shows an obvious asymmetrical GC skew and high bias between A and T in the subtelomeric regions of the sense-strand, with the detection of an 11-bp high AT motif region in the 3' subtelomeric region. 5) The subtelomeric sequence also has an obvious 40 nt strand oscillation of nucleotide ratio. 6) In the 5' subtelomeric region of the coding strand, the distribution of potential TATA-box regions is illustrated, which accumulate between 30 and 50 nt. This work provides a valuable reference for genomic research and furthers our understanding of the dynamic nature of unicellular eukaryotic genomes.
Collapse
Affiliation(s)
- Weibo Zheng
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - Chundi Wang
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ying Yan
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Feng Gao
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington.,National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Weibo Song
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
37
|
Leake MC. Transcription factors in eukaryotic cells can functionally regulate gene expression by acting in oligomeric assemblies formed from an intrinsically disordered protein phase transition enabled by molecular crowding. Transcription 2018; 9:298-306. [PMID: 29895219 PMCID: PMC6150617 DOI: 10.1080/21541264.2018.1475806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
High-speed single-molecule fluorescence microscopy in vivo shows that transcription factors in eukaryotes can act in oligomeric clusters mediated by molecular crowding and intrinsically disordered protein. This finding impacts on the longstanding puzzle of how transcription factors find their gene targets so efficiently in the complex, heterogeneous environment of the cell. Abbreviations CDF - cumulative distribution function; FRAP - fluorescence recovery after photobleaching; GFP - Green fluorescent protein; STORM - stochastic optical reconstruction microscopy; TF - Transcription factor; YFP - Yellow fluorescent protein
Collapse
Affiliation(s)
- Mark C Leake
- a Departments of Physics and Biology , Biological Physical Sciences Institute, University of York , York , UK
| |
Collapse
|
38
|
Teves SS, An L, Bhargava-Shah A, Xie L, Darzacq X, Tjian R. A stable mode of bookmarking by TBP recruits RNA polymerase II to mitotic chromosomes. eLife 2018; 7:35621. [PMID: 29939130 PMCID: PMC6037474 DOI: 10.7554/elife.35621] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Maintenance of transcription programs is challenged during mitosis when chromatin becomes condensed and transcription is silenced. How do the daughter cells re-establish the original transcription program? Here, we report that the TATA-binding protein (TBP), a key component of the core transcriptional machinery, remains bound globally to active promoters in mouse embryonic stem cells during mitosis. Using live-cell single-molecule imaging, we observed that TBP mitotic binding is highly stable, with an average residence time of minutes, in stark contrast to typical TFs with residence times of seconds. To test the functional effect of mitotic TBP binding, we used a drug-inducible degron system and found that TBP promotes the association of RNA Polymerase II with mitotic chromosomes, and facilitates transcriptional reactivation following mitosis. These results suggest that the core transcriptional machinery promotes efficient transcription maintenance globally.
Collapse
Affiliation(s)
- Sheila S Teves
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Luye An
- Department of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, United States
| | - Aarohi Bhargava-Shah
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Liangqi Xie
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Berkeley, United States
| |
Collapse
|
39
|
Shao S, Xue B, Sun Y. Intranucleus Single-Molecule Imaging in Living Cells. Biophys J 2018; 115:181-189. [PMID: 29861035 DOI: 10.1016/j.bpj.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022] Open
Abstract
Many critical processes occurring in mammalian cells are stochastic and can be directly observed at the single-molecule level within their physiological environment, which would otherwise be obscured in an ensemble measurement. There are various fundamental processes in the nucleus, such as transcription, replication, and DNA repair, the study of which can greatly benefit from intranuclear single-molecule imaging. However, the number of such studies is relatively small mainly because of lack of proper labeling and imaging methods. In the past decade, tremendous efforts have been devoted to developing tools for intranuclear imaging. Here, we mainly describe the recent methodological developments of single-molecule imaging and their emerging applications in the live nucleus. We also discuss the remaining issues and provide a perspective on future developments and applications of this field.
