1
|
Zavallo D, Cara N, Leone M, Crescente JM, Marfil C, Masuelli R, Asurmendi S. Assessing small RNA profiles in potato diploid hybrid and its resynthesized allopolyploid reveals conserved abundance with distinct genomic distribution. PLANT CELL REPORTS 2024; 43:85. [PMID: 38453711 DOI: 10.1007/s00299-024-03170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
KEY MESSAGE The shock produced by the allopolyploidization process on a potato interspecific diploid hybrid displays a non-random remobilization of the small RNAs profile on a variety of genomic features. Allopolyploidy, a complex process involving interspecific hybridization and whole genome duplication, significantly impacts plant evolution, leading to the emergence of novel phenotypes. Polyploids often present phenotypic nuances that enhance adaptability, enabling them to compete better and occasionally to colonize new habitats. Whole-genome duplication represents a genomic "shock" that can trigger genetic and epigenetic changes that yield novel expression patterns. In this work, we investigate the polyploidization effect on a diploid interspecific hybrid obtained through the cross between the cultivated potato Solanum tuberosum and the wild potato Solanum kurtzianum, by assessing the small RNAs (sRNAs) profile of the parental diploid hybrid and its derived allopolyploid. Small RNAs are key components of the epigenetic mechanisms involved in silencing by RNA-directed DNA Methylation (RdDM). A sRNA sequencing (sRNA-Seq) analysis was performed to individually profile the 21 to 22 nucleotide (21 to 22-nt) and 24-nt sRNA size classes due to their unique mechanism of biogenesis and mode of function. The composition and distribution of different genomic features and differentially accumulated (DA) sRNAs were evaluated throughout the potato genome. We selected a subset of genes associated with DA sRNAs for messenger RNA (mRNA) expression analysis to assess potential impacts on the transcriptome. Interestingly, we noted that 24-nt DA sRNAs that exclusively mapped to exons were correlated with differentially expressed mRNAs between genotypes, while this behavior was not observed when 24-nt DA sRNAs were mapped to intronic regions. These findings collectively emphasize the nonstochastic nature of sRNA remobilization in response to the genomic shock induced by allopolyploidization.
Collapse
Affiliation(s)
- Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, 1686, Hurlingham, CP, Argentina
| | - Nicolas Cara
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Melisa Leone
- Universidad Nacional de Hurlingham, Instituto de Biotecnología, Av. Vergara 2222 (B1688GEZ), Villa Tesei, Buenos Aires, Argentina
| | - Juan Manuel Crescente
- Grupo Biotecnología y Recursos Genéticos, EEA INTA Marcos Juárez, Ruta 12 Km 3, 2580, Marcos Juárez, Argentina
| | - Carlos Marfil
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA-Mendoza-INTA), San Martín 3853, Luján de Cuyo, 5534, Mendoza, Argentina
| | - Ricardo Masuelli
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, 1686, Hurlingham, CP, Argentina.
| |
Collapse
|
2
|
Jiang M, Ma LL, Huang HA, Ke SW, Gui CS, Ning XY, Zhang XQ, Zhong TX, Xie XM, Chen S. Overexpression of SgGH3.1 from Fine-Stem Stylo ( Stylosanthes guianensis var. intermedia) Enhances Chilling and Cold Tolerance in Arabidopsis thaliana. Genes (Basel) 2021; 12:1367. [PMID: 34573349 PMCID: PMC8469043 DOI: 10.3390/genes12091367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Stylosanthes (stylo) species are commercially significant tropical and subtropical forage and pasture legumes that are vulnerable to chilling and frost. However, little is known about the molecular mechanisms behind stylos' responses to low temperature stress. Gretchen-Hagen 3 (GH3) proteins have been extensively investigated in many plant species for their roles in auxin homeostasis and abiotic stress responses, but none have been reported in stylos. SgGH3.1, a cold-responsive gene identified in a whole transcriptome profiling study of fine-stem stylo (S. guianensis var. intermedia) was further investigated for its involvement in cold stress tolerance. SgGH3.1 shared a high percentage of identity with 14 leguminous GH3 proteins, ranging from 79% to 93%. Phylogenetic analysis classified SgGH3.1 into Group Ⅱ of GH3 family, which have been proven to involve with auxins conjugation. Expression profiling revealed that SgGH3.1 responded rapidly to cold stress in stylo leaves. Overexpression of SgGH3.1 in Arabidopsis thaliana altered sensitivity to exogenous IAA, up-regulated transcription of AtCBF1-3 genes, activated physiological responses against cold stress, and enhanced chilling and cold tolerances. This is the first report of a GH3 gene in stylos, which not only validated its function in IAA homeostasis and cold responses, but also gave insight into breeding of cold-tolerant stylos.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Long-Long Ma
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Huai-An Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Shan-Wen Ke
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye 734000, China;
| | - Chun-Sheng Gui
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Xin-Yi Ning
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
- Department of Ornamental Horticulture, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Xiang-Qian Zhang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Tian-Xiu Zhong
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Xin-Ming Xie
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Shu Chen
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
| |
Collapse
|
3
|
Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis. Biomolecules 2021; 11:biom11050688. [PMID: 34063698 PMCID: PMC8147800 DOI: 10.3390/biom11050688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
Collapse
Affiliation(s)
- Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-0371-6778-5095
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Junheng Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| |
Collapse
|
4
|
|
5
|
Li Z, Gao Z, Li R, Xu Y, Kong Y, Zhou G, Meng C, Hu R. Genome-wide identification and expression profiling of HD-ZIP gene family in Medicago truncatula. Genomics 2020; 112:3624-3635. [PMID: 32165267 DOI: 10.1016/j.ygeno.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/19/2020] [Accepted: 03/07/2020] [Indexed: 11/20/2022]
Abstract
The homeodomain-leucine zipper (HD-ZIP) transcription factors are important regulators in various developmental processes and responses to environmental stimuli. Currently, little information is available for HD-ZIP gene family in Medicago truncatula. Here we perform a genome-wide analysis of HD-ZIP gene family in M. truncatula. Totally 52 M. truncatula HD-ZIPs (MtHDZs) were identified and classified into four distinctive subfamilies (I to IV). Members clustered in the same subfamily shared similar gene structure and protein motifs. Fifty-one MtHDZs were non-evenly distributed on eight chromosomes. Segmental duplication and purifying selection mainly contributed to the expansion and retention of M. truncatula HD-ZIP gene family. Expression profiling using the publicly available microarray data revealed that MtHDZ genes exhibited distinctive tissue-specific patterns and divergent responses to drought and salt stresses. In addition, the expression profile between each paralogous pair diverged differentially. Our results identified potential targets for the genetic improvement of abiotic stress tolerance in Medicago.
Collapse
Affiliation(s)
- Zhe Li
- College of Life Sciences, Shandong University of Technology, Zibo 255049, PR China; Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Zhengquan Gao
- College of Life Sciences, Shandong University of Technology, Zibo 255049, PR China
| | - Ruihua Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Yan Xu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Yingzhen Kong
- Agronomy college, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Chunxiao Meng
- College of Life Sciences, Shandong University of Technology, Zibo 255049, PR China.
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
6
|
Yang YY, Shan W, Kuang JF, Chen JY, Lu WJ. Four HD-ZIPs are involved in banana fruit ripening by activating the transcription of ethylene biosynthetic and cell wall-modifying genes. PLANT CELL REPORTS 2020; 39:351-362. [PMID: 31784771 DOI: 10.1007/s00299-019-02495-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/20/2019] [Indexed: 05/20/2023]
Abstract
Four MaHDZs are possibly involved in banana fruit ripening by activating the transcription of genes related to ethylene biosynthesis and cell wall degradation, such as MaACO5, MaEXP2, MaEXPA10, MaPG4 and MaPL4. The homeodomain-leucine zipper (HD-ZIP) proteins represent plant-specific transcription factors, which contribute to various plant physiological processes. However, little information is available regarding the association of HD-ZIPs with banana fruit ripening. In this study, we identified a total of 96 HD-ZIP genes in banana genome, which were divided into four different groups consisting of 35, 31, 9 and 21 members in the I, II, III and IV subfamilies, respectively. The expression patterns of MaHDZ genes during fruit ripening showed that MaHDZI.19, MaHDZI.26, MaHDZII.4 and MaHDZII.7 were significantly up-regulated in the ripening stage and thus suggested to be potential regulators of banana fruit ripening. Furthermore, MaHDZI.19, MaHDZI.26, MaHDZII.4 and MaHDZII.7 were found to localize exclusively in the nucleus and exhibit transcriptional activation capacities. Importantly, MaHDZI.19, MaHDZI.26, MaHDZII.4 and MaHDZII.7 stimulated the transcription of several ripening-related genes including MaACO5 related to ethylene biosynthesis, MaEXP2, MaEXPA10, MaPG4 and MaPL4 were associated with cell wall degradation, through directly binding to their promoters. Taken together, our findings expand the functions of HD-ZIP transcription factors and identify four MaHDZs likely involved in regulating banana fruit ripening by activating the expression of genes related to ethylene biosynthesis and cell wall modification, which may have potential application in banana molecular breeding.
