1
|
Abstract
Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.
Collapse
|
2
|
Cheng Y, Brunner AL, Kremer S, DeVido SK, Stefaniuk CM, Kassis JA. Co-regulation of invected and engrailed by a complex array of regulatory sequences in Drosophila. Dev Biol 2014; 395:131-43. [PMID: 25172431 DOI: 10.1016/j.ydbio.2014.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/23/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022]
Abstract
invected (inv) and engrailed (en) form a gene complex that extends about 115 kb. These two genes encode highly related homeodomain proteins that are co-regulated in a complex manner throughout development. Our dissection of inv/en regulatory DNA shows that most enhancers are spread throughout a 62 kb region. We used two types of constructs to analyze the function of this DNA: P-element based reporter constructs with small pieces of DNA fused to the en promoter driving lacZ expression and large constructs with HA-tagged en and inv inserted in the genome with the phiC31 system. In addition, we generated deletions of inv and en DNA in situ and assayed their effects on inv/en expression. Our results support and extend our knowledge of inv/en regulation. First, inv and en share regulatory DNA, most of which is flanking the en transcription unit. In support of this, a 79-kb HA-en transgene can rescue inv en double mutants to viable, fertile adults. In contrast, an 84-kb HA-inv transgene lacks most of the enhancers for inv/en expression. Second, there are multiple enhancers for inv/en stripes in embryos; some of these may be redundant but others play discrete roles at different stages of embryonic development. Finally, no small reporter construct gave expression in the posterior compartment of imaginal discs, a hallmark of inv/en expression. Robust expression of HA-en in the posterior compartment of imaginal discs is evident from the 79-kb HA-en transgene, while a 45-kb HA-en transgene gives weaker, variable imaginal disc expression. We suggest that the activity of the imaginal disc enhancer(s) is dependent on the chromatin structure of the inv/en domain.
Collapse
Affiliation(s)
- Yuzhong Cheng
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alayne L Brunner
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Stefanie Kremer
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sarah K DeVido
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Catherine M Stefaniuk
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Judith A Kassis
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
3
|
Heffer A, Grubbs N, Mahaffey J, Pick L. The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene. Evol Dev 2014; 15:406-17. [PMID: 24261442 DOI: 10.1111/ede.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We propose that the dependence of Dm-Ftz-F1 on interaction with the homeodomain protein Ftz which is expressed in stripes in Drosophila, loosened constraints on Dm-ftz-f1 expression, allowing for ubiquitous expression of this pair-rule gene in Drosophila.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | | | | | | |
Collapse
|
4
|
Taher L, Smith RP, Kim MJ, Ahituv N, Ovcharenko I. Sequence signatures extracted from proximal promoters can be used to predict distal enhancers. Genome Biol 2013; 14:R117. [PMID: 24156763 PMCID: PMC3983659 DOI: 10.1186/gb-2013-14-10-r117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/24/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Gene expression is controlled by proximal promoters and distal regulatory elements such as enhancers. While the activity of some promoters can be invariant across tissues, enhancers tend to be highly tissue-specific. RESULTS We compiled sets of tissue-specific promoters based on gene expression profiles of 79 human tissues and cell types. Putative transcription factor binding sites within each set of sequences were used to train a support vector machine classifier capable of distinguishing tissue-specific promoters from control sequences. We obtained reliable classifiers for 92% of the tissues, with an area under the receiver operating characteristic curve between 60% (for subthalamic nucleus promoters) and 98% (for heart promoters). We next used these classifiers to identify tissue-specific enhancers, scanning distal non-coding sequences in the loci of the 200 most highly and lowly expressed genes. Thirty percent of reliable classifiers produced consistent enhancer predictions, with significantly higher densities in the loci of the most highly expressed compared to lowly expressed genes. Liver enhancer predictions were assessed in vivo using the hydrodynamic tail vein injection assay. Fifty-eight percent of the predictions yielded significant enhancer activity in the mouse liver, whereas a control set of five sequences was completely negative. CONCLUSIONS We conclude that promoters of tissue-specific genes often contain unambiguous tissue-specific signatures that can be learned and used for the de novo prediction of enhancers.
Collapse
Affiliation(s)
- Leila Taher
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, 18057, Germany
| | - Robin P Smith
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Mee J Kim
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
5
|
Frankel N. Multiple layers of complexity incis-regulatory regions of developmental genes. Dev Dyn 2012; 241:1857-66. [DOI: 10.1002/dvdy.23871] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2012] [Indexed: 12/19/2022] Open
|
6
|
Barolo S. Shadow enhancers: frequently asked questions about distributed cis-regulatory information and enhancer redundancy. Bioessays 2012; 34:135-41. [PMID: 22083793 PMCID: PMC3517143 DOI: 10.1002/bies.201100121] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper, in the form of a frequently asked questions page (FAQ), addresses outstanding questions about "shadow enhancers", quasi-redundant cis-regulatory elements, and their proposed roles in transcriptional control. Questions include: What exactly are shadow enhancers? How many genes have shadow/redundant/distributed enhancers? How redundant are these elements? What is the function of distributed enhancers? How modular are enhancers? Is it useful to study a single enhancer in isolation? In addition, a revised definition of "shadow enhancers" is proposed, and possible mechanisms of shadow enhancer function and evolution are discussed.
Collapse
Affiliation(s)
- Scott Barolo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
P-element homing is facilitated by engrailed polycomb-group response elements in Drosophila melanogaster. PLoS One 2012; 7:e30437. [PMID: 22276200 PMCID: PMC3261919 DOI: 10.1371/journal.pone.0030437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the engrailed/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (enΔ1.5) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the enΔ1. 5 chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2], a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailed/invected chromatin domain. Chromatin structure may also play a role in homing.
Collapse
|
8
|
Galindo MI, Fernández-Garza D, Phillips R, Couso JP. Control of Distal-less expression in the Drosophila appendages by functional 3' enhancers. Dev Biol 2011; 353:396-410. [PMID: 21320482 PMCID: PMC3940868 DOI: 10.1016/j.ydbio.2011.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/04/2011] [Accepted: 02/06/2011] [Indexed: 11/22/2022]
Abstract
The expression of the Hox gene Distal-less (Dll) directs the development of appendages in a wide variety of animals. In Drosophila, its expression is subjected to a complex developmental control. In the present work we have studied a 17kb genomic region in the Dll locus which lies downstream of the coding sequence and found control elements of primary functional importance for the expression of Dll in the leg and in other tissues. Of particular interest is a control element, which we have called LP, which drives expression of Dll in the leg primordium from early embryonic development, and whose deletion causes severe truncation and malformation of the adult leg. This is the first Dll enhancer for which, in addition to the ability to drive expression of a reporter, a role can be demonstrated in the expression of the endogenous Dll gene and in the development of the leg. In addition, our results suggest that some enhancers, contrary to the widely accepted notion, may require a specific 5' or 3' position with respect to the transcribed region.