Collapse
Affiliation(s)
- Shipeng Shao
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
40
|
Haas DA, Meiler A, Geiger K, Vogt C, Preuss E, Kochs G, Pichlmair A. Viral targeting of TFIIB impairs de novo polymerase II recruitment and affects antiviral immunity. PLoS Pathog 2018; 14:e1006980. [PMID: 29709033 PMCID: PMC5927403 DOI: 10.1371/journal.ppat.1006980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Viruses have evolved a plethora of mechanisms to target host antiviral responses. Here, we propose a yet uncharacterized mechanism of immune regulation by the orthomyxovirus Thogoto virus (THOV) ML protein through engaging general transcription factor TFIIB. ML generates a TFIIB depleted nuclear environment by re-localizing it into the cytoplasm. Although a broad effect on gene expression would be anticipated, ML expression, delivery of an ML-derived functional domain or experimental depletion of TFIIB only leads to altered expression of a limited number of genes. Our data indicate that TFIIB is critically important for the de novo recruitment of Pol II to promoter start sites and that TFIIB may not be required for regulated gene expression from paused promoters. Since many immune genes require de novo recruitment of Pol II, targeting of TFIIB by THOV represents a neat mechanism to affect immune responses while keeping other cellular transcriptional activities intact. Thus, interference with TFIIB activity may be a favourable site for therapeutic intervention to control undesirable inflammation. Viruses target the innate immune system at critical vulnerability points. Here we show that the orthomyxovirus Thogoto virus impairs activity of general transcription factor IIB (TFIIB). Surprisingly, impairment of TFIIB function does not result in a general inhibition of transcription but in a rather specific impairment of selective genes. Transcriptome and functional analyses intersected with published CHIP-Seq datasets suggest that affected genes require de novo recruitment of the polymerase complex. Since the innate immune system heavily relies on genes that require de novo recruitment of the polymerase complex, targeting of TFIIB represents a neat mechanism to broadly affect antiviral immunity. Conversely, therapeutic targeting of TFIIB may represent a mechanism to limit pathological side effects caused by overshooting immune reactions.
Collapse
Affiliation(s)
- Darya A. Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Arno Meiler
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Katharina Geiger
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Carola Vogt
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ellen Preuss
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
- * E-mail:
| |
Collapse
|
41
|
Curran EC, Wang H, Hinds TR, Zheng N, Wang EH. Zinc knuckle of TAF1 is a DNA binding module critical for TFIID promoter occupancy. Sci Rep 2018; 8:4630. [PMID: 29545534 PMCID: PMC5854669 DOI: 10.1038/s41598-018-22879-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
The general transcription factor IID (TFIID) is the first component of the preinitiation complex (PIC) to bind the core promoter of RNA polymerase II transcribed genes. Despite its critical role in protein-encoded gene expression, how TFIID engages promoter DNA remains elusive. We have previously revealed a winged-helix DNA-binding domain in the N-terminal region of the largest TFIID subunit, TAF1. Here, we report the identification of a second DNA-binding module in the C-terminal half of human TAF1, which is encoded by a previously uncharacterized conserved zinc knuckle domain. We show that the TAF1 zinc knuckle aids in the recruit of TFIID to endogenous promoters vital for cellular proliferation. Mutation of the TAF1 zinc knuckle with defects in DNA binding compromises promoter occupancy of TFIID, which leads to a decrease in transcription and cell viability. Together, our studies provide a foundation to understand how TAF1 plays a central role in TFIID promoter binding and regulation of transcription initiation.
Collapse
Affiliation(s)
- Elizabeth C Curran
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Hui Wang
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Box 357280, Seattle, WA, 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA. .,Howard Hughes Medical Institute, University of Washington, Box 357280, Seattle, WA, 98195, USA.
| | - Edith H Wang
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
42
|
Lim B. Imaging transcriptional dynamics. Curr Opin Biotechnol 2018; 52:49-55. [PMID: 29501816 DOI: 10.1016/j.copbio.2018.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/11/2018] [Indexed: 01/02/2023]
Abstract
Recent advances in imaging techniques have enabled visualizations of nascent transcripts or individual protein molecules at high spatiotemporal resolution, revealing the complex nature of transcriptional regulation. Here, we highlight recent studies that have provided comprehensive insights to transcriptional dynamics using such quantitative imaging techniques. Specifically, they demonstrated that transcriptional activity is stochastic, and such transcriptional bursting is modulated by multiple components like chromatin environments, concentration of transcription factors, and enhancer-promoter interactions. Moreover, recent studies suggested that regulation of transcriptional activity is more complex than previously thought, by showing that transcription factors and RNA polymerases also move within the cell with distinct kinetics and sometimes form dynamic clusters to mediate transcriptional initiation.
