1
|
Bellis C, Mlaza MV, Ali A, Abrahams A, Prince S. Exploring the oncogenic roles of T-box transcription factor TBX2 and its potential as a therapeutic target. Biochem Soc Trans 2025; 53:BST20241069. [PMID: 39912718 DOI: 10.1042/bst20241069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
During embryonic development, the T-box transcription factor TBX2 regulates key processes such as cell fate decisions, migration and tissue morphogenesis, and mutations that lead to reduced TBX2 levels result in developmental abnormalities including congenital heart and skeletal defects. TBX2, on the other hand, is overexpressed in a plethora of cancers where it functions as a powerful oncogene contributing to processes ranging from the bypass of senescence and cell death pathways to the promotion of cell proliferation, and epithelial-to-mesenchymal transition to drive invasion and metastasis. Additionally, TBX2 has been implicated in conferring resistance to anti-cancer drugs resulting in poor therapeutic outcomes. To exert its oncogenic functions, TBX2 transcriptionally represses key tumour suppressor genes involved in controlling cell proliferation and epithelial-to-mesenchymal transition such as p21Cip1, p14/p19ARF PTEN, NDRG1, CST6 and E-cadherin. This repression has been shown to involve complex mechanisms by which TBX2 co-opts transcription factors and recruits co-repression complexes to the promoters of these tumour suppressor genes. While limited information is available on how TBX2 is regulated in cancers, there is evidence that the levels and oncogenic functions of TBX2 are induced by developmental signalling pathways that are hijacked by cancer cells such as the Wnt/β-catenin and PI3K/AKT pathways. Understanding the complex molecular networks that TBX2 is involved in to exert its oncogenic functions is important because it may reveal potential therapeutic strategies for targeting TBX2 in TBX2-dependent cancers. This minireview discusses TBX2's involvement in cancer signalling, its regulatory partners, and its impact on cancer progression and resistance to therapy.
Collapse
Affiliation(s)
- Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali V Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Abid Ali
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Amaal Abrahams
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
2
|
Zhao X, Wang X, Xu Z, Chang X, Tian Y. PTPN2 dephosphorylates STAT3 to ameliorate anesthesia-induced cognitive decline in aged rats by altering the microglial phenotype and inhibiting inflammation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167545. [PMID: 39481492 DOI: 10.1016/j.bbadis.2024.167545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Perioperative neurocognitive disorders (PNDs) are common neurological complications after anesthesia in the elderly. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates signal transducer and activator of transcription protein 3 (STAT3) signaling to control inflammation in certain organs, but its role in PNDs remains unknown. Herein, we constructed a PND model in 18-month-old rats by treating them with sevoflurane. PND rats developed neuroinflammation, along with a significant decrease in PTPN2 expression and a rise in STAT3 phosphorylation in the hippocampus. Ptpn2 overexpression alleviated the behavioral disorders of PND rats, ameliorated neuronal injury, inhibited neuroinflammation, inflammasome activation, microglial activation, and microglial phenotype switching. Similar results were observed in sevoflurane-treated HMC3 microglia with PTPN2 overexpression, while PTPN2 silencing showed the opposite results. Additionally, PTPN2 seems to be a target of T-box transcription factor 2 (TBX2). These results contribute to the evidence supporting the idea that PTPN2 is a regulatory factor in PND progression.
Collapse
Affiliation(s)
- Xiaochun Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China; Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110002, PR China.
