1
|
Borek A, Bonarek P, Kowalska E, Banaś AK, Strzałka W. Biological activity of Arabidopsis flap endonuclease 1 (FEN1) is modulated by nuclear factors that inhibit its aggregation. BMC PLANT BIOLOGY 2025; 25:648. [PMID: 40380113 PMCID: PMC12083030 DOI: 10.1186/s12870-025-06671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
Flap endonuclease 1 (FEN1) is part of a group of nuclear enzymes involved in eukaryotic DNA replication and repair. In our studies, using both biochemical and biophysical approaches, we demonstrated that Arabidopsis thaliana FEN1 (AtFEN1) is unstable and prone to aggregation. To understand the reasons for AtFEN1 aggregation, we first analyzed the effects of heparin sodium and sodium chloride on its aggregation. We found that both heparin sodium and sodium chloride modulated the aggregation of this enzyme; however, achieving the same level of aggregation inhibition required using a sodium chloride concentration five orders of magnitude higher than that of heparin. Subsequently, to identify potential nuclear factors that may modulate the biological activity of AtFEN1 in vivo, we used DNA. Our experiments showed that negatively charged double-stranded DNA (dsDNA), similarly to the double-flap DNA (dfDNA) substrate of AtFEN1, inhibited AtFEN1 aggregation. This inhibitory effect was much less pronounced when single-stranded DNA (ssDNA) was used. Moreover, dfDNA prevented the loss of biological activity of AtFEN1. Finally, we revealed that AtFEN1 aggregation was also blocked by Arabidopsis proliferating cell nuclear antigen 1 (PCNA1), a natural interacting protein of AtFEN1. However, this effect was observed only when the putative PCNA-interacting protein (PIP)-box sequence was present in AtFEN1.
Collapse
Affiliation(s)
- Arkadiusz Borek
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
2
|
Sun H, Luo M, Zhou M, Zheng L, Li H, Esworthy RS, Shen B. Structure-specific nucleases in genome dynamics and strategies for targeting cancers. J Mol Cell Biol 2024; 16:mjae019. [PMID: 38714348 PMCID: PMC11574390 DOI: 10.1093/jmcb/mjae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024] Open
Abstract
Nucleases are a super family of enzymes that hydrolyze phosphodiester bonds present in genomes. They widely vary in substrates, causing differentiation in cleavage patterns and having a diversified role in maintaining genetic material. Through cellular evolution of prokaryotic to eukaryotic, nucleases become structure-specific in recognizing its own or foreign genomic DNA/RNA configurations as its substrates, including flaps, bubbles, and Holliday junctions. These special structural configurations are commonly found as intermediates in processes like DNA replication, repair, and recombination. The structure-specific nature and diversified functions make them essential to maintaining genome integrity and evolution in normal and cancer cells. In this article, we review their roles in various pathways, including Okazaki fragment maturation during DNA replication, end resection in homology-directed recombination repair of DNA double-strand breaks, DNA excision repair and apoptosis DNA fragmentation in response to exogenous DNA damage, and HIV life cycle. As the nucleases serve as key points for the DNA dynamics, cellular apoptosis, and cancer cell survival pathways, we discuss the efforts in the field in developing the therapeutic regimens, taking advantage of recently available knowledge of their diversified structures and functions.
Collapse
Affiliation(s)
- Haitao Sun
- Medicinal Plant Resources and Protection Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Megan Luo
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hongzhi Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - R Steven Esworthy
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Berfelde J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. FEN1 Inhibition as a Potential Novel Targeted Therapy against Breast Cancer and the Prognostic Relevance of FEN1. Int J Mol Sci 2024; 25:2110. [PMID: 38396787 PMCID: PMC10889347 DOI: 10.3390/ijms25042110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
To improve breast cancer treatment and to enable new strategies for therapeutic resistance, therapeutic targets are constantly being studied. Potential targets are proteins of DNA repair and replication and genomic integrity, such as Flap Endonuclease 1 (FEN1). This study investigated the effects of FEN1 inhibitor FEN1-IN-4 in combination with ionizing radiation on cell death, clonogenic survival, the cell cycle, senescence, doubling time, DNA double-strand breaks and micronuclei in breast cancer cells, breast cells and healthy skin fibroblasts. Furthermore, the variation in the baseline FEN1 level and its influence on treatment prognosis was investigated. The cell lines show specific response patterns in the aspects studied and have heterogeneous baseline FEN1 levels. FEN1-IN-4 has cytotoxic, cytostatic and radiosensitizing effects, expressed through increasing cell death by apoptosis and necrosis, G2M share, senescence, double-strand breaks and a reduced survival fraction. Nevertheless, some cells are less affected by the cytotoxicity and fibroblasts show a rather limited response. In vivo, high FEN1 mRNA expression worsens the prognosis of breast cancer patients. Due to the increased expression in breast cancer tissue, FEN1 could represent a new tumor and prognosis marker and FEN1-IN-4 may serve as a new potent agent in personalized medicine and targeted breast cancer therapy.
Collapse
Affiliation(s)
- Johanna Berfelde
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Manzo M, Serra A, Pedone E, Pirone L, Scognamiglio V, De Felice M, De Falco M. DNA Polymerase I Large Fragment from Deinococcus radiodurans, a Candidate for a Cutting-Edge Room-Temperature LAMP. Int J Mol Sci 2024; 25:1392. [PMID: 38338670 PMCID: PMC10855757 DOI: 10.3390/ijms25031392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, the loop-mediated isothermal amplification (LAMP) technique, designed for microbial pathogen detection, has acquired fundamental importance in the biomedical field, providing rapid and precise responses. However, it still has some drawbacks, mainly due to the need for a thermostatic block, necessary to reach 63 °C, which is the BstI DNA polymerase working temperature. Here, we report the identification and characterization of the DNA polymerase I Large Fragment from Deinococcus radiodurans (DraLF-PolI) that functions at room temperature and is resistant to various environmental stress conditions. We demonstrated that DraLF-PolI displays efficient catalytic activity over a wide range of temperatures and pH, maintains its activity even after storage under various stress conditions, including desiccation, and retains its strand-displacement activity required for isothermal amplification technology. All of these characteristics make DraLF-PolI an excellent candidate for a cutting-edge room-temperature LAMP that promises to be very useful for the rapid and simple detection of pathogens at the point of care.
