1
|
Al Asafen H, Beseli A, Chen HY, Hiremath S, Williams CM, Reeves GT. Dynamics of BMP signaling and stable gene expression in the early Drosophila embryo. Biol Open 2024; 13:bio061646. [PMID: 39207258 PMCID: PMC11381920 DOI: 10.1242/bio.061646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
In developing tissues, morphogen gradients are thought to initialize gene expression patterns. However, the relationship between the dynamics of morphogen-encoded signals and gene expression decisions is largely unknown. Here we examine the dynamics of the Bone Morphogenetic Protein (BMP) pathway in Drosophila blastoderm-stage embryos. In this tissue, the BMP pathway is highly dynamic: it begins as a broad and weak signal on the dorsal half of the embryo, then 20-30 min later refines into a narrow, intense peak centered on the dorsal midline. This dynamical progression of the BMP signal raises questions of how it stably activates target genes. Therefore, we performed live imaging of the BMP signal and found that dorsal-lateral cells experience only a short transient in BMP signaling, after which the signal is lost completely. Moreover, we measured the transcriptional response of the BMP target gene pannier in live embryos and found it to remain activated in dorsal-lateral cells, even after the BMP signal is lost. Our findings may suggest that the BMP pathway activates a memory, or 'ratchet' mechanism that may sustain gene expression.
Collapse
Affiliation(s)
- Hadel Al Asafen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aydin Beseli
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Hung-Yuan Chen
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843,USA
| | - Sharva Hiremath
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695,USA
- North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695,USA
| | - Cranos M. Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695,USA
- North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695,USA
| | - Gregory T. Reeves
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843,USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, TX 77843,USA
| |
Collapse
|
2
|
McGehee J, Stathopoulos A. Mechanisms for controlling Dorsal nuclear levels. Front Cell Dev Biol 2024; 12:1436369. [PMID: 39161589 PMCID: PMC11330768 DOI: 10.3389/fcell.2024.1436369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Formation of the Dorsal nuclear-cytoplasmic gradient is important for the proper establishment of gene expression patterns along the dorsal-ventral (DV) axis during embryogenesis in Drosophila melanogaster. Correct patterning of the DV axis leads to formation of the presumptive mesoderm, neurogenic ectoderm, dorsal ectoderm, and amnioserosa, which are tissues necessary for embryo viability. While Toll signaling is necessary for Dorsal gradient formation, a gradient still forms in the absence of Toll, suggesting there are additional mechanisms required to achieve correct nuclear Dorsal levels. Potential mechanisms include post-translational modification, shuttling, and nuclear spacing. Post-translational modification could affect import and export rates either directly through modification of a nuclear localization sequence or nuclear export sequence, or indirectly by affecting interactions with binding partners that alter import and export rates. Shuttling, which refers to the facilitated diffusion of Dorsal through its interaction with its cytoplasmic inhibitor Cactus, could regulate nuclear levels by delivering more Dorsal ventrally. Finally, nuclear spacing could result in higher nuclear levels by leaving fewer nuclei in the ventral domain to uptake Dorsal. This review details how each of these mechanisms may help establish Dorsal nuclear levels in the early fly embryo, which serves as a paradigm for understanding how the dynamics of graded inputs can influence patterning and target gene expression. Furthermore, careful analysis of nuclear Dorsal levels is likely to provide general insights as recent studies have suggested that the regulation of nuclear import affects the timing of gene expression at the maternal-to-zygotic transition.
Collapse
Affiliation(s)
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, United States
| |
Collapse
|
3
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Soory A, Ratnaparkhi GS. SUMOylation of Jun fine-tunes the Drosophila gut immune response. PLoS Pathog 2022; 18:e1010356. [PMID: 35255103 PMCID: PMC8929699 DOI: 10.1371/journal.ppat.1010356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/17/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Post-translational modification by the small ubiquitin-like modifier, SUMO can modulate the activity of its conjugated proteins in a plethora of cellular contexts. The effect of SUMO conjugation of proteins during an immune response is poorly understood in Drosophila. We have previously identified that the transcription factor Jra, the Drosophila Jun ortholog and a member of the AP-1 complex is one such SUMO target. Here, we find that Jra is a regulator of the Pseudomonas entomophila induced gut immune gene regulatory network, modulating the expression of a few thousand genes, as measured by quantitative RNA sequencing. Decrease in Jra in gut enterocytes is protective, suggesting that reduction of Jra signaling favors the host over the pathogen. In Jra, lysines 29 and 190 are SUMO conjugation targets, with the JraK29R+K190R double mutant being SUMO conjugation resistant (SCR). Interestingly, a JraSCR fly line, generated by CRISPR/Cas9 based genome editing, is more sensitive to infection, with adults showing a weakened host response and increased proliferation of Pseudomonas. Transcriptome analysis of the guts of JraSCR and JraWT flies suggests that lack of SUMOylation of Jra significantly changes core elements of the immune gene regulatory network, which include antimicrobial agents, secreted ligands, feedback regulators, and transcription factors. Mechanistically, SUMOylation attenuates Jra activity, with the TFs, forkhead, anterior open, activating transcription factor 3 and the master immune regulator Relish being important transcriptional targets. Our study implicates Jra as a major immune regulator, with dynamic SUMO conjugation/deconjugation of Jra modulating the kinetics of the gut immune response. The intestine has a resident population of commensal microorganisms against which the immune machinery is tuned to show low or no reactivity. In contrast, when pathogenic microorganisms are ingested, the gut responds by activating signaling cascades that lead to the killing and clearance of the pathogen. In this study, we examine the role played by the well-known transcription factor Jun in regulating the immune response in the Drosophila gut. We find that loss of Jun leads to the change in intensity and kinetics of the gut immune transcriptome. The transcriptional profile indicates a stronger response when Jun activity is reduced. Also, animals infected with Pseudomonas entomophila live longer when Jun signaling is reduced. Further, we find that Jun is post-translationally modified on Lys29 and Lys190 by SUMO. To understand the effect of SUMO-conjugation of Jun, we create by state-of-the-art CRISPR/Cas9 genome editing a Drosophila line where Jun is resistant to SUMOylation. This line is more sensitive to infection, with a weaker host-defense response. Our data suggest that Jun Signaling favors the pathogen by dampening the immune response. SUMO conjugation of Jun reverses the dampening and strengthens the immune response in favor of the host. Dynamic SUMOylation of Jun thus fine-tunes the gut immune response to pathogens.