Collapse
Affiliation(s)
- Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest, Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest, Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest, Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest, Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest, Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Li Y, Xiong H, Cuo D, Wu X, Duan R. Genome-wide characterization and expression profiling of the relation of the HD-Zip gene family to abiotic stress in barley (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:250-258. [PMID: 31195255 DOI: 10.1016/j.plaphy.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 05/16/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) gene family plays an important role in plant growth and environmental responses. At present, research on the HD-Zip gene family of barley is incomplete. In this study, 32 HD-Zip genes (HvHD-Zip 1-32) were identified from the barley genome and were subsequently divided into four subfamilies according to conserved structure and motif analysis. Whole genome replication events in barley and Arabidopsis, rice, and wheat HD-Zip gene families were analyzed, yielding 3, 14 and 25 gene pairs, respectively, but no segmental or tandem duplication events were identified in the barley HD-Zip gene family. Subsequently, quantitative real-time PCR (qRT-PCR) analysis revealed that the HvHD-Zip gene is sensitive to drought stress and that members of the HD-Zip I and HD-Zip IV subfamilies are generally more sensitive to abiotic stresses. Our results suggest a relationship between barley resistance and the potential key HvHD-Zip gene, which lay the foundation for further functional studies.
Collapse
Affiliation(s)
- Yuan Li
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Huiyan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, 810016, China
| | - Duojie Cuo
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Xiongxiong Wu
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China
| | - Ruijun Duan
- College of Eco-environmental Engineering, Qinghai University, Qinghai, 810016, China; Qinghai Provincial Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai University, Qinghai, 810016, China.
| |
Collapse
|
8
|
Lorenzo CD, Alonso Iserte J, Sanchez Lamas M, Antonietti MS, Garcia Gagliardi P, Hernando CE, Dezar CAA, Vazquez M, Casal JJ, Yanovsky MJ, Cerdán PD. Shade delays flowering in Medicago sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:7-22. [PMID: 30924988 DOI: 10.1111/tpj.14333] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/01/2019] [Accepted: 03/25/2019] [Indexed: 05/13/2023]
Abstract
Shade-intolerant plants respond to the decrease in the red (R) to far-red (FR) light ratio (R:FR) occurring under shade by elongating stems and petioles and by re-positioning leaves, in a race to outcompete neighbors for the sunlight resource. In some annual species, the shade avoidance syndrome (SAS) is accompanied by the early induction of flowering. Anticipated flowering is viewed as a strategy to set seeds before the resources become severely limiting. Little is known about the molecular mechanisms of SAS in perennial forage crops like alfalfa (Medicago sativa). To study SAS in alfalfa, we exposed alfalfa plants to simulated shade by supplementing with FR light. Low R:FR light produced a classical SAS, with increased internode and petiole lengths, but unexpectedly also with delayed flowering. To understand the molecular mechanisms involved in uncoupling SAS from early flowering, we used a transcriptomic approach. The SAS is likely to be mediated by increased expression of msPIF3 and msHB2 in low R:FR light. Constitutive expression of these genes in Arabidopsis led to SAS, including early flowering, strongly suggesting that their roles are conserved. Delayed flowering was likely to be mediated by the downregulation of msSPL3, which promotes flowering in both Arabidopsis and alfalfa. Shade-delayed flowering in alfalfa may be important to extend the vegetative phase under suboptimal light conditions, and thus assure the accumulation of reserves necessary to resume growth after the next season.
Collapse
Affiliation(s)
- Christian D Lorenzo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Javier Alonso Iserte
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Maximiliano Sanchez Lamas
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Mariana Sofia Antonietti
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Pedro Garcia Gagliardi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Carlos E Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Carlos Alberto A Dezar
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, S2000EZP, Rosario, Argentina
| | - Martin Vazquez
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, S2000EZP, Rosario, Argentina
| | - Jorge J Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
- Instituto de Fisiología vegetal, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Pablo D Cerdán
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
9
|
Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet 2017; 13:e1006930. [PMID: 28817560 PMCID: PMC5560543 DOI: 10.1371/journal.pgen.1006930] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
Increases in fruit weight of cultivated vegetables and fruits accompanied the domestication of these crops. Here we report on the positional cloning of a quantitative trait locus (QTL) controlling fruit weight in tomato. The derived allele of Cell Size Regulator (CSR-D) increases fruit weight predominantly through enlargement of the pericarp areas. The expanded pericarp tissues result from increased mesocarp cell size and not from increased number of cell layers. The effect of CSR on fruit weight and cell size is found across different genetic backgrounds implying a consistent impact of the locus on the trait. In fruits, CSR expression is undetectable early in development from floral meristems to the rapid cell proliferation stage after anthesis. Expression is low but detectable in growing fruit tissues and in or around vascular bundles coinciding with the cell enlargement stage of the fruit maturation process. CSR encodes an uncharacterized protein whose clade has expanded in the Solanaceae family. The mutant allele is predicted to encode a shorter protein due to a 1.4 kb deletion resulting in a 194 amino-acid truncation. Co-expression analyses and GO term enrichment analyses suggest association of CSR with cell differentiation in fruit tissues and vascular bundles. The derived allele arose in Solanum lycopersicum var cerasiforme and appears completely fixed in many cultivated tomato’s market classes. This finding suggests that the selection of this allele was critical to the full domestication of tomato from its intermediate ancestors. Starting about 10,000 years ago, during the Neolithic period, human societies began the transformation from a hunting and gathering-dependent lifestyle to an agrarian lifestyle. This transformation was accompanied by plant and animal domestication. Tomato shows a huge increase in fruit weight that has arisen as a consequence of its domestication. We identified a gene that encodes a poorly characterized protein that controls fruit weight in tomato. The mutation that led to the increase in fruit weight arose early during the cultivation of tomato and is now incorporated in all large tomato varieties. The gene regulates cell size in the fruit and is called Cell Size Regulator. The increases in cell size are proposed to relate to cellular maturation that accompanies fruit growth.
Collapse
|
10
|
Brandt R, Cabedo M, Xie Y, Wenkel S. Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:518-26. [PMID: 24528801 DOI: 10.1111/jipb.12185] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/25/2014] [Indexed: 05/21/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana L.) genome encodes for four distinct classes of homeodomain leucine-zipper (HD-ZIP) transcription factors (HD-ZIPI to HD-ZIPIV), which are all organized in multi-gene families. HD-ZIP transcription factors act as sequence-specific DNA-binding proteins that are able to control the expression level of target genes. While HD-ZIPI and HD-ZIPII proteins are mainly associated with environmental responses, HD-ZIPIII and HD-ZIPIV are primarily known to act as patterning factors. Recent studies have challenged this view. It appears that several of the different HD-ZIP families interact genetically to align both morphogenesis and environmental responses, most likely by modulating phytohormone-signaling networks.
Collapse
Affiliation(s)
- Ronny Brandt
- Center for Plant Molecular Biology, University of Tübingen, Germany; Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | | | |
Collapse
|
11
|
Carabelli M, Turchi L, Ruzza V, Morelli G, Ruberti I. Homeodomain-Leucine Zipper II family of transcription factors to the limelight: central regulators of plant development. PLANT SIGNALING & BEHAVIOR 2013; 8:25447. [PMID: 23838958 PMCID: PMC4002598 DOI: 10.4161/psb.25447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome encodes 10 Homeodomain-Leucine Zipper (HD-Zip) II transcription factors that can be subdivided into 4 clades (α-δ). All the γ (ARABIDOPSIS THALIANA HOMEOBOX 2 [ATHB2], HOMEOBOX ARABIDOPSIS THALIANA 1 [HAT1], HAT2) and δ (HAT3, ATHB4) genes are regulated by light quality changes (Low Red [R]/Far-Red [FR]) that induce the shade avoidance response in most of the angiosperms. HD-Zip IIγ and HD-Zip IIδ transcription factors function as positive regulators of shade avoidance, and there is evidence that at least ATHB2 is directly positively regulated by the basic Helix-Loop-Helix (bHLH) proteins PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5. Recent evidence demonstrate that, in addition to their function in shade avoidance, HD-Zip IIγ and HD-Zip IIδ proteins play an essential role in plant development from embryogenesis onwards in a white light environment.
