1
|
Joo H, Olea XD, Zhuang A, Zheng B, Kim H, Ronai ZA. Epigenetic mechanisms in melanoma development and progression. Trends Cancer 2025:S2405-8033(25)00099-8. [PMID: 40328568 DOI: 10.1016/j.trecan.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Knowledge of cancer development and progression gained over the last few decades has enabled mapping of genetic and epigenetic changes unique to different phases of tumor evolution. Here we focus on epigenetic changes that drive melanoma development and progression. We highlight the importance of epigenetic mechanisms which encompass crosstalk with melanoma microenvironment that affect metastasis and therapy resistance. This review summarizes recent advances and describes potential strategies to leverage this knowledge to devise new therapies.
Collapse
Affiliation(s)
- Hyunjeong Joo
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ximena Diaz Olea
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aojia Zhuang
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bin Zheng
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hyungsoo Kim
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ze'ev A Ronai
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Translational Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
2
|
Wang Y, Shen F, Zhao C, Li J, Wang W, Li Y, Gan J, Zhang H, Chen X, Chen Q, Wang F, Liu Y, Zhou Y. Homeodomain protein PRRX1 anchors the Ku heterodimers at DNA double-strand breaks to promote nonhomologous end-joining. Nucleic Acids Res 2025; 53:gkaf200. [PMID: 40114375 PMCID: PMC11925728 DOI: 10.1093/nar/gkaf200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex plays a critical role in nonhomologous end-joining (NHEJ), a template-independent pathway for repairing DNA double-strand breaks (DSBs). The association of Ku70/80 with DSB ends facilitates the assembly of the DNA-PK holoenzyme. However, key mechanisms underlying the attachment and stabilization of DNA-PK at broken DNA ends remain unclear. Here, we identify PRRX1, a homeodomain-containing protein, as a mediator of chromatin localization and subsequent activation of DNA-PK. PRRX1 oligomerizes to simultaneously bind to double-strand DNA and the SAP (SAF-A/B, Acinus, and PIAS) domain of Ku70, thereby enhancing Ku anchoring at DSBs and stabilizing DNA-PK for efficient NHEJ repair. Reduced expression or pathogenic mutations of PRRX1 are associated with genomic instability and impaired NHEJ repair. Furthermore, a peptide that disrupts PRRX1 oligomerization compromises NHEJ efficiency and reduces cell survival following irradiation. These findings provide new insights into the activation of the NHEJ machinery and offer potential strategies for optimizing cancer therapies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Fuyuan Shen
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Jiali Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wen Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yamu Li
- The First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Jia Gan
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Haojian Zhang
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xuefeng Chen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Qiang Chen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Fangyu Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey TC, Fillipakopoulos P, White R, Goding CR. DNA damage remodels the MITF interactome to increase melanoma genomic instability. Genes Dev 2024; 38:70-94. [PMID: 38316520 PMCID: PMC10903946 DOI: 10.1101/gad.350740.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center, Université Laval, Québec City, Québec G1V 4G2, Canada
- Endocrinology-Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec City, Québec G1V 4G2, Canada
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Sovan Sarkar
- Cancer Research UK, Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Timothy C Humphrey
- Cancer Research UK, Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom;
| |
Collapse
|
4
|
Elkoshi N, Parikh S, Malcov-Brog H, Parikh R, Manich P, Netti F, Maliah A, Elkoshi H, Haj M, Rippin I, Frand J, Perluk T, Haiat-Factor R, Golan T, Regev-Rudzki N, Kiper E, Brenner R, Gonen P, Dror I, Levi H, Hameiri O, Cohen-Gulkar M, Eldar-Finkelman H, Ast G, Nizri E, Ziv Y, Elkon R, Khaled M, Ebenstein Y, Shiloh Y, Levy C. Ataxia Telangiectasia Mutated Signaling Delays Skin Pigmentation upon UV Exposure by Mediating MITF Function toward DNA Repair Mode. J Invest Dermatol 2023; 143:2494-2506.e4. [PMID: 37236596 DOI: 10.1016/j.jid.2023.03.1686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 05/28/2023]
Abstract
Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.