| | - Xueting Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Ziyang Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Xiaohan Chang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
3
|
Zhao Y, Yang K, Chen Y, Lv Z, Wang Q, Zhong Y, Chen X. Machine learning-based pan-cancer study of classification and mechanism of BRAF inhibitor resistance. Transl Cancer Res 2024; 13:6645-6660. [PMID: 39816555 PMCID: PMC11730697 DOI: 10.21037/tcr-24-961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/25/2024] [Indexed: 01/18/2025]
Abstract
Background V-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor (BRAFi) therapy resistance affects approximately 15% of cancer patients, leading to disease recurrence and poor prognosis. The aim of the study was to develop a machine-learning based method to identify patients who are at high-risk of BRAFi resistance and potential biomarker. Methods From Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases, we collected RNA sequencing and half maximal inhibitory concentration (IC50) data from 235 pan-cancer cell lines and then identified 37 significant differential expression genes associated with BRAFi resistance. Employing machine learning (ML) models, we successfully classified cell lines into resistant and sensitive groups, achieving robust performance in external validation datasets. Results AOX1 may play a vital part in BRAFi metabolism and resistance. Further, we found that higher mRNA expression of OXTR, H2AC13, and TBX2, and lower mRNA of SLC2A4, as detected by PCR in WM983B and SKMEL-5 cell lines, were independent risk factors for BRAFi resistance and were associated with poor prognosis. Conclusions We established a gene-expression model using ML methods, consisting of 37 variables based on RNA-seq database, which was externally validated and could be used to predict BRAFi resistance. Meanwhile, our findings provide valuable insights into the molecular mechanisms of BRAFi resistance, enabling the identification of high-risk patients.
Collapse
Affiliation(s)
- Yuhang Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kai Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujun Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zexi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiqun Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Thapa R, Bhat AA, Gupta G, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Prasad GVS, Pramanik A, Ali H. CRBN-PROTACs in Cancer Therapy: From Mechanistic Insights to Clinical Applications. Chem Biol Drug Des 2024; 104:e70009. [PMID: 39496477 DOI: 10.1111/cbdd.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
Cereblon (CRBN), a member of the E3 ubiquitin ligase complex, has gained significant attention as a therapeutic target in cancer. CRBN regulates the degradation of various proteins in cancer progression, including transcription factors and signaling molecules. PROTACs (proteolysis-targeting chimeras) are a novel approach that uses the cell's degradation system to remove disease-causing proteins selectively. CRBN-dependent PROTACs work by tagging harmful proteins for destruction through the ubiquitin-proteasome system. This strategy offers several advantages over traditional protein inhibition methods, including the potential to overcome drug resistance. Recent progress in developing CRBN-based PROTACs has shown promising preclinical results in both hematologic malignancies and solid tumors. Additionally, CRBN-based PROTACs have enhanced our understanding of CRBN's role in cancer, potentially serving as biomarkers for patient stratification and predicting therapeutic responses. In this review, we delineate the mechanisms of action for CRBN-dependent PROTACs (CRBN-PROTACs), summarize recent advances in preclinical and clinical applications, and provide our perspective on future development.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
5
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
6
|
Bleloch J, Lu S, Khan S, Serala K, Seraia E, Millar V, Ebner D, Goding C, Prince S. A High-Throughput Drug Repurposing Strategy to Treat TBX2 and/or TBX3 Dependent Cancers. Cancer Med 2024; 13:e70303. [PMID: 39403898 PMCID: PMC11474296 DOI: 10.1002/cam4.70303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The highly homologous T-box transcription factors TBX2 and TBX3 are critical for embryonic development, and their overexpression in postnatal tissues contributes to a wide range of malignancies, including melanoma and rhabdomyosarcoma. Importantly, when TBX2 and TBX3 are depleted in cancers where they are overexpressed, the malignant phenotype is inhibited, and they have therefore been regarded as druggable targets. However, the time and costs associated with de novo drug development are challenging and result in drugs that are costly, especially for patients in low- and middle-income countries. In the current study, we therefore combined a targeted and drug repurposing approach to identify drugs that are expected to be more efficacious and cost-effective with significantly reduced side effects. METHODS A high-throughput cell-based immunofluorescence screen was performed to identify drugs in the Pharmakon 1600 drug library that can negatively regulate TBX2 and/or TBX3 levels. "Hit" drugs were validated for their effect on TBX2/TBX3 levels and cytotoxicity in TBX2/TBX3-dependent melanoma and rhabdomyosarcoma cells. To this end, immunofluorescence, western blotting, quantitative real-time PCR, and MTT cell viability assays were performed. RESULTS Niclosamide, piroctone olamine, and pyrvinium pamoate, were identified as TBX2 and/or TBX3-targeting drugs, and they exhibited cytotoxicity in a TBX2/TBX3-dependent manner. Furthermore, these "Hit" drugs were shown to induce senescence and/or apoptosis. CONCLUSIONS Niclosamide, piroctone olamine, and pyrvinium pamoate are promising, cost-effective therapeutic agents for the treatment of TBX2/TBX3-dependent cancers.