Collapse
Affiliation(s)
- Monica Carabelli
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Luana Turchi
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Valentino Ruzza
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Giorgio Morelli
- Food and Nutrition Research Centre; Agricultural Research Council (CRA); Rome, Italy
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
- Correspondence to: Ida Ruberti,
| |
Collapse
|
12
|
Park MY, Kim SA, Lee SJ, Kim SY. ATHB17 is a positive regulator of abscisic acid response during early seedling growth. Mol Cells 2013; 35:125-33. [PMID: 23456334 PMCID: PMC3887901 DOI: 10.1007/s10059-013-2245-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 01/02/2023] Open
Abstract
We performed activation tagging screen to isolate abscisic acid (ABA) response mutants. One of the mutants, designated ahs10 (ABA-hypersensitive 10), exhibited ABA-hypersensitive phenotypes. TAIL-PCR analysis of the mutant revealed that T-DNA was inserted in the promoter region of the Arabidopsis gene, At2g01430, which encodes a homeodomain-leucine zipper protein ATHB17. Subsequent expression analysis indicated that ATHB17 was activated in ahs10. To recapitulate the mutant phenotypes, we prepared ATHB17 OX lines and investigated their phenotypes. The results showed that ATHB17 confers ABA-hypersensitivity and drought tolerance. On the contrary, ATHB17 knockout lines were ABA-insensitive and drought-sensitive, further demonstrating that ATHB17 is involved in ABA and water-stress responses. Interestingly, the ATHB17 effect on seedling growth in the presence of ABA was observed only during the postgermination seedling establishment stage, suggesting that it functions during a narrow developmental window of early seedling growth.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Sung-ah Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Sun-ji Lee
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Soo Young Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
13
|
Bou-Torrent J, Salla-Martret M, Brandt R, Musielak T, Palauqui JC, Martínez-García JF, Wenkel S. ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:1382-1387. [PMID: 22918502 PMCID: PMC3548853 DOI: 10.4161/psb.21824] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In response to plant proximity or canopy shade, plants can react by altering elongation growth and development. Several members of the class II homeodomain-leucine zipper (HD-ZIPII) transcription factor family have been shown to play an instrumental role in the responses to shade. HD-ZIP members of the class III (HD-ZIPIII), by contrast, are involved in basic patterning processes. We recently showed that REVOLUTA (REV), a member of the HD-ZIPIII family, directly and positively regulates the expression of several genes involved in shade-induced growth, such as those encoding HD-ZIPII factors HAT2, HAT3, ATHB2/HAT4 and ATHB4, and of the components of the auxin biosynthesis pathway YUCCA5 and TAA1. Furthermore, we could demonstrate a novel role for HD-ZIPIII in shade-induced promotion of growth. Here we show that besides responding to shade, ATHB4 and HAT3 have a critical role in establishing the dorso-ventral axis in cotyledons and developing leaves. Loss-of-function mutations in these two HD-ZIPII genes (athb4 hat3) results in severely abaxialized, entirely radialized leaves. Conversely, overexpression of HAT3 results in adaxialized leaf development. Taken together, our findings unravel a so far unappreciated role for an HD-ZIPII/HD-ZIPIII module required for dorso-ventral patterning of leaves. The finding that HD-ZIPII/HD-ZIPIII also function in shade avoidance suggests that this module is at the nexus of patterning and growth promotion.
Collapse
Affiliation(s)
- Jordi Bou-Torrent
- Centre for Research in Agricultural Genomics (CRAG); CSIC-IRTA-UAB-UB; Barcelona, Spain
| | - Mercè Salla-Martret
- Centre for Research in Agricultural Genomics (CRAG); CSIC-IRTA-UAB-UB; Barcelona, Spain
| | - Ronny Brandt
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
| | - Thomas Musielak
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
| | - Jean-Christophe Palauqui
- INRA Centre Versailles Grignon; Institut Jean Pierre Bourgin; UMR1318; INRA AgroParisTech; Versailles, France
| | - Jaime F. Martínez-García
- Centre for Research in Agricultural Genomics (CRAG); CSIC-IRTA-UAB-UB; Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain
| | - Stephan Wenkel
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
| |
Collapse
|
14
|
Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T. Circadian Clock- and PIF4-Controlled Plant Growth: A Coincidence Mechanism Directly Integrates a Hormone Signaling Network into the Photoperiodic Control of Plant Architectures in Arabidopsis thaliana. ACTA ACUST UNITED AC 2012; 53:1950-64. [DOI: 10.1093/pcp/pcs137] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Brandt R, Salla-Martret M, Bou-Torrent J, Musielak T, Stahl M, Lanz C, Ott F, Schmid M, Greb T, Schwarz M, Choi SB, Barton MK, Reinhart BJ, Liu T, Quint M, Palauqui JC, Martínez-García JF, Wenkel S. Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:31-42. [PMID: 22578006 DOI: 10.1111/j.1365-313x.2012.05049.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Unlike the situation in animals, the final morphology of the plant body is highly modulated by the environment. During Arabidopsis development, intrinsic factors provide the framework for basic patterning processes. CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) transcription factors are involved in embryo, shoot and root patterning. During vegetative growth HD-ZIPIII proteins control several polarity set-up processes such as in leaves and the vascular system. We have identified several direct target genes of the HD-ZIPIII transcription factor REVOLUTA (REV) using a chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) approach. This analysis revealed that REV acts upstream of auxin biosynthesis and affects directly the expression of several class II HD-ZIP transcription factors that have been shown to act in the shade-avoidance response pathway. We show that, as well as involvement in basic patterning, HD-ZIPIII transcription factors have a critical role in the control of the elongation growth that is induced when plants experience shade. Leaf polarity is established by the opposed actions of HD-ZIPIII and KANADI transcription factors. Finally, our study reveals that the module that consists of HD-ZIPIII/KANADI transcription factors controls shade growth antagonistically and that this antagonism is manifested in the opposed regulation of shared target genes.
Collapse
Affiliation(s)
- Ronny Brandt
- Center for Plant Molecular Biology-ZMBP, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ruberti I, Sessa G, Ciolfi A, Possenti M, Carabelli M, Morelli G. Plant adaptation to dynamically changing environment: the shade avoidance response. Biotechnol Adv 2011; 30:1047-58. [PMID: 21888962 DOI: 10.1016/j.biotechadv.2011.08.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/23/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022]
Abstract
The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light.
Collapse
Affiliation(s)
- I Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, Piazzalle Aldo Moro 5, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Köllmer I, Werner T, Schmülling T. Ectopic expression of different cytokinin-regulated transcription factor genes of Arabidopsis thaliana alters plant growth and development. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1320-7. [PMID: 21453984 DOI: 10.1016/j.jplph.2011.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 05/20/2023]
Abstract
The plant hormone cytokinin rapidly alters the steady state transcript levels of a number of transcription factor genes suggesting that these might have a function in mediating cytokinin effects. Here we report the analysis of Arabidopsis thaliana plants with an altered expression level of four different cytokinin-regulated transcription factor genes. These include GATA22 (also known as CGA1/GNL), two genes coding for members of the homeodomain zip (HD zip) class II transcription factor family (HAT4, HAT22), and bHLH64. Ectopic expression of the GATA22 gene induced the development of chloroplasts in root tissue where it is normally suppressed and led to the formation of shorter and less branched roots. Overexpression of HAT22 lowered the seedlings chlorophyll content and caused an earlier onset of leaf senescence. Enhanced expression of the HAT4 gene led to severe defects in inflorescence stem development and to a decrease in root growth and branching, while hat4 insertional mutants developed a larger root system. 35S:bHLH64 transgenic plants showed a pleiotropic phenotype, consisting of larger rosettes, reduced chlorophyll content and an elongated and thickened hypocotyl. Flower development was strongly disturbed leading to sterile plants. The results are consistent with specific functions of these transcription factor genes in regulating part of the cytokinin activities and suggest their action as convergence point with other signalling pathways, particularly those of gibberellin and light.
Collapse
Affiliation(s)
- Ireen Köllmer
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin, Germany
| | | | | |
Collapse
|
18
|
Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2011; 52:1315-29. [PMID: 21666227 DOI: 10.1093/pcp/pcr076] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant circadian clock generates rhythms with a period close to 24 h, and it controls a wide variety of physiological and developmental events. Among clock-controlled developmental events, the best characterized is the photoperiodic control of flowering time, which is mediated through the CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway in Arabidopsis thaliana. The clock also regulates the diurnal plant growth including the elongation of hypocotyls in a short day (SDs)-specific manner. In this mechanism, phytochromes (mainly phyB) and the PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, encoding phytochrome-interacting basic helix-loop-helix (bHLH) transcription factors, play crucial roles. The time of day-specific and photoperiodic control of hypocotyl elongation is best explained by the accumulation of the PIF4 and PIF5 proteins during night-time before dawn, especially under SDs, due to coincidence between the internal (circadian rhythm) and external (photoperiod) time cues. However, the PIF4- and/or PIF5-controlled downstream factors have not yet been identified. Here, we provide evidence that ARABIDOPSIS THALIANA HOMEOBOX PROTEIN2 (ATHB2), together with auxin-inducible IAA29, is diurnally expressed with a peak at dawn under the control of PIF4 and PIF5 specifically in SDs. This coincidentally expressed transcription factor serves as a positive regulator for the elongation of hypocotyls. The expression profiles of ATHB2 were markedly altered in certain clock and phytochrome mutants, all of which show anomalous phenotypes with regard to the photoperiodic control of hypocotyl elongation. Taken together, we propose that an external coincidence model involving the clock-controlled PIF4/PIF5-ATHB2 pathway is crucial for the diurnal and photoperiodic control of plant growth in A. thaliana.