Collapse
Affiliation(s)
- Máximo Ibo Galindo
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig, 11, 46010 Valencia, Spain
| | | | | | | |
Collapse
|
9
|
Prazak L, Fujioka M, Gergen JP. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors. Dev Biol 2010; 344:1048-59. [PMID: 20435028 PMCID: PMC2914134 DOI: 10.1016/j.ydbio.2010.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/08/2010] [Accepted: 04/23/2010] [Indexed: 11/18/2022]
Abstract
The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair-rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from -3.1kb to -2.5kb and from -8.1kb to -7.1kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains an Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate that interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215
| |
Collapse
|
10
|
Kwon D, Mucci D, Langlais KK, Americo JL, DeVido SK, Cheng Y, Kassis JA. Enhancer-promoter communication at the Drosophila engrailed locus. Development 2009; 136:3067-75. [PMID: 19675130 PMCID: PMC2730364 DOI: 10.1242/dev.036426] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2009] [Indexed: 12/11/2022]
Abstract
Enhancers are often located many tens of kilobases away from the promoter they regulate, sometimes residing closer to the promoter of a neighboring gene. How do they know which gene to activate? We have used homing P[en] constructs to study the enhancer-promoter communication at the engrailed locus. Here we show that engrailed enhancers can act over large distances, even skipping over other transcription units, choosing the engrailed promoter over those of neighboring genes. This specificity is achieved in at least three ways. First, early acting engrailed stripe enhancers exhibit promoter specificity. Second, a proximal promoter-tethering element is required for the action of the imaginal disc enhancer(s). Our data suggest that there are two partially redundant promoter-tethering elements. Third, the long-distance action of engrailed enhancers requires a combination of the engrailed promoter and sequences within or closely linked to the promoter proximal Polycomb-group response elements. These data show that multiple mechanisms ensure proper enhancer-promoter communication at the Drosophila engrailed locus.
Collapse
Affiliation(s)
- Deborah Kwon
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Hou HY, Heffer A, Anderson WR, Liu J, Bowler T, Pick L. Stripy Ftz target genes are coordinately regulated by Ftz-F1. Dev Biol 2009; 335:442-53. [PMID: 19679121 DOI: 10.1016/j.ydbio.2009.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 07/26/2009] [Accepted: 08/03/2009] [Indexed: 01/12/2023]
Abstract
During development, cascades of regulatory genes act in a hierarchical fashion to subdivide the embryo into increasingly specified body regions. This has been best characterized in Drosophila, where genes encoding regulatory transcription factors form a network to direct the development of the basic segmented body plan. The pair-rule genes are pivotal in this process as they are responsible for the first subdivision of the embryo into repeated metameric units. The Drosophila pair-rule gene fushi tarazu (ftz) is a derived Hox gene expressed in and required for the development of alternate parasegments. Previous studies suggested that Ftz achieves its distinct regulatory specificity as a segmentation protein by interacting with a ubiquitously expressed cofactor, the nuclear receptor Ftz-F1. However, the downstream target genes regulated by Ftz and other pair-rule genes to direct segment formation are not known. In this study, we selected candidate Ftz targets by virtue of their early expression in Ftz-like stripes. This identified two new Ftz target genes, drumstick (drm) and no ocelli (noc), and confirmed that Ftz regulates a serotonin receptor (5-HT2). These are the earliest Ftz targets identified to date and all are coordinately regulated by Ftz-F1. Engrailed (En), the best-characterized Ftz/Ftz-F1 downstream target, is not an intermediate in regulation. The drm genomic region harbors two separate seven-stripe enhancers, identified by virtue of predicted Ftz-F1 binding sites, and these sites are necessary for stripe expression in vivo. We propose that pair-rule genes, exemplified by Ftz/Ftz-F1, promote segmentation by acting at different hierarchical levels, regulating first, other segmentation genes; second, other regulatory genes that in turn control specific cellular processes such as tissue differentiation; and, third, 'segmentation realizator genes' that are directly involved in morphogenesis.
Collapse
Affiliation(s)
- Hui Ying Hou
- Department of Entomology, University of Maryland, College Park, 20742, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ochiai H, Sakamoto N, Suzuki K, Akasaka K, Yamamoto T. TheArsinsulator facilitatesI-SceImeganuclease-mediated transgenesis in the sea urchin embryo. Dev Dyn 2008; 237:2475-82. [DOI: 10.1002/dvdy.21690] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
DeVido SK, Kwon D, Brown JL, Kassis JA. The role of Polycomb-group response elements in regulation of engrailed transcription in Drosophila. Development 2008; 135:669-76. [PMID: 18199580 DOI: 10.1242/dev.014779] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polycomb group proteins are required for long-term repression of many genes in Drosophila and all metazoans. In Drosophila, DNA fragments called Polycomb-group response elements (PREs) have been identified that mediate the action of Polycomb-group proteins. Previous studies have shown that a 2 kb fragment located from -2.4 kb to -395 bp upstream of the Drosophila engrailed promoter contains a multipartite PRE that can mediate mini-white silencing and act as a PRE in an Ubx-reporter construct. Here, we study the role of this 2 kb fragment in the regulation of the engrailed gene itself. Our results show that within this 2 kb fragment, there are two subfragments that can act as PREs in embryos. In addition to their role in gene silencing, these two adjacent PRE fragments can facilitate the activation of the engrailed promoter by distant enhancers. The repressive action of the engrailed PRE can also act over a distance. A 181 bp subfragment can act as a PRE and also mediate positive effects in an enhancer-detector construct. Finally, a deletion of 530 bp of the 2 kb PRE fragment within the endogenous engrailed gene causes a loss-of-function phenotype, showing the importance of the positive regulatory effects of this PRE-containing fragment. Our data are consistent with the model that engrailed PREs bring chromatin together, allowing both positive and negative regulatory interactions between distantly located DNA fragments.
Collapse
Affiliation(s)
- Sarah K DeVido
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20982, USA
| | | | | | | |
Collapse
|
14
|
Vrailas-Mortimer AD, Majumdar N, Middleton G, Cooke EM, Marenda DR. Delta and Egfr expression are regulated by Importin-7/Moleskin in Drosophila wing development. Dev Biol 2007; 308:534-46. [PMID: 17628519 PMCID: PMC1994573 DOI: 10.1016/j.ydbio.2007.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/08/2007] [Accepted: 06/15/2007] [Indexed: 01/27/2023]
Abstract
Drosophila DIM-7 (encoded by the moleskin gene, msk) is the orthologue of vertebrate Importin-7. Both Importin-7 and Msk/DIM-7 function as nuclear import cofactors, and have been implicated in the control of multiple signal transduction pathways, including the direct nuclear import of the activated (phosphorylated) form of MAP kinase. We performed two genetic deficiency screens to identify deficiencies that similarly modified Msk overexpression phenotypes in both eyes and wings. We identified 11 total deficiencies, one of which removes the Delta locus. In this report, we show that Delta loss-of-function alleles dominantly suppress Msk gain-of-function phenotypes in the developing wing. We find that Msk overexpression increases both Delta protein expression and Delta transcription, though Msk expression alone is not sufficient to activate Delta protein function. We also find that Msk overexpression increases Egfr protein levels, and that msk gene function is required for proper Egfr expression in both developing wings and eyes. These results indicate a novel function for Msk in Egfr expression. We discuss the implications of these data with respect to the integration of Egfr and Delta/Notch signaling, specifically through the control of MAP kinase subcellular localization.
Collapse
|
15
|
Beaster-Jones L, Schubert M, Holland LZ. Cis-regulation of the amphioxus engrailed gene: Insights into evolution of a muscle-specific enhancer. Mech Dev 2007; 124:532-42. [PMID: 17624741 DOI: 10.1016/j.mod.2007.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/24/2022]
Abstract
To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branchiostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C. intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C. intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost.