Collapse
Affiliation(s)
- Amarendranath Soory
- Department of Biology, Indian Institute of Science Education & Research, Pune, india
- * E-mail: (AS); (GR)
| | - Girish S. Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, india
- * E-mail: (AS); (GR)
| |
Collapse
|
5
|
Bajusz C, Kristó I, Abonyi C, Venit T, Vedelek V, Lukácsovich T, Farkas A, Borkúti P, Kovács Z, Bajusz I, Marton A, Vizler C, Lipinszki Z, Sinka R, Percipalle P, Vilmos P. The nuclear activity of the actin-binding Moesin protein is necessary for gene expression in Drosophila. FEBS J 2021; 288:4812-4832. [PMID: 33606336 DOI: 10.1111/febs.15779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Ezrin-Radixin-Moesin (ERM) proteins play an essential role in the cytoplasm by cross-linking actin filaments with plasma membrane proteins. Research has identified the nuclear localization of ERMs, as well as the involvement of a single Drosophila ERM protein, Moesin, in nuclear mRNA exports. However, the question of how important the nuclear activity of ERM proteins are for the life of an organism has so far not been explored. Here, we present the first attempt to reveal the in vivo relevance of nuclear localization of Moesin in Drosophila. With the help of a nuclear export signal, we decreased the amount of Moesin in the nuclei of the animals. Furthermore, we observed various developmental defects, demonstrating the importance of ERM function in the nucleus for the first time. Transcriptome analysis of the mutant flies revealed that the lack of nuclear Moesin function leads to expression changes in nearly 700 genes, among them heat-shock genes. This result together with additional findings revealed that in Drosophila the expression of protein chaperones requires the nuclear functions of Moesin. DATABASE: GEO accession number: GSE155778.
Collapse
Affiliation(s)
- Csaba Bajusz
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Hungary
| | - Ildikó Kristó
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Csilla Abonyi
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Tomáš Venit
- Biology Program, Science Division, New York University Abu Dhabi, UAE
| | | | | | - Attila Farkas
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Péter Borkúti
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Hungary
| | - Zoltán Kovács
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Hungary
| | - Izabella Bajusz
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Annamária Marton
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Csaba Vizler
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- Lendület Laboratory of Cell Cycle Regulation, ELKH, Biological Research Centre, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Hungary
| | - Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, UAE.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Péter Vilmos
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| |
Collapse
|
6
|
Moutaoufik MT, Tanguay RM. Analysis of insect nuclear small heat shock proteins and interacting proteins. Cell Stress Chaperones 2021; 26:265-274. [PMID: 32888179 PMCID: PMC7736433 DOI: 10.1007/s12192-020-01156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress proteins found in all domains of life. Drosophila melanogaster Hsp27 (DmHsp27) is the only known nuclear sHsp in insect. Here analyzing sequences from HMMER, we identified 56 additional insect sHsps with conserved arginine-rich nuclear localization signal (NLS) in the N-terminal region. At this time, the exact role of nuclear sHsps remains unknown. DmHsp27 protein-protein interaction analysis from iRefIndex database suggests that this protein, in addition to a putative role of molecular chaperone, is likely involved in other nuclear processes (i.e., chromatin remodeling and transcription). Identification of DmHsp27 interactors should provide key insights on the cellular and molecular functions of this nuclear chaperone.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Robert M Tanguay
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada.
| |
Collapse
|
7
|
Gurska D, Vargas Jentzsch IM, Panfilio KA. Unexpected mutual regulation underlies paralogue functional diversification and promotes epithelial tissue maturation in Tribolium. Commun Biol 2020; 3:552. [PMID: 33020571 PMCID: PMC7536231 DOI: 10.1038/s42003-020-01250-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 08/21/2020] [Indexed: 02/03/2023] Open
Abstract
Insect Hox3/zen genes represent an evolutionary hotspot for changes in function and copy number. Single orthologues are required either for early specification or late morphogenesis of the extraembryonic tissues, which protect the embryo. The tandemly duplicated zen paralogues of the beetle Tribolium castaneum present a unique opportunity to investigate both functions in a single species. We dissect the paralogues' expression dynamics (transcript and protein) and transcriptional targets (RNA-seq after RNAi) throughout embryogenesis. We identify an unexpected role of Tc-Zen2 in repression of Tc-zen1, generating a negative feedback loop that promotes developmental progression. Tc-Zen2 regulation is dynamic, including within co-expressed multigene loci. We also show that extraembryonic development is the major event within the transcriptional landscape of late embryogenesis and provide a global molecular characterization of the extraembryonic serosal tissue. Altogether, we propose that paralogue mutual regulation arose through multiple instances of zen subfunctionalization, leading to their complementary extant roles.
Collapse
Affiliation(s)
- Daniela Gurska
- Institute of Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Iris M Vargas Jentzsch
- Institute of Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Kristen A Panfilio
- Institute of Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
8
|
Schloop AE, Carrell-Noel S, Friedman J, Thomas A, Reeves GT. Mechanism and implications of morphogen shuttling: Lessons learned from dorsal and Cactus in Drosophila. Dev Biol 2020; 461:13-18. [PMID: 31987808 PMCID: PMC7513736 DOI: 10.1016/j.ydbio.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/24/2022]
Abstract
In a developing animal, morphogen gradients act to pattern tissues into distinct domains of cell types. However, despite their prevalence in development, morphogen gradient formation is a matter of debate. In our recent publication, we showed that the Dorsal/NF-κB morphogen gradient, which patterns the DV axis of the early Drosophila embryo, is partially established by a mechanism of facilitated diffusion. This mechanism, also known as "shuttling," occurs when a binding partner of the morphogen facilitates the diffusion of the morphogen, allowing it to accumulate at a given site. In this case, the inhibitor Cactus/IκB facilitates the diffusion of Dorsal/NF-κB. In the fly embryo, we used computation and experiment to not only show that shuttling occurs in the embryo, but also that it enables the viability of embryos that inherit only one copy of dorsal maternally. In this commentary, we further discuss our evidence behind the shuttling mechanism, the previous literature data explained by the mechanism, and how it may also be critical for robustness of development. Finally, we briefly provide additional experimental data pointing toward an interaction between Dorsal and BMP signaling that is likely affected by shuttling.