Collapse
Affiliation(s)
- Marilena Manzo
- Institute of Bioscience and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Assunta Serra
- Institute of Bioscience and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy
| | - Mariarita De Felice
- Institute of Bioscience and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mariarosaria De Falco
- Institute of Bioscience and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Hoitsma NM, Norris J, Khoang TH, Kaushik V, Chadda R, Antony E, Hedglin M, Freudenthal BD. Mechanistic insight into AP-endonuclease 1 cleavage of abasic sites at stalled replication fork mimics. Nucleic Acids Res 2023; 51:6738-6753. [PMID: 37264933 PMCID: PMC10359615 DOI: 10.1093/nar/gkad481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023] Open
Abstract
Many types of damage, including abasic sites, block replicative DNA polymerases causing replication fork uncoupling and generating ssDNA. AP-Endonuclease 1 (APE1) has been shown to cleave abasic sites in ssDNA. Importantly, APE1 cleavage of ssDNA at a replication fork has significant biological implications by generating double strand breaks that could collapse the replication fork. Despite this, the molecular basis and efficiency of APE1 processing abasic sites at replication forks remain elusive. Here, we investigate APE1 cleavage of abasic substrates that mimic APE1 interactions at stalled replication forks or gaps. We determine that APE1 has robust activity on these substrates, like dsDNA, and report rates for cleavage and product release. X-ray structures visualize the APE1 active site, highlighting an analogous mechanism is used to process ssDNA substrates as canonical APE1 activity on dsDNA. However, mutational analysis reveals R177 to be uniquely critical for the APE1 ssDNA cleavage mechanism. Additionally, we investigate the interplay between APE1 and Replication Protein A (RPA), the major ssDNA-binding protein at replication forks, revealing that APE1 can cleave an abasic site while RPA is still bound to the DNA. Together, this work provides molecular level insights into abasic ssDNA processing by APE1, including the presence of RPA.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Norris
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thu H Khoang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Lowder FC, Simmons LA. Bacillus subtilis encodes a discrete flap endonuclease that cleaves RNA-DNA hybrids. PLoS Genet 2023; 19:e1010585. [PMID: 37146086 PMCID: PMC10191290 DOI: 10.1371/journal.pgen.1010585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/17/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
The current model for Okazaki fragment maturation in bacteria invokes RNA cleavage by RNase H, followed by strand displacement synthesis and 5' RNA flap removal by DNA polymerase I (Pol I). RNA removal by Pol I is thought to occur through the 5'-3' flap endo/exonuclease (FEN) domain, located in the N-terminus of the protein. In addition to Pol I, many bacteria encode a second, Pol I-independent FEN. The contribution of Pol I and Pol I-independent FENs to DNA replication and genome stability remains unclear. In this work we purified Bacillus subtilis Pol I and FEN, then assayed these proteins on a variety of RNA-DNA hybrid and DNA-only substrates. We found that FEN is far more active than Pol I on nicked double-flap, 5' single flap, and nicked RNA-DNA hybrid substrates. We show that the 5' nuclease activity of B. subtilis Pol I is feeble, even during DNA synthesis when a 5' flapped substrate is formed modeling an Okazaki fragment intermediate. Examination of Pol I and FEN on DNA-only substrates shows that FEN is more active than Pol I on most substrates tested. Further experiments show that ΔpolA phenotypes are completely rescued by expressing the C-terminal polymerase domain while expression of the N-terminal 5' nuclease domain fails to complement ΔpolA. Cells lacking FEN (ΔfenA) show a phenotype in conjunction with an RNase HIII defect, providing genetic evidence for the involvement of FEN in Okazaki fragment processing. With these results, we propose a model where cells remove RNA primers using FEN while upstream Okazaki fragments are extended through synthesis by Pol I. Our model resembles Okazaki fragment processing in eukaryotes, where Pol δ catalyzes strand displacement synthesis followed by 5' flap cleavage using FEN-1. Together our work highlights the conservation of ordered steps for Okazaki fragment processing in cells ranging from bacteria to human.
Collapse
Affiliation(s)
- Frances Caroline Lowder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Laverde EE, Polyzos AA, Tsegay PP, Shaver M, Hutcheson JD, Balakrishnan L, McMurray CT, Liu Y. Flap Endonuclease 1 Endonucleolytically Processes RNA to Resolve R-Loops through DNA Base Excision Repair. Genes (Basel) 2022; 14:genes14010098. [PMID: 36672839 PMCID: PMC9859040 DOI: 10.3390/genes14010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an essential enzyme that removes RNA primers and base lesions during DNA lagging strand maturation and long-patch base excision repair (BER). It plays a crucial role in maintaining genome stability and integrity. FEN1 is also implicated in RNA processing and biogenesis. A recent study from our group has shown that FEN1 is involved in trinucleotide repeat deletion by processing the RNA strand in R-loops through BER, further suggesting that the enzyme can modulate genome stability by facilitating the resolution of R-loops. However, it remains unknown how FEN1 can process RNA to resolve an R-loop. In this study, we examined the FEN1 cleavage activity on the RNA:DNA hybrid intermediates generated during DNA lagging strand processing and BER in R-loops. We found that both human and yeast FEN1 efficiently cleaved an RNA flap in the intermediates using its endonuclease activity. We further demonstrated that FEN1 was recruited to R-loops in normal human fibroblasts and senataxin-deficient (AOA2) fibroblasts, and its R-loop recruitment was significantly increased by oxidative DNA damage. We showed that FEN1 specifically employed its endonucleolytic cleavage activity to remove the RNA strand in an R-loop during BER. We found that FEN1 coordinated its DNA and RNA endonucleolytic cleavage activity with the 3'-5' exonuclease of APE1 to resolve the R-loop. Our results further suggest that FEN1 employed its unique tracking mechanism to endonucleolytically cleave the RNA strand in an R-loop by coordinating with other BER enzymes and cofactors during BER. Our study provides the first evidence that FEN1 endonucleolytic cleavage can result in the resolution of R-loops via the BER pathway, thereby maintaining genome integrity.
Collapse
Affiliation(s)
- Eduardo E. Laverde
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Aris A. Polyzos
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pawlos P. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Mohammad Shaver
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana-Purdue University, Indianapolis, IN 46202, USA
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
8
|
Pal R, Rakshit S, Shanmugam G, Paul N, Bhattacharya D, Chatterjee A, Singh A, George M, Sarkar K. Involvement of Xeroderma Pigmentosum Complementation Group G (XPG) in epigenetic regulation of T-Helper (T H) cell differentiation during breast cancer. Immunobiology 2022; 227:152259. [PMID: 36037675 DOI: 10.1016/j.imbio.2022.152259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/05/2022]
Abstract
TNFα and IFN-γ secreted by CD4+T-Helper (TH) cells have antitumor activity followed by polarisation of TH1 phenotype in response to IL-12 secreted by dendritic cells, inducing expression of XPG, Nucleotide-Excision Repair (NER) complex component, which is downregulated in breast cancer. Therefore, we investigated the involvement of XPG in TH-cell differentiation in breast cancer. XPG knock-out (KO) PBMC and TH1 polarised CD4+ TH-cells isolated from breast cancer and control subjects blood samples were used to observe mRNA expressions of associated genes, % enrichment of corresponding epigenetic markers, and m6A RNA methylation levels to study the molecular mechanisms involved. Assays to investigate Cytotoxic T Lymphocyte (CTL) activity after cross-checking extracellular secretion levels. Our XPGKO results indicated upregulation of TH2 and Treg, downregulation of TH1, and negligible change for TH17; reduced expression of genes associated with tumour suppression (TP53, BRCA1) and DNA repair (H2AFX, ATM) for breast cancer TH-cells. CTCF associated TH1 specific function, reduced %enrichment of XPG, CSA, and ERCC1, increased %enrichment of γH2A.X, and altered histone modifications (methylation, deacetylation) at the IFN-γ gene locus in XPGKO breast cancer TH1-cells. Increased m6A RNA methylation mediated by XPG leads to TH1 cell specificity, further inducing CTL activity by releasing extracellular IFG-γ, which activates CD8+ CTLs. This article explores the association of the vital NER protein, XPG with the epigenetic modifications behind TH1 cell differentiation, augmenting the expressions of TH1-network genes to evoke protective immunity in breast cancer.
Collapse
Affiliation(s)
- Riasha Pal
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nilanjan Paul
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Deep Bhattacharya
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Arya Chatterjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Arunangsu Singh
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
9
|
Abstract
The XPG/ERCC5 endonuclease was originally identified as the causative gene for Xeroderma Pigmentosum complementation group G. Ever since its discovery, in depth biochemical, structural and cell biological studies have provided detailed mechanistic insight into its function in excising DNA damage in nucleotide excision repair, together with the ERCC1–XPF endonuclease. In recent years, it has become evident that XPG has additional important roles in genome maintenance that are independent of its function in NER, as XPG has been implicated in protecting replication forks by promoting homologous recombination as well as in resolving R-loops. Here, we provide an overview of the multitasking of XPG in genome maintenance, by describing in detail how its activity in NER is regulated and the evidence that points to important functions outside of NER. Furthermore, we present the various disease phenotypes associated with inherited XPG deficiency and discuss current ideas on how XPG deficiency leads to these different types of disease.