Collapse
Affiliation(s)
- Laura Beaster-Jones
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA
| | | | | |
Collapse
|
16
|
Costas J, Pereira PS, Vieira CP, Pinho S, Vieira J, Casares F. Dynamics and function of intron sequences of the wingless gene during the evolution of the Drosophila genus. Evol Dev 2004; 6:325-35. [PMID: 15330865 DOI: 10.1111/j.1525-142x.2004.04040.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To understand the function and evolution of genes with complex patterns of expression, such as the Drosophila wingless gene, it is essential to know how their transcription is regulated. However, extracting the relevant regulatory information from a genome is still a complex task. We used a combination of comparative genomics and functional approaches to identify putative regulatory sequences in two introns (1 and 3) of the wingless gene and to infer their evolution. Comparison of the sequences obtained from several Drosophila species revealed colinear and well-conserved sequence blocks in both introns. Drosophila willistoni showed a rate of evolution, in both introns, faster than expected from its phylogenetic position. Intron 3 appeared to be composed of two separate modules, one of them lost in the willistoni group. We tested whether sequence conservation in noncoding regions is a reliable indicator of regulatory function and, if this function is conserved, by analyzing D. melanogaster transgenic reporter lines harboring intron 3 sequences from D. melanogaster (Sophophora subgenus) and the species from the Drosophila subgenus presenting the most divergent sequence, D. americana. The analysis indicated that intron 3 contains pupal enhancers conserved during the evolution of the genus, despite the fact that only 30% of the D. melanogaster intron 3 sequences lie in conserved blocks. Additional analysis of D. melanogaster transgenic reporter lines harboring intron 3 sequences from D. willistoni revealed the absence of an abdomen-specific expression pattern, probably due to the above-mentioned loss of a regulatory module in this species.
Collapse
Affiliation(s)
- J Costas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto 4150-180, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Nazina AG, Papatsenko DA. Statistical extraction of Drosophila cis-regulatory modules using exhaustive assessment of local word frequency. BMC Bioinformatics 2003; 4:65. [PMID: 14690551 PMCID: PMC341902 DOI: 10.1186/1471-2105-4-65] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2003] [Accepted: 12/22/2003] [Indexed: 11/13/2022] Open
Abstract
Background Transcription regulatory regions in higher eukaryotes are often represented by cis-regulatory modules (CRM) and are responsible for the formation of specific spatial and temporal gene expression patterns. These extended, ~1 KB, regions are found far from coding sequences and cannot be extracted from genome on the basis of their relative position to the coding regions. Results To explore the feasibility of CRM extraction from a genome, we generated an original training set, containing annotated sequence data for most of the known developmental CRMs from Drosophila. Based on this set of experimental data, we developed a strategy for statistical extraction of cis-regulatory modules from the genome, using exhaustive analysis of local word frequency (LWF). To assess the performance of our analysis, we measured the correlation between predictions generated by the LWF algorithm and the distribution of conserved non-coding regions in a number of Drosophila developmental genes. Conclusions In most of the cases tested, we observed high correlation (up to 0.6–0.8, measured on the entire gene locus) between the two independent techniques. We discuss computational strategies available for extraction of Drosophila CRMs and possible extensions of these methods.
Collapse
Affiliation(s)
- Anna G Nazina
- Department of Biology, New York University, New York, USA
| | | |
Collapse
|
18
|
Abstract
Cis-regulatory modules (CRMs) are transcription regulatory DNA segments (approximately 1 Kb range) that control the expression of developmental genes in higher eukaryotes. We analyzed clustering of known binding motifs for transcription factors (TFs) in over 60 known CRMs from 20 Drosophila developmental genes, and we present evidence that each type of recognition motif forms significant clusters within the regulatory regions regulated by the corresponding TF. We demonstrate how a search with a single binding motif can be applied to explore gene regulatory networks and to discover coregulated genes in the genome. We also discuss the potential of the clustering method in interpreting the differential response of genes to various levels of transcriptional regulators.
Collapse
|
19
|
Abstract
The Drosophila compound eye is specified by the concerted action of seven nuclear factors that include Eyeless/Pax6. These factors have been called "master control" proteins because loss-of-function mutants lack eyes and ectopic expression can direct ectopic eye development. However, inactivation of these genes does not cause the presumptive eye to change identity. Surprisingly, we find that several of these eye specification genes are not coexpressed in the same embryonic cells-or even in the presumptive eye. We demonstrate that the EGF Receptor and Notch signaling pathways have homeotic functions that are genetically upstream of the eye specification genes, and show that specification occurs much later than previously thought-not during embryonic development but in the second larval stage.
Collapse
Affiliation(s)
- J P Kumar
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
20
|
Michel A, Gutzeit HO. Electromagnetic fields in combination with elevated temperatures affect embryogenesis of Drosophila. Biochem Biophys Res Commun 1999; 265:73-8. [PMID: 10548493 DOI: 10.1006/bbrc.1999.1642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of electromagnetic fields (50 Hz, 100 microT magnetic flux density) on Drosophila embryogenesis was tested under conditions of mild thermal stress (temperatures between 34 and 37 degrees C). When exposed to these stressor(s) for 30 min during early embryogenesis those embryos which were subjected to both electromagnetic fields and elevated temperature (costress) showed pattern anomalies more frequently than embryos subjected to thermal stress alone. Furthermore, under costress conditions development was considerably delayed in three different strains tested. The use of transgenic strains with a lacZ reporter being expressed in segmental patterns facilitated the identification and quantification of the pattern anomalies.
Collapse
Affiliation(s)
- A Michel
- Institut für Zoologie, Technische Universität Dresden, Dresden, D-01062, Germany
| | | |
Collapse
|
21
|
Orihara M, Hosono C, Kojima T, Saigo K. Identification of engrailed promoter elements essential for interactions with a stripe enhancer in Drosophila embryos. Genes Cells 1999; 4:205-18. [PMID: 10336692 DOI: 10.1046/j.1365-2443.1999.00254.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The structures and functions of promoter sequences of most genes have been analysed using in vitro transcription and/or cultured cell systems, neither possessing tissue-specific enhancers. Promoter-enhancer interactions in vivo, in particular, during ontogeny, are still poorly understood. RESULTS We have established a new method for the assessment of promoter activity in cells that participate in fly body formation, using the UAS/GAL4 system. A functional analysis was then conducted on the promoter sequence of the engrailed gene in Drosophila embryos. A 38-bp-long sequence, terminating with an initiator or RNA start site and a downstream promoter element, was found to be capable of receiving activation signals from the engrailed stripe enhancer. Transcriptional efficiency was improved significantly by the presence of upstream promoting elements, most functionally replaceable with synthetic GAGA factor binding sites. CONCLUSIONS We identified the in vivo minimum promoter of engrailed and demonstrated that the GAGA factor binding sites serve primarily as quantitative elements which augment transcriptional efficiency. Evidence was also obtained that indicated that not only enhancer but also promoter sequences were involved in the determination of the tissue-specificity of gene expression.
Collapse
Affiliation(s)
- M Orihara
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
22
|
Kraemer C, Weil B, Christmann M, Schmidt ER. The new gene DmX from Drosophila melanogaster encodes a novel WD-repeat protein. Gene X 1998; 216:267-76. [PMID: 9729422 DOI: 10.1016/s0378-1119(98)00347-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DmX is a novel gene from Drosophila melanogaster located on the X chromosome in region 5D5/6-E1. The molecular analysis of the genomic and cDNA sequences of DmX shows that the gene spans appr. 16kb and displays a mosaic structure with 15 exons. The 12kb long DmX transcript is present in Drosophila embryos, larvae and adults of both sexes. The open reading frame of DmX encodes a novel WD-repeat protein, containing at least 30 WD-repeat units. WD-repeat proteins contain a conserved motif of approximately 40 amino acids (aa), usually ending with the dipeptide Trp-Asp (WD). Homologues of the DmX gene exist in other dipteran species, in Caenorhabditis elegans and human, revealing that DmX is an evolutionarily well conserved gene. The inferred DMX amino acid sequence shows also limited, but significant similarity to a yeast ORF with unknown function. 1998 Elsevier Science B.V.