Collapse
Affiliation(s)
| | - Sophia Carrell-Noel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jeramey Friedman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Alexander Thomas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Yau TY, Molina O, Courey AJ. SUMOylation in development and neurodegeneration. Development 2020; 147:147/6/dev175703. [PMID: 32188601 DOI: 10.1242/dev.175703] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In essentially all eukaryotes, proteins can be modified by the attachment of small ubiquitin-related modifier (SUMO) proteins to lysine side chains to produce branched proteins. This process of 'SUMOylation' plays essential roles in plant and animal development by altering protein function in spatially and temporally controlled ways. In this Primer, we explain the process of SUMOylation and summarize how SUMOylation regulates a number of signal transduction pathways. Next, we discuss multiple roles of SUMOylation in the epigenetic control of transcription. In addition, we evaluate the role of SUMOylation in the etiology of neurodegenerative disorders, focusing on Parkinson's disease and cerebral ischemia. Finally, we discuss the possibility that SUMOylation may stimulate survival and neurogenesis of neuronal stem cells.
Collapse
Affiliation(s)
- Tak-Yu Yau
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Oscar Molina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Albert J Courey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
10
|
Hegde S, Soory A, Kaduskar B, Ratnaparkhi GS. SUMO conjugation regulates immune signalling. Fly (Austin) 2020; 14:62-79. [PMID: 32777975 PMCID: PMC7714519 DOI: 10.1080/19336934.2020.1808402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) are critical drivers and attenuators for proteins that regulate immune signalling cascades in host defence. In this review, we explore functional roles for one such PTM, the small ubiquitin-like modifier (SUMO). Very few of the SUMO conjugation targets identified by proteomic studies have been validated in terms of their roles in host defence. Here, we compare and contrast potential SUMO substrate proteins in immune signalling for flies and mammals, with an emphasis on NFκB pathways. We discuss, using the few mechanistic studies that exist for validated targets, the effect of SUMO conjugation on signalling and also explore current molecular models that explain regulation by SUMO. We also discuss in detail roles of evolutionary conservation of mechanisms, SUMO interaction motifs, crosstalk of SUMO with other PTMs, emerging concepts such as group SUMOylation and finally, the potentially transforming roles for genome-editing technologies in studying the effect of PTMs.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | - Amarendranath Soory
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | | | | |
Collapse
|
11
|
Arnò B, Galli F, Roostalu U, Aldeiri BM, Miyake T, Albertini A, Bragg L, Prehar S, McDermott JC, Cartwright EJ, Cossu G. TNAP limits TGF-β-dependent cardiac and skeletal muscle fibrosis by inactivating the SMAD2/3 transcription factors. J Cell Sci 2019; 132:jcs.234948. [PMID: 31289197 DOI: 10.1242/jcs.234948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022] Open
Abstract
Fibrosis is associated with almost all forms of chronic cardiac and skeletal muscle diseases. The accumulation of extracellular matrix impairs the contractility of muscle cells contributing to organ failure. Transforming growth factor β (TGF-β) plays a pivotal role in fibrosis, activating pro-fibrotic gene programmes via phosphorylation of SMAD2/3 transcription factors. However, the mechanisms that control de-phosphorylation of SMAD2 and SMAD3 (SMAD2/3) have remained poorly characterized. Here, we show that tissue non-specific alkaline phosphatase (TNAP, also known as ALPL) is highly upregulated in hypertrophic hearts and in dystrophic skeletal muscles, and that the abrogation of TGF-β signalling in TNAP-positive cells reduces vascular and interstitial fibrosis. We show that TNAP colocalizes and interacts with SMAD2. The TNAP inhibitor MLS-0038949 increases SMAD2/3 phosphorylation, while TNAP overexpression reduces SMAD2/3 phosphorylation and the expression of downstream fibrotic genes. Overall our data demonstrate that TNAP negatively regulates TGF-β signalling and likely represents a mechanism to limit fibrosis.
Collapse
Affiliation(s)
- Benedetta Arnò
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Medicines Discovery Catapult, Mereside, Alderley Edge SK104TG, UK
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Urmas Roostalu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Gubra Hørsholm Kongevej 11B 2970 Hørsholm, Denmark
| | - Bashar M Aldeiri
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Alessandra Albertini
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,TIGET-HSR, Ospedale San Raffele, Via Olgettina 60, 20132 Milan, Italy
| | - Laricia Bragg
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
13
|
Abstract
The ubiquitin -like protein SUMO is conjugated covalently to hundreds of target proteins in organisms throughout the eukaryotic domain. Genetic and biochemical studies using the model organism Drosophila melanogaster are beginning to reveal many essential functions for SUMO in cell biology and development. For example, SUMO regulates multiple signaling pathways such as the Ras/MAPK, Dpp, and JNK pathways. In addition, SUMO regulates transcription through conjugation to many transcriptional regulatory proteins, including Bicoid, Spalt , Scm, and Groucho. In some cases, conjugation of SUMO to a target protein inhibits its normal activity, while in other cases SUMO conjugation stimulates target protein activity. SUMO often modulates a biological process by altering the subcellular localization of a target protein. The ability of SUMO and other ubiquitin-like proteins to diversify protein function may be critical to the evolution of developmental complexity.
Collapse
|
14
|
Long-Term Memory in Drosophila Is Influenced by Histone Deacetylase HDAC4 Interacting with SUMO-Conjugating Enzyme Ubc9. Genetics 2016; 203:1249-64. [PMID: 27182943 DOI: 10.1534/genetics.115.183194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/29/2016] [Indexed: 12/28/2022] Open
Abstract
HDAC4 is a potent memory repressor with overexpression of wild type or a nuclear-restricted mutant resulting in memory deficits. Interestingly, reduction of HDAC4 also impairs memory via an as yet unknown mechanism. Although histone deacetylase family members are important mediators of epigenetic mechanisms in neurons, HDAC4 is predominantly cytoplasmic in the brain and there is increasing evidence for interactions with nonhistone proteins, suggesting HDAC4 has roles beyond transcriptional regulation. To that end, we performed a genetic interaction screen in Drosophila and identified 26 genes that interacted with HDAC4, including Ubc9, the sole SUMO E2-conjugating enzyme. RNA interference-induced reduction of Ubc9 in the adult brain impaired long-term memory in the courtship suppression assay, a Drosophila model of associative memory. We also demonstrate that HDAC4 and Ubc9 interact genetically during memory formation, opening new avenues for investigating the mechanisms through which HDAC4 regulates memory formation and other neurological processes.