Collapse
Affiliation(s)
- Atsushi Kunihiro
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
19
|
Cole B, Kay SA, Chory J. Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:991-1000. [PMID: 21288269 PMCID: PMC3076959 DOI: 10.1111/j.1365-313x.2010.04476.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants that are adapted to environments where light is abundant are especially sensitive to competition for light from neighboring vegetation. As a result, these plants initiate a series of changes known as the shade avoidance syndrome, during which plants elongate their stems and petioles at the expense of leaf development. Although the developmental outcomes of exposure to prolonged shade are known, the signaling dynamics during the initial exposure of seedlings to shade is less well studied. Here, we report the development of a new software-based tool, called HyDE (Hypocotyl Determining Engine) to measure hypocotyl lengths of time-resolved image stacks of Arabidopsis wild-type and mutant seedlings. We show that Arabidopsis grows rapidly in response to the shade stimulus, with measurable growth after just 45 min shade exposure. Similar to other mustard species, this growth response occurs in multiple distinct phases, including two phases of rapid growth and one phase of slower growth. Using mutants affected in shade avoidance phenotypes, we demonstrate that most of this early growth requires new auxin biosynthesis via the indole-3-pyruvate pathway. When activity of this pathway is reduced, the first phase of elongation growth is absent, and this is correlated with reduced activity of auxin-regulated genes. Finally, we show that varying shade intensity and duration can affect the shape and magnitude of the growth response, indicating a broad range of the elongation response to shade.
Collapse
Affiliation(s)
- Benjamin Cole
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037 U.S.A
- Division of Biological Sciences, University of California - San Diego, 9500 Gillman Dr. La Jolla, CA 92037 U.S.A
| | - Steve A. Kay
- Division of Biological Sciences, University of California - San Diego, 9500 Gillman Dr. La Jolla, CA 92037 U.S.A
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037 U.S.A
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037 U.S.A
- For correspondence: Tel (858)-453-4100 x1690, Fax (858)-453-558-6379,
| |
Collapse
|
20
|
Yang J, Liu X, Yang X, Zhang M. Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC PLANT BIOLOGY 2010; 10:231. [PMID: 20974011 PMCID: PMC3017852 DOI: 10.1186/1471-2229-10-231] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/26/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The novel chimeric open reading frame (orf) resulting from the rearrangement of a mitochondrial genome is generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). Both positive and negative correlations have been found between CMS-associated orfs and the occurrence of CMS when CMS-associated orfs were expressed and targeted at mitochondria. Some orfs cause male sterility or semi-sterility, while some do not. Little is currently known about how mitochondrial factor regulates the expression of the nuclear genes involved in male sterility. The purpose of this study was to investigate the biological function of a candidate CMS-associated orf220 gene, newly isolated from cytoplasmic male-sterile stem mustard, and show how mitochondrial retrograde regulated nuclear gene expression is related to male sterility. RESULTS It was shown that the ORF220 protein can be guided to the mitochondria using the mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic stem mustard plants expressed the chimeric gene containing the orf220 gene and a mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic plants were male-sterile, most being unable to produce pollen while some could only produce non-vigorous pollen. The transgenic stem mustard plants also showed aberrant floral development identical to that observed in the CMS stem mustard phenotype. Results obtained from oligooarray analysis showed that some genes related to mitochondrial energy metabolism were down-regulated, indicating a weakening of mitochondrial function in transgenic stem mustard. Some genes related to pollen development were shown to be down-regulated in transgenic stem mustard and the expression of some transcription factor genes was also altered. CONCLUSION The work presented furthers our understanding of how the mitochondrially-targeted expression of CMS-associated orf220 gene causes male sterility through retrograde regulation of nuclear gene expression in Brassica juncea.
Collapse
Affiliation(s)
- Jinghua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Xunyan Liu
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Xiaodong Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Mingfang Zhang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| |
Collapse
|
21
|
Stamm P, Kumar PP. The phytohormone signal network regulating elongation growth during shade avoidance. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2889-2903. [PMID: 20501746 DOI: 10.1093/jxb/erq147] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In contrast to animals, plants maintain highly plastic growth and development throughout their life, which enables them to adapt to environmental fluctuations. Phytohormones coordinately regulate these adaptations by integrating environmental inputs into a complex signalling network. In this review, the focus is on the rapid elongation that occurs in response to canopy shading or submergence, and current knowledge and recent advances in deciphering the network of phytohormone signalling that regulates this response are explored. The review concentrates on the involvement of the phytohormones auxins, gibberellins, cytokinins, and ethylene. Despite the occurrence of considerable gaps in current understanding of the underlying molecular mechanisms, it was possible to identify a network of phytohormone signalling intermediates at multiple levels that regulates elongation growth in response to canopy shade or submergence. Based on the observations that there are spatial and temporal differences in the interactions of phytohormones, the importance of more integrative approaches for future studies is highlighted.
Collapse
Affiliation(s)
- Petra Stamm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | | |
Collapse
|
22
|
Ballaré CL. Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. PLANT, CELL & ENVIRONMENT 2009; 32:713-25. [PMID: 19220784 DOI: 10.1111/j.1365-3040.2009.01958.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In many ecological scenarios, the success of an individual plant is defined by the behavioural decisions that it makes when confronted with the risks of competition with other plants, and biomass losses to insect herbivores. These decisions involve expression of shade avoidance responses and induced chemical defences. Because these responses are costly, they frequently engender resource allocation dilemmas. In this review, I discuss the mechanisms that trigger adaptive responses to competitors and herbivores, highlighting the role of phytochromes as central organizers of the overall resource allocation strategy of plants. Phytochromes sense the reduction in the red to far-red (R : FR) ratio of sunlight caused by the proximity of other plants. Shade-intolerant plants respond to low R : FR ratios with shade avoidance behaviours and reduced investment in defence. Pfr depletion leads to increased stability of growth-promoting phytochrome-interacting factors (PIFs), and results in the production of auxins and gibberellins, degradation of DELLA proteins, which are repressors of PIFs, and reduced sensitivity to jasmonates. Thus, phytochrome appears to fulfil its organizational role by regulating the relative strength of the signalling circuits controlled by growth-related and defence-related hormones. I point out cases of signalling redundancy and discuss the significance of recent work on hormone signalling for our understanding of the mechanisms that control adaptive plant behaviour.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina.
| |
Collapse
|
23
|
Roche J, Hewezi T, Bouniols A, Gentzbittel L. Real-time PCR monitoring of signal transduction related genes involved in water stress tolerance mechanism of sunflower. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:139-145. [PMID: 19054682 DOI: 10.1016/j.plaphy.2008.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 10/19/2008] [Indexed: 05/27/2023]
Abstract
The study deals with the quantitative expression pattern of genes involved in signaling transduction pathways in response to water stress in leaves and embryos of a water stress tolerant genotype compared to a non-tolerant genotype using real-time quantitative PCR. The experiment was conducted in the field. The results showed a high quantitative up-regulation of genes belonging to protein kinase, phosphatase and transcription factor pathways (from two to 70 fold) only in leaves of the tolerant genotype compared to the non-tolerant genotype. Moreover, genes related to the protein kinase pathway were down-regulated in leaves of the non-tolerant genotype. On the contrary, in seeds, our study showed that the positive regulation of genes related to the signal transduction pathway observed in leaves of the tolerant genotype is turned off, suggesting different transcriptional control of signaling water stress in reproductive organs compared to vegetative organs.
Collapse
Affiliation(s)
- Jane Roche
- UMR 1248 France INRA/ENSAT Centre de Toulouse, Chemin de Borde Rouge, BP 27 31326, Auzeville, Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
24
|
Ciarbelli AR, Ciolfi A, Salvucci S, Ruzza V, Possenti M, Carabelli M, Fruscalzo A, Sessa G, Morelli G, Ruberti I. The Arabidopsis homeodomain-leucine zipper II gene family: diversity and redundancy. PLANT MOLECULAR BIOLOGY 2008; 68:465-78. [PMID: 18758690 DOI: 10.1007/s11103-008-9383-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 07/23/2008] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains 10 genes belonging to the HD-Zip II family including ATHB2 and HAT2. Previous work has shown that ATHB2 is rapidly and strongly induced by light quality changes that provoke the shade avoidance response whereas HAT2 expression responds to auxin. Here, we present a genome-wide analysis of the HD-Zip II family. Phylogeny reconstruction revealed that almost all of the HD-Zip II genes can be subdivided into 4 clades (alpha-delta), each clade comprising 2-3 paralogs. Gene expression studies demonstrated that all the gamma and delta genes are regulated by light quality changes. Kinetics of induction, low R/FR/high R/FR reversibility and auxin response analyses strongly suggested that HAT1, HAT3 and ATHB4, as ATHB2, are under the control of the phytochrome system whereas HAT2 is up-regulated by low R/FR as a consequence of the induction of the auxin signaling pathway provoked by FR-rich light. Root and shoot digital in situ revealed that gamma and delta genes are also tightly regulated during plant development with both distinct and overlapping patterns. Phenotypes of gain of function and dominant negative lines demonstrated that one or more of the HD-Zip II gamma genes negatively regulate cell proliferation during leaf development in a high R/FR light environment. Finally, target gene analysis using a chimeric transcription factor (HD-Zip2-V-G), known to activate ATHB2 target genes in a glucocorticoid-dependent manner, revealed that all the 10 HD-Zip II genes can be recognized by the HD-Zip 2 domain in vivo, implying an intricate negative feedback network.