Collapse
Affiliation(s)
- C Kraemer
- Institute for Molecular Genetics, Biosafety Research and Consulting, Johannes Gutenberg-University Mainz, D-55099, Mainz, Germany
| | | | | | | |
Collapse
|
23
|
Dong J, Hung LH, Strome R, Krause HM. A phosphorylation site in the ftz homeodomain is required for activity. EMBO J 1998; 17:2308-18. [PMID: 9545243 PMCID: PMC1170574 DOI: 10.1093/emboj/17.8.2308] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Drosophila homeodomain-containing protein Fushi tarazu (Ftz) is expressed sequentially in the embryo, first in alternate segments, then in specific neuroblasts and neurons in the central nervous system, and finally in parts of the gut. During these different developmental stages, the protein is heavily phosphorylated on different subsets of Ser and Thr residues. This stage-specific phosphorylation suggests possible roles for signal transduction pathways in directing tissue-specific Ftz activities. Here we show that one of the Ftz phosphorylation sites, T263 in the N-terminus of the Ftz homeodomain, is phosphorylated in vitro by Drosophila embryo extracts and protein kinase A. In the embryo, mutagenesis of this site to the non-phosphorylatable residue Ala resulted in loss of ftz-dependent segments. Conversely, substitution of T263 with Asp, which is also non-phosphorylatable, but which successfully mimics phosphorylated residues in a number of proteins, rescued the mutant phenotype. This suggests that T263 is in the phosphorylated state when functioning normally in vivo. We also demonstrate that the T263 substitutions of Ala and Asp do not affect Ftz DNA-binding activity in vitro, nor do they affect stability or transcriptional activity in transfected S2 cells. This suggests that T263 phosphorylation is most likely required for a homeodomain-mediated interaction with an embryonically expressed protein.
Collapse
Affiliation(s)
- J Dong
- Banting and Best Department of Medical Research, University of Toronto, C.H.Best Institute, Toronto, Ontario, Canada M5G 1L6
| | | | | | | |
Collapse
|
24
|
Strutt H, Paro R. The polycomb group protein complex of Drosophila melanogaster has different compositions at different target genes. Mol Cell Biol 1997; 17:6773-83. [PMID: 9372908 PMCID: PMC232533 DOI: 10.1128/mcb.17.12.6773] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Drosophila the Polycomb group genes are required for the long-term maintenance of the repressed state of many developmental regulatory genes. Their gene products are thought to function in a common multimeric complex that associates with Polycomb group response elements (PREs) in target genes and regulates higher-order chromatin structure. We show that the chromodomain of Polycomb is necessary for protein-protein interactions within a Polycomb-Polyhomeotic complex. In addition, Posterior Sex Combs protein coimmunoprecipitates Polycomb and Polyhomeotic, indicating that they are members of a common multimeric protein complex. Immunoprecipitation experiments using in vivo cross-linked chromatin indicate that these three Polycomb group proteins are associated with identical regulatory elements of the selector gene engrailed in tissue culture cells. Polycomb, Polyhomeotic, and Posterior Sex Combs are, however, differentially distributed on regulatory sequences of the engrailed-related gene invected. This suggests that there may be multiple different Polycomb group protein complexes which function at different target sites. Furthermore, Polyhomeotic and Posterior Sex Combs are also associated with expressed genes. Polyhomeotic and Posterior Sex Combs may participate in a more general transcriptional mechanism that causes modulated gene repression, whereas the inclusion of Polycomb protein in the complex at PREs leads to stable silencing.
Collapse
Affiliation(s)
- H Strutt
- ZMBH, University of Heidelberg, Germany
| | | |
Collapse
|
25
|
O'Keefe L, Dougan ST, Gabay L, Raz E, Shilo BZ, DiNardo S. Spitz and Wingless, emanating from distinct borders, cooperate to establish cell fate across the Engrailed domain in the Drosophila epidermis. Development 1997; 124:4837-45. [PMID: 9428420 DOI: 10.1242/dev.124.23.4837] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A key step in development is the establishment of cell type diversity across a cellular field. Segmental patterning within the Drosophila embryonic epidermis is one paradigm for this process. At each parasegment boundary, cells expressing the Wnt family member Wingless confront cells expressing the homeoprotein Engrailed. The Engrailed-expressing cells normally differentiate as one of two alternative cell types. In investigating the generation of this cell type diversity among the 2-cell-wide Engrailed stripe, we previously showed that Wingless, expressed just anterior to the Engrailed cells, is essential for the specification of anterior Engrailed cell fate. In a screen for additional mutations affecting Engrailed cell fate, we identified anterior open/yan, a gene encoding an inhibitory ETS-domain transcription factor that is negatively regulated by the Rasl-MAP kinase signaling cascade. We find that Anterior Open must be inactivated for posterior Engrailed cells to adopt their correct fate. This is achieved by the EGF receptor (DER), which is required autonomously in the Engrailed cells to trigger the Ras1-MAP kinase pathway. Localized activation of DER is accomplished by restricted processing of the activating ligand, Spitz. Processing is confined to the cell row posterior to the Engrailed domain by the restricted expression of Rhomboid. These cells also express the inhibitory ligand Argos, which attenuates the activation of DER in cell rows more distant from the ligand source. Thus, distinct signals flank each border of the Engrailed domain, as Wingless is produced anteriorly and Spitz posteriorly. Since we also show that En cells have the capacity to respond to either Wingless or Spitz, these cells must choose their fate depending on the relative level of activation of the two pathways.
Collapse
Affiliation(s)
- L O'Keefe
- The Rockefeller University, New York City, NY 10021-6399, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gorfinkiel N, Morata G, Guerrero I. The homeobox gene Distal-less induces ventral appendage development in Drosophila. Genes Dev 1997; 11:2259-71. [PMID: 9303541 PMCID: PMC275395 DOI: 10.1101/gad.11.17.2259] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1997] [Accepted: 07/04/1997] [Indexed: 02/05/2023]
Abstract
This study investigates the role of the homeobox gene Distal-less (Dll) in the development of the legs, antennae, and wings of Drosophila. Lack of Dll function causes a change in the identity of ventral appendage cells (legs and antennae) that often results in the loss of the appendage. Ectopic Dll expression in the proximal region of ventral appendages induces nonautonomous duplication of legs and antennae by the activation of wingless and decapentaplegic. Ectopic Dll expression in dorsal appendages produces transformation into corresponding ventral appendages; wings and halteres develop ectopic legs and the head-eye region develops ectopic antennae. In the wing, the exogenous Dll product induces this transformation by activating the endogenous Dll gene and repressing the wing determinant gene vestigial. It is proposed that Dll induces the development of ventral appendages and also participates in a genetic address that specifies the identity of ventral appendages and discriminates the dorsal versus the ventral appendages in the adult. However, unlike other homeotic genes, Dll expression and function is not defined by a cell lineage border. Dll also performs a secondary and late function required for the normal patterning of the wing.
Collapse
Affiliation(s)
- N Gorfinkiel
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
27
|
Treisman JE, Luk A, Rubin GM, Heberlein U. eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins. Genes Dev 1997; 11:1949-62. [PMID: 9271118 PMCID: PMC316407 DOI: 10.1101/gad.11.15.1949] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila, pattern formation at multiple stages of embryonic and imaginal development depends on the same intercellular signaling pathways. We have identified a novel gene, eyelid (eld), which is required for embryonic segmentation, development of the notum and wing margin, and photoreceptor differentiation. In these tissues, eld mutations have effects opposite to those caused by wingless (wg) mutations. eld encodes a widely expressed nuclear protein with a region homologous to a novel family of DNA-binding domains. Based on this homology and on the phenotypic analysis, we suggest that Eld could act as a transcription factor antagonistic to the Wg pathway.