Collapse
Affiliation(s)
- Nadav Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Malcov-Brog
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesca Netti
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hana Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat-Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tamar Golan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Brenner
- Institute of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Pinchas Gonen
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California Loss Angeles School of Medicine, Los Angeles, California, USA
| | - Hagai Levi
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky Medical Center Ichilov, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rani Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Yang Q, Ali M, Treviño LS, Mas A, Al-Hendy A. Developmental reprogramming of myometrial stem cells by endocrine disruptor linking to risk of uterine fibroids. Cell Mol Life Sci 2023; 80:274. [PMID: 37650943 PMCID: PMC10471700 DOI: 10.1007/s00018-023-04919-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The stage, when tissues and organs are growing, is very vulnerable to environmental influences, but it's not clear how exposure during this time causes changes to the epigenome and increases the risk of hormone-related illnesses like uterine fibroids (UFs). METHODS Developmental reprogramming of myometrial stem cells (MMSCs), the putative origin from which UFs originate, was investigated in vitro and in the Eker rat model by RNA-seq, ChIP-seq, RRBS, gain/loss of function analysis, and luciferase activity assays. RESULTS When exposed to the endocrine-disrupting chemical (EDC) diethylstilbestrol during Eker rat development, MMSCs undergo a reprogramming of their estrogen-responsive transcriptome. The reprogrammed genes in MMSCs are known as estrogen-responsive genes (ERGs) and are activated by mixed lineage leukemia protein-1 (MLL1) and DNA hypo-methylation mechanisms. Additionally, we observed a notable elevation in the expression of ERGs in MMSCs from Eker rats exposed to natural steroids after developmental exposure to EDC, thereby augmenting estrogen activity. CONCLUSION Our studies identify epigenetic mechanisms of MLL1/DNA hypo-methylation-mediated MMSC reprogramming. EDC exposure epigenetically targets MMSCs and leads to persistent changes in the expression of a subset of ERGs, imparting a hormonal imprint on the ERGs, resulting in a "hyper-estrogenic" phenotype, and increasing the hormone-dependent risk of UFs.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637 USA
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637 USA
| | - Lindsey S. Treviño
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, CA 91010 USA
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, Avda. Menéndez Pelayo 4, 46010 Valencia, Spain
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637 USA
| |
Collapse
|
6
|
Kalkavan H, Rühl S, Shaw JJP, Green DR. Non-lethal outcomes of engaging regulated cell death pathways in cancer. NATURE CANCER 2023; 4:795-806. [PMID: 37277528 PMCID: PMC10416134 DOI: 10.1038/s43018-023-00571-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/27/2023] [Indexed: 06/07/2023]
Abstract
Regulated cell death (RCD) is essential for successful systemic cancer therapy. Yet, the engagement of RCD pathways does not inevitably result in cell death. Instead, RCD pathways can take part in diverse biological processes if the cells survive. Consequently, these surviving cells, for which we propose the term 'flatliners', harbor important functions. These evolutionarily conserved responses can be exploited by cancer cells to promote their own survival and growth, with challenges and opportunities for cancer therapy.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Sebastian Rühl
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- T3 Pharmaceuticals AG, Allschwil, Switzerland
| | - Jeremy J P Shaw
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey T, Fillipakopoulos P, White R, Goding CR. DNA damage-induced interaction between a lineage addiction oncogenic transcription factor and the MRN complex shapes a tissue-specific DNA Damage Response and cancer predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537819. [PMID: 37131595 PMCID: PMC10153263 DOI: 10.1101/2023.04.21.537819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA Damage Response (DDR) programs. However, some cells, in skin for example, are normally exposed to high levels of DNA damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Here we show, using melanoma as a model, that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a non-transcriptional role in shaping the DDR. On exposure to DNA damaging agents, MITF is phosphorylated by ATM/DNA-PKcs, and unexpectedly its interactome is dramatically remodelled; most transcription (co)factors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks, and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement, high MITF levels are associated with increased SNV burden in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of ATM/DNA-PKcs-phosphorylated MITF. Our data suggest that a non-transcriptional function of a lineage-restricted transcription factor contributes to a tissue-specialised modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; Endocrinology – Nephrology Axis, CHU de Québec – Université Laval Research Center, Quebec City, QC, Canada, G1V 4G2
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Biochemistry and Molecular Medicine, University of California, Davis, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Timothy Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| |
Collapse
|
9
|
Zhang H, Zheng J, Fu Y, Ling J, Liu Z, Lin X, Dong X, Sun Y, Tan T, Guo Z, Xie G. Overexpression of POU3F2 promotes radioresistance in triple-negative breast cancer via Akt pathway activation. Breast Cancer Res Treat 2023; 198:437-446. [PMID: 36797433 DOI: 10.1007/s10549-023-06876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE POU3F2 is associated with malignant behaviors and poor prognosis in cancer. However, the function and mechanism of POU3F2 in breast cancer remain to be elucidated. Our study aimed to explore the role of POU3F2 in triple-negative breast cancer and radiotherapy. METHODS POU3F2 expression was examined by RT-PCR and Western blot. The proliferation of cancer cells was measured by MTT assay. Migration of cancer cells was determined by Transwell assay and wound healing assay. To determine which protein interacts with POU3F2, Co-IP was performed. Survival analysis was performed based on the online database GEPIA. DNA damage after radiation was examined by Comet Assay. Radiosensitivity was evaluated with clonogenic survival assays. A tumor xenograft model was established with MDA-MB-231 breast cancer cells in BALB/c nude mice to explore the effect of POU3F2 in vivo. RESULTS We found that the expression of POU3F2 was significantly elevated in breast cancer cells, especially in TNBC, and higher POU3F2 expression was related to poor prognosis of patients with breast cancer. Functional assays revealed that POU3F2 promoted proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells in vitro and in vivo. In addition, the knockdown of POU3F2 decreased the radioresistance of TNBC cells in vitro. Furthermore, POU3F2 could enhance the activation of the Akt pathway by interacting with ARNT2, thereby promoting proliferation and radioresistance in TNBC cells. CONCLUSIONS Our results provide evidence that high expression of POU3F2 promotes radioresistance in triple-negative breast cancer via Akt pathway activation by interacting with ARNT2.