Collapse
|
10
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Liu SB, Qiu XQ, Guo WQ, Li JL, Su Q, Du JH, Hu HJ, Wang XX, Song YH, Lou X, Xu XB. Transcriptome Analysis of FEN1 Knockdown HEK293T Cell Strain Reveals Alteration in Nucleic Acid Metabolism, Virus Infection, Cell Morphogenesis and Cancer Development. Comb Chem High Throughput Screen 2020; 22:379-386. [PMID: 31272350 DOI: 10.2174/1386207322666190704095602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022]
Abstract
AIM AND OBJECTIVE Flap endonuclease-1 (FEN1) plays a central role in DNA replication and DNA damage repair process. In mammals, FEN1 functional sites variation is related to cancer and chronic inflammation, and supports the role of FEN1 as a tumor suppressor. However, FEN1 is overexpressed in multiple types of cancer cells and is associated with drug resistance, supporting its role as an oncogene. Hence, it is vital to explore the multi-functions of FEN1 in normal cell metabolic process. This study was undertaken to examine how the gene expression profile changes when FEN1 is downregulated in 293T cells. MATERIALS AND METHODS Using the RNA sequencing and real-time PCR approaches, the transcript expression profile of FEN1 knockdown HEK293T cells have been detected for the next step evaluation, analyzation, and validation. RESULTS Our results confirmed that FEN1 is important for cell viability. We showed that when FEN1 downregulation led to the interruption of nucleic acids related metabolisms, cell cycle related metabolisms are significantly interrupted. FEN1 may also participate in non-coding RNA processing, ribosome RNA processing, transfer RNA processing, ribosome biogenesis, virus infection and cell morphogenesis. CONCLUSION These findings provide insight into how FEN1 nuclease might regulate a wide variety of biological processes, and laid the foundation for understanding the role of other RAD2 family nucleases in cell growth and metabolism.
Collapse
Affiliation(s)
- Song-Bai Liu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Xiu-Qin Qiu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Wei-Qiang Guo
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin-Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qian Su
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Jia-Hui Du
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - He-Juan Hu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Xiao-Xiao Wang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Xiao Lou
- 307 Hospital of Chinese People's Liberation Army,The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiang-Bin Xu
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Hoitsma NM, Whitaker AM, Beckwitt EC, Jang S, Agarwal P, Van Houten B, Freudenthal BD. AP-endonuclease 1 sculpts DNA through an anchoring tyrosine residue on the DNA intercalating loop. Nucleic Acids Res 2020; 48:7345-7355. [PMID: 32542366 PMCID: PMC7367167 DOI: 10.1093/nar/gkaa496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) maintains genomic stability through the repair of DNA damage. Within BER, AP-endonuclease 1 (APE1) is a multifunctional enzyme that processes DNA intermediates through its backbone cleavage activity. To accomplish these repair activities, APE1 must recognize and accommodate several diverse DNA substrates. This is hypothesized to occur through a DNA sculpting mechanism where structural adjustments of the DNA substrate are imposed by the protein; however, how APE1 uniquely sculpts each substrate within a single rigid active site remains unclear. Here, we utilize structural and biochemical approaches to probe the DNA sculpting mechanism of APE1, specifically by characterizing a protein loop that intercalates the minor groove of the DNA (termed the intercalating loop). Pre-steady-state kinetics reveal a tyrosine residue within the intercalating loop (Y269) that is critical for AP-endonuclease activity. Using X-ray crystallography and molecular dynamics simulations, we determined the Y269 residue acts to anchor the intercalating loop on abasic DNA. Atomic force microscopy reveals the Y269 residue is required for proper DNA bending by APE1, providing evidence for the importance of this mechanism. We conclude that this previously unappreciated tyrosine residue is key to anchoring the intercalating loop and stabilizing the DNA in the APE1 active site.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sunbok Jang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc Natl Acad Sci U S A 2020; 117:14127-14138. [PMID: 32522879 PMCID: PMC7321962 DOI: 10.1073/pnas.1921311117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA repair is essential to life and to avoidance of genome instability and cancer. Xeroderma pigmentosum group G (XPG) protein acts in multiple DNA repair pathways, both as an active enzyme and as a scaffold for coordinating with other repair proteins. We present here the structure of the catalytic domain responsible for its DNA binding and nuclease activity. Our analysis provides structure-based hypotheses for how XPG recognizes its bubble DNA substrate and predictions of the structural impacts of XPG disease mutations associated with two phenotypically distinct diseases: xeroderma pigmentosum (XP, skin cancer prone) or Cockayne syndrome (XP/CS, severe progressive developmental defects). Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG’s role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.
Collapse
|
14
|
Kitamura K, Que L, Shimadu M, Koura M, Ishihara Y, Wakae K, Nakamura T, Watashi K, Wakita T, Muramatsu M. Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus. PLoS Pathog 2018; 14:e1007124. [PMID: 29928064 PMCID: PMC6013022 DOI: 10.1371/journal.ppat.1007124] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the major etiological pathogens for liver cirrhosis and hepatocellular carcinoma. Chronic HBV infection is a key factor in these severe liver diseases. During infection, HBV forms a nuclear viral episome in the form of covalently closed circular DNA (cccDNA). Current therapies are not able to efficiently eliminate cccDNA from infected hepatocytes. cccDNA is a master template for viral replication that is formed by the conversion of its precursor, relaxed circular DNA (rcDNA). However, the host factors critical for cccDNA formation remain to be determined. Here, we assessed whether one potential host factor, flap structure-specific endonuclease 1 (FEN1), is involved in cleavage of the flap-like structure in rcDNA. In a cell culture HBV model (Hep38.7-Tet), expression and activity of FEN1 were reduced by siRNA, shRNA, CRISPR/Cas9-mediated genome editing, and a FEN1 inhibitor. These reductions in FEN1 expression and activity did not affect nucleocapsid DNA (NC-DNA) production, but did reduce cccDNA levels in Hep38.7-Tet cells. Exogenous overexpression of wild-type FEN1 rescued the reduced cccDNA production in FEN1-depleted Hep38.7-Tet cells. Anti-FEN1 immunoprecipitation revealed the binding of FEN1 to HBV DNA. An in vitro FEN activity assay demonstrated cleavage of 5′-flap from a synthesized HBV DNA substrate. Furthermore, cccDNA was generated in vitro when purified rcDNA was incubated with recombinant FEN1, DNA polymerase, and DNA ligase. Importantly, FEN1 was required for the in vitro cccDNA formation assay. These results demonstrate that FEN1 is involved in HBV cccDNA formation in cell culture system, and that FEN1, DNA polymerase, and ligase activities are sufficient to convert rcDNA into cccDNA in vitro. Hepatitis B virus (HBV) infection remains a worldwide health problem that affects more than 350 million people. HBV is one of the major etiological pathogens for liver cirrhosis and hepatocellular carcinoma. HBV covalently closed circular DNA (cccDNA) is a key viral intermediate for persistent infection. However, the molecular mechanism of cccDNA formation has not been clarified. Here, we found that the host factor flap-endonuclease 1 (FEN1) is pivotal in cccDNA formation. We developed a novel cccDNA formation assay by the incubation of purified viral DNA with recombinant FEN1, DNA polymerase, and DNA ligase. This study provides new insights into the molecular mechanisms of cccDNA formation and proposes FEN1 as a potential anti-HBV drug target.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Lusheng Que
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Miyuki Shimadu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yuuki Ishihara
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takashi Nakamura
- Department of Radiology and Cancer Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Wu T, Chen W, Yang Z, Tan H, Wang J, Xiao X, Li M, Zhao M. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA. Nucleic Acids Res 2018; 46:e24. [PMID: 29190359 PMCID: PMC5829738 DOI: 10.1093/nar/gkx1218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022] Open
Abstract
Sensitive detection of the single nucleotide variants in cell-free DNA (cfDNA) may provide great opportunity for minimally invasive diagnosis and prognosis of cancer and other related diseases. Here, we demonstrate a facile new strategy for quantitative measurement of cfDNA mutations at low abundance in the cancer patients' plasma samples. The method takes advantage of a novel property of lambda exonuclease which effectively digests a 5'-fluorophore modified dsDNA with a 2-nt overhang structure and sensitively responds to the presence of mismatched base pairs in the duplex. It achieves a limit of detection as low as 0.02% (percentage of the mutant type) for BRAFV600E mutation, NRASQ61R mutation and three types of EGFR mutations (G719S, T790M and L858R). The method enabled identification of BRAFV600E and EGFRL858R mutations in the plasma of different cancer patients within only 3.5 h. Moreover, the terminal structure-dependent reaction greatly simplifies the probe design and reduces the cost, and the assay only requires a regular real-time PCR machine. This new method may serve as a practical tool for quantitative measurement of low-abundance mutations in clinical samples for providing genetic mutation information with prognostic or therapeutic implications.