Collapse
|
15
|
Liu J, Ma J. Modulation of temporal dynamics of gene transcription by activator potency in the Drosophila embryo. Development 2015; 142:3781-90. [PMID: 26395487 DOI: 10.1242/dev.126946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 12/24/2022]
Abstract
The Drosophila embryo at the mid-blastula transition (MBT) concurrently experiences a receding first wave of zygotic transcription and the surge of a massive second wave. It is not well understood how genes in the first wave become turned off transcriptionally and how their precise timing may impact embryonic development. Here we perturb the timing of the shutdown of Bicoid (Bcd)-dependent hunchback (hb) transcription in the embryo through the use of a Bcd mutant that has heightened activating potency. A delayed shutdown specifically increases Bcd-activated hb levels, and this alters spatial characteristics of the patterning outcome and causes developmental defects. Our study thus documents a specific participation of maternal activator input strength in the timing of molecular events in precise accordance with MBT morphological progression.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Newton FG, Harris RE, Sutcliffe C, Ashe HL. Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuates signal range during development. Development 2015; 142:3362-73. [PMID: 26293305 PMCID: PMC4631754 DOI: 10.1242/dev.123273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023]
Abstract
Precise control of the range of signalling molecule action is crucial for correct cell fate patterning during development. For example, Drosophila ovarian germline stem cells (GSCs) are maintained by exquisitely short-range BMP signalling from the niche. In the absence of BMP signalling, one GSC daughter differentiates into a cystoblast (CB) and this fate is stabilised by Brain tumour (Brat) and Pumilio (Pum)-mediated post-transcriptional repression of mRNAs, including that encoding the Dpp transducer, Mad. However, the identity of other repressed mRNAs and the mechanism of post-transcriptional repression are currently unknown. Here, we identify the Medea and schnurri mRNAs, which encode transcriptional regulators required for activation and/or repression of Dpp target genes, as additional Pum-Brat targets, suggesting that tripartite repression of the transducers is deployed to desensitise the CB to Dpp. In addition, we show that repression by Pum-Brat requires recruitment of the CCR4 and Pop2 deadenylases, with knockdown of deadenylases in vivo giving rise to ectopic GSCs. Consistent with this, Pum-Brat repression leads to poly(A) tail shortening and mRNA degradation in tissue culture cells, and we detect a reduced number of Mad and shn transcripts in the CB relative to the GSC based on single molecule mRNA quantitation. Finally, we show generality of the mechanism by demonstrating that Brat also attenuates pMad and Dpp signalling range in the early embryo. Together our data serve as a platform for understanding how post-transcriptional repression restricts interpretation of BMPs and other cell signals in order to allow robust cell fate patterning during development. Summary: The translational repressors Brat and Pumilio attenuate Dpp signalling range in the Drosophila female germline and early embryo to ensure precise cell fate patterning.
Collapse
Affiliation(s)
- Fay G Newton
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Robin E Harris
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - Hilary L Ashe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
17
|
Gaarenstroom T, Hill CS. TGF-β signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol 2014; 32:107-18. [PMID: 24503509 DOI: 10.1016/j.semcdb.2014.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
Ligands of the TGF-β superfamily (including the TGF-βs, Nodal and BMPs) play instructive roles during embryonic development. This is achieved by regulation of genes important for both maintaining pluripotency and germ layer specification and differentiation. Here we review how the TGF-β superfamily ligands signal to the chromatin to regulate transcription during development. The effectors of the pathway, the Smad transcription factors, are regulated in a combinatorial and spatiotemporal manner. This occurs via post-translational modifications affecting stability, localization and activity, as well as through interactions with other transcription factors and chromatin modifying enzymes, which occur on DNA. Expression profiling and Chromatin Immunoprecipitation have defined Smad target genes and binding sites on a genome-wide scale, which vary between cell types and differentiation stages. This has led to the insight that Smad-mediated transcriptional responses are influenced by the presence of master transcription factors, such as OCT4, SOX2 and NANOG in embryonic stem cells, interaction with other signal-induced factors, as well as by the general chromatin remodeling machinery. Interplay with transcriptional repressors and the polycomb group proteins also regulates the balance between expression of self-renewal and mesendoderm-specific genes in embryonic stem cells and during early development.
Collapse
Affiliation(s)
- Tessa Gaarenstroom
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Caroline S Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom.
| |
Collapse
|
18
|
Peterson AJ, O'Connor MB. Strategies for exploring TGF-β signaling in Drosophila. Methods 2014; 68:183-93. [PMID: 24680699 PMCID: PMC4057889 DOI: 10.1016/j.ymeth.2014.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
The TGF-β pathway is an evolutionarily conserved signal transduction module that mediates diverse biological processes in animals. In Drosophila, both the BMP and Activin branches are required for viability. Studies rooted in classical and molecular genetic approaches continue to uncover new developmental roles for TGF-β signaling. We present an overview of the secreted ligands, transmembrane receptors and cellular Smad transducer proteins that compose the core pathway in Drosophila. An assortment of tools have been developed to conduct tissue-specific loss- and gain-of-function experiments for these pathway components. We discuss the deployment of these reagents, with an emphasis on appropriate usage and limitations of the available tools. Throughout, we note reagents that are in need of further improvement or development, and signaling features requiring further study. A general theme is that comparison of phenotypes for ligands, receptors, and Smads can be used to map tissue interactions, and to separate canonical and non-canonical signaling activities. Core TGF-β signaling components are subject to multiple layers of regulation, and are coupled to context-specific inputs and outputs. In addition to fleshing out how TGF-β signaling serves the fruit fly, we anticipate that future studies will uncover new regulatory nodes and modes and will continue to advance paradigms for how TGF-β signaling regulates general developmental processes.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
19
|
Yukita A. Regulation of BMP-induced osteoblastic differentiation by Ubc9 knockdown-mediated inhibition of SUMO modification. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Deshpande G, Willis E, Chatterjee S, Fernandez R, Dias K, Schedl P. BMP signaling and the maintenance of primordial germ cell identity in Drosophila embryos. PLoS One 2014; 9:e88847. [PMID: 24551179 PMCID: PMC3925178 DOI: 10.1371/journal.pone.0088847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/11/2014] [Indexed: 12/19/2022] Open
Abstract
The specification of primordial germ cells (PGCs) and subsequent maintenance of germ-line identity in Drosophila embryos has long been thought to occur solely under the control of cell-autonomous factors deposited in the posterior pole plasm during oogenesis. However, here we document a novel role for somatic BMP signaling in the maintenance of PGC fate during the period leading up to embryonic gonad coalescence. We find that PGCs fail to maintain their germline identity when BMP signaling is compromised. They initiate but are unable to properly assemble the germline stem cell-specific organelle, the spectrosome, and they lose expression of the germline-specific gene Vasa. BMP signaling must, however, be finely tuned as there are deleterious consequences to PGCs when the pathway is excessively active. We show that one mechanism used to calibrate the effects of BMP signals is dependent on the Ubc9 homolog Lesswright (Lwr).