Collapse
Affiliation(s)
- Han Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jieling Zheng
- Department of Radiology, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yiming Fu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ling
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - ZiShen Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaotong Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yao Sun
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Tan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoze Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Calses PC, Pham VC, Guarnaccia AD, Choi M, Verschueren E, Bakker ST, Pham TH, Hinkle T, Liu C, Chang MT, Kljavin N, Bakalarski C, Haley B, Zou J, Yan C, Song X, Lin X, Rowntree R, Ashworth A, Dey A, Lill JR. TEAD Proteins Associate With DNA Repair Proteins to Facilitate Cellular Recovery From DNA Damage. Mol Cell Proteomics 2023; 22:100496. [PMID: 36640924 PMCID: PMC9947421 DOI: 10.1016/j.mcpro.2023.100496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Transcriptional enhanced associate domain family members 1 to 4 (TEADs) are a family of four transcription factors and the major transcriptional effectors of the Hippo pathway. In order to activate transcription, TEADs rely on interactions with other proteins, such as the transcriptional effectors Yes-associated protein and transcriptional co-activator with PDZ-binding motif. Nuclear protein interactions involving TEADs influence the transcriptional regulation of genes involved in cell growth, tissue homeostasis, and tumorigenesis. Clearly, protein interactions for TEADs are functionally important, but the full repertoire of TEAD interaction partners remains unknown. Here, we employed an affinity purification mass spectrometry approach to identify nuclear interacting partners of TEADs. We performed affinity purification mass spectrometry experiment in parallel in two different cell types and compared a wildtype TEAD bait protein to a nuclear localization sequence mutant that does not localize to the nucleus. We quantified the results using SAINT analysis and found a significant enrichment of proteins linked to DNA damage including X-ray repair cross-complementing protein 5 (XRCC5), X-ray repair cross-complementing protein 6 (XRCC6), poly(ADP-ribose) polymerase 1 (PARP1), and Rap1-interacting factor 1 (RIF1). In cellular assays, we found that TEADs co-localize with DNA damage-induced nuclear foci marked by histone H2AX phosphorylated on S139 (γH2AX) and Rap1-interacting factor 1. We also found that depletion of TEAD proteins makes cells more susceptible to DNA damage by various agents and that depletion of TEADs promotes genomic instability. Additionally, depleting TEADs dampens the efficiency of DNA double-stranded break repair in reporter assays. Our results connect TEADs to DNA damage response processes, positioning DNA damage as an important avenue for further research of TEAD proteins.
Collapse
Affiliation(s)
- Philamer C Calses
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA; Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Victoria C Pham
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Alissa D Guarnaccia
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA; Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Meena Choi
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Sietske T Bakker
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Trang H Pham
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA
| | - Trent Hinkle
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Chad Liu
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA
| | - Matthew T Chang
- Department of Bioinformatics, Genentech Inc, South San Francisco, California, USA
| | - Noelyn Kljavin
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Corey Bakalarski
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA
| | - Benjamin Haley
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA
| | - Jianing Zou
- Department of Biology, Research Service Division, WuXi AppTec, Shanghai, China
| | - Cuicui Yan
- Department of Biology, Research Service Division, WuXi AppTec, Shanghai, China
| | - Xia Song
- Department of Biology, Research Service Division, WuXi AppTec, Shanghai, China
| | - Xiaoyan Lin
- Department of Biology, Research Service Division, WuXi AppTec, Shanghai, China
| | - Rebecca Rowntree
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Anwesha Dey
- Departments of Discovery Oncology, Genentech Inc, South San Francisco, California, USA.
| | - Jennie R Lill
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc, South San Francisco, California, USA.
| |
Collapse
|
11
|
POUM2 homeostasis regulates intimal remodeling and cells fate in the anterior silk gland of the silkworm. Int J Biol Macromol 2023; 225:715-729. [PMID: 36403768 DOI: 10.1016/j.ijbiomac.2022.11.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/20/2022]
Abstract
Tissue/organ remodeling and cells fate determination play key roles in the life cycle of animals. However, they are still poorly understood in insects, especially in the silkworm. The anterior silk gland (ASG) of the silkworm is essential for the formation and performance of silk fibers, but the regulatory mechanism of ASG remodeling and cells fate determination is less known. Here we found that silencing of POUM2 caused shorter ASG length, intimal structural defects, silkworm spinning failure, and the resultant naked pupae death, but cells number was not affected. Cells staining showed that DNA endoreduplication was not affected in the ASG. Transmission electron microscopy and chitin staining showed cuticle proteins and chitin were greatly reduced in the ASG during the molting period. Transcriptional analysis showed the expression profiles of cuticle proteins and chitin synthase were similar to that of POUM2 during the molting period, and POUM2 down-regulation reduced the expression of cuticle proteins, chitin synthase, autophagy and apoptosis-related genes. While the phenotype resulting from POUM2 over-expression was similar to that of POUM2 down-regulation. Cells staining revealed marked cells apoptosis with cells number reduction and inhibition of DNA endoreduplication in the ASG. Transcriptional analysis showed the expression of autophagy and apoptosis-related genes, and some cuticle proteins and chitin synthase were significantly up-regulated. The results suggest that POUM2 homeostasis regulates ASG intimal remodeling and cells fate, thus affecting ASG development, silkworm spinning and metamorphosis. Our studies not only offer potential molecular targets for genetic improvement of silk performance and molecular breeding of the silkworm, but also provide new insights into POU factor-mediated tissue remodeling and cells fate determination in insects.