Collapse
|
25
|
Manavella PA, Dezar CA, Ariel FD, Chan RL. Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:860-7. [PMID: 18586510 DOI: 10.1016/j.plaphy.2008.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Indexed: 05/04/2023]
Abstract
HAHB4 is a sunflower gene encoding a homeodomain-leucine zipper (HD-Zip) transcription factor. It was previously demonstrated that this gene is regulated at the transcriptional level by several abiotic factors and hormones. A previous analysis in the PLACE database revealed the presence of four putative ABREs. In this work these four elements and also one W-box and two root-specific expression elements were characterized as functional. Site-directed mutagenesis on the promoter, stable transformation of Arabidopis plants as well as transient transformation of sunflower leaves, were performed. The analysis of the transformants was carried out by histochemistry and real time RT-PCR. The results indicate that just one ABRE out of the four is responsible for ABA, NaCl and drought regulation. However, NaCl induction occurs also by an additional ABA-independent way involving another two overlapped ABREs. On the other hand, it was determined that the W-box located 5' upstream is responsive to ethylene and only two root-specific expression elements, among the several detected, are functional but redundant. Conservation of molecular mechanisms between sunflower and Arabidopsis is strongly supported by this experimental work.
Collapse
Affiliation(s)
- Pablo A Manavella
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | |
Collapse
|
26
|
Manavella PA, Dezar CA, Ariel FD, Drincovich MF, Chan RL. The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3143-3155. [PMID: 18603614 DOI: 10.1093/jxb/ern170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
HAHB4 belongs to the sunflower subfamily I of HD-Zip proteins and is involved in drought-tolerance response and ethylene-mediated senescence. Cross-talk between these two processes through this transcription factor was recently described. In this study it is shown that the expression of HAHB4 is induced in darkness and quickly disappears when plants are exposed to light. This regulation of HAHB4 was confirmed at the transcriptional level through the use of transgenic Arabidopsis plants bearing constructs in which different segments of the HAHB4 promoter were fused with the reporter gene GUS. Together with electrophoretic mobility shift assays performed with sunflower nuclear proteins, these experiments allowed a cis-acting element involved in this response to be located. Transient overexpression of the HAHB4 cDNA in sunflower leaf discs and HAHB4 knockdown by iRNA were performed, demonstrating the participation of this transcription factor in the transcriptional down-regulation of a large group of photosynthesis-related genes. In accordance with the reduction in the transcripts encoding chlorophyll a/b-binding proteins, the content of these pigments is diminished in Arabidopsis HAHB4-expressing transgenic plants. Thus, it appears that HAHB4 may participate with other factors in the intricate regulation mechanism of the photosynthetic machinery in darkness.
Collapse
Affiliation(s)
- Pablo A Manavella
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
27
|
Abstract
The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The former includes a decrease in the ratio of red to far-red wavelengths (low R : FR) and is detected by the phytochrome family of plant photoreceptors. Monitoring of R : FR ratio can provide an early and unambiguous warning of the presence of competing vegetation, thereby evoking escape responses before plants are actually shaded. The molecular mechanisms underlying physiological responses to alterations in light quality have now started to emerge, with major roles suggested for the PIF (PHYTOCHROME INTERACTING FACTOR) and DELLA families of transcriptional regulators. Such studies suggest a complex interplay between endogenous and exogenous signals, mediated by multiple photoreceptors. The phenotypic similarities between physiological responses habitually referred to as 'the shade avoidance syndrome' and other abiotic stress responses suggest plants may integrate common signalling mechanisms to respond to multiple perturbations in their natural environment.
Collapse
Affiliation(s)
- Keara A Franklin
- Department of Biology, University of Leicester, Leicester LE2 7RH, UK
| |
Collapse
|
28
|
Agalou A, Purwantomo S, Overnäs E, Johannesson H, Zhu X, Estiati A, de Kam RJ, Engström P, Slamet-Loedin IH, Zhu Z, Wang M, Xiong L, Meijer AH, Ouwerkerk PBF. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. PLANT MOLECULAR BIOLOGY 2008; 66:87-103. [PMID: 17999151 DOI: 10.1007/s11103-007-9255-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 10/25/2007] [Indexed: 05/20/2023]
Abstract
The homeodomain leucine zipper (HD-Zip) genes encode transcription factors that have diverse functions in plant development and have often been implicated in stress adaptation. The HD-Zip genes are the most abundant group of homeobox (HB) genes in plants and do not occur in other eukaryotes. This paper describes the complete annotation of the HD-Zip families I, II and III from rice and compares these gene families with Arabidopsis in a phylogeny reconstruction. Orthologous pairs of rice and Arabidopsis HD-Zip genes were predicted based on neighbour joining and maximum parsimony (MP) trees with support of conserved intron-exon organization. Additionally, a number of HD-Zip genes appeared to be unique to rice. Searching of EST and cDNA databases and expression analysis using RT-PCR showed that 30 out of 31 predicted rice HD-Zip genes are expressed. Most HD-Zip genes were broadly expressed in mature plants and seedlings, but others showed more organ specific patterns. Like in Arabidopsis and other dicots, a subset of the rice HD-Zip I and II genes was found to be regulated by drought stress. We identified both drought-induced and drought-repressed HD-Zip genes and demonstrate that these genes are differentially regulated in drought-sensitive versus drought-tolerant rice cultivars. The drought-repressed HD-Zip family I gene, Oshox4, was selected for promoter-GUS analysis, showing that drought-responsiveness of Oshox4 is controlled by the promoter and that Oshox4 expression is predominantly vascular-specific. Loss-of-function analysis of Oshox4 revealed no specific phenotype, but overexpression analysis suggested a role for Oshox4 in elongation and maturation processes.
Collapse
Affiliation(s)
- Adamantia Agalou
- Institute of Biology, Clusius Laboratory, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cabello JV, Dezar CA, Manavella PA, Chan RL. The intron of the Arabidopsis thaliana COX5c gene is able to improve the drought tolerance conferred by the sunflower Hahb-4 transcription factor. PLANTA 2007; 226:1143-54. [PMID: 17569080 DOI: 10.1007/s00425-007-0560-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 05/18/2007] [Indexed: 05/15/2023]
Abstract
Hahb-4 is a member of Helianthus annuus (sunflower) subfamily I of HD-Zip proteins. Transgenic Arabidopsis thaliana plants constitutively expressing this gene exhibit a strong tolerance of water stress in concert with morphological defects and a delay in development. In order to obtain a drought-tolerant phenotype without morphological associated phenotype, several stress inducible promoters were isolated and transgenic plants expressing Hahb-4 controlled by them were obtained and analyzed. These plants showed unchanged morphology in normal growth conditions and enhanced drought tolerance compared with non-transformed plants, but no as high as the one exhibited by the constitutively transformed genotype. A chimerical construction between the Hahb-4 promoter and the leader intron of the Arabidopsis Cox5c gene was made either directing gus or Hahb-4 expression. GUS activity increased in transgenic plants after induction, showing the same distribution pattern as in plants transformed with a construction lacking the intron. Transgenic plants, bearing the chimerical construct, are indistinguishable from wild type plants in normal growth conditions whereas the water stress tolerance achieved was as strong as the one shown by the constitutive genotype. This enhanced stress tolerance seemed to be due to a combination of an increase in transcription and translation rates in comparison to those of plants transformed with the Hahb-4 promoter. Similar strategies could be applied in the future for the obtaining of suitable promoters responsive to other external agents.
Collapse
Affiliation(s)
- Julieta V Cabello
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, CC242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | | | | | | |
Collapse
|
30
|
Manavella PA, Arce AL, Dezar CA, Bitton F, Renou JP, Crespi M, Chan RL. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:125-37. [PMID: 16972869 DOI: 10.1111/j.1365-313x.2006.02865.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hahb-4 is a member of the Helianthusannuus (sunflower) subfamily I of HD-Zip proteins that is transcriptionally regulated by water availability and abscisic acid. Transgenic Arabidopsis thaliana plants overexpressing this transcription factor (TF) exhibit a characteristic phenotype that includes a strong tolerance to water stress. Here we show that this TF is a new component of ethylene signalling pathways, and that it induces a marked delay in senescence. Plants overexpressing Hahb-4 are less sensitive to external ethylene, enter the senescence pathway later and do not show the typical triple response. Furthermore, transgenic plants expressing this gene under the control of its own inducible promoter showed an inverse correlation between ethylene sensitivity and Hahb-4 levels. Potential targets of Hahb-4 were identified by comparing the transcriptome of Hahb-4-transformed and wild-type plants using microarrays and quantitative RT-PCR. Expression of this TF has a major repressive effect on genes related to ethylene synthesis, such as ACO and SAM, and on genes related to ethylene signalling, such as ERF2 and ERF5. Expression studies in sunflower indicate that Hahb-4 transcript levels are elevated in mature/senescent leaves. Expression of Hahb-4 is induced by ethylene, concomitantly with several genes homologous to the targets identified in the transcriptome analysis (HA-ACOa and HA-ACOb). Transient transformation of sunflower leaves demonstrated the action of Hahb-4 in the regulation of ethylene-related genes. We propose that Hahb-4 is involved in a novel conserved mechanism related to ethylene-mediated senescence that functions to improve desiccation tolerance.