Collapse
Affiliation(s)
- Jenna S. Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Saif Feroz Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Karabo Serala
- Division of Cell Biology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Elena Seraia
- Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Val Millar
- Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
| |
Collapse
|
7
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Bi Z, Ren M, Zhang Y, He S, Song L, Li X, Liu Z. Revisiting the Potency of Tbx2 Expression in Transforming Outer Hair Cells into Inner Hair Cells at Multiple Ages In Vivo. J Neurosci 2024; 44:e1751232024. [PMID: 38688721 PMCID: PMC11154855 DOI: 10.1523/jneurosci.1751-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
The mouse auditory organ cochlea contains two types of sound receptors: inner hair cells (IHCs) and outer hair cells (OHCs). Tbx2 is expressed in IHCs but repressed in OHCs, and neonatal OHCs that misexpress Tbx2 transdifferentiate into IHC-like cells. However, the extent of this switch from OHCs to IHC-like cells and the underlying molecular mechanism remain poorly understood. Furthermore, whether Tbx2 can transform fully mature adult OHCs into IHC-like cells is unknown. Here, our single-cell transcriptomic analysis revealed that in neonatal OHCs misexpressing Tbx2, 85.6% of IHC genes, including Slc17a8, are upregulated, but only 38.6% of OHC genes, including Ikzf2 and Slc26a5, are downregulated. This suggests that Tbx2 cannot fully reprogram neonatal OHCs into IHCs. Moreover, Tbx2 also failed to completely reprogram cochlear progenitors into IHCs. Lastly, restoring Ikzf2 expression alleviated the abnormalities detected in Tbx2+ OHCs, which supports the notion that Ikzf2 repression by Tbx2 contributes to the transdifferentiation of OHCs into IHC-like cells. Our study evaluates the effects of ectopic Tbx2 expression on OHC lineage development at distinct stages of either male or female mice and provides molecular insights into how Tbx2 disrupts the gene expression profile of OHCs. This research also lays the groundwork for future studies on OHC regeneration.
Collapse
Affiliation(s)
- Zhenghong Bi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Minhui Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Xiang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
9
|
Katsushima K, Joshi K, Yuan M, Romero B, Batish M, Stapleton S, Jallo G, Kolanthai E, Seal S, Saulnier O, Taylor MD, Wechsler-Reya RJ, Eberhart CG, Perera RJ. A therapeutically targetable positive feedback loop between lnc-HLX-2-7, HLX, and MYC that promotes group 3 medulloblastoma. Cell Rep 2024; 43:113938. [PMID: 38460130 PMCID: PMC11372658 DOI: 10.1016/j.celrep.2024.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024] Open
Abstract
Recent studies suggest that long non-coding RNAs (lncRNAs) contribute to medulloblastoma (MB) formation and progression. We have identified an lncRNA, lnc-HLX-2-7, as a potential therapeutic target in group 3 (G3) MBs. lnc-HLX-2-7 RNA specifically accumulates in the promoter region of HLX, a sense-overlapping gene of lnc-HLX-2-7, which activates HLX expression by recruiting multiple factors, including enhancer elements. RNA sequencing and chromatin immunoprecipitation reveal that HLX binds to and activates the promoters of several oncogenes, including TBX2, LIN9, HOXM1, and MYC. Intravenous treatment with cerium-oxide-nanoparticle-coated antisense oligonucleotides targeting lnc-HLX-2-7 (CNP-lnc-HLX-2-7) inhibits tumor growth by 40%-50% in an intracranial MB xenograft mouse model. Combining CNP-lnc-HLX-2-7 with standard-of-care cisplatin further inhibits tumor growth and significantly prolongs mouse survival compared with CNP-lnc-HLX-2-7 monotherapy. Thus, the lnc-HLX-2-7-HLX-MYC axis is important for regulating G3 MB progression, providing a strong rationale for using lnc-HLX-2-7 as a therapeutic target for G3 MBs.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19701, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19701, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Olivier Saulnier
- Genomics and Development of Childhood Cancers, Institut Curie, PSL University, 75005 Paris, France; INSERM U830, Cancer Heterogeneity Instability and Plasticity, Institut Curie, PSL University, 75005 Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Michael D Taylor
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX 77004, USA; Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX 77004, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg. 558, Baltimore, MD 21205, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA.