Collapse
|
12
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
13
|
Vasilyev SA, Savchenko RR, Belenko AA, Skryabin NA, Sleptsov AA, Fishman VS, Murashkina AA, Gribova OV, Startseva ZA, Sukhikh ES, Vertinskiy AV, Sukhikh LG, Serov OL, Lebedev IN. ADAMTS1 Is Differentially Expressed in Human Lymphocytes with Various Frequencies of Endogenous γH2AX Foci and Radiation-Induced Micronuclei. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542210012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Orouji E, Raman AT, Singh AK, Sorokin A, Arslan E, Ghosh AK, Schulz J, Terranova CJ, Jiang S, Tang M, Maitituoheti M, Barrodia P, Jiang Y, Callahan SC, Tomczak KJ, Jiang Z, Davis JS, Ghosh S, Lee HM, Reyes-Uribe L, Chang K, Liu Y, Chen H, Azhdarnia A, Morris JS, Vilar E, Carmon KS, Kopetz S, Rai K. Chromatin state dynamics confers specific therapeutic strategies in enhancer subtypes of colorectal cancer. Gut 2022; 71:938-949. [PMID: 34059508 PMCID: PMC8745382 DOI: 10.1136/gutjnl-2020-322835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Enhancer aberrations are beginning to emerge as a key epigenetic feature of colorectal cancers (CRC), however, a comprehensive knowledge of chromatin state patterns in tumour progression, heterogeneity of these patterns and imparted therapeutic opportunities remain poorly described. DESIGN We performed comprehensive epigenomic characterisation by mapping 222 chromatin profiles from 69 samples (33 colorectal adenocarcinomas, 4 adenomas, 21 matched normal tissues and 11 colon cancer cell lines) for six histone modification marks: H3K4me3 for Pol II-bound and CpG-rich promoters, H3K4me1 for poised enhancers, H3K27ac for enhancers and transcriptionally active promoters, H3K79me2 for transcribed regions, H3K27me3 for polycomb repressed regions and H3K9me3 for heterochromatin. RESULTS We demonstrate that H3K27ac-marked active enhancer state could distinguish between different stages of CRC progression. By epigenomic editing, we present evidence that gains of tumour-specific enhancers for crucial oncogenes, such as ASCL2 and FZD10, was required for excessive proliferation. Consistently, combination of MEK plus bromodomain inhibition was found to have synergistic effects in CRC patient-derived xenograft models. Probing intertumour heterogeneity, we identified four distinct enhancer subtypes (EPIgenome-based Classification, EpiC), three of which correlate well with previously defined transcriptomic subtypes (consensus molecular subtypes, CMSs). Importantly, CMS2 can be divided into two EpiC subgroups with significant survival differences. Leveraging such correlation, we devised a combinatorial therapeutic strategy of enhancer-blocking bromodomain inhibitors with pathway-specific inhibitors (PARPi, EGFRi, TGFβi, mTORi and SRCi) for EpiC groups. CONCLUSION Our data suggest that the dynamics of active enhancer underlies CRC progression and the patient-specific enhancer patterns can be leveraged for precision combination therapy.
Collapse
Affiliation(s)
- Elias Orouji
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Present address: Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON, Canada
| | - Ayush T. Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA,Present address: Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anand K. Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Emre Arslan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Archit K. Ghosh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J. Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingda Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S. Carson Callahan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katarzyna J. Tomczak
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiqin Jiang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Jennifer S. Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sukhen Ghosh
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yusha Liu
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiqin Chen
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali Azhdarnia
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jeffrey S. Morris
- Department of Bioinformatics and Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Present address: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kendra S. Carmon
- Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA .,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Liu BH, Yuan TM, Huang CJ, Hsu DT, Chen SW, Hsiao NW, Lin SC, Wu SW, Lin YMJ, Chuang SM. DNA repair proteins as the targets for paroxetine to induce cytotoxicity in gastric cancer cell AGS. Am J Cancer Res 2022; 12:1465-1483. [PMID: 35530295 PMCID: PMC9077064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023] Open
Abstract
To evaluate the potential anticancer effects of 1175 FDA-approved drugs, cell viability screening was performed using 25 human cancer cell lines covering 14 human cancer types. Here, we focus on the action of paroxetine, which demonstrated greater toxicity toward human gastric adenocarcinoma cell-line AGS cells compared with the other FDA-approved drugs, exhibiting an IC50 value lower than 10 μM. Evaluation of the underlying novel mechanisms revealed that paroxetine can enhance DNA damage in gastric cancer cells and involves downregulation of Rad51, HR23B and ERCC1 expression and function, as well as nucleotide shortage. Enhancement of autophagy counteracted paroxetine-induced apoptosis but did not affect paroxetine-induced DNA damage. Paroxetine also enhanced ROS generation in AGS cells, but a ROS scavenger did not improve paroxetine-mediated DNA damage, apoptosis, or autophagy, suggesting ROS might play a minor role in paroxetine-induced cell toxicity. In contrast, paroxetine did not enhance DNA damage, apoptosis, or autophagy in another insensitive gastric adenocarcinoma cell-line MKN-45 cells. Interestingly, co-administration of paroxetine with conventional anticancer agents sensitized MKN-45 cells to these agents: co-treated cells showed increased apoptosis relative to MKN-45 cells treated with the anticancer agent alone. Unequivocally, these data suggest that for the first time that paroxetine triggers cytotoxicity and DNA damage in AGS cells at least partly by reducing the gene expression of Rad51, HR23B, and ERCC1. Our findings also suggest that paroxetine is a promising candidate anticancer agent and/or chemosensitizing agent for use in combination with other anticancer drugs in cancer therapy. The molecular mechanisms underlying the anticancer activity of co-treatment with paroxetine and chemotherapy appear to be complex and are worthy of further investigation.