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elinor Willis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sandip Chatterjee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Robert Fernandez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kristen Dias
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Gene Biology RAS, Moscow, Russian Federation
| |
Collapse
|
21
|
Fattet L, Ay AS, Bonneau B, Jallades L, Mikaelian I, Treilleux I, Gillet G, Hesling C, Rimokh R. TIF1γ requires sumoylation to exert its repressive activity on TGFβ signaling. J Cell Sci 2013; 126:3713-23. [PMID: 23788427 DOI: 10.1242/jcs.126748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TIF1γ, a new regulator of TGFβ signaling, inhibits the Smad4-mediated TGFβ response by interaction with Smad2/3 or ubiquitylation of Smad4. We have shown that TIF1γ participates in TGFβ signaling as a negative regulator of Smad4 during the TGFβ-induced epithelial-to-mesenchymal transition (EMT) in mammary epithelial cells, and during terminal differentiation of mammary alveolar epithelial cells and lactation. We demonstrate here that TIF1γ is sumoylated and interacts with Ubc9, the only known SUMO-conjugating enzyme. Four functional sumoylation sites lie within the middle domain of TIF1γ, the Smad interaction domain. We show that a sumoylation-defective TIF1γ mutant significantly reduces TIF1γ inhibition of Smad complexes and that of the Smad-mediated TGFβ transcriptional response. Moreover, chromatin immunoprecipitation experiments indicate that TIF1γ sumoylation is required to limit Smad4 binding on the PAI-1 TGFβ target gene promoter. Ectopic expression of TIF1γ in mammary epithelial cells inhibits TGFβ-induced EMT, an effect relieved by expression of non-sumoylated TIF1γ. Taken together, our results identify a new TGFβ regulatory layer, whereby sumoylation strengthens the TIF1γ repressive action on canonical TGFβ signaling.
Collapse
Affiliation(s)
- Laurent Fattet
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69373 Lyon, Cedex 08, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zouani OF, Kalisky J, Ibarboure E, Durrieu MC. Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate. Biomaterials 2013; 34:2157-66. [PMID: 23290467 DOI: 10.1016/j.biomaterials.2012.12.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022]
Abstract
Stem cells cultured on extracellular matrix (ECM) with different stiffnesses have been shown to engage into different lineage commitments. However, in vivo, the components of the ECM are known to bind and strongly interact with growth factors. The effect, on the stem cell fate, of the cooperation between the mechanical properties and the growth factor in the same microenvironment has not yet been investigated. Here, we propose a protocol for mimicking this stem cell microenvironment with an in vitro system. This system consists in grafting (without using a spacer) biomolecules that contain N-termini groups onto hydrogel (poly(acrylamide-co-acrylic acid)) surfaces of various stiffnesses ranging from 0.5 to 70 kPa. First, we demonstrate that the commitment of mesenchymal stem cell populations changes in response to the substrate's rigidity, with myogenic differentiation occurring at 13-17 kPa and osteogenic differentiation at 45-49 kPa. Chemical grafting of soft and stiff matrices with an osteogenic factor (BMP-2(mimetic peptide)) results only in osteogenic differentiation. Also, when grafted on even softer gels (0.5-3.5 kPa), the BMP-2(mimetic peptide) had no effect on the stem cell differentiation. We prove that correct organization of F-actin cytoskeleton due to the mechanical properties of the microenvironment is necessary for BMP-induced smad1/5/8 phosphorylation and nuclear translocation. These results suggest that stem cell differentiation is dictated mechanically, but in the presence of a biochemical factor, the effect of the mechanical factor on stem cell commitment is modified. This can explain the diversity of stem cell behaviors in vivo where different growth factors are sequestrated on the ECM.
Collapse
Affiliation(s)
- Omar F Zouani
- U1026, Bioingénierie Tissulaire, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | | | | | | |
Collapse
|
23
|
Rewitz KF, Yamanaka N, O'Connor MB. Developmental checkpoints and feedback circuits time insect maturation. Curr Top Dev Biol 2013; 103:1-33. [PMID: 23347514 DOI: 10.1016/b978-0-12-385979-2.00001-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transition from juvenile to adult is a fundamental process that allows animals to allocate resource toward reproduction after completing a certain amount of growth. In insects, growth to a species-specific target size induces pulses of the steroid hormone ecdysone that triggers metamorphosis and reproductive maturation. The past few years have seen significant progress in understanding the interplay of mechanisms that coordinate timing of ecdysone production and release. These studies show that the neuroendocrine system monitors complex size-related and nutritional signals, as well as external cues, to time production and release of ecdysone. Based on results discussed here, we suggest that developmental progression to adulthood is controlled by checkpoints that regulate the genetic timing program enabling it to adapt to different environmental conditions. These checkpoints utilize a number of signaling pathways to modulate ecdysone production in the prothoracic gland. Release of ecdysone activates an autonomous cascade of both feedforward and feedback signals that determine the duration of the ecdysone pulse at each developmental transitions. Conservation of the genetic mechanisms that coordinate the juvenile-adult transition suggests that insights from the fruit fly Drosophila will provide a framework for future investigation of developmental timing in metazoans.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Biology, Cell and Neurobiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
24
|
Smith M, Turki-Judeh W, Courey AJ. SUMOylation in Drosophila Development. Biomolecules 2012; 2:331-49. [PMID: 24970141 PMCID: PMC4030835 DOI: 10.3390/biom2030331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO), an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development.