| |
Collapse
|
10
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Single-cell profiling of MC1R-inhibited melanocytes. Pigment Cell Melanoma Res 2024; 37:291-308. [PMID: 37972124 DOI: 10.1111/pcmr.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, PT, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, PT, Portugal
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey TC, Fillipakopoulos P, White R, Goding CR. DNA damage remodels the MITF interactome to increase melanoma genomic instability. Genes Dev 2024; 38:70-94. [PMID: 38316520 PMCID: PMC10903946 DOI: 10.1101/gad.350740.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center, Université Laval, Québec City, Québec G1V 4G2, Canada
- Endocrinology-Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec City, Québec G1V 4G2, Canada
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Sovan Sarkar
- Cancer Research UK, Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Timothy C Humphrey
- Cancer Research UK, Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom;
| |
Collapse
|
12
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey T, Fillipakopoulos P, White R, Goding CR. DNA damage-induced interaction between a lineage addiction oncogenic transcription factor and the MRN complex shapes a tissue-specific DNA Damage Response and cancer predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537819. [PMID: 37131595 PMCID: PMC10153263 DOI: 10.1101/2023.04.21.537819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA Damage Response (DDR) programs. However, some cells, in skin for example, are normally exposed to high levels of DNA damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Here we show, using melanoma as a model, that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a non-transcriptional role in shaping the DDR. On exposure to DNA damaging agents, MITF is phosphorylated by ATM/DNA-PKcs, and unexpectedly its interactome is dramatically remodelled; most transcription (co)factors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks, and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement, high MITF levels are associated with increased SNV burden in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of ATM/DNA-PKcs-phosphorylated MITF. Our data suggest that a non-transcriptional function of a lineage-restricted transcription factor contributes to a tissue-specialised modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; Endocrinology – Nephrology Axis, CHU de Québec – Université Laval Research Center, Quebec City, QC, Canada, G1V 4G2
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Biochemistry and Molecular Medicine, University of California, Davis, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Timothy Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| |
Collapse
|
13
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Loss of MC1R signaling implicates TBX3 in pheomelanogenesis and melanoma predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532018. [PMID: 37090624 PMCID: PMC10120706 DOI: 10.1101/2023.03.10.532018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The human Red Hair Color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA-sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to reveal a Pheomelanin Gene Signature (PGS) comprising genes implicated in melanogenesis and oncogenic transformation. We show that TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, is part of the PGS and binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into mechanisms by which MC1R signaling regulates pigmentation and how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H. Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Dawn E. Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, PT
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, PT
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Liu J, Chen C, Geng R, Shao F, Yang S, Zhong Z, Ni S, Bai J. Pyroptosis-related gene expression patterns and corresponding tumor microenvironment infiltration characterization in ovarian cancer. Comput Struct Biotechnol J 2022; 20:5440-5452. [PMID: 36249562 PMCID: PMC9535418 DOI: 10.1016/j.csbj.2022.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Pyroptosis, a form of inflammatory programmed cell death, is accompanied by inflammation and participate in the body's immune response. The expression of pyroptosis-related genes (PRGs) is associated with tumor prognosis in ovarian cancer (OC), but it is still unknown whether pyroptosis can affect tumor immune microenvironment (TME) of OC. Based on 30 PRGs, we comprehensively assessed the pyroptosis patterns by using PRGscore and correlated them with TME features in 474 OC patients. Finally, we identified three pyroptosis modification patterns and TME immune characteristics of these patterns were in response to three immune phenotypes (immune-desert, immune-inflamed, and immune-excluded phenotypes). PRGscore can predict patient survival, staging, grading, and immunotherapy efficacy. Low PRGscore was associated with better survival advantage and increased mutation burden. Low PRGscore patients showed significantly better therapeutic effects and clinical results in chemotherapy and immunotherapy. Besides, the capability of PRGscore in predicting prognosis and immunotherapy sensitivity was further verified in other three tumor cohorts. In conclusion, the comprehensive assessment of OC pyroptosis modifications can help enhancing our understanding of TME immune infiltration and provide better personalized treatment tactics for OC patients.
Collapse
|