Collapse
Affiliation(s)
- Bang-Hung Liu
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 402, Taiwan
| | - Tein-Ming Yuan
- Department of Surgery, Feng Yuan Hospital, Ministry of Health and WelfareTaichung 420, Taiwan
| | - Chih-Jou Huang
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 402, Taiwan
| | - Duan-Ting Hsu
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 402, Taiwan
| | - Shi-Wen Chen
- Department of Surgery, Feng Yuan Hospital, Ministry of Health and WelfareTaichung 420, Taiwan
| | - Nai-Wan Hsiao
- Department of Biology, National Changhua University of EducationChanghua 500, Taiwan
| | - Sheng-Chih Lin
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 402, Taiwan
| | - Shu-Wan Wu
- Institute of Molecular Biology, Academia SinicaTaipei 115, Taiwan
- College of Life Sciences, Inservice Master Program in Life Sciences, National Chung Hsing UniversityTaichung 402, Taiwan
| | - Yi-Mei J Lin
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 402, Taiwan
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 402, Taiwan
| |
Collapse
|
16
|
Liu T, Long Q, Li L, Gan H, Hu X, Long H, Yang L, Pang P, Wang S, Deng W. The NRF2-dependent transcriptional axis, XRCC5/hTERT drives tumor progression and 5-Fu insensitivity in hepatocellular carcinoma. Mol Ther Oncolytics 2022; 24:249-261. [PMID: 35071747 PMCID: PMC8762376 DOI: 10.1016/j.omto.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) is highly expressed in many tumors and is essential for tumorigenesis and metastasis in multiple cancers. However, the molecular mechanisms underlying its high expression level in hepatocellular carcinoma (HCC) remain unclear. In this study, we identified X-ray repair cross-complementing 5 (XRCC5), a novel hTERT promoter-binding protein in HCC cells, using biotin-streptavidin-agarose pull-down assay. We found that XRCC5 was highly expressed in HCC cells, in which it transcriptionally upregulated hTERT. Functionally, the transgenic expression of XRCC5 promoted HCC progression and 5-fluorouracil resistance, whereas short hairpin RNA knockdown of XRCC5 had converse effects in vitro and in vivo. Moreover, hTERT overexpression reversed XRCC5 knockdown- or 5-fluorouracil (5-Fu)-mediated HCC inhibition. Mechanistically, nuclear-factor-erythroid-2-related factor 2 (NRF2) interacted with XRCC5, which in turn upregulated hTERT. However, the upregulation was insignificant when NRF2 was reduced, suggesting that the XRCC5-mediated hTERT expression was NRF2 dependent. The HCC patients with high expression levels of XRCC5 and hTERT had shorter overall survival times compared with those with low XRCC5 and hTERT levels in their tumor tissues. Collectively, our study demonstrates the molecular mechanisms of the XRCC5/NRF2/hTERT signaling in HCC metastasis, which will aid in the identification of novel strategies for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Tianze Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Luting Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Hairun Gan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xinyan Hu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Haoyu Long
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Lukun Yang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000 China
| | - Pengfei Pang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Siyang Wang
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
17
|
Lin J, Xia L, Oyang L, Liang J, Tan S, Wu N, Yi P, Pan Q, Rao S, Han Y, Tang Y, Su M, Luo X, Yang Y, Chen X, Yang L, Zhou Y, Liao Q. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene 2022; 41:1024-1039. [PMID: 34997215 PMCID: PMC8837540 DOI: 10.1038/s41388-021-02148-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
Cancer metabolic reprogramming enhances its malignant behaviors and drug resistance, which is regulated by POU domain transcription factors. This study explored the effect of POU domain class 2 transcription factor 1 (POU2F1) on metabolic reprogramming in colon cancer. The POU2F1 expression was analyzed in GEO dataset, TCGA cohorts and human colon cancer tissues by bioinformatics and immunohistochemistry. The effects of altered POU2F1 expression on proliferation, glucose metabolism and oxaliplatin sensitivity of colon cancer cells were tested. The impacts of POU2F1 on aldolase A (ALDOA) expression and malignant behaviors of colon cancer cells were examined. We found that up-regulated POU2F1 expression was associated with worse prognosis and oxaliplatin resistance in colon cancer. POU2F1 enhanced the proliferation, aerobic glycolysis and the pentose phosphate pathway (PPP) activity, but reduced oxidative stress and apoptosis in colon cancer cells, dependent on up-regulating ALDOA expression. Mechanistically, POU2F1 directly bound to the ALDOA promoter to enhance the ALDOA promoter activity in colon cancer cells. Moreover, activation of the POU2F1-ALDOA axis decreased the sensitivity to oxaliplatin in colon cancer cells. These data indicate that the POU2F1-ALDOA axis promotes the progression and oxaliplatin resistance by enhancing metabolic reprogramming in colon cancer. Our findings suggest that the POU2F1-ALDOA axis may be new therapeutic targets to overcome oxaliplatin resistance in colon cancer.
Collapse
Affiliation(s)
- Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaohui Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lixia Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
18
|
Fane ME, Chhabra Y, Spoerri L, Simmons JL, Ludwig R, Bonvin E, Goding CR, Sturm RA, Boyle GM, Haass NK, Piper M, Smith AG. Reciprocal regulation of BRN2 and NOTCH1/2 signaling synergistically drives melanoma cell migration and invasion. J Invest Dermatol 2021; 142:1845-1857. [PMID: 34958806 DOI: 10.1016/j.jid.2020.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022]
Abstract
Phenotypic plasticity drives cancer progression, impacts on treatment response and is a major driver of therapeutic resistance. In melanoma, a regulatory axis between the MITF and BRN2 transcription factors has been reported to promote tumor heterogeneity by mediating switching between proliferative and invasive phenotypes respectively. Despite strong evidence that subpopulations of cells that exhibit a BRN2high/MITFlow expression profile switch to a predominantly invasive phenotype, the mechanisms by which this switch is propagated and promotes invasion remain poorly defined. We have found that a reciprocal relationship between BRN2 and NOTCH1/2 signaling exists in melanoma cells in vitro, within patient datasets and in vivo primary and metastatic human tumors that bolsters acquisition of invasiveness. Working through the epigenetic modulator EZH2, the BRN2-NOTCH1/2 axis is potentially a key mechanism by which the invasive phenotype is maintained. Given the emergence of agents targeting both EZH2 and NOTCH, understanding the mechanism through which BRN2 promotes heterogeneity may provide crucial biomarkers to predict treatment response to prevent metastasis.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21231; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore MD 21231
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21231; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore MD 21231
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Jacinta L Simmons
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Cancer Drug Mechanisms Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Raquelle Ludwig
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Elise Bonvin
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Glen M Boyle
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Cancer Drug Mechanisms Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
19
|
Hamm M, Sohier P, Petit V, Raymond JH, Delmas V, Le Coz M, Gesbert F, Kenny C, Aktary Z, Pouteaux M, Rambow F, Sarasin A, Charoenchon N, Bellacosa A, Sanchez-Del-Campo L, Mosteo L, Lauss M, Meijer D, Steingrimsson E, Jönsson GB, Cornell RA, Davidson I, Goding CR, Larue L. BRN2 is a non-canonical melanoma tumor-suppressor. Nat Commun 2021; 12:3707. [PMID: 34140478 PMCID: PMC8211827 DOI: 10.1038/s41467-021-23973-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
While the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600E PtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.