Collapse
Affiliation(s)
- Matthew Smith
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA.
| | - Wiam Turki-Judeh
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA.
| | - Albert J Courey
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
25
|
Dupont S, Inui M, Newfeld SJ. Regulation of TGF-β signal transduction by mono- and deubiquitylation of Smads. FEBS Lett 2012; 586:1913-20. [PMID: 22710170 PMCID: PMC3383349 DOI: 10.1016/j.febslet.2012.03.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 01/17/2023]
Abstract
Polyubiquitylation leading to proteasomal degradation is a well-established mechanism for regulating TGF-β signal transduction components such as receptors and Smads. Recently, an equally important role was suggested for monoubiquitylation of both Smad4 and receptor-associated Smads that regulates their function without protein degradation. Monoubiquitylation of Smads was discovered following the identification of deubiquitylases required for TGF-β signaling, suggesting that continuous cycles of Smad mono- and deubiquitylation are required for proper TGF-β signal transduction. Here we summarize and discuss recent work on Smad mono- and deubiquitylation.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Masafumi Inui
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stuart J. Newfeld
- School of Life Sciences, Arizona State University, Tempe AZ 85287-4501, USA
| |
Collapse
|
26
|
Ramel MC, Hill CS. Spatial regulation of BMP activity. FEBS Lett 2012; 586:1929-41. [PMID: 22710177 DOI: 10.1016/j.febslet.2012.02.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/14/2022]
Abstract
The bone morphogenetic protein (BMP) signalling pathway is critical for embryonic development and tissue homeostasis, and impaired BMP signalling has been implicated in multiple diseases. Molecular tools have been developed to visualise BMP activity in vivo and these have allowed a better understanding of the intricate ways in which BMP activity is regulated spatially. In particular, generation and interpretation of BMP activity gradients during development result from the complex interplay between core BMP signalling components and specific regulators. In this essay we discuss the mechanisms by which spatial regulation of BMP activity is achieved and its functional consequences.
Collapse
Affiliation(s)
- Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | | |
Collapse
|
27
|
Yukita A, Hosoya A, Ito Y, Katagiri T, Asashima M, Nakamura H. Ubc9 negatively regulates BMP-mediated osteoblastic differentiation in cultured cells. Bone 2012; 50:1092-9. [PMID: 22366399 DOI: 10.1016/j.bone.2012.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/26/2011] [Accepted: 02/08/2012] [Indexed: 01/14/2023]
Abstract
SUMO (small ubiquitin-related modifier) modification (SUMOylation) has been reported to regulate various biological events such as cell-cycle progression, proliferation, and survival. Bone morphogenetic proteins (BMPs) play an important role in osteoblast differentiation and maturation. Although Smad4, which acts as a transcriptional factor in the BMP signaling, is a target of SUMOylation, the involvement of SUMOylation in osteoblast differentiation remains unclear. In this report, we demonstrated spatial expression patterns of SUMO proteins and Ubc9 (ubiquitin conjugating enzyme 9), which is a unique E2-SUMOylation enzyme, in mouse tibia. Furthermore, siRNA knockdown of Ubc9 enhanced osteoblastic differentiation induced by BMP2 in C2C12 mouse myoblasts and ST2 mouse bone-marrow derived stromal cells. Ubc9 knockdown elevated the BMP signaling transduction and reduced the expression of muscle-related genes in cooperation with BMP2. Finally, a luciferase assay using an Id1 (target gene of BMP signaling) reporter revealed that Smad4 mutants prevented from SUMOylation at their Lys158 possessed more potent transcriptional activity than wild-type Smad4. Taken together, these findings suggest that Ubc9 negatively regulates osteoblastic differentiation induced by BMP via, at least in part, SUMOylation of Smad4.
Collapse
Affiliation(s)
- Akira Yukita
- Department of Oral Histology, Matsumoto Dental University, 1780 Hirooka-gobara, Shiojiri, Nagano 399-0781, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Mechanism and regulation of nucleocytoplasmic trafficking of smad. Cell Biosci 2011; 1:40. [PMID: 22204445 PMCID: PMC3292837 DOI: 10.1186/2045-3701-1-40] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022] Open
Abstract
Smad proteins are the intracellular mediators of transforming growth factor β (TGF-β) signaling. Smads function as transcription factors and their activities require carboxyl-terminal phosphorylation by TGF-β receptor kinases which are embedded in the cell membrane. Therefore, the translocation of activated Smads from the cytoplasm into the nucleus is a rate-limiting step in TGF-β signal transduction into the nucleus. On the other hand, the export of Smads out of the nucleus turns off TGF-β effect. Such spatial control of Smad ensures a tight regulation of TGF-β target genes. Several cross-talk pathways have been shown to affect TGF-β signaling by impairing nuclear translocation of Smad, exemplifying the biological importance of the nuclear transport process. Many laboratories have investigated the underlying molecular mechanism of Smad nucleocytoplasmic translocation, combining genetics, biochemistry and sophisticated live cell imaging approaches. The last few years have witnessed the elucidation of several key players in Smad nuclear transport, most importantly the karyopherins that carry Smads across the nuclear envelope and nuclear pore proteins that facilitate the trans-nuclear envelope movement. The foundation is now set to further elucidate how the nuclear transport process is regulated and exploit such knowledge to manipulate TGF-β signaling. In this review we will discuss the current understanding of the molecular machinery responsible for nuclear import and export of Smads.
Collapse
|
29
|
Lomelí H, Vázquez M. Emerging roles of the SUMO pathway in development. Cell Mol Life Sci 2011; 68:4045-64. [PMID: 21892772 PMCID: PMC11115048 DOI: 10.1007/s00018-011-0792-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 01/01/2023]
Abstract
Sumoylation is a reversible post-translational modification that targets a variety of proteins mainly within the nucleus, but also in the plasma membrane and cytoplasm of the cell. It controls diverse cellular mechanisms such as subcellular localization, protein-protein interactions, or transcription factor activity. In recent years, the use of several developmental model systems has unraveled many critical functions for the sumoylation system in the early life of diverse species. In particular, detailed analyses of mutant organisms in both the components of the SUMO pathway and their targets have established the importance of the SUMO system in early developmental processes, such as cell division, cell lineage commitment, specification, and/or differentiation. In addition, an increasing number of developmental proteins, including transcription factors and epigenetic regulators, have been identified as sumoylation substrates. Sumoylation acts on these targets through various mechanisms. For example, this modification has been involved in converting a transcription factor from an activator to a repressor or in regulating the localization and/or stability of numerous transcription factors. This review will summarize current information on the function of sumoylation in embryonic development in different species from yeast to mammals.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | |
Collapse
|
30
|
Gibbens YY, Warren JT, Gilbert LI, O'Connor MB. Neuroendocrine regulation of Drosophila metamorphosis requires TGFbeta/Activin signaling. Development 2011; 138:2693-703. [PMID: 21613324 DOI: 10.1242/dev.063412] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In insects, initiation of metamorphosis requires a surge in the production of the steroid hormone 20-hydroxyecdysone from the prothoracic gland, the primary endocrine organ of juvenile larvae. Here, we show that blocking TGFβ/Activin signaling, specifically in the Drosophila prothoracic gland, results in developmental arrest prior to metamorphosis. The terminal, giant third instar larval phenotype results from a failure to induce the large rise in ecdysteroid titer that triggers metamorphosis. We further demonstrate that activin signaling regulates competence of the prothoracic gland to receive PTTH and insulin signals, and that these two pathways act at the mRNA and post-transcriptional levels, respectively, to control ecdysone biosynthetic enzyme expression. This dual regulatory circuitry may provide a cross-check mechanism to ensure that both developmental and nutritional inputs are synchronized before initiating the final genetic program leading to reproductive adult development. As steroid hormone production in C. elegans and mammals is also influenced by TGFβ/Activin signaling, this family of secreted factors may play a general role in regulating developmental transitions across phyla.