Collapse
Affiliation(s)
- J E Treisman
- Skirball Institute of Biomolecular Medicine, NYU Medical Center, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
28
|
Whiteley M, Kassis JA. Rescue of Drosophila engrailed mutants with a highly divergent mosquito engrailed cDNA using a homing, enhancer-trapping transposon. Development 1997; 124:1531-41. [PMID: 9108369 DOI: 10.1242/dev.124.8.1531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specific fragments of Drosophila regulatory DNA can alter the insertional specificity of transposable elements causing them to ‘home’ to their parent gene. We used this property to insert a transposon-encoded functional coding region near a defective one and rescue a null mutation. This approach differs from homologous recombination in that the endogenous defective coding region is left in place and the genomic DNA is altered by the addition of the therapeutic transposon. We constructed a P-element-based transposon in which an engrailed cDNA from Anopheles gambiae (a mosquito) is expressed from a Drosophila engrailed minimal promoter. The promoter fragment used includes 2.6 kb of regulatory DNA that causes transposons to home to the endogenous Drosophila engrailed gene at high frequencies. We inserted this transposon onto a Drosophila chromosome that produces no functional engrailed proteins. When this transposon integrated near the engrailed promoter, adult viability was restored to engrailed mutant flies showing that the highly divergent mosquito engrailed protein can replace the Drosophila engrailed protein at all stages of development. Insertion of this transposon into the adjacent invected gene, which is transcribed in a pattern similar to engrailed, led to only embryonic rescue, suggesting an important difference in the regulation of these two genes.
Collapse
Affiliation(s)
- M Whiteley
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892-4555, USA
| | | |
Collapse
|
29
|
Boyle M, Bonini N, DiNardo S. Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development 1997; 124:971-82. [PMID: 9056773 DOI: 10.1242/dev.124.5.971] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gonad forms from cells of two lineages: the germline and soma. The somatic gonadal cells generate the various cell types within the testis or ovary that support gametogenesis. These cells derive from embryonic mesoderm, but how they are specified is unknown. Here, we describe a novel regulator of Drosophila gonadogenesis, clift, mutations in which abolish gonad formation. clift is expressed within somatic gonadal precursors as these cells first form, demonstrating that 9–12 cells are selected as somatic gonadal precursors within each of three posterior parasegments at early stages in gonadogenesis. Despite this early expression, somatic gonadal precursors are specified in the absence of clift function. However, they fail to maintain their fate and, as a consequence, germ cells do not coalesce into a gonad. In addition, using clift as a marker, we show that the anteroposterior and dorsoventral position of the somatic gonadal precursor cells within a parasegment are established by the secreted growth factor Wg, coupled with a gene regulatory hierarchy within the mesoderm. While loss of wg abolishes gonadal precursors, ectopic expression expands the population such that most cells within lateral mesoderm adopt gonadal precursor fates. Initial dorsoventral positioning of somatic gonadal precursors relies on a regulatory cascade that establishes dorsal fates within the mesoderm and is subsequently refined through negative regulation by bagpipe, a gene that specifies nearby visceral mesoderm. Thus, these studies identify essential regulators of gonadal precursor specification and differentiation and reveal novel aspects of the general mechanism whereby distinct fates are allocated within the mesoderm.
Collapse
Affiliation(s)
- M Boyle
- The Rockefeller University, NYC, NY 10021-6399, USA
| | | | | |
Collapse
|
30
|
Florence B, Guichet A, Ephrussi A, Laughon A. Ftz-F1 is a cofactor in Ftz activation of the Drosophila engrailed gene. Development 1997; 124:839-47. [PMID: 9043065 DOI: 10.1242/dev.124.4.839] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fushi tarazu pair-rule gene is required for the formation of alternating parasegmental boundaries in the Drosophila embryo. fushi tarazu encodes a homeodomain protein necessary for transcription of the engrailed gene in even-numbered parasegments. Here we report that, within an engrailed enhancer, adjacent and conserved binding sites for the Fushi tarazu protein and a cofactor are each necessary, and together sufficient, for transcriptional activation. Footprinting shows that the cofactor site can be bound specifically by Ftz-F1, a member of the nuclear receptor superfamily. Ftz-F1 and the Fushi tarazu homeodomain bind the sites with 4- to 8-fold cooperativity, suggesting that direct contact between the two proteins may contribute to target recognition. Even parasegmental reporter expression is dependent on Fushi tarazu and maternal Ftz-F1, suggesting that these two proteins are indeed the factors that act upon the two sites in embryos. The two adjacent binding sites are also required for continued activity of the engrailed enhancer after Fushi tarazu protein is no longer detectable, including the period when engrailed, and the enhancer, become dependent upon wingless. We also report the existence of a separate negative regulatory element that apparently responds to odd-skipped.
Collapse
Affiliation(s)
- B Florence
- Department of Genetics, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
31
|
Guichet A, Copeland JW, Erdélyi M, Hlousek D, Závorszky P, Ho J, Brown S, Percival-Smith A, Krause HM, Ephrussi A. The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature 1997; 385:548-52. [PMID: 9020363 DOI: 10.1038/385548a0] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nuclear hormone receptors and homeodomain proteins are two classes of transcription factor that regulate major developmental processes. Both depend on interactions with other proteins for specificity and activity. The Drosophila gene fushi tarazu (ftz), which encodes a homeodomain protein (Ftz), is required zygotically for the formation of alternate segments in the developing embryo. Here we show that the orphan nuclear receptor alphaFtz-F1 (ref. 3), which is deposited in the egg during oogenesis, is an obligatory cofactor for Ftz. The two proteins interact specifically and directly, both in vitro and in vivo, through a conserved domain in the Ftz polypeptide. This interaction suggests that other nuclear receptor/homeodomain protein interactions maybe important and common in developing organisms.
Collapse
Affiliation(s)
- A Guichet
- Developmental Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rogers BT, Kaufman TC. Structure of the insect head in ontogeny and phylogeny: a view from Drosophila. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 174:1-84. [PMID: 9161005 DOI: 10.1016/s0074-7696(08)62115-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Evolutionary, developmental and insect biologists are currently using a three-pronged approach to study the evolution and development of the insect head. First, genetic manipulation of the fruit fly Drosophila melanogaster has led to the identification of many genes, including the segmentation and homeotic genes, that are important for embryonic pattern formation and development. Second, a comparison of orthologous gene expression patterns in other insects reveals that these regulatory genes are deployed in similar, yet distinct, patterns in different insects. Third, comparisons of embryonic morphology with gene expression patterns suggest that in general these genes promote a common insect body plan, but that variations in gene expression can often be correlated to variations in morphology. Here, we present a detailed review of the development of the cephalic ectoderm of Drosophila and extrapolate to development of a generalized insect head. Our analysis of the variations among insect species, in both morphology and gene expression patterns, conducted within an evolutionary framework supported by traditional phylogenies and paleontology provides the basis for hypotheses about the genetic factors governing morphologic and developmental evolution.