Collapse
Affiliation(s)
- Michael Hamm
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Pierre Sohier
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Valérie Petit
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Jérémy H Raymond
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Véronique Delmas
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Madeleine Le Coz
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Franck Gesbert
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Colin Kenny
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Zackie Aktary
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Marie Pouteaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Florian Rambow
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Nisamanee Charoenchon
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Luis Sanchez-Del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Laura Mosteo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Martin Lauss
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Dies Meijer
- Centre of Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, and Department of Anatomy, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Göran B Jönsson
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Robert A Cornell
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Irwin Davidson
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch, Cedex, France
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK.
| | - Lionel Larue
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France.
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France.
- Equipes Labellisées Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
20
|
Transcriptional signatures underlying dynamic phenotypic switching and novel disease biomarkers in a linear cellular model of melanoma progression. Neoplasia 2021; 23:439-455. [PMID: 33845354 PMCID: PMC8042650 DOI: 10.1016/j.neo.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 11/23/2022] Open
Abstract
Despite advances in therapeutics, the progression of melanoma to metastasis still confers a poor outcome to patients. Nevertheless, there is a scarcity of biological models to understand cellular and molecular changes taking place along disease progression. Here, we characterized the transcriptome profiles of a multi-stage murine model of melanoma progression comprising a nontumorigenic melanocyte lineage (melan-a), premalignant melanocytes (4C), nonmetastatic (4C11-) and metastasis-prone (4C11+) melanoma cells. Clustering analyses have grouped the 4 cell lines according to their differentiated (melan-a and 4C11+) or undifferentiated/"mesenchymal-like" (4C and 4C11-) morphologies, suggesting dynamic gene expression patterns associated with the transition between these phenotypes. The cell plasticity observed in the murine melanoma progression model was corroborated by molecular markers described during stepwise human melanoma differentiation, as the differentiated cell lines in our model exhibit upregulation of transitory and melanocytic markers, whereas "mesenchymal-like" cells show increased expression of undifferentiated and neural crest-like markers. Sets of differentially expressed genes (DEGs) were detected at each transition step of tumor progression, and transcriptional signatures related to malignancy, metastasis and epithelial-to-mesenchymal transition were identified. Finally, DEGs were mapped to their human orthologs and evaluated in uni- and multivariate survival analyses using gene expression and clinical data of 703 drug-naïve primary melanoma patients, revealing several independent candidate prognostic markers. Altogether, these results provide novel insights into the molecular mechanisms underlying the phenotypic switch taking place during melanoma progression, reveal potential drug targets and prognostic biomarkers, and corroborate the translational relevance of this unique sequential model of melanoma progression.
Collapse
|
21
|
Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol Cancer 2021; 20:40. [PMID: 33632214 PMCID: PMC7905668 DOI: 10.1186/s12943-021-01328-4] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Nils Kosiol
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
22
|
Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 2021; 22:346-366. [PMID: 33504982 PMCID: PMC7838852 DOI: 10.1038/s41580-020-00322-w] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The ability of cells to deal with different types of stressful situations in a precise and coordinated manner is key for survival and involves various signalling networks. Over the past 25 years, p38 kinases — in particular, p38α — have been implicated in the cellular response to stress at many levels. These span from environmental and intracellular stresses, such as hyperosmolarity, oxidative stress or DNA damage, to physiological situations that involve important cellular changes such as differentiation. Given that p38α controls a plethora of functions, dysregulation of this pathway has been linked to diseases such as inflammation, immune disorders or cancer, suggesting the possibility that targeting p38α could be of therapeutic interest. In this Review, we discuss the organization of this signalling pathway focusing on the diversity of p38α substrates, their mechanisms and their links to particular cellular functions. We then address how the different cellular responses can be generated depending on the signal received and the cell type, and highlight the roles of this kinase in human physiology and in pathological contexts. p38α — the best-characterized member of the p38 kinase family — is a key mediator of cellular stress responses. p38α is activated by a plethora of signals and functions through a multitude of substrates to regulate different cellular behaviours. Understanding context-dependent p38α signalling provides important insights into p38α roles in physiology and pathology.