Collapse
Affiliation(s)
- Tongbo Wu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyu Yang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haocheng Tan
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianjin Xiao
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengyuan Li
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Whole Genome Sequence Analysis of Mutations Accumulated in rad27Δ Yeast Strains with Defects in the Processing of Okazaki Fragments Indicates Template-Switching Events. G3-GENES GENOMES GENETICS 2017; 7:3775-3787. [PMID: 28974572 PMCID: PMC5677150 DOI: 10.1534/g3.117.300262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Okazaki fragments that are formed during lagging strand DNA synthesis include an initiating primer consisting of both RNA and DNA. The RNA fragment must be removed before the fragments are joined. In Saccharomyces cerevisiae, a key player in this process is the structure-specific flap endonuclease, Rad27p (human homolog FEN1). To obtain a genomic view of the mutational consequence of loss of RAD27, a S. cerevisiae rad27Δ strain was subcultured for 25 generations and sequenced using Illumina paired-end sequencing. Out of the 455 changes observed in 10 colonies isolated the two most common types of events were insertions or deletions (INDELs) in simple sequence repeats (SSRs) and INDELs mediated by short direct repeats. Surprisingly, we also detected a previously neglected class of 21 template-switching events. These events were presumably generated by quasi-palindrome to palindrome correction, as well as palindrome elongation. The formation of these events is best explained by folding back of the stalled nascent strand and resumption of DNA synthesis using the same nascent strand as a template. Evidence of quasi-palindrome to palindrome correction that could be generated by template switching appears also in yeast genome evolution. Out of the 455 events, 55 events appeared in multiple isolates; further analysis indicates that these loci are mutational hotspots. Since Rad27 acts on the lagging strand when the leading strand should not contain any gaps, we propose a mechanism favoring intramolecular strand switching over an intermolecular mechanism. We note that our results open new ways of understanding template switching that occurs during genome instability and evolution.
Collapse
|
17
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
18
|
Ward TA, McHugh PJ, Durant ST. Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1) with DNA damage response genes. PLoS One 2017. [PMID: 28628639 PMCID: PMC5476263 DOI: 10.1371/journal.pone.0179278] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a structure selective endonuclease required for proficient DNA replication and the repair of DNA damage. Cellularly active inhibitors of this enzyme have previously been shown to induce a DNA damage response and, ultimately, cell death. High-throughput screens of human cancer cell-lines identify colorectal and gastric cell-lines with microsatellite instability (MSI) as enriched for cellular sensitivity to N-hydroxyurea series inhibitors of FEN1, but not the PARP inhibitor olaparib or other inhibitors of the DNA damage response. This sensitivity is due to a synthetic lethal interaction between FEN1 and MRE11A, which is often mutated in MSI cancers through instabilities at a poly(T) microsatellite repeat. Disruption of ATM is similarly synthetic lethal with FEN1 inhibition, suggesting that disruption of FEN1 function leads to the accumulation of DNA double-strand breaks. These are likely a result of the accumulation of aberrant replication forks, that accumulate as a consequence of a failure in Okazaki fragment maturation, as inhibition of FEN1 is toxic in cells disrupted for the Fanconi anemia pathway and post-replication repair. Furthermore, RAD51 foci accumulate as a consequence of FEN1 inhibition and the toxicity of FEN1 inhibitors increases in cells disrupted for the homologous recombination pathway, suggesting a role for homologous recombination in the resolution of damage induced by FEN1 inhibition. Finally, FEN1 appears to be required for the repair of damage induced by olaparib and cisplatin within the Fanconi anemia pathway, and may play a role in the repair of damage associated with its own disruption.
Collapse
Affiliation(s)
- Thomas A. Ward
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Alderley Park, Macclesfield, Cheshire, United Kingdom
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail: (TAW); (STD)
| | - Peter J. McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Stephen T. Durant
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Alderley Park, Macclesfield, Cheshire, United Kingdom
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Little Chesterford, Cambridge, United Kingdom
- * E-mail: (TAW); (STD)
| |
Collapse
|
19
|
Dehé PM, Gaillard PHL. Control of structure-specific endonucleases to maintain genome stability. Nat Rev Mol Cell Biol 2017; 18:315-330. [PMID: 28327556 DOI: 10.1038/nrm.2016.177] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-specific endonucleases (SSEs) have key roles in DNA replication, recombination and repair, and emerging roles in transcription. These enzymes have specificity for DNA secondary structure rather than for sequence, and therefore their activity must be precisely controlled to ensure genome stability. In this Review, we discuss how SSEs are controlled as part of genome maintenance pathways in eukaryotes, with an emphasis on the elaborate mechanisms that regulate the members of the major SSE families - including the xeroderma pigmentosum group F-complementing protein (XPF) and MMS and UV-sensitive protein 81 (MUS81)-dependent nucleases, and the flap endonuclease 1 (FEN1), XPG and XPG-like endonuclease 1 (GEN1) enzymes - during processes such as DNA adduct repair, Holliday junction processing and replication stress. We also discuss newly characterized connections between SSEs and other classes of DNA-remodelling enzymes and cell cycle control machineries, which reveal the importance of SSE scaffolds such as the synthetic lethal of unknown function 4 (SLX4) tumour suppressor for the maintenance of genome stability.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| | - Pierre-Henri L Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| |
Collapse
|
20
|
Liu B, Hu J, Wang J, Kong D. Direct Visualization of RNA-DNA Primer Removal from Okazaki Fragments Provides Support for Flap Cleavage and Exonucleolytic Pathways in Eukaryotic Cells. J Biol Chem 2017; 292:4777-4788. [PMID: 28159842 DOI: 10.1074/jbc.m116.758599] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Indexed: 11/06/2022] Open
Abstract
During DNA replication in eukaryotic cells, short single-stranded DNA segments known as Okazaki fragments are first synthesized on the lagging strand. The Okazaki fragments originate from ∼35-nucleotide-long RNA-DNA primers. After Okazaki fragment synthesis, these primers must be removed to allow fragment joining into a continuous lagging strand. To date, the models of enzymatic machinery that removes the RNA-DNA primers have come almost exclusively from biochemical reconstitution studies and some genetic interaction assays, and there is little direct evidence to confirm these models. One obstacle to elucidating Okazaki fragment processing has been the lack of methods that can directly examine primer removal in vivo In this study, we developed an electron microscopy assay that can visualize nucleotide flap structures on DNA replication forks in fission yeast (Schizosaccharomyces pombe). With this assay, we first demonstrated the generation of flap structures during Okazaki fragment processing in vivo The mean and median lengths of the flaps in wild-type cells were ∼51 and ∼41 nucleotides, respectively. We also used yeast mutants to investigate the impact of deleting key DNA replication nucleases on these flap structures. Our results provided direct in vivo evidence for a previously proposed flap cleavage pathway and the critical function of Dna2 and Fen1 in cleaving these flaps. In addition, we found evidence for another previously proposed exonucleolytic pathway involving RNA-DNA primer digestion by exonucleases RNase H2 and Exo1. Taken together, our observations suggest a dual mechanism for Okazaki fragment maturation in lagging strand synthesis and establish a new strategy for interrogation of this fascinating process.