Collapse
Affiliation(s)
- Bomyi Lim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Boija A, Mahat DB, Zare A, Holmqvist PH, Philip P, Meyers DJ, Cole PA, Lis JT, Stenberg P, Mannervik M. CBP Regulates Recruitment and Release of Promoter-Proximal RNA Polymerase II. Mol Cell 2017; 68:491-503.e5. [PMID: 29056321 PMCID: PMC5826544 DOI: 10.1016/j.molcel.2017.09.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 07/13/2017] [Accepted: 09/21/2017] [Indexed: 11/21/2022]
Abstract
Transcription activation involves RNA polymerase II (Pol II) recruitment and release from the promoter into productive elongation, but how specific chromatin regulators control these steps is unclear. Here, we identify a novel activity of the histone acetyltransferase p300/CREB-binding protein (CBP) in regulating promoter-proximal paused Pol II. We find that Drosophila CBP inhibition results in "dribbling" of Pol II from the pause site to positions further downstream but impedes transcription through the +1 nucleosome genome-wide. Promoters strongly occupied by CBP and GAGA factor have high levels of paused Pol II, a unique chromatin signature, and are highly expressed regardless of cell type. Interestingly, CBP activity is rate limiting for Pol II recruitment to these highly paused promoters through an interaction with TFIIB but for transit into elongation by histone acetylation at other genes. Thus, CBP directly stimulates both Pol II recruitment and the ability to traverse the first nucleosome, thereby promoting transcription of most genes.
Collapse
Affiliation(s)
- Ann Boija
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Dig Bijay Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Aman Zare
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| | - Per-Henrik Holmqvist
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Philge Philip
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| | - David J Meyers
- Department Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Philip A Cole
- Department Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden; Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, 906 21 Umeå, Sweden.
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
44
|
Zhang Z, Tjian R. Measuring dynamics of eukaryotic transcription initiation: Challenges, insights and opportunities. Transcription 2017; 9:159-165. [PMID: 28920762 PMCID: PMC5927711 DOI: 10.1080/21541264.2017.1363017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transcription of protein-encoding genes in eukaryotic cells is a dynamically coordinated process. Many of the key transcription regulators contain functionally essential intrinsically disordered regions (IDRs), the dynamic nature of which creates extra challenges to traditional biochemical analyses. Recent advances in single-molecule fluorescence imaging technology have enabled direct visualization of these rapid, complex and dynamic molecular interactions in real time.
Collapse
Affiliation(s)
| | - Robert Tjian
- b Howard Hughes Medical Institute, Li Ka Shing Center for Biomedical and Health Sciences and Department of Molecular and Cell Biology, University of California , Berkeley , CA , USA
| |
Collapse
|
45
|
An Assessment of Fixed and Native Chromatin Preparation Methods to Study Histone Post-Translational Modifications at a Whole Genome Scale in Skeletal Muscle Tissue. Biol Proced Online 2017; 19:10. [PMID: 28855851 PMCID: PMC5576305 DOI: 10.1186/s12575-017-0059-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Genomic loci associated with histone marks are typically analyzed by immunoprecipitation of the chromatin followed by quantitative-PCR (ChIP-qPCR) or high throughput sequencing (ChIP-seq). Chromatin can be either cross-linked (X-ChIP) or used in the native state (N-ChIP). Cross-linking of DNA and proteins helps stabilizing their interactions before analysis. Despite X-ChIP is the most commonly used method, muscle tissue fixation is known to be relatively inefficient. Moreover, no protocol described a simple and reliable preparation of skeletal muscle chromatin of sufficient quality for subsequent high-throughput sequencing. Here we aimed to set-up and compare both chromatin preparation methods for a genome-wide analysis of H3K27me3, a broad-peak histone mark, using chicken P. major muscle tissue. Results Fixed and unfixed chromatin were prepared from chicken muscle tissues (Pectoralis major). Chromatin fixation, shearing by sonication or digestion and immunoprecipitation performed equivalently. High-quality Illumina reads were obtained (q30 > 93%). The bioinformatic analysis of the data was performed using epic, a tool based on SICER, and MACS2. Forty millions of reads were analyzed for both X-ChIP-seq and N-ChIP-seq experiments. Surprisingly, H3K27me3 X-ChIP-seq analysis led to the identification of only 2000 enriched regions compared to about 15,000 regions identified in the case of N-ChIP-seq. N-ChIP-seq peaks were more consistent between replicates compared to X-ChIP-seq. Higher N-ChIP-seq enrichments were confirmed by ChIP-qPCR at the PAX5 and SOX2 loci known to be enriched for H3K27me3 in myotubes and at the loci of common regions of enrichment identified in this study. Conclusions Our findings suggest that the preparation of muscle chromatin for ChIP-seq in cross-linked conditions can compromise the systematic analysis of broad histone marks. Therefore, native chromatin preparation should be preferred to cross-linking when a ChIP experiment has to be performed on skeletal muscle tissue, particularly when a broad source signal is considered. Electronic supplementary material The online version of this article (doi:10.1186/s12575-017-0059-0) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Eychenne T, Werner M, Soutourina J. Toward understanding of the mechanisms of Mediator function in vivo: Focus on the preinitiation complex assembly. Transcription 2017; 8:328-342. [PMID: 28841352 DOI: 10.1080/21541264.2017.1329000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mediator is a multisubunit complex conserved in eukaryotes that plays an essential coregulator role in RNA polymerase (Pol) II transcription. Despite intensive studies of the Mediator complex, the molecular mechanisms of its function in vivo remain to be fully defined. In this review, we will discuss the different aspects of Mediator function starting with its interactions with specific transcription factors, its recruitment to chromatin and how, as a coregulator, it contributes to the assembly of transcription machinery components within the preinitiation complex (PIC) in vivo and beyond the PIC formation.