Collapse
Affiliation(s)
- Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
23
|
Gupta R, Janostiak R, Wajapeyee N. Transcriptional regulators and alterations that drive melanoma initiation and progression. Oncogene 2020; 39:7093-7105. [PMID: 33024276 PMCID: PMC7695596 DOI: 10.1038/s41388-020-01490-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022]
Abstract
Although melanoma is the least frequent type of skin cancer, it accounts for the majority of skin cancer-related deaths. Large-scale sequencing efforts have led to the classification of melanoma into four major subtypes (i.e., BRAF-mutant, NRAS-mutant, NF1-deficient, and triple wild-type). These sequencing studies have also revealed that melanoma genomes are some of the most mutated genomes of all cancers and therefore have a high neoantigen load. These findings have resulted in the development and clinical use of targeted therapies against the oncogenic BRAF→MEK→ERK pathway and immune checkpoint inhibitors for the treatment of metastatic melanoma. Although some patients with metastatic melanoma benefit immensely from these transformative therapies, others either become resistant or do not respond at all. These clinical challenges have intensified the search for new drug targets and drugs that can benefit patients who are either intrinsically resistant or have acquired resistance to targeted therapies and immunotherapies. Numerous signaling pathways and oncogenic drivers can cause changes in mRNA transcription that in turn drive melanoma initiation and progression. Transcriptional regulation of mRNA expression is necessary to maintain cell identity and cellular plasticity via the regulation of transcription factor expression and function, promoter/enhancer activities, chromatin regulators, and three-dimensional genome organization. Transcriptional deregulation can arise due to genetic and/or non-genetic alterations in the genome. Specifically, these deregulated transcriptional programs can become liabilities for melanoma cells due to their acquired dependencies on these programs for survival, which can be harnessed to develop new therapies for melanoma. In this article, we present an overview of the mechanisms that result in the transcriptional deregulation of mRNA expression in melanoma cells and assess how these changes facilitate melanoma initiation and progression. We also describe how these deregulated transcriptional pathways represent new opportunities for the development of unconventional and potentially impactful treatments for metastatic melanoma.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Radoslav Janostiak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Ding H, Zhao J, Zhang Y, Yu J, Liu M, Li X, Xu L, Lin M, Liu C, He Z, Chen S, Jiang H. Systematic Analysis of Drug Vulnerabilities Conferred by Tumor Suppressor Loss. Cell Rep 2020; 27:3331-3344.e6. [PMID: 31189115 DOI: 10.1016/j.celrep.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
In addition to oncogene inhibition, targeting tumor suppressor deficiency could provide potential venues for precision cancer medicine. However, the full spectrum of drug vulnerability conferred by tumor suppressor loss remains unclear. We systematically analyzed how loss of 59 common tumor suppressors each affected cellular sensitivity to 26 different types of anticancer therapeutics. The experiments were performed in a one-gene, one-drug manner, and through such a large gene-drug iteration study, we were able to generate a drug sensitivity map that describes numerous examples of drug resistance or hypersensitivity conferred by tumor suppressor loss. We further delineated the mechanisms of several gene-drug interactions, showing that loss of tumor suppressors could modify drug sensitivity at various steps of drug action. This systematic drug sensitivity map highlights potential drug vulnerabilities associated with tumor suppressor loss, which may help expand precision cancer medicine on the basis of tumor suppressor status.
Collapse
Affiliation(s)
- Hongyu Ding
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jie Zhao
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yanli Zhang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiao Yu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Mingxian Liu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiaoxi Li
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Liang Xu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minghui Lin
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chuan Liu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhengjin He
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shishuang Chen
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hai Jiang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
25
|
Pierce CJ, Simmons JL, Broit N, Karunarathne D, Ng MF, Boyle GM. BRN2 expression increases anoikis resistance in melanoma. Oncogenesis 2020; 9:64. [PMID: 32632141 PMCID: PMC7338542 DOI: 10.1038/s41389-020-00247-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Melanoma tumors are highly heterogeneous, comprising of many cell populations that vary in their potential for growth and invasion. Differential transcription factor expression contributes to these phenotypic traits. BRN2, a member of the POU domain family of transcription factors is thought to play important roles in melanoma invasion and metastasis. However, the function of BRN2 during the metastatic process of melanoma remains largely unknown. We therefore investigated the effect of BRN2 expression in melanoma cells with no or low constitutive expression using a doxycycline-inducible system. Induction of BRN2 expression led to reduced proliferation and partial resistance to an inhibitor of mutated BRAF. Whole-genome profiling analysis revealed novel targets and signaling pathway changes related to prevention of cell death induced by detachment from the extracellular matrix, known as anoikis resistance. Further investigation confirmed increased survival of BRN2-expressing cell lines in non-adherent conditions. Functionally, expression of BRN2 promoted induction of c-MET levels as well as increased phosphorylation of STAT3. Treatment with crizotinib, a c-MET inhibitor, decreased cellular viability of BRN2-expressing cells under non-adherent conditions to death by anoikis. Alternative inhibitors of c-MET showed similar results. These results highlight the importance of a largely overlooked transcription factor in the progression and metastasis of melanoma, and may suggest a strategy to target BRN2-expressing cells resistant to therapy and cell death by anoikis.
Collapse
Affiliation(s)
- Carly J Pierce
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jacinta L Simmons
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Natasa Broit
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Deshapriya Karunarathne
- Molecular Immunology Group, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mei Fong Ng
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
26
|
Jia R, Zhao H, Jia M. Identification of co-expression modules and potential biomarkers of breast cancer by WGCNA. Gene 2020; 750:144757. [PMID: 32387385 DOI: 10.1016/j.gene.2020.144757] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is a very serious disease that threatens human health. The identification of co-expression modules is conducive to revealing the interaction mechanism between genes. The potential biomarkers identified from the co-expression modules have profound implications for the diagnosis and treatment of breast cancer. According to the clinical staging information, the gene expression data of breast cancer was divided into different stages and analyzed separately. The co-expression modules for each stage were identified by WGCNA. The pathways involved in the co-expression modules of each stage were revealed by KEGG enrichment analysis. Combined with clinical information, 81 core genes were screened from the co-expression modules of each stage. By constructing a support vector machine, it was confirmed that these core genes can effectively distinguish breast cancer samples. The biological functions involved in these core genes are revealed by GO enrichment analysis. Survival analysis showed that the expression of 11 genes had significant effects on the survival of breast cancer patients. These results may provide a reference for the mechanism study of breast cancer.