Collapse
Affiliation(s)
- Bochao Liu
- From the Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- From the Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingna Wang
- From the Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Daochun Kong
- From the Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Schaeffer RD, Kinch LN, Liao Y, Grishin NV. Classification of proteins with shared motifs and internal repeats in the ECOD database. Protein Sci 2016; 25:1188-203. [PMID: 26833690 DOI: 10.1002/pro.2893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022]
Abstract
Proteins and their domains evolve by a set of events commonly including the duplication and divergence of small motifs. The presence of short repetitive regions in domains has generally constituted a difficult case for structural domain classifications and their hierarchies. We developed the Evolutionary Classification Of protein Domains (ECOD) in part to implement a new schema for the classification of these types of proteins. Here we document the ways in which ECOD classifies proteins with small internal repeats, widespread functional motifs, and assemblies of small domain-like fragments in its evolutionary schema. We illustrate the ways in which the structural genomics project impacted the classification and characterization of new structural domains and sequence families over the decade.
Collapse
Affiliation(s)
- R Dustin Schaeffer
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050
| | - Yuxing Liao
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9050
| |
Collapse
|
22
|
The UVS9 gene of Chlamydomonas encodes an XPG homolog with a new conserved domain. DNA Repair (Amst) 2015; 37:33-42. [PMID: 26658142 DOI: 10.1016/j.dnarep.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022]
Abstract
Nucleotide excision repair (NER) is a key pathway for removing DNA damage that destabilizes the DNA double helix. During NER a protein complex coordinates to cleave the damaged DNA strand on both sides of the damage. The resulting lesion-containing oligonucleotide is displaced from the DNA and a replacement strand is synthesized using the undamaged strand as template. Ultraviolet (UV) light is known to induce two primary forms of DNA damage, the cyclobutane pyrimidine dimer and the 6-4 photoproduct, both of which destabilize the DNA double helix. The uvs9 strain of Chlamydomonas reinhardtii was isolated based on its sensitivity to UV light and was subsequently shown to have a defect in NER. In this work, the UVS9 gene was cloned through molecular mapping and shown to encode a homolog of XPG, the structure-specific nuclease responsible for cleaving damaged DNA strands 3' to sites of damage during NER. 3' RACE revealed that the UVS9 transcript is alternatively polyadenylated. The predicted UVS9 protein is nearly twice as long as other XPG homologs, primarily due to an unusually long spacer region. Despite this difference, amino acid sequence alignment of UVS9p with XPG homologs revealed a new conserved domain involved in TFIIH interaction.
Collapse
|
23
|
Kametani Y, Takahata C, Narita T, Tanaka K, Iwai S, Kuraoka I. FEN1 participates in repair of the 5'-phosphotyrosyl terminus of DNA single-strand breaks. Carcinogenesis 2015; 37:56-62. [PMID: 26581212 DOI: 10.1093/carcin/bgv159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/07/2015] [Indexed: 11/14/2022] Open
Abstract
Etoposide is a widely used anticancer drug and a DNA topoisomerase II (Top2) inhibitor. Etoposide produces Top2-attached single-strand breaks (Top2-SSB complex) and double-strand breaks (Top2-DSB complex) that are thought to induce cell death in tumor cells. The Top2-SSB complex is more abundant than the Top2-DSB complex. Human tyrosyl-DNA phosphodiesterase 2 (TDP2) is required for efficient repair of Top2-DSB complexes. However, the identities of the proteins involved in the repair of Top2-SSB complexes are unknown, although yeast genetic data indicate that 5' to 3' structure-specific DNA endonuclease activity is required for alternative repair of Top2 DNA damage. In this study, we purified a flap endonuclease 1 (FEN1) and xeroderma pigmentosum group G protein (XPG) in the 5' to 3' structure-specific DNA endonuclease family and synthesized single-strand break DNA substrates containing a 5'-phoshotyrosyl bond, mimicking the Top2-SSB complex. We found that FEN1 and XPG did not remove the 5'-phoshotyrosyl bond-containing DSB substrates but removed the 5'-phoshotyrosyl bond-containing SSB substrates. Under DNA repair conditions, FEN1 efficiently repaired the 5'-phoshotyrosyl bond-containing SSB substrates in the presence of DNA ligase and DNA polymerase. Therefore, FEN1 may play an important role in the repair of Top2-SSB complexes in etoposide-treated cells.
Collapse
Affiliation(s)
- Yukiko Kametani
- Graduate School of Engineering Science, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan and
| | - Chiaki Takahata
- Graduate School of Engineering Science, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan and
| | - Takashi Narita
- Laboratories for Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyoji Tanaka
- Laboratories for Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan and
| | - Isao Kuraoka
- Graduate School of Engineering Science, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan and
| |
Collapse
|
24
|
Abstract
RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in replication restart mechanisms. Cellular phenotypes of RECQ1 deficiency are indicative of aberrant repair of stalled replication forks, but the molecular functions of RECQ1, the most abundant of the five known human RecQ homologues, have remained poorly understood. We show that RECQ1 associates with FEN-1 (flap endonuclease-1) in nuclear extracts and exhibits direct protein interaction in vitro. Recombinant RECQ1 significantly stimulated FEN-1 endonucleolytic cleavage of 5'-flap DNA substrates containing non-telomeric or telomeric repeat sequence. RECQ1 and FEN-1 were constitutively present at telomeres and their binding to the telomeric chromatin was enhanced following DNA damage. Telomere residence of FEN-1 was dependent on RECQ1 since depletion of RECQ1 reduced FEN-1 binding to telomeres in unperturbed cycling cells. Our results confirm a conserved collaboration of human RecQ helicases with FEN-1 and suggest both overlapping and specialized roles of RECQ1 in the processing of DNA structure intermediates proposed to arise during replication, repair and recombination.
Collapse
|
25
|
Pizzolato J, Mukherjee S, Schärer OD, Jiricny J. FANCD2-associated nuclease 1, but not exonuclease 1 or flap endonuclease 1, is able to unhook DNA interstrand cross-links in vitro. J Biol Chem 2015. [PMID: 26221031 DOI: 10.1074/jbc.m115.663666] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cisplatin and its derivatives, nitrogen mustards and mitomycin C, are used widely in cancer chemotherapy. Their efficacy is linked primarily to their ability to generate DNA interstrand cross-links (ICLs), which effectively block the progression of transcription and replication machineries. Release of this block, referred to as unhooking, has been postulated to require endonucleases that incise one strand of the duplex on either side of the ICL. Here we investigated how the 5' flap nucleases FANCD2-associated nuclease 1 (FAN1), exonuclease 1 (EXO1), and flap endonuclease 1 (FEN1) process a substrate reminiscent of a replication fork arrested at an ICL. We now show that EXO1 and FEN1 cleaved the substrate at the boundary between the single-stranded 5' flap and the duplex, whereas FAN1 incised it three to four nucleotides in the double-stranded region. This affected the outcome of processing of a substrate containing a nitrogen mustard-like ICL two nucleotides in the duplex region because FAN1, unlike EXO1 and FEN1, incised the substrate predominantly beyond the ICL and, therefore, failed to release the 5' flap. We also show that FAN1 was able to degrade a linear ICL substrate. This ability of FAN1 to traverse ICLs in DNA could help to elucidate its biological function, which is currently unknown.