Collapse
Affiliation(s)
- Ying Y Gibbens
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
31
|
Huang H, Du G, Chen H, Liang X, Li C, Zhu N, Xue L, Ma J, Jiao R. Drosophila Smt3 negatively regulates JNK signaling through sequestering Hipk in the nucleus. Development 2011; 138:2477-85. [PMID: 21561986 DOI: 10.1242/dev.061770] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Post-translational modification by the small ubiquitin-related modifier (SUMO) is important for a variety of cellular and developmental processes. However, the precise mechanism(s) that connects sumoylation to specific developmental signaling pathways remains relatively less clear. Here, we show that Smt3 knockdown in Drosophila wing discs causes phenotypes resembling JNK gain of function, including ectopic apoptosis and apoptosis-induced compensatory growth. Smt3 depletion leads to an increased expression of JNK target genes Mmp1 and puckered. We show that, although knockdown of the homeodomain-interacting protein kinase (Hipk) suppresses Smt3 depletion-induced activation of JNK, Hipk overexpression synergistically enhances this type of JNK activation. We further demonstrate that Hipk is sumolylated in vivo, and its nuclear localization is dependent on the sumoylation pathway. Our results thus establish a mechanistic connection between the sumoylation pathway and the JNK pathway through the action of Hipk. We propose that the sumoylation-controlled balance between cytoplasmic and nuclear Hipk plays a crucial role in regulating JNK signaling.
Collapse
Affiliation(s)
- Hai Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 2011; 12:295-307. [PMID: 21448225 DOI: 10.1038/nrm3099] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, the diversity of signals generated by the ubiquitin system has emerged as a dominant regulator of biological processes and propagation of information in the eukaryotic cell. A wealth of information has been gained about the crucial role of spatial and temporal regulation of ubiquitin species of different lengths and linkages in the nuclear factor-κB (NF-κB) pathway, endocytic trafficking, protein degradation and DNA repair. This spatiotemporal regulation is achieved through sophisticated mechanisms of compartmentalization and sequential series of ubiquitylation events and signal decoding, which control diverse biological processes not only in the cell but also during the development of tissues and entire organisms.
Collapse
Affiliation(s)
- Caroline Grabbe
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
33
|
Gao G, Wong J, Zhang J, Mao I, Shravah J, Wu Y, Xiao A, Li X, Luo H. Proteasome activator REGgamma enhances coxsackieviral infection by facilitating p53 degradation. J Virol 2010; 84:11056-66. [PMID: 20719955 PMCID: PMC2953206 DOI: 10.1128/jvi.00008-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 08/05/2010] [Indexed: 01/30/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is a small RNA virus associated with diseases such as myocarditis, meningitis, and pancreatitis. We have previously demonstrated that proteasome inhibition reduces CVB3 replication and attenuates virus-induced myocarditis. However, the underlying mechanisms by which the ubiquitin/proteasome system regulates CVB replication remain unclear. In this study, we investigated the role of REGγ, a member of the 11S proteasome activator, in CVB3 replication. We showed that overexpression of REGγ promoted CVB3 replication but that knockdown of REGγ led to reduced CVB3 replication. We further demonstrated that REGγ-mediated p53 proteolysis contributes, as least in part, to the proviral function of REGγ. Although total protein levels of REGγ remained unaltered after CVB3 infection, virus infection induced a redistribution of REGγ from the nucleus to the cytoplasm, rendering an opportunity for a direct interaction of REGγ with viral proteins and/or host proteins (e.g., p53), which controls viral growth and thereby enhances viral infectivity. Further analyses suggested a potential modification of REGγ by SUMO following CVB3 infection, which was verified by both in vitro and in vivo sumoylation assays. Sumoylation of REGγ may play a role in its nuclear export during CVB3 infection. Taken together, our results present the first evidence that the host REGγ pathway is utilized and modified during CVB3 infection to promote efficient viral replication.