Collapse
Affiliation(s)
- Ruikang Jia
- Hebei University of Technology, 300400 Tianjin, China
| | - Huaxu Zhao
- Hebei University of Technology, 300400 Tianjin, China
| | - Mengwen Jia
- Hebei University of Technology, 300400 Tianjin, China.
| |
Collapse
|
27
|
Schirmer B, Giehl K, Kubatzky KF. Report of the 23rd Meeting on Signal Transduction 2019-Trends in Cancer and Infection. Int J Mol Sci 2020; 21:ijms21082728. [PMID: 32326408 PMCID: PMC7215334 DOI: 10.3390/ijms21082728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
The annual meeting "Signal Transduction-Receptors, Mediators and Genes" of the Signal Transduction Society (STS) is an interdisciplinary conference open to all scientists sharing the common interest in elucidating the signalling pathways underlying the physiological or pathological processes in health and disease of humans, animals, plants, fungi, prokaryotes and protists. The 23rd meeting on signal transduction was held from 4-6 November 2019 in Weimar, Germany, and focused on "Trends in Cancer and Infection". As usual, keynote presentations by invited scientists introduced the respective workshops and were followed by speakers chosen from the submitted abstracts. Ample time had been reserved for discussion of the presented data during the workshops. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-3875
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Katharina F. Kubatzky
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| |
Collapse
|
28
|
Ding S, Jin Y, Hao Q, Kang Y, Ma R. LncRNA BCYRN1/miR-490-3p/POU3F2, served as a ceRNA network, is connected with worse survival rate of hepatocellular carcinoma patients and promotes tumor cell growth and metastasis. Cancer Cell Int 2020; 20:6. [PMID: 31920461 PMCID: PMC6945438 DOI: 10.1186/s12935-019-1081-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Backgrounds LncRNA Brain Cytoplasmic RNA 1 (BCYRN1) has been certified to modulate cancer cells growth and aggressiveness in several tumors. However, research about function of BCYRN1 in hepatocellular carcinoma (HCC) is limited. Therefore, our research intends to explore the function of BCYRN1 in HCC. Methods HepG2 and BEL-7402 cell lines were employed for later function experiments. Differently expression levels of BCYRN1, miR-490-3p, and POU class 3 homeobox 2 (POU3F2) were determined on the base of TCGA dataset including 375 HCC patients and 50 normal. 370 cases of patients, which have fairly complete clinical data, were utilized for survival analysis of BCYRN1, miR-490-3p, or POU3F2 by Kaplan–Meier method. Relative expression pattern of BCYRN1 was examined by quantitative real time polymerase chain reaction (qRT-PCR), and relative expression level of POU3F2 was assessed by qRT-PCR and western blot. Cell biological behaviors were analyzed by cell counting kit-8, cloning formation, and transwell assays. Bioinformatics software and dual luciferase assay were applied to predict and confirm the targeted relationship between BCYRN1 and miR-490-3p, as well as miR-490-3p and POU3F2. Further associations among BCYRN1, miR-490-3p, and POU3F2 were analyzed by rescue assays. Results Our results exhibited that BCYRN1 was over expressed in HCC samples, which was connected with unfavorable prognosis in HCC patients. In addition, a series of experiments exhibited that overexpression of BCYRN1 significantly expedited HCC cells growth, clone formation, and movement abilities, and vice versa. Moreover, targeted relationships between BCYRN1 and miR-490-3p, as well as miR-490-3p and POU3F2 were affirmed by dual luciferase assay. Furthermore, POU3F2 expression was negatively connected with the expression of miR-490-3p and positively associated with BCYRN1 expression. Whilst, either overexpression of miR-490-3p or knockdown of POU3F2 could remarkably inhibit the increasing trends of proliferation, clone formation, invasion, and migration abilities induced by BCYRN1 in HCC cells. Conclusions BCYRN1, served as a competing endogenous RNA, up-regulated the expression of POU3F2 to promote the development of HCC through sponging miR-490-3p, supplying novel molecular targets and underlying prognostic biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Shichao Ding
- Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Internal Second Medicine, Jinan, Shandong China
| | - Yanfeng Jin
- 2Department of Gastroenterology, Yantai Yuhuangding Hospital, Yantai, Shandong China
| | - Qingzhi Hao
- Department of Peripheral Vascular Diseases, The Affiliated Hospital of University of Traditional Chinese Medicine, Jinan, Shandong China
| | - Yanmeng Kang
- Department of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,5Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong China
| | - Ruiping Ma
- Department of Liver Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong China.,7Department of Liver Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250000 Shandong China
| |
Collapse
|
29
|
Chitsazan A, Lambie D, Ferguson B, Handoko HY, Gabrielli B, Walker GJ, Boyle GM. Unexpected High Levels of BRN2/POU3F2 Expression in Human Dermal Melanocytic Nevi. J Invest Dermatol 2019; 140:1299-1302.e4. [PMID: 31881210 DOI: 10.1016/j.jid.2019.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Arash Chitsazan
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Duncan Lambie
- IQ Pathology, West End, Brisbane, Australia and The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Blake Ferguson
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | | | - Brian Gabrielli
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Graeme J Walker
- QIMR Berghofer Medical Research Institute, Herston, Australia; Experimental Dermatology, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia.
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
30
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|