Collapse
Affiliation(s)
- Pablo A Manavella
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria 3000, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
31
|
Khanna R, Shen Y, Toledo-Ortiz G, Kikis EA, Johannesson H, Hwang YS, Quail PH. Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation. THE PLANT CELL 2006; 18:2157-71. [PMID: 16891401 PMCID: PMC1560915 DOI: 10.1105/tpc.106.042200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In previous time-resolved microarray-based expression profiling, we identified 32 genes encoding putative transcription factors, signaling components, and unknown proteins that are rapidly and robustly induced by phytochrome (phy)-mediated light signals. Postulating that they are the most likely to be direct targets of phy signaling and to function in the primary phy regulatory circuitry, we examined the impact of targeted mutations in these genes on the phy-induced seedling deetiolation process in Arabidopsis thaliana. Using light-imposed concomitant inhibition of hypocotyl and stimulation of cotyledon growth as diagnostic criteria for normal deetiolation, we identified three major mutant response categories. Seven (22%) lines displayed statistically significant, reciprocal, aberrant photoresponsiveness in the two organs, suggesting disruption of normal deetiolation; 13 (41%) lines displayed significant defects either unidirectionally in both organs or in hypocotyls only, suggesting global effects not directly related to photomorphogenic signaling; and 12 (37%) lines displayed no significant difference in photoresponsiveness from the wild type. Potential reasons for the high proportion of rapidly light-responsive genes apparently unnecessary for the deetiolation phenotype are discussed. One of the seven disrupted genes displaying a significant mutant phenotype, the basic helix-loop-helix factor-encoding PHYTOCHROME-INTERACTING FACTOR3-LIKE1 gene, was found to be necessary for rapid light-induced expression of the photomorphogenesis- and circadian-related PSEUDO-RESPONSE REGULATOR9 gene, indicating a regulatory function in the early phy-induced transcriptional network.
Collapse
Affiliation(s)
- Rajnish Khanna
- Department of Plant and Microbial Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R. Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. PLANT & CELL PHYSIOLOGY 2006; 47:788-92. [PMID: 16621846 DOI: 10.1093/pcp/pcj043] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Treating Arabidopsis roots with exogenous auxin results in dramatic changes in cellular processes including de novo induction of lateral roots which later emerge through the overlying cells. Microarray experiments reveal approximately 80 genes that are substantially up-regulated in the root over the first 12 h following auxin treatment. We hypothesize that the observed increase in expression of pectate lyase family genes leads to degradation of the pectin-rich middle lamellae, allowing cells in the parent root to separate cleanly. Differences in the degree of pectin methylation in lateral and parent roots may explain why lateral roots are not degraded themselves.
Collapse
Affiliation(s)
- Marta Laskowski
- Biology Department, Oberlin College, Oberlin, OH 44074, USA.
| | | | | | | | | |
Collapse
|
33
|
Roig-Villanova I, Bou J, Sorin C, Devlin PF, Martínez-García JF. Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:85-96. [PMID: 16565297 PMCID: PMC1459307 DOI: 10.1104/pp.105.076331] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The phytochrome (phy) photoreceptors modulate plant development after perception of light. Upon illumination of etiolated seedlings, phys initiate a transcriptional cascade by directly transducing light signals to the promoters of genes encoding regulators of morphogenesis. In light-grown plants, however, little is known about the transcriptional cascade modulated by phys in response to changes in light. The phy entry points in this cascade are completely unknown. We are particularly interested in the shade avoidance syndrome (SAS). Here we describe a subset of six genes whose expression is rapidly modulated by phys during both deetiolation and SAS in Arabidopsis (Arabidopsis thaliana). Using cycloheximide, we provide evidence that four of these phy rapidly regulated (PAR) genes are direct targets of phy signaling during SAS, revealing these genes as upstream components of the transcriptional cascade. Promoter-beta-glucuronidase fusions confirmed that PAR genes are photoregulated at the transcriptional level. Analysis of gene expression in light signal transduction mutants showed that COP1 and DET1 (but not DET2 or HY5) play a role in modulating PAR expression in response to shade in light-grown seedlings. Moreover, genetic analyses showed that one of the genes identified as a direct target of phy signaling was phy-interacting factor 3-like-1 (PIL1). PIL1 has previously been implicated in SAS in response to transient shade, but we show here that it also plays a key role in response to long-term shade. The action of PIL1 was particularly apparent in a phyB background, suggesting an important negative role for PIL1 under dense vegetation canopies.
Collapse
Affiliation(s)
- Irma Roig-Villanova
- Departament de Genètica Molecular, Institut de Biologia Molecular de Barcelona, Consorci CSIC-IRTA, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
34
|
Rueda EC, Dezar CA, Gonzalez DH, Chan RL. Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis. PLANT & CELL PHYSIOLOGY 2005; 46:1954-63. [PMID: 16215272 DOI: 10.1093/pcp/pci210] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Homeodomain-leucine zipper proteins constitute a family of transcription factors found only in plants. Expression patterns of the sunflower homeobox-leucine zipper gene Hahb-10 (Helianthus annuus homeobox-10), that belongs to the HD-Zip II subfamily, were analysed. Northern blots showed that Hahb-10 is expressed primarily in mature leaves, although expression is clearly detectable in younger leaves and also in stems. Considerably higher expression levels were detected in etiolated seedlings compared with light-grown seedlings. Induction of Hahb-10 expression was observed when seedlings were subjected to treatment with gibberellins. Transgenic Arabidopsis thaliana plants that express Hahb-10 under the 35S cauliflower mosaic virus promoter show special phenotypic characteristics such as darker cotyledons and planar leaves. A reduction in the life cycle of about 25% allowing earlier seed collection was also observed, and this phenomenon is clearly related to a shortened flowering time. When the number of plants per pot increased, the difference in developmental rate between transgenic and non-transformed individuals became larger. After gibberellin treatment, the relative difference in life cycle duration was considerably reduced. Several light-regulated genes have been tested as possible target genes of Hahb-10. One of them, PsbS, shows a different response to illumination conditions in transgenic plants compared with the response in wild-type plants while the other genes behave similarly in both genotypes. We propose that Hahb-10 functions in a signalling cascade(s) that control(s) plant responses to light quality and quantity, and may also be involved in gibberellin transduction pathways.
Collapse
Affiliation(s)
- Eva C Rueda
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | |
Collapse
|
35
|
Ammiraju JSS, Yu Y, Luo M, Kudrna D, Kim H, Goicoechea JL, Katayose Y, Matsumoto T, Wu J, Sasaki T, Wing RA. Random sheared fosmid library as a new genomic tool to accelerate complete finishing of rice (Oryza sativa spp. Nipponbare) genome sequence: sequencing of gap-specific fosmid clones uncovers new euchromatic portions of the genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1596-607. [PMID: 16200416 DOI: 10.1007/s00122-005-0091-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 08/15/2005] [Indexed: 05/04/2023]
Abstract
The International Rice Genome Sequencing Project has recently announced the high-quality finished sequence that covers nearly 95% of the japonica rice genome representing 370 Mbp. Nevertheless, the current physical map of japonica rice contains 62 physical gaps corresponding to approximately 5% of the genome, that have not been identified/represented in the comprehensive array of publicly available BAC, PAC and other genomic library resources. Without finishing these gaps, it is impossible to identify the complete complement of genes encoded by rice genome and will also leave us ignorant of some 5% of the genome and its unknown functions. In this article, we report the construction and characterization of a tenfold redundant, 40 kbp insert fosmid library generated by random mechanical shearing. We demonstrated its utility in refining the physical map of rice by identifying and in silico mapping 22 gap-specific fosmid clones with particular emphasis on chromosomes 1, 2, 6, 7, 8, 9 and 10. Further sequencing of 12 of the gap-specific fosmid clones uncovered unique rice genome sequence that was not previously reported in the finished IRGSP sequence and emphasizes the need to complete finishing of the rice genome.