Collapse
Affiliation(s)
- Thomas Eychenne
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France.,b Institut Pasteur, (Epi)genomics of Animal Development Unit , Development and Stem Cell Biology Department, CNRS UMR3778 , Paris , France
| | - Michel Werner
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| | - Julie Soutourina
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| |
Collapse
|
47
|
Presman DM, Ball DA, Paakinaho V, Grimm JB, Lavis LD, Karpova TS, Hager GL. Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods 2017; 123:76-88. [PMID: 28315485 PMCID: PMC5522764 DOI: 10.1016/j.ymeth.2017.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/30/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces.
Collapse
Affiliation(s)
- Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
p53 Dynamically Directs TFIID Assembly on Target Gene Promoters. Mol Cell Biol 2017; 37:MCB.00085-17. [PMID: 28416636 DOI: 10.1128/mcb.00085-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
p53 is a central regulator that turns on vast gene networks to maintain cellular integrity in the presence of various stimuli. p53 activates transcription initiation in part by aiding recruitment of TFIID to the promoter. However, the precise means by which p53 dynamically interacts with TFIID to facilitate assembly on target gene promoters remains elusive. To address this key issue, we have undertaken an integrated approach involving single-molecule fluorescence microscopy, single-particle cryo-electron microscopy, and biochemistry. Our real-time single-molecule imaging data demonstrate that TFIID alone binds poorly to native p53 target promoters. p53 unlocks TFIID's ability to bind DNA by stabilizing TFIID contacts with both the core promoter and a region within p53's response element. Analysis of single-molecule dissociation kinetics reveals that TFIID interacts with promoters via transient and prolonged DNA binding modes that are each regulated by p53. Importantly, our structural work reveals that TFIID's conversion to a rearranged DNA binding conformation is enhanced in the presence of DNA and p53. Notably, TFIID's interaction with DNA induces p53 to rapidly dissociate, which likely leads to additional rounds of p53-mediated recruitment of other basal factors. Collectively, these findings indicate that p53 dynamically escorts and loads TFIID onto its target promoters.
Collapse
|
49
|
Paused RNA polymerase II inhibits new transcriptional initiation. Nat Genet 2017; 49:1045-1051. [PMID: 28504701 DOI: 10.1038/ng.3867] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
RNA polymerase II (Pol II) pauses downstream of the transcription initiation site before beginning productive elongation. This pause is a key component of metazoan gene expression regulation. Some promoters have a strong disposition for Pol II pausing and often mediate faster, more synchronous changes in expression. This requires multiple rounds of transcription and thus cannot rely solely on pause release. However, it is unclear how pausing affects the initiation of new transcripts during consecutive rounds of transcription. Using our recently developed ChIP-nexus method, we find that Pol II pausing inhibits new initiation. We propose that paused Pol II helps prevent new initiation between transcription bursts, which may reduce noise.
Collapse
|
50
|
Blombach F, Grohmann D. Same same but different: The evolution of TBP in archaea and their eukaryotic offspring. Transcription 2017; 8:162-168. [PMID: 28340330 PMCID: PMC5501381 DOI: 10.1080/21541264.2017.1289879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transcription factors TBP and TF(II)B assemble with RNA polymerase at the promoter DNA forming the initiation complex. Despite a high degree of conservation, the molecular binding mechanisms of archaeal and eukaryotic TBP and TF(II)B differ significantly. Based on recent biophysical data, we speculate how the mechanisms co-evolved with transcription regulation and TBP multiplicity.
Collapse
Affiliation(s)
- Fabian Blombach
- a RNAP Laboratory , University College London, Institute of Structural and Molecular Biology, Division of Biosciences , London , UK
| | - Dina Grohmann
- b Department of Biochemistry, Genetics and Microbiology , Institute of Microbiology, University of Regensburg , Regensburg , Germany
| |
Collapse
|