Collapse
Affiliation(s)
- Julia Pizzolato
- From the Institute of Molecular Cancer Research, University of Zurich and
| | | | - Orlando D Schärer
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-3400
| | - Josef Jiricny
- From the Institute of Molecular Cancer Research, University of Zurich and the Department of Biology, Swiss Institute of Technology (ETH) Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, and
| |
Collapse
|
26
|
DNA damage and repair in plants under ultraviolet and ionizing radiations. ScientificWorldJournal 2015; 2015:250158. [PMID: 25729769 PMCID: PMC4333283 DOI: 10.1155/2015/250158] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.
Collapse
|
27
|
Miętus M, Nowak E, Jaciuk M, Kustosz P, Studnicka J, Nowotny M. Crystal structure of the catalytic core of Rad2: insights into the mechanism of substrate binding. Nucleic Acids Res 2014; 42:10762-75. [PMID: 25120270 PMCID: PMC4176360 DOI: 10.1093/nar/gku729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 12/26/2022] Open
Abstract
Rad2/XPG belongs to the flap nuclease family and is responsible for a key step of the eukaryotic nucleotide excision DNA repair (NER) pathway. To elucidate the mechanism of DNA binding by Rad2/XPG, we solved crystal structures of the catalytic core of Rad2 in complex with a substrate. Rad2 utilizes three structural modules for recognition of the double-stranded portion of DNA substrate, particularly a Rad2-specific α-helix for binding the cleaved strand. The protein does not specifically recognize the single-stranded portion of the nucleic acid. Our data suggest that in contrast to related enzymes (FEN1 and EXO1), the Rad2 active site may be more accessible, which would create an exit route for substrates without a free 5' end.
Collapse
Affiliation(s)
- Michał Miętus
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Marcin Jaciuk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Paweł Kustosz
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Justyna Studnicka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| |
Collapse
|
28
|
Xu XM, Xie LC, Yuan LL, Hu XL, Jin JQ, Niu YM. Association of xeroderma pigmentosum complementation group G Asp1104His polymorphism with breast cancer risk: A cumulative meta-analysis. Mol Clin Oncol 2014; 2:1177-1181. [PMID: 25279219 DOI: 10.3892/mco.2014.384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/01/2014] [Indexed: 11/05/2022] Open
Abstract
The xeroderma pigmentosum complementation group G (XPG) gene plays an important role in the DNA nucleotide excision repair (NER) pathway. Several studies have investigated the association between the XPG Asp1104His polymorphism and breast cancer; however, the results have been inconsistent. Therefore, we conducted a meta-analysis of 8 published articles (10 case-control studies) including a total of 5,235 patients with breast cancer and 5,685 healthy controls. The results demonstrated that the XPG Asp1104His polymorphism was not associated with breast cancer in the overall population [His vs. Asp, odds ratio (OR)=1.00, 95% confidence interval (CI): 0.91-1.08; His/His vs. Asp/Asp, OR=0.96, 95% CI: 0.83-1.11; Asp/His vs. Asp/Asp, OR=1.02, 95% CI: 0.94-1.11; His/His+Asp/His vs. Asp/Asp, OR=1.03, 95% CI: 0.92-1.15; and His/His vs. Asp/Asp+Asp/His, OR=0.93, 95% CI: 0.81-1.06]. In the subgroup analysis by ethnicity, no significant association was observed in European subjects. In conclusion, this meta-analysis suggested that the XPG Asp1104His polymorphism is not associated with breast cancer risk.
Collapse
Affiliation(s)
- Xiao-Ming Xu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Long-Chuan Xie
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ling-Ling Yuan
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiao-Li Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jian-Qiang Jin
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Wuxi, Jiangsu 214062, P.R. China
| | - Yu-Ming Niu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China ; Center for Evidence-Based Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
29
|
The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once. DNA Repair (Amst) 2014; 19:95-107. [PMID: 24754999 DOI: 10.1016/j.dnarep.2014.03.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure twice these nucleases act as molecular level transformers that typically reshape the DNA and sometimes themselves to achieve extraordinary specificity and efficiency.
Collapse
|
30
|
Archaeal genome guardians give insights into eukaryotic DNA replication and damage response proteins. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:206735. [PMID: 24701133 PMCID: PMC3950489 DOI: 10.1155/2014/206735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/27/2013] [Accepted: 11/29/2013] [Indexed: 12/28/2022]
Abstract
As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.
Collapse
|
31
|
Matsui E, Urushibata Y, Abe J, Matsui I. Serial intermediates with a 1 nt 3'-flap and 5' variable-length flaps are formed by cooperative functioning of Pyrococcus horikoshii FEN-1 with either B or D DNA polymerases. Extremophiles 2014; 18:415-27. [PMID: 24509689 DOI: 10.1007/s00792-014-0627-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 11/28/2022]
Abstract
Flap endonuclease-1 (FEN-1) plays important roles with DNA polymerases in DNA replication, repair and recombination. FEN-1 activity is elevated by the presence of a 1 nucleotide expansion at the 3' end in the upstream primer of substrates called "structures with a 1 nt 3'-flap", which appear to be the most preferable substrates for FEN-1; however, it is unclear how such substrates are generated in vivo. Here, we show that substrate production occurred by the cooperative function of FEN-1(phFEN-1) and Pyrococcus horikoshii DNA polymerase B (phPol B) or D (phPol D). Using various substrates, the activities of several phFEN-1 F79 mutants were compared with those of the wild type. Analysis of the activity profiles of these mutants led us to discriminate "structures with a 1 nt 3'-flap" from substrates with a 3' -projection longer than 2 nt or from those without a 3'-projection. When phFEN-1 processed a gap substrate with phPol B or phPol D, "structures with a 1 nt 3'-flap" were assumed the reaction intermediates. Furthermore, the phFEN-1 cleavage products with phPol B or D were from 1mer to 7mer, corresponding to the sizes of the strand-displacement products of these polymerases. This suggests that a series of 1 nt 3'-flap with 5'-variable length-flap configurations were generated as transient intermediates, in which the length of the 5'-flaps depended on the displacement distance of the downstream strand by phPol B or D. Therefore, phFEN-1 might act successively on displaced 5'-variable flaps.