Collapse
Affiliation(s)
- B T Rogers
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
33
|
Rogers BT, Kaufman TC. Structure of the insect head as revealed by the EN protein pattern in developing embryos. Development 1996; 122:3419-32. [PMID: 8951058 DOI: 10.1242/dev.122.11.3419] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure of the insect head has long been a topic of enjoyable yet endless debate among entomologists. More recently geneticists and molecular biologists trying to better understand the structure of the head of the Dipteran Drosophila melanogaster have joined the discourse extrapolating from what they have learned about Drosophila to insects in general. Here we present the results of an investigation into the structure of the insect head as revealed by the distribution of engrailed related protein (Engrailed) in the insect orders Diptera, Siphonaptera, Orthoptera and Hemiptera. The results of this comparative embryology in conjunction with genetic experiments on Drosophila melanogaster lead us to conclude: (1) The insect head is composed of six Engrailed accumulating segments, four postoral and two preoral. The potential seventh and eighth segments (clypeus or labrum) do not accumulate Engrailed. (2) The structure known as the dorsal ridge is not specific to the Diptera but is homologous to structures found in other insect orders. (3) A part of this structure is a single segment-like entity composed of labial and maxillary segment derivatives which produce the most anterior cuticle capable of taking a dorsal fate. The segments anterior to the maxillary segment produce only ventral structures. (4) As in Drosophila, the process of segmentation of the insect head is fundamentally different from the process of segmentation in the trunk. (5) The pattern of Engrailed accumulation and its presumed role in the specification and development of head segments appears to be highly conserved while its role in other pattern formation events and tissue-specific expression is variable. An overview of the pattern of Engrailed accumulation in developing insect embryos provides a basis for discussion of the generality of the parasegment and the evolution of Engrailed patterns.
Collapse
Affiliation(s)
- B T Rogers
- Howard Hughes Medical Institute, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
34
|
Smith ST, Jaynes JB. A conserved region of engrailed, shared among all en-, gsc-, Nk1-, Nk2- and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 1996; 122:3141-50. [PMID: 8898227 PMCID: PMC2729110 DOI: 10.1242/dev.122.10.3141] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The engrailed homeoprotein is a dominantly acting or ‘active’ transcriptional repressor both in cultured cells and in vivo. When retargeted via a homeodomain swap to the endogenous fushi tarazu gene (ftz), it actively represses it, resulting in a ftz mutant phenocopy. We have mapped functional regions of engrailed using this in vivo repression assay. In addition to a region containing an active repression domain identified in cell culture assays (K. Han and J. L. Manley (1993) EMBO J. 12, 2723–2733), we find that two evolutionarily conserved regions contribute to activity. The one of these that does not flank the HD is particularly crucial to repression activity in vivo. We find that this domain is present not only in all engrailed-class homeoproteins but also in all known members of several other classes, including goosecoid, Nk1, Nk2 and msh. Thus engrailed's active repression function in vivo is dependent on a highly conserved interaction that was established early in the evolution of the homeobox gene superfamily. We further show using rescue transgenes that the widely conserved in vivo repression domain is required for the normal function of engrailed in the embryo.
Collapse
Affiliation(s)
- S T Smith
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
35
|
Hirth F, Therianos S, Loop T, Gehring WJ, Reichert H, Furukubo-Tokunaga K. Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron 1995; 15:769-78. [PMID: 7576627 DOI: 10.1016/0896-6273(95)90169-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the roles of the homeobox genes orthodenticle (otd) and empty spiracles (ems) in embryonic brain development of Drosophila. The embryonic brain is composed of three segmental neuromeres. The otd gene is expressed predominantly in the anterior neuromere; expression of ems is restricted to the two posterior neuromeres. Mutation of otd eliminates the first (protocerebral) brain neuromere. Mutation of ems eliminates the second (deutocerebral) and third (tritocerebral) neuromeres. otd is also necessary for development of the dorsal protocerebrum of the adult brain. We conclude that these homeobox genes are required for the development of specific brain segments in Drosophila, and that the regionalized expression of their homologs in vertebrate brains suggests an evolutionarily conserved program for brain development.
Collapse
Affiliation(s)
- F Hirth
- Laboratory of Neurobiology, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Blake KJ, Rogina B, Centurion A, Helfand SL. Changes in gene expression during post-eclosional development in the olfactory system of Drosophila melanogaster. Mech Dev 1995; 52:179-85. [PMID: 8541207 DOI: 10.1016/0925-4773(95)00398-k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have found that the expression of some genes in Drosophila melanogaster changes during the life of the adult fly. These changes can be illustrated by the use of enhancer trap lines which mark the expression of particular genes in the adult fly. Although the fly is considered able to perform most necessary adult functions within the first 72 h after eclosion from the pupal case, we find changes in expression over the first 10 days of life in the antennae of several of the genes we have examined. Some genes change by increasing from an initially low level of expression of the marked gene, while other lines, which we have termed 'late-onset' genes, show no expression of the marked gene until 4-5 days following eclosion. In contrast, some genes decrease their expression during the first 10 days of life. The changes in gene expression seen over the first 10 days of the fly's adult life provides molecular evidence of the many maturational changes occurring during the early life of the adult fly.
Collapse
Affiliation(s)
- K J Blake
- Department of BioStructure and Function, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | |
Collapse
|
37
|
Kapoun AM, Kaufman TC. A functional analysis of 5′, intronic and promoter regions of the homeotic gene proboscipedia in Drosophila melanogaster. Development 1995; 121:2127-41. [PMID: 7635058 DOI: 10.1242/dev.121.7.2127] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, the homeotic gene proboscipedia (pb) is required for the formation of the adult mouthparts. To determine the functional significance of putative pb regulatory DNA, we have performed an in vivo analysis of sequences upstream of and within pb using a series of minigenes. Additionally, we have initiated a dissection of pb's promoter and enhancer elements using lacZ reporter gene constructs. Our results establish that a conserved region located in the second intron is essential for proper formation of the adult mouthparts. A 0.5 kb fragment from this region was shown to direct lacZ expression in a pb pattern in both embryos and third instar labial discs when combined with a 600 bp pb basal promoter sequence. A 32 bp element contained within the 0.5 kb region functions as a labial disc enhancers for pb. Surprisingly, the conserved second intron pb enhancers do not function properly with a heterologous hsp70 promoter, suggesting that promoter-specific interactions occur at the pb locus. We also found redundant and cryptic enhancers in the large introns of pb that are not required for pb function. Finally, we demonstrate that the pb transcription unit does not require sequences upstream of −98 bp to provide pb function in the labial discs. Rather, pb's upstream DNA appears to contain negative regulatory DNA required for silencing PB accumulation in inappropriate domains of third instar imaginal discs. Thus, we have defined many of pb's cis-controlling sequences to an experimentally manageable size, thereby making this an attractive system for the discovery of transacting proteins and, consequently, for elucidating the mechanisms of homeotic gene regulation.
Collapse
Affiliation(s)
- A M Kapoun
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
38
|
Breen TR, Chinwalla V, Harte PJ. Trithorax is required to maintain engrailed expression in a subset of engrailed-expressing cells. Mech Dev 1995; 52:89-98. [PMID: 7577678 DOI: 10.1016/0925-4773(95)00393-f] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We show that maintenance but not initiation of engrailed (en) gene expression in the Drosophila embryo requires trithorax (trx), which is also required to maintain stable long-term expression of the homeotic genes throughout the development. Like the homeotic genes, en expression is dependent on trx in only a subset of embryonic cells normally expressing en, including specific cells in the nervous system and the dorsal fat body cells surrounding the gonad. Loss of en expression in the dorsal fat body is correlated with the sterility of en females which also carry trx mutations. In addition, trx is required for normal en expression in the posterior compartment of the developing wing, reflected in enhancement of en phenotypes in en adults which also carry trx mutations. trx appears to be dispensable for maintenance of en expression in other embryonic cells. The trx protein binds to the region of the polytene chromosomes which contains the en gene, suggesting that trx regulates en expression directly by binding to the en regulatory region.