Collapse
Affiliation(s)
- Guang Gao
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jerry Wong
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jingchun Zhang
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ivy Mao
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jayant Shravah
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yan Wu
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Allen Xiao
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Xiaotao Li
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Honglin Luo
- James Hogg Research Center, Providence Heart and Lung Institute, St. Paul's Hospital, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, Institutes of Biomedical Sciences, East China Normal University, Shanghai, China, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Zouani OF, Chollet C, Guillotin B, Durrieu MC. Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials 2010; 31:8245-53. [PMID: 20667411 DOI: 10.1016/j.biomaterials.2010.07.042] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/07/2010] [Indexed: 01/18/2023]
Abstract
The bone morphogenetic proteins (BMPs) are cytokines of the transforming growth factor beta family. Some BMPs such as BMP-2, BMP-7 and BMP-9 play a major role in the bone and cartilage formation. The BMP peptides corresponding to residues 73-92, 89-117, and 68-87 of BMP-2, BMP-7 and BMP-9 respectively as well as adhesion peptides (GRGDSPC) were grafted onto polyethylene terephthatalate (PET) surfaces. We evaluated the state of differentiation of pre-osteoblastic cells. The behavior of these cells on various functionalized surfaces highlighted the activity of the mimetic peptides immobilized on surfaces. The induced cells (observed in the case of surfaces grafted with BMP-2, 7 or 9 mimetic peptides and GRGDSPC peptides) were characterized on several levels. First of all, we focused on the evaluation of the osteoblastic markers such as the transcriptional factor Runx2, which is a critical regulator of osteoblastic differentiation. Secondly, the results obtained showed that these induced cells take a different morphology compared to the cells in a state of proliferation or in a state of extracellular matrix production. Induced cells were characterized by an increased thickness compared to non-induced cells. Thus, our studies prove a direct correlation between cell morphology and state of induction. Thereafter, we focused on characterizing the extracellular matrix formed by the cells on various surfaces. The extracellular matrix thickness was more significant in the case of surfaces grafted with mimetic peptides of the BMP-2, 7 or 9 and GRGDSPC peptides which once again proves their activity when immobilized on material surface. These results demonstrate that GRGDSPC and BMPs peptides, grafted to PET surface, act to enhance osteogenic differentiation and mineralization of pre-osteoblastic cells. These findings are potentially useful in developing engineered biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Omar F Zouani
- INSERM, U577, Biomatériaux et Réparation Tissulaire, Univ Victor Segalen Bordeaux 2, Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | |
Collapse
|
35
|
Sánchez J, Talamillo A, Lopitz-Otsoa F, Pérez C, Hjerpe R, Sutherland JD, Herboso L, Rodríguez MS, Barrio R. Sumoylation modulates the activity of Spalt-like proteins during wing development in Drosophila. J Biol Chem 2010; 285:25841-9. [PMID: 20562097 DOI: 10.1074/jbc.m110.124024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Spalt-like family of zinc finger transcription factors is conserved throughout evolution and is involved in fundamental processes during development and during embryonic stem cell maintenance. Although human SALL1 is modified by SUMO-1 in vitro, it is not known whether this post-translational modification plays a role in regulating the activity of this family of transcription factors. Here, we show that the Drosophila Spalt transcription factors are modified by sumoylation. This modification influences their nuclear localization and capacity to induce vein formation through the regulation of target genes during wing development. Furthermore, spalt genes interact genetically with the sumoylation machinery to repress vein formation in intervein regions and to attain the wing final size. Our results suggest a new level of regulation of Sall activity in vivo during animal development through post-translational modification by sumoylation. The evolutionary conservation of this family of transcription factors suggests a functional role for sumoylation in vertebrate Sall members.
Collapse
Affiliation(s)
- Jonatan Sánchez
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shen J, Dahmann C, Pflugfelder GO. Spatial discontinuity of optomotor-blind expression in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes cell sorting. BMC DEVELOPMENTAL BIOLOGY 2010; 10:23. [PMID: 20178599 PMCID: PMC2838827 DOI: 10.1186/1471-213x-10-23] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/23/2010] [Indexed: 12/02/2022]
Abstract
Background Decapentaplegic (Dpp) is one of the best characterized morphogens, required for dorso-ventral patterning of the Drosophila embryo and for anterior-posterior (A/P) patterning of the wing imaginal disc. In the larval wing pouch, the Dpp target gene optomotor-blind (omb) is generally assumed to be expressed in a step function above a certain threshold of Dpp signaling activity. Results We show that the transcription factor Omb forms, in fact, a symmetrical gradient on both sides of the A/P compartment boundary. Disruptions of the Omb gradient lead to a re-organization of the epithelial cytoskeleton and to a retraction of cells toward the basal membrane suggesting that the Omb gradient is required for correct epithelial morphology. Moreover, by analysing the shape of omb gain- and loss-of-function clones, we find that Omb promotes cell sorting along the A/P axis in a concentration-dependent manner. Conclusions Our findings show that Omb distribution in the wing imaginal disc is described by a gradient rather than a step function. Graded Omb expression is necessary for normal cell morphogenesis and cell affinity and sharp spatial discontinuities must be avoided to allow normal wing development.
Collapse
Affiliation(s)
- Jie Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
37
|
Abstract
Transforming growth factor beta (TGFbeta) pathways are implicated in metazoan development, adult homeostasis and disease. TGFbeta ligands signal via receptor serine/threonine kinases that phosphorylate, and activate, intracellular Smad effectors as well as other signaling proteins. Oligomeric Smad complexes associate with chromatin and regulate transcription, defining the biological response of a cell to TGFbeta family members. Signaling is modulated by negative-feedback regulation via inhibitory Smads. We review here the mechanisms of TGFbeta signal transduction in metazoans and emphasize events crucial for embryonic development.
Collapse
|
38
|
Abstract
In recent years, informatics studies have predicted several new ways in which the transforming growth factor beta (TGFbeta) signaling pathway can be post-translationally regulated. Subsequently, many of these predictions were experimentally validated. These approaches include phylogenetic predictions for the phosphorylation, sumoylation and ubiquitylation of pathway components, as well as kinetic models of endocytosis, phosphorylation and nucleo-cytoplasmic shuttling. We review these studies and provide a brief ;how to' guide for phylogenetics. Our hope is to stimulate experimental tests of informatics-based predictions for TGFbeta signaling, as well as for other signaling pathways, and to expand the number of developmental pathways that are being analyzed computationally.
Collapse
Affiliation(s)
- Pascal Kahlem
- EMBL, European Bioinformatics Institute, Hinxton, Saffron Waldon CB10 1SD, UK
| | | |
Collapse
|
39
|
Abstract
How morphogen gradients are formed in target tissues is a key question for understanding the mechanisms of morphological patterning. Here, we review different mechanisms of morphogen gradient formation from theoretical and experimental points of view. First, a simple, comprehensive overview of the underlying biophysical principles of several mechanisms of gradient formation is provided. We then discuss the advantages and limitations of different experimental approaches to gradient formation analysis.
Collapse
|
40
|
Nie M, Xie Y, Loo JA, Courey AJ. Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation. PLoS One 2009; 4:e5905. [PMID: 19529778 PMCID: PMC2692000 DOI: 10.1371/journal.pone.0005905] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/17/2009] [Indexed: 11/27/2022] Open
Abstract
SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome) in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yongming Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert J. Courey
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 2009; 16:329-43. [PMID: 19289080 DOI: 10.1016/j.devcel.2009.02.012] [Citation(s) in RCA: 580] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TGF-beta superfamily signaling pathways emerged with the evolution of multicellular animals, suggesting that these pathways contribute to the increased diversity and complexity required for the development and homeostasis of these organisms. In this review we begin by exploring some key developmental and disease processes requiring TGF-beta ligands to underscore the fundamental importance of these pathways before delving into the molecular mechanism of signal transduction, focusing on recent findings. Finally, we discuss how these ligands act as morphogens, how their activity and signaling range is regulated, and how they interact with other signaling pathways to achieve their specific and varied functional roles.
Collapse
Affiliation(s)
- Mary Y Wu
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|