Collapse
Affiliation(s)
- Jetty S S Ammiraju
- Department of Plant Sciences and BIO5 Institute, Arizona Genomics Institute, The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T. Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:314-33. [PMID: 16212609 DOI: 10.1111/j.1365-313x.2005.02530.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytokinins are hormones that regulate many developmental and physiological processes in plants. Recent work has revealed that the cytokinin signal is transduced by two-component systems to the nucleus where target genes are activated. Most of the rapid transcriptional responses are unknown. We measured immediate-early and delayed cytokinin responses through genome-wide expression profiling with the Affymetrix ATH1 full genome array (Affymetrix Inc., Santa Clara, CA, USA). Fifteen minutes after cytokinin treatment of 5-day-old Arabidopsis seedlings, 71 genes were upregulated and 11 genes were downregulated. Immediate-early cytokinin response genes include a high portion of transcriptional regulators, among them six transcription factors that had previously not been linked to cytokinin. Five plastid transcripts were rapidly regulated as well, indicating a rapid transfer of the signal to plastids or direct perception of the cytokinin signal by plastids. After 2 h of cytokinin treatment genes coding for transcriptional regulators, signaling proteins, developmental and hormonal regulators, primary and secondary metabolism, energy generation and stress reactions were over-represented. A significant number of the responding genes are known to regulate light (PHYA, PSK1, CIP8, PAT1, APRR), auxin (Aux/IAA), ethylene (ETR2, EIN3, ERFs/EREBPs), gibberellin (GAI, RGA1, GA20 oxidase), nitrate (NTR2, NIA) and sugar (STP1, SUS1) dependent processes, indicating intense crosstalk with environmental cues, other hormones and metabolites. Analysis of cytokinin-deficient 35S:AtCKX1 transgenic seedlings has revealed additional, long-lasting cytokinin-sensitive changes of transcript abundance. Comparative overlay-analysis with the software tool mapman identified previously unknown cytokinin-sensitive metabolic genes, for example in the metabolism of trehalose-6-phosphate. Taken together, we present a genome-wide view of changes in cytokinin-responsive transcript abundance of genes that might be functionally relevant for the many biological processes that are governed by cytokinins.
Collapse
Affiliation(s)
- Wolfram G Brenner
- Max Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
37
|
Dezar CA, Gago GM, Gonzalez DH, Chan RL. Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res 2005; 14:429-40. [PMID: 16201409 DOI: 10.1007/s11248-005-5076-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Homeodomain-leucine zipper proteins constitute a family of transcription factors found only in plants. Hahb-4 is a member of Helianthus annuus (sunflower) subfamily I. It is regulated at the transcriptional level by water availability and abscisic acid. In order to establish if this gene plays a functional role in drought responses, transgenic Arabidopsis thaliana plants that overexpress Hahb-4 under the control of the 35S Cauliflower Mosaic Virus promoter were obtained. Transformed plants show a specific phenotype: they develop shorter stems and internodes, rounder leaves and more compact inflorescences than their non-transformed counterparts. Shorter stems and internodes are due to a lower rate in cell elongation rather than to a stop in cell division. Transgenic plants were more tolerant to water stress conditions, showing improved development, a healthier appearance and higher survival rates than wild-type plants. Indeed, either under normal or drought conditions, they produce approximately the same seed weight per plant as wild-type plants under normal growth conditions. Plants transformed with a construct that bears the Hahb-4 promoter fused to gusA show reporter gene expression in defined cell-types and developmental stages and are induced by drought and abscisic acid. Since Hahb-4 is a transcription factor, we propose that it may participate in the regulation of the expression of genes involved in developmental responses of plants to desiccation.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Crops, Agricultural/genetics
- Crops, Agricultural/physiology
- DNA, Plant/isolation & purification
- Disasters
- Gene Expression Regulation, Plant
- Genes, Homeobox/physiology
- Genes, Plant
- Helianthus/genetics
- Homeodomain Proteins
- Leucine Zippers/genetics
- Phenotype
- Plant Growth Regulators/genetics
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic
- RNA, Plant/isolation & purification
- RNA, Plant/metabolism
- Transcription Factors
Collapse
Affiliation(s)
- Carlos Alberto Dezar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | |
Collapse
|
38
|
Rocha GCG, Corrêa RL, Borges ACN, Sá CBPD, Alves-Ferreira M. Identification and characterization of homeobox genes in Eucalyptus. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000400005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
39
|
Ageez A, Matsunaga S, Uchida W, Sugiyama R, Kazama Y, Kawano S. Isolation and characterization of two homeodomain leucine zipper genes from the dioecious plant Silene latifolia. Genes Genet Syst 2004; 78:353-61. [PMID: 14676426 DOI: 10.1266/ggs.78.353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Homeodomain leucine zipper (HD-Zip) genes encode transcription factors that are characterized by both a homeodomain and a leucine zipper motif. Two HD-Zip genes were isolated from cDNA of the male flower bud of the dioecious plant Silene latifolia. The two isolated genes, SlHDL1 and SlHDL2, encode proteins with the characteristics of HD-Zip transcription factors belonging to HD-Zip classes I and II, respectively. The expression patterns of SlHDL1 and SlHDL2 throughout the floral developmental stages were studied using real-time PCR and in situ hybridization. SlHDL1 is specifically expressed in the outermost layer of the anthers and gynoeciums with a patchy pattern in the inner layers, suggesting that the product of SlHDL1 plays a role in the early developmental stage of the epidermal tissues of these floral organs. Its expression pattern in the anthers and gynoeciums suggests an involvement in differentiation of the reproductive organs. On the other hand, real-time PCR revealed accumulation of SlHDL2 transcripts in the anther and pollen grains of the male flower. These results suggest that SlHDL1 and SlHDL2 regulate specific targets in restricted regions leading to floral organ differentiation in S. latifolia.
Collapse
Affiliation(s)
- Amr Ageez
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Henriksson E, Söderman E, Henriksson KN, Sundberg E, Engström P. The arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol 2003; 264:228-39. [PMID: 14623244 DOI: 10.1016/j.ydbio.2003.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report describes the characterisation of ATHB16, a novel Arabidopsis thaliana homeobox gene, which encodes a homeodomain-leucine zipper class I (HDZip I) protein. We demonstrate that ATHB16 functions as a growth regulator, potentially as a component in the light-sensing mechanism of the plant. Endogenous ATHB16 mRNA was detected in all organs of Arabidopsis, at highest abundance in rosette leaves. Reduced levels of ATHB16 expression in transgenic Arabidopsis plants caused an increase in leaf cell expansion and consequently an increased size of the leaves, whereas leaf shape was unaffected. Transgenic plants with increased ATHB16 mRNA levels developed leaves that were smaller than wild-type leaves. Therefore, we suggest ATHB16 to act as a negative regulator of leaf cell expansion. Furthermore, the flowering time response to photoperiod was increased in plants with reduced ATHB16 levels but reduced in plants with elevated ATHB16 levels, indicating that ATHB16 has an additional role as a suppressor of the flowering time sensitivity to photoperiod in wild-type Arabidopsis. As deduced from the response of transgenic plants with altered levels of ATHB16 expression in hypocotyl elongation assays, the gene may act to regulate plant development as a mediator of a blue light response.
Collapse
Affiliation(s)
- Yan Wang
- Evolutionary Biology Centre, Department of Physiological Botany, Uppsala University, Villavägen 6, S-752 36 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Devlin PF, Yanovsky MJ, Kay SA. A genomic analysis of the shade avoidance response in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1617-29. [PMID: 14645734 PMCID: PMC300718 DOI: 10.1104/pp.103.034397] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 10/13/2003] [Accepted: 10/15/2003] [Indexed: 05/18/2023]
Abstract
Plants respond to the proximity of neighboring vegetation by elongating to prevent shading. Red-depleted light reflected from neighboring vegetation triggers a shade avoidance response leading to a dramatic change in plant architecture. These changes in light quality are detected by the phytochrome family of photoreceptors. We analyzed global changes in gene expression over time in wild-type, phyB mutant, and phyA phyB double mutant seedlings of Arabidopsis in response to simulated shade. Using pattern fitting software, we identified 301 genes as shade responsive with patterns of expression corresponding to one of various physiological response modes. A requirement for a consistent pattern of expression across 12 chips in this way allowed more subtle changes in gene expression to be considered meaningful. A number of previously characterized genes involved in light and hormone signaling were identified as shade responsive, as well as several putative, novel shade-specific signal transduction factors. In addition, changes in expression of genes in a range of pathways associated with elongation growth and stress responses were observed. The majority of shade-responsive genes demonstrated antagonistic regulation by phyA and phyB in response to shade following the pattern of many physiological responses. An analysis of promoter elements of genes regulated in this way identified conserved promoter motifs potentially important in shade regulation.
Collapse
Affiliation(s)
- Paul Francis Devlin
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
42
|
Tron AE, Bertoncini CW, Chan RL, Gonzalez DH. Redox regulation of plant homeodomain transcription factors. J Biol Chem 2002; 277:34800-7. [PMID: 12093803 DOI: 10.1074/jbc.m203297200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several families of plant transcription factors contain a conserved DNA binding motif known as the homeodomain. In two of these families, named Hd-Zip and glabra2, the homeodomain is associated with a leucine zipper-like dimerization motif. A group of Hd-Zip proteins, namely Hd-ZipII, contain a set of conserved cysteines within the dimerization motif and adjacent to it. Incubation of one of these proteins, Hahb-10, in the presence of thiol-reducing agents such as dithiothreitol or reduced glutathione produced a significant increase in DNA binding. Under such conditions, the protein migrated as a monomer in non-reducing SDS-polyacrylamide gels. Under oxidizing conditions, a significant proportion of the protein migrated as dimers, suggesting the formation of intermolecular disulfide bonds. A similar behavior was observed for the glabra2 protein HAHR1, which also contains two conserved cysteines within its dimerization domain. Site-directed mutagenesis of the cysteines to serines indicated that each of them has different roles in the activation of the proteins. Purified thioredoxin was able to direct the NADPH-dependent activation of Hahb-10 and HAHR1 in the presence of thioredoxin reductase. The results suggest that redox conditions may operate to regulate the activity of these groups of plant transcription factors within plant cells.