Collapse
Affiliation(s)
- T R Breen
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | | | | |
Collapse
|
39
|
John A, Smith ST, Jaynes JB. Inserting the Ftz homeodomain into engrailed creates a dominant transcriptional repressor that specifically turns off Ftz target genes in vivo. Development 1995; 121:1801-13. [PMID: 7600995 PMCID: PMC2749471 DOI: 10.1242/dev.121.6.1801] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Engrailed homeodomain protein is an ‘active’ or dominant transcriptional repressor in cultured cells. In contrast, the Fushi Tarazu homeodomain protein is an activator, both in cultured cells and in Drosophila embryos, where it activates several known target genes, including its own gene. This auto-activation has been shown to depend on targeting to a fushi tarazu enhancer by the Fushi Tarazu homeodomain. We combined Fushi Tarazu targeting and Engrailed active repression in a chimeric regulator, EFE. When EFE is ubiquitously expressed, it overrides endogenous Fushi Tarazu and causes a fushi tarazu mutant phenotype. Normal Fushi Tarazu target genes are affected as they are in fushi tarazu mutants. One such target gene is repressed by EFE even where Fushi Tarazu is not expressed, suggesting that the repression is active. This is confirmed by showing that the in vivo activity of EFE depends on a domain that is required for active repression in culture. A derivative that lacks this domain, while it cannot repress the endogenous fushi tarazu gene, can still reduce the activity of the fushi tarazu autoregulatory enhancer, suggesting that it competes with endogenous Fushi Tarazu for binding sites in vivo. However, this passive repression is much less effective than active repression.
Collapse
Affiliation(s)
- A John
- Department of Microbiology and Immunology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia PA 19107, USA
| | | | | |
Collapse
|
40
|
Nemer M, Stuebing EW, Bai G, Parker HR. Spatial regulation of SpMTA metallothionein gene expression in sea urchin embryos by a regulatory cassette in intron 1. Mech Dev 1995; 50:131-7. [PMID: 7619725 DOI: 10.1016/0925-4773(94)00330-p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The SpMTA metallothionein (MT) gene of the sea urchin Strongylocentrotus purpuratus is restricted in its expression to the aboral ectoderm in gastrulae and pluteus larvae. The proximal 1.6 kb of the 5'-flanking region together with the 1.12-kb first intron of the SpMTA gene are sufficient for its correct cell-type specific expression in transgenic embryos. This restricted spatial expression is largely eliminated by deletion of an interior 405-bp region in the intron. Within this region is a 295-bp, genomically repetitive, transposon-like segment (Nemer et al., 1993), containing several sequence motifs highly homologous to posited regulatory elements in the promoters of other genes (Thiebaud et al., 1990). The P3A and P5 sites in this apparent regulatory cassette were shown through competition to bind with relatively high affinities the same nuclear factors, bound by their counterpart sites in the CyIIIa actin promoter.
Collapse
Affiliation(s)
- M Nemer
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
41
|
Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C. Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 1993; 7:2120-34. [PMID: 7901121 DOI: 10.1101/gad.7.11.2120] [Citation(s) in RCA: 314] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Homeo domain-containing proteins mediate many transcriptional processes in eukaryotes. Because nearly all animal homeo proteins are believed to bind to short, highly related DNA sequences, the basis for their high specificity of action is not understood. We show that cooperative dimerization on palindromic DNA sequences can provide increased specificity to one of the three major classes of homeo domains, the Paired/Pax class. The 60-amino-acid homeo domains from this class contain sufficient information to bind cooperatively as homo- and heterodimers to palindromic DNA sequences; that is, the binding of one homeo domain molecule can increase the affinity of a second molecule by up to 300-fold. Different members of the Paired (Prd) class of homeo domains prefer different spacings between half-sites, as determined by the ninth amino acid residue of the recognition helix. In addition, this residue determines the identity of the base pairs at the center of the palindromic sites, as well as the magnitude of the cooperative interaction. The cooperative dimerization of homeo domains in the Prd class distinguishes them from other classes, whereas binding-site configuration and sequence specificity allow for distinctions within this class.
Collapse
Affiliation(s)
- D Wilson
- Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021-6399
| | | | | | | | | |
Collapse
|
42
|
Synergistic activation of transcription is mediated by the N-terminal domain of Drosophila fushi tarazu homeoprotein and can occur without DNA binding by the protein. Mol Cell Biol 1993. [PMID: 8095092 DOI: 10.1128/mcb.13.3.1599] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synergistic activation of transcription by Drosophila segmentation genes in tissue culture cells provides a model with which to study combinatorial regulation. We examined the synergistic activation of an engrailed-derived promoter by the pair-rule proteins paired (PRD) and fushi tarazu (FTZ). Synergistic activation by PRD requires regions of the homeodomain or adjacent sequences, and that by FTZ requires the first 171 residues. Surprisingly, deletion of the FTZ homeodomain does not reduce the capacity of the protein for synergistic activation, although this mutation abolishes any detectable DNA-binding activity. This finding suggests that FTZ can function through protein-protein interactions with PRD or other components of the homeoprotein transcription complex, adding a new layer of mechanisms that could underlie the functional specificities and combinatorial regulation of homeoproteins.
Collapse
|
43
|
Ananthan J, Baler R, Morrissey D, Zuo J, Lan Y, Weir M, Voellmy R. Synergistic activation of transcription is mediated by the N-terminal domain of Drosophila fushi tarazu homeoprotein and can occur without DNA binding by the protein. Mol Cell Biol 1993; 13:1599-609. [PMID: 8095092 PMCID: PMC359472 DOI: 10.1128/mcb.13.3.1599-1609.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Synergistic activation of transcription by Drosophila segmentation genes in tissue culture cells provides a model with which to study combinatorial regulation. We examined the synergistic activation of an engrailed-derived promoter by the pair-rule proteins paired (PRD) and fushi tarazu (FTZ). Synergistic activation by PRD requires regions of the homeodomain or adjacent sequences, and that by FTZ requires the first 171 residues. Surprisingly, deletion of the FTZ homeodomain does not reduce the capacity of the protein for synergistic activation, although this mutation abolishes any detectable DNA-binding activity. This finding suggests that FTZ can function through protein-protein interactions with PRD or other components of the homeoprotein transcription complex, adding a new layer of mechanisms that could underlie the functional specificities and combinatorial regulation of homeoproteins.
Collapse
Affiliation(s)
- J Ananthan
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101-6129
| | | | | | | | | | | | | |
Collapse
|
44
|
Combinatorial regulation by promoter and intron 1 regions of the metallothionein SpMTA gene in the sea urchin embryo. Mol Cell Biol 1993. [PMID: 8423819 DOI: 10.1128/mcb.13.2.993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SpMTA metallothionein gene of the sea urchin Strongylocentrotus purpuratus is regulated developmentally, histospecifically, and by heavy-metal induction. The sequenced 5' flank of the gene can be divided into proximal, middle, and distal regions, each containing a pair of metal response elements (MREs). Canonical 7-bp core sequences are present in all except the middle-region MREs c and d, which contain 1-bp mismatches. Metal-induced expression in transgenic blastulae was increased with each consecutive addition of the middle and distal regions to a chimeric reporter gene construct containing the proximal SpMTA promoter region. Reduced metal induction through point mutation of the distal MREs e and f indicated that the MREs themselves were largely responsible for the transcriptional increase. These activities were further enhanced by SpMTA intron 1, but not when a specific interior region of the intron had been deleted. The atypical MREs c and d did not support induction by themselves, i.e., when present alone with mutated proximal MREs a and b. However, in the presence of intron 1, they were able to substitute for the nullified MREs a and b in the promotion of metal-induced expression. This capability suggests, furthermore, that these atypical MREs, in addition to responding to an intron 1 region, participate cooperatively with the canonical proximal MREs.