Collapse
Affiliation(s)
- Eriko Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1 Central 6-9, Tsukuba, Ibaraki, 305-8566, Japan,
| | | | | | | |
Collapse
|
32
|
Nguyen HD, Becker J, Thu YM, Costanzo M, Koch EN, Smith S, Myung K, Myers CL, Boone C, Bielinsky AK. Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS One 2013; 8:e66379. [PMID: 23824283 PMCID: PMC3688925 DOI: 10.1371/journal.pone.0066379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 05/07/2013] [Indexed: 11/28/2022] Open
Abstract
Deficiency in DNA ligase I, encoded by CDC9 in budding yeast, leads to the accumulation of unligated Okazaki fragments and triggers PCNA ubiquitination at a non-canonical lysine residue. This signal is crucial to activate the S phase checkpoint, which promotes cell cycle delay. We report here that a pol30-K107 mutation alleviated cell cycle delay in cdc9 mutants, consistent with the idea that the modification of PCNA at K107 affects the rate of DNA synthesis at replication forks. To determine whether PCNA ubiquitination occurred in response to nicks or was triggered by the lack of PCNA-DNA ligase interaction, we complemented cdc9 cells with either wild-type DNA ligase I or a mutant form, which fails to interact with PCNA. Both enzymes reversed PCNA ubiquitination, arguing that the modification is likely an integral part of a novel nick-sensory mechanism and not due to non-specific secondary mutations that could have occurred spontaneously in cdc9 mutants. To further understand how cells cope with the accumulation of nicks during DNA replication, we utilized cdc9-1 in a genome-wide synthetic lethality screen, which identified RAD59 as a strong negative interactor. In comparison to cdc9 single mutants, cdc9 rad59Δ double mutants did not alter PCNA ubiquitination but enhanced phosphorylation of the mediator of the replication checkpoint, Mrc1. Since Mrc1 resides at the replication fork and is phosphorylated in response to fork stalling, these results indicate that Rad59 alleviates nick-induced replication fork slowdown. Thus, we propose that Rad59 promotes fork progression when Okazaki fragment processing is compromised and counteracts PCNA-K107 mediated cell cycle arrest.
Collapse
Affiliation(s)
- Hai Dang Nguyen
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Jordan Becker
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Yee Mon Thu
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
| | - Michael Costanzo
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth N. Koch
- University of Minnesota, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chad L. Myers
- University of Minnesota, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
| | - Charles Boone
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anja-Katrin Bielinsky
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Shin YK, Amangyeld T, Nguyen TA, Munashingha PR, Seo YS. Human MUS81 complexes stimulate flap endonuclease 1. FEBS J 2012; 279:2412-30. [PMID: 22551069 DOI: 10.1111/j.1742-4658.2012.08620.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The yeast heterodimeric Mus81-Mms4 complex possesses a structure-specific endonuclease activity that is critical for the restart of stalled replication forks and removal of toxic recombination intermediates. Previously, we reported that Mus81-Mms4 and Rad27 (yeast FEN1, another structure-specific endonuclease) showed mutual stimulation of nuclease activity. In this study, we investigated the interactions between human FEN1 and MUS81-EME1 or MUS81-EME2, the human homologs of the yeast Mus81-Mms4 complex. We found that both MUS81-EME1 and MUS81-EME2 increased the activity of FEN1, but FEN1 did not stimulate the activity of MUS81-EME1/EME2. The MUS81 subunit alone and its N-terminal half were able to bind to FEN1 and stimulate its endonuclease activity. A truncated FEN1 fragment lacking the C-terminal region that retained catalytic activity was not stimulated by MUS81. Michaelis-Menten kinetic analysis revealed that MUS81 increased the interaction between FEN1 and its substrates, resulting in increased turnover. We also showed that, after DNA damage in human cells, FEN1 co-localizes with MUS81. These findings indicate that the human proteins and yeast homologs act similarly, except that the human FEN1 does not stimulate the nuclease activities of MUS81-EME1 or MUS81-EME2. Thus, the mammalian MUS81 complexes and FEN1 collaborate to remove the various flap structures that arise during many DNA transactions, including Okazaki fragment processing.
Collapse
Affiliation(s)
- Yong-Keol Shin
- Department of Biological Sciences, Center for DNA Replication and Genome Instability, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | | | |
Collapse
|
34
|
Tsutakawa SE, Tainer JA. Double strand binding-single strand incision mechanism for human flap endonuclease: implications for the superfamily. Mech Ageing Dev 2012; 133:195-202. [PMID: 22244820 DOI: 10.1016/j.mad.2011.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/31/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022]
Abstract
Detailed structural, mutational, and biochemical analyses of human FEN1/DNA complexes have revealed the mechanism for recognition of 5' flaps formed during lagging strand replication and DNA repair. FEN1 processes 5' flaps through a previously unknown, but structurally elegant double-stranded (ds) recognition/single stranded (ss) incision mechanism that both selects for 5' flaps and selects against ss DNA or RNA, intact dsDNA, and 3' flaps. Two major DNA binding interfaces, including a K(+) bridge between the DNA and the H2TH motif, are spaced one helical turn apart and together select for substrates with dsDNA. A conserved helical gateway and a helical cap protects the two-metal active site and selects for ss flaps with free termini. Structures of substrate and product reveal an unusual step between binding substrate and incision that involves a double base unpairing with incision occurring in the resulting unpaired DNA or RNA. Ordering of the active site requires a disorder-to-order transition induced by binding of an unpaired 3' flap, which ensures that the product is ligatable. Comparison with FEN superfamily members, including XPG, EXO1, and GEN1, identifies superfamily motifs such as the helical gateway that select for ss-dsDNA junctions and provides key biological insights into nuclease specificity and regulation.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
35
|
Finger LD, Atack JM, Tsutakawa S, Classen S, Tainer J, Grasby J, Shen B. The wonders of flap endonucleases: structure, function, mechanism and regulation. Subcell Biochem 2012; 62:301-26. [PMID: 22918592 PMCID: PMC3728657 DOI: 10.1007/978-94-007-4572-8_16] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5'-flaps with exquisite specificity. FENs are paradigms for the 5' nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5' nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication.
Collapse
Affiliation(s)
- L. David Finger
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - John M. Atack
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - Susan Tsutakawa
- Life Sciences Division, Lawrence Berkeley National, Laboratory, Berkeley, CA 94720, USA
| | - Scott Classen
- Physical Biosciences Division, The Scripps Research, Institute, La Jolla, CA 92037, USA
| | - John Tainer
- Life Sciences Division, Lawrence Berkeley, National Laboratory, Berkeley, CA 94720, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA, Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Jane Grasby
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - Binghui Shen
- Division of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Abstract
Completion of lagging strand DNA synthesis requires processing of up to 50 million Okazaki fragments per cell cycle in mammalian cells. Even in yeast, the Okazaki fragment maturation happens approximately a million times during a single round of DNA replication. Therefore, efficient processing of Okazaki fragments is vital for DNA replication and cell proliferation. During this process, primase-synthesized RNA/DNA primers are removed, and Okazaki fragments are joined into an intact lagging strand DNA. The processing of RNA/DNA primers requires a group of structure-specific nucleases typified by flap endonuclease 1 (FEN1). Here, we summarize the distinct roles of these nucleases in different pathways for removal of RNA/DNA primers. Recent findings reveal that Okazaki fragment maturation is highly coordinated. The dynamic interactions of polymerase δ, FEN1 and DNA ligase I with proliferating cell nuclear antigen allow these enzymes to act sequentially during Okazaki fragment maturation. Such protein-protein interactions may be regulated by post-translational modifications. We also discuss studies using mutant mouse models that suggest two distinct cancer etiological mechanisms arising from defects in different steps of Okazaki fragment maturation. Mutations that affect the efficiency of RNA primer removal may result in accumulation of unligated nicks and DNA double-strand breaks. These DNA strand breaks can cause varying forms of chromosome aberrations, contributing to development of cancer that associates with aneuploidy and gross chromosomal rearrangement. On the other hand, mutations that impair editing out of polymerase α incorporation errors result in cancer displaying a strong mutator phenotype.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | | |
Collapse
|
37
|
Pan MH, Du J, Zhang JY, Huang MH, Li T, Cui HJ, Lu C. Cloning of the flap endonuclease-1 gene in Bombyx mori and identification of an antiapoptotic function. DNA Cell Biol 2011; 30:763-70. [PMID: 21612397 DOI: 10.1089/dna.2011.1224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The flap endonuclease-1 (FEN-1) gene is involved in DNA replication and repair, and it maintains genomic stability as well as the accuracy of DNA replication under normal growth conditions. However, FEN-1 also plays an important role in apoptosis and cancer development. We cloned the BmFEN-1 gene from Bombyx mori, which was 1343 bp in length and possessed an 1143 bp ORF (123-1266). It consists of seven introns and eight exons that encode a protein with 380 amino acids that has the typical XPG domain. The N-terminal motif is located at amino acids 95-105, and the proliferating cell nuclear antigen interaction motif is located at amino acids 337-344. RNA interference-mediated reduction of BmFEN-1 expression induced cell cycle arrest in S phase in BmE-SWU1 cells. These results suggest that BmFEN-1 can inhibit apoptosis and promote cell proliferation.