Collapse
Affiliation(s)
- Adriana E Tron
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | |
Collapse
|
43
|
Santiago-Ong M, Green RM, Tingay S, Brusslan JA, Tobin EM. shygrl1 is a mutant affected in multiple aspects of photomorphogenesis. PLANT PHYSIOLOGY 2001; 126:587-600. [PMID: 11402189 PMCID: PMC111151 DOI: 10.1104/pp.126.2.587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 03/06/2001] [Accepted: 03/07/2001] [Indexed: 05/21/2023]
Abstract
We have used a counter-selection strategy based on aberrant phytochrome regulation of an Lhcb gene to isolate an Arabidopsis mutant designated shygrl1 (shg1). shg1 seedlings have reduced phytochrome-mediated induction of the Lhcb gene family, but normal phytochrome-mediated induction of several other genes, including the rbcS1a gene. Additional phenotypes observed in shg1 plants include reduced chlorophyll in leaves and additional photomorphogenic abnormalities when the seedlings are grown on medium containing sucrose. Mutations in the TATA-proximal region of the Lhcb1*3 promoter that are known to be important for phytochrome regulation affected reporter gene expression in a manner similar to the shg1 mutation. Our results are consistent with the possibility that the mutation either leads to defective chloroplast development or to aberrant phytochrome regulation. They also add to the evidence of complex interactions between light- and sucrose-regulated pathways.
Collapse
Affiliation(s)
- M Santiago-Ong
- Department of Molecular, Cell, and Developmental Biology, P.O. Box 951606, University of California, Los Angeles, California 90095-1606, USA
| | | | | | | | | |
Collapse
|
44
|
Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol 2001; 18:491-502. [PMID: 11264400 DOI: 10.1093/oxfordjournals.molbev.a003828] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homeobox genes encode transcription factors involved in many aspects of developmental processes. The homeodomain-leucine zipper (HD-Zip) genes, which are characterized by the presence of both a homeodomain and a leucine zipper motif, form a clade within the homeobox superfamily and were previously reported only from vascular plants. Here we report the isolation of 10 HD-Zip genes (named PPHB:1-PPHB:10) from the moss Physcomitrella patens. Based on a phylogenetic analysis of the 10 PPHB: genes and previously reported vascular plant HD-Zip genes, all of the PPHB: genes except Pphb3 belong to three of the four HD-Zip subfamilies (HD-Zip I, II, and III), indicating that these subfamilies originated before the divergence of the vascular plant and moss lineages. Pphb3 is sister to the HD-Zip II subfamily and has some distinctive characteristics, including the difference of the a(1) and d(1) sites of its leucine zipper motif, which are well conserved in each HD-Zip subfamily. Comparison of the genetic divergence of representative HD-Zip I and II genes showed that the evolutionary rate of HD-Zip I genes was faster than that of HD-Zip II genes.
Collapse
Affiliation(s)
- K Sakakibara
- National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
45
|
Ohgishi M, Oka A, Morelli G, Ruberti I, Aoyama T. Negative autoregulation of the Arabidopsis homeobox gene ATHB-2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:389-398. [PMID: 11260495 DOI: 10.1046/j.1365-313x.2001.00966.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis homeobox gene ATHB-2 is tightly regulated by light signals, and is thought to direct morphological changes during shade avoidance responses. To understand how ATHB-2 mediates light signals in plant morphogenesis, we investigated its transcriptional network. We constructed a gene encoding a chimeric transcription factor (HD-Zip-2-V-G) that is expected to activate target genes of ATHB-2 in a glucocorticoid-dependent manner. In transgenic Arabidopsis plants expressing HD-Zip-2-V-G, glucocorticoid treatment activates the ATHB-2 gene itself, independent of de novo protein synthesis. An in vitro DNase I-footprinting experiment showed that recombinant ATHB-2 protein specifically bound to an ATHB-2 promoter region. These complementary results indicate that ATHB-2 recognizes its own promoter. Consistent with the fact that ATHB-2 itself has been shown to act as a repressor, expression of the endogenous ATHB-2 gene was repressed in transgenic plants overexpressing an ATHB-2 transgene. Moreover, target-gene analysis using the HD-Zip-2-V-G suggested that ATHB-2 recognizes other HD-Zip II subfamily genes. We conclude that ATHB-2 has a negative autoregulatory loop and may be involved in a complicated transcriptional network involving paralogous genes, as is the case with animal homeobox genes.
Collapse
Affiliation(s)
- M Ohgishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | |
Collapse
|
46
|
Svensson ME, Johannesson H, Engström P. The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures. Gene 2000; 253:31-43. [PMID: 10925200 DOI: 10.1016/s0378-1119(00)00243-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcription factors encoded by the large MADS-box gene family have important developmental functions in angiosperms, the flowering plants. Mutations in certain MADS-box genes are known to cause homeotic alterations in floral organ identity, and the establishment of floral organ identity is the most well-studied developmental process in which MADS-box genes are known to function. Our interest is in the potential connection between the duplication history of this gene family and the evolutionary origin of the structures that the different MADS-box genes developmentally regulate in plants. Previous studies have demonstrated that the origin of the MADS-box genes that control floral organ identity predate the evolutionary origin of the flower itself, since gymnosperms have genes that are orthologous to angiosperm floral homeotic MADS-box genes, whereas ferns appear to lack such genes. Here we report on the isolation of a MADS-box gene from Lycopodium annotinum, which belongs to the clubmosses, the phylogenetic sister group to other vascular plants. The gene, LAMB1, in the sporophyte is expressed exclusively in the reproductive structure, the strobilus, during sporogenesis. LAMB1 is similar to other plant MADS-box genes in that it contains a MADS-box as well as a second conserved element, a K-box. However, it differs in length and in exon/intron structure in the region between the MADS- and K-box, and also in the length and structure of the C-terminal region. A phylogenetic analysis indicates that LAMB1 is not closely related to other plant-type MADS-box genes, and may represent one of the basal branches in the phylogenetic tree of plant MADS-box genes.
Collapse
Affiliation(s)
- M E Svensson
- Evolutionary Biology Centre, Department of Physiological Botany, Uppsala University, Villavägen 6, S-752 36, Uppsala, Sweden
| | | | | |
Collapse
|
47
|
Acarkan A, Rossberg M, Koch M, Schmidt R. Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:55-62. [PMID: 10929101 DOI: 10.1046/j.1365-313x.2000.00790.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genome colinearity has been studied for two closely related diploid species of the Brassicaceae family, Arabidopsis thaliana and Capsella rubella. Markers mapping to chromosome 4 of A. thaliana were found on two linkage groups in Capsella and colinear segments spanning more than 10 cM were revealed. Detailed analysis of a 60 kbp region in A. thaliana and its counterpart in C. rubella showed virtually complete conservation of gene repertoire, order and orientation. The comparison of orthologous genes revealed very similar exon-intron structures and sequence identities of 90% or more were found for exon sequences. This extensive genome colinearity at the genetic and molecular level allows the efficient transfer of data from the well-studied A. thaliana genome to other species in the Brassicaceae family, substantially facilitating genome analysis studies for species of this family.
Collapse
Affiliation(s)
- A Acarkan
- Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | |
Collapse
|
48
|
Morelli G, Ruberti I. Shade avoidance responses. Driving auxin along lateral routes. PLANT PHYSIOLOGY 2000; 122:621-6. [PMID: 10712524 PMCID: PMC1539242 DOI: 10.1104/pp.122.3.621] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- G Morelli
- Unità di Nutrizione Sperimentale, Istituto Nazionale della Nutrizione, Via Ardeatina 546, 00178 Rome, Italy.
| | | |
Collapse
|
49
|
|
50
|
Mayda E, Tornero P, Conejero V, Vera P. A tomato homeobox gene (HD-zip) is involved in limiting the spread of programmed cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:591-600. [PMID: 10652131 DOI: 10.1046/j.1365-313x.1999.00633.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antisense suppression in transgenic tomato plants of H52, a gene encoding a new homeodomain protein of the HD-Zip class, produces a conditional lethal phenotype. The transgenic lines that survive exhibit spontaneous misregulation of cell death control in leaves, which, once initiated, propagates and engulfs the entire leaf. Activation of defence genes, over-accumulation of ethylene and conjugated salicylic acid, and growth reduction of virulent pathogens also occurs in these plants. In wild-type plants, H52 is up-regulated upon infection, mirroring the generation of the oxidative burst which normally precedes the hypersensitive response (HR). Thus, H52 appears to be a transcription factor involved in cellular protection by limiting spread of programmed cell death in plants.
Collapse
Affiliation(s)
- E Mayda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | |
Collapse
|