Collapse
|
45
|
Bai G, Stuebing EW, Parker HR, Harlow P, Nemer M. Combinatorial regulation by promoter and intron 1 regions of the metallothionein SpMTA gene in the sea urchin embryo. Mol Cell Biol 1993; 13:993-1001. [PMID: 8423819 PMCID: PMC358984 DOI: 10.1128/mcb.13.2.993-1001.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The SpMTA metallothionein gene of the sea urchin Strongylocentrotus purpuratus is regulated developmentally, histospecifically, and by heavy-metal induction. The sequenced 5' flank of the gene can be divided into proximal, middle, and distal regions, each containing a pair of metal response elements (MREs). Canonical 7-bp core sequences are present in all except the middle-region MREs c and d, which contain 1-bp mismatches. Metal-induced expression in transgenic blastulae was increased with each consecutive addition of the middle and distal regions to a chimeric reporter gene construct containing the proximal SpMTA promoter region. Reduced metal induction through point mutation of the distal MREs e and f indicated that the MREs themselves were largely responsible for the transcriptional increase. These activities were further enhanced by SpMTA intron 1, but not when a specific interior region of the intron had been deleted. The atypical MREs c and d did not support induction by themselves, i.e., when present alone with mutated proximal MREs a and b. However, in the presence of intron 1, they were able to substitute for the nullified MREs a and b in the promotion of metal-induced expression. This capability suggests, furthermore, that these atypical MREs, in addition to responding to an intron 1 region, participate cooperatively with the canonical proximal MREs.
Collapse
Affiliation(s)
- G Bai
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | | | | | | |
Collapse
|
46
|
Lee JJ, von Kessler DP, Parks S, Beachy PA. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 1992; 71:33-50. [PMID: 1394430 DOI: 10.1016/0092-8674(92)90264-d] [Citation(s) in RCA: 452] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The segment polarity genes engrailed and wingless are expressed in neighboring stripes of cells on opposite sides of the Drosophila parasegment boundary. Each gene is mutually required for maintenance of the other's expression; continued expression of both also requires several other segment polarity genes. We show here that one such gene, hedgehog, encodes a protein targeted to the secretory pathway and is expressed coincidently with engrailed in embryos and in imaginal discs; maintenance of the hedgehog expression pattern is itself dependent upon other segment polarity genes including engrailed and wingless. Expression of hedgehog thus functions in, and is sensitive to, positional signaling. These properties are consistent with the non-cell autonomous requirement for hedgehog in cuticular patterning and in maintenance of wingless expression.
Collapse
Affiliation(s)
- J J Lee
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
47
|
Grossniklaus U, Pearson RK, Gehring WJ. The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. Genes Dev 1992; 6:1030-51. [PMID: 1317319 DOI: 10.1101/gad.6.6.1030] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sloppy paired locus is involved in the establishment of the metameric body plan of the Drosophila embryo. We have cloned the sloppy paired locus by P-element-mediated enhancer detection. The locus is composed of two genes, slp1 and slp2, that are structurally and functionally related. They belong to a novel class of putative transcription factors containing a fork head domain that has also been found in mammalian hepatocyte transcription factors. The spatial expression patterns of the two transcripts are very similar, suggesting common regulation of the two genes. We recovered additional sloppy paired alleles by remobilization of an enhancer detector transposon. Genetic analysis suggests that both genes contribute to the segmentation phenotype that has characteristics of both, pair-rule and segment polarity genes, and that they interact functionally. The two genes appear to share an enhancer element situated upstream of slp1 that acts on both the proximal slp1 promoter and the distal slp2 promoter.
Collapse
|
48
|
Kassis JA, Noll E, VanSickle EP, Odenwald WF, Perrimon N. Altering the insertional specificity of a Drosophila transposable element. Proc Natl Acad Sci U S A 1992; 89:1919-23. [PMID: 1311855 PMCID: PMC48565 DOI: 10.1073/pnas.89.5.1919] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vectors derived from the Drosophila P element transposon are widely used to make transgenic Drosophila. Insertion of most P-element-derived vectors is nonrandom, but they exhibit a broad specificity of target sites. During experiments to identify cis-acting regulatory elements of the Drosophila segmentation gene engrailed, we identified a fragment of engrailed DNA that, when included within a P-element vector, strikingly alters the specificity of target sites. P-element vectors that contain this fragment of engrailed regulatory DNA insert at a high frequency near genes expressed in stripes.
Collapse
Affiliation(s)
- J A Kassis
- Laboratory of Cellular and Molecular Biology, Food and Drug Administration, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
49
|
Whiteley M, Noguchi PD, Sensabaugh SM, Odenwald WF, Kassis JA. The Drosophila gene escargot encodes a zinc finger motif found in snail-related genes. Mech Dev 1992; 36:117-27. [PMID: 1571289 DOI: 10.1016/0925-4773(92)90063-p] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two independent P-element enhancer detection lines were obtained that express lacZ in a pattern of longitudinal stripes early in germband elongation. In this paper, molecular and genetic characterization of a gene located near these transposons is presented. Sequence analysis of a cDNA clone from the region reveals that this gene has a high degree of similarity with the Drosophila snail gene (Boulay et al., 1987). The sequence similarity extends over 400 nucleotides, and includes a region encoding five tandem zinc finger motifs (72% nucleotide identity; 76% amino acid identity). This region is also conserved in the snail homologue from Xenopus laevis (76% nucleotide identity; 83% amino acid identity) (Sargent and Bennett, 1990). We have named the Drosophila snail-related gene escargot (esg), and the region of sequence conservation common to all three genes the 'snailbox'. A number of Drosophila genomic DNA fragments cross-hybridize to a probe from the snailbox region suggesting that snail and escargot are members of a multigene family. The expression pattern of escargot is dynamic and complex. Early in germband elongation, escargot RNA is expressed in a pattern of longitudinal stripes identical to the one observed in the two enhancer detection lines. Later in development, escargot is expressed in cells that will form the larval imaginal tissues, escargot is allelic with l(2)35Ce, an essential gene located near snail in the genome.
Collapse
Affiliation(s)
- M Whiteley
- Laboratory of Cellular and Molecular Biology, Food and Drug Administration, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
50
|
Friedman TB, Burnett JB, Lootens S, Steinman R, Wallrath LL. The urate oxidase gene of Drosophila pseudoobscura and Drosophila melanogaster: evolutionary changes of sequence and regulation. J Mol Evol 1992; 34:62-77. [PMID: 1556745 DOI: 10.1007/bf00163853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The urate oxidase (UO) transcription unit of Drosophila pseudoobscura was cloned, sequenced, and compared to the UO transcription unit from Drosophila melanogaster. In both species the UO coding region is divided into two exons of approximately equal size. The deduced D. pseudoobscura and D. melanogaster UO peptides have 346 and 352 amino acid residues, respectively. The nucleotide sequences of the D. pseudoobscura and D. melanogaster UO protein-coding regions are 82.2% identical whereas the deduced amino acid sequences are 87.6% identical with 42 amino acid changes, 33 of which occur in the first exon. Although the UO gene is expressed exclusively within the cells of the Malpighian tubules in both of these species, the temporal patterns of UO gene activity during development are markedly different. UO enzyme activity, UO protein, and UO mRNA are found in the third instar larva and adult of D. melanogaster but only in the adult stage of D. pseudoobscura. The intronic sequences and the extragenic 5' and 3' flanking regions of the D. pseudoobscura and D. melanogaster UO genes are highly divergent with the exception of eight small islands of conserved sequence along 772 bp 5' of the UO protein-coding region. These islands of conserved sequence are possible UO cis-acting regulatory elements as they reside along the 5' flanking DNA of the D. melanogaster UO gene that is capable of conferring a wild-type D. melanogaster pattern of UO regulation on a UO-lacZ fusion gene.
Collapse
Affiliation(s)
- T B Friedman
- Graduate Program in Genetics, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|