Collapse
Affiliation(s)
- Min-Hui Pan
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 2010; 7:359. [PMID: 21129204 PMCID: PMC3012046 DOI: 10.1186/1743-422x-7-359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/03/2010] [Indexed: 12/13/2022] Open
Abstract
The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and crystallization of complexes is a significant challenge. We discuss alternate approaches, such as small angle X-ray and neutron scattering to generate molecular envelopes for modeling macromolecular assemblies.
Collapse
Affiliation(s)
| | - Jennifer M Hinerman
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juliette M Devos
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | | | - Kandace J Williams
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo OH, USA
| |
Collapse
|
39
|
Vallur AC, Maizels N. Complementary roles for exonuclease 1 and Flap endonuclease 1 in maintenance of triplet repeats. J Biol Chem 2010; 285:28514-9. [PMID: 20643645 DOI: 10.1074/jbc.m110.132738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trinucleotide repeats can form stable secondary structures that promote genomic instability. To determine how such structures are resolved, we have defined biochemical activities of the related RAD2 family nucleases, FEN1 (Flap endonuclease 1) and EXO1 (exonuclease 1), on substrates that recapitulate intermediates in DNA replication. Here, we show that, consistent with its function in lagging strand replication, human (h) FEN1 could cleave 5'-flaps bearing structures formed by CTG or CGG repeats, although less efficiently than unstructured flaps. hEXO1 did not exhibit endonuclease activity on 5'-flaps bearing structures formed by CTG or CGG repeats, although it could excise these substrates. Neither hFEN1 nor hEXO1 was affected by the stem-loops formed by CTG repeats interrupting duplex regions adjacent to 5'-flaps, but both enzymes were inhibited by G4 structures formed by CGG repeats in analogous positions. Hydroxyl radical footprinting showed that hFEN1 binding caused hypersensitivity near the flap/duplex junction, whereas hEXO1 binding caused hypersensitivity very close to the 5'-end, correlating with the predominance of hFEN1 endonucleolytic activity versus hEXO1 exonucleolytic activity on 5'-flap substrates. These results show that FEN1 and EXO1 can eliminate structures formed by trinucleotide repeats in the course of replication, relying on endonucleolytic and exonucleolytic activities, respectively. These results also suggest that unresolved G4 DNA may prevent key steps in normal post-replicative DNA processing.
Collapse
Affiliation(s)
- Aarthy C Vallur
- Department of Immunology, University of Washington Medical School, Seattle, Washington 98195-7650, USA
| | | |
Collapse
|
40
|
Rass U, Compton SA, Matos J, Singleton MR, Ip SC, Blanco MG, Griffith JD, West SC. Mechanism of Holliday junction resolution by the human GEN1 protein. Genes Dev 2010; 24:1559-69. [PMID: 20634321 PMCID: PMC2904945 DOI: 10.1101/gad.585310] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/02/2010] [Indexed: 11/25/2022]
Abstract
Holliday junction (HJ) resolution is essential for chromosome segregation at meiosis and the repair of stalled/collapsed replication forks in mitotic cells. All organisms possess nucleases that promote HJ resolution by the introduction of symmetrically related nicks in two strands at, or close to, the junction point. GEN1, a member of the Rad2/XPG nuclease family, was isolated recently from human cells and shown to promote HJ resolution in vitro and in vivo. Here, we provide the first biochemical/structural characterization of GEN1, showing that, like the Escherichia coli HJ resolvase RuvC, it binds specifically to HJs and resolves them by a dual incision mechanism in which nicks are introduced in the pair of continuous (noncrossing) strands within the lifetime of the GEN1-HJ complex. In contrast to RuvC, but like other Rad2/XPG family members such as FEN1, GEN1 is a monomeric 5'-flap endonuclease. However, the unique feature of GEN1 that distinguishes it from other Rad2/XPG nucleases is its ability to dimerize on HJs. This functional adaptation provides the two symmetrically aligned active sites required for HJ resolution.
Collapse
Affiliation(s)
- Ulrich Rass
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Sarah A. Compton
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Joao Matos
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Martin R. Singleton
- London Research Institute, Cancer Research UK, London WC2A 3PX, United Kingdom
| | - Stephen C.Y. Ip
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Miguel G. Blanco
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Stephen C. West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| |
Collapse
|
41
|
Vallur AC, Maizels N. Distinct activities of exonuclease 1 and flap endonuclease 1 at telomeric g4 DNA. PLoS One 2010; 5:e8908. [PMID: 20126648 PMCID: PMC2811187 DOI: 10.1371/journal.pone.0008908] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/07/2010] [Indexed: 12/03/2022] Open
Abstract
Background Exonuclease 1 (EXO1) and Flap endonuclease 1 (FEN1) are members of the RAD2 family of structure-specific nucleases. Genetic analysis has identified roles for EXO1 and FEN1 in replication, recombination, DNA repair and maintenance of telomeres. Telomeres are composed of G-rich repeats that readily form G4 DNA. We recently showed that human EXO1 and FEN1 exhibit distinct activities on G4 DNA substrates representative of intermediates in immunoglobulin class switch recombination. Methodology/Principal Findings We have now compared activities of these enzymes on telomeric substrates bearing G4 DNA, identifying non-overlapping functions that provide mechanistic insight into the distinct telomeric phenotypes caused by their deficiencies. We show that hFEN1 but not hEXO1 cleaves substrates bearing telomeric G4 DNA 5′-flaps, consistent with the requirement for FEN1 in telomeric lagging strand replication. Both hEXO1 and hFEN1 are active on substrates bearing telomeric G4 DNA tails, resembling uncapped telomeres. Notably, hEXO1 but not hFEN1 is active on transcribed telomeric G-loops. Conclusion/Significance Our results suggest that EXO1 may act at transcription-induced telomeric structures to promote telomere recombination while FEN1 has a dominant role in lagging strand replication at telomeres. Both enzymes can create ssDNA at uncapped telomere ends thereby contributing to recombination.
Collapse
Affiliation(s)
- Aarthy C. Vallur
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
42
|
Speina E, Dawut L, Hedayati M, Wang Z, May A, Schwendener S, Janscak P, Croteau DL, Bohr VA. Human RECQL5beta stimulates flap endonuclease 1. Nucleic Acids Res 2010; 38:2904-16. [PMID: 20081208 PMCID: PMC2875029 DOI: 10.1093/nar/gkp1217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human RECQL5 is a member of the RecQ helicase family which is implicated in genome maintenance. Five human members of the family have been identified; three of them, BLM, WRN and RECQL4 are associated with elevated cancer risk. RECQL1 and RECQL5 have not been linked to any human disorder yet; cells devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physical and functional interaction of the large isomer of RECQL5, RECQL5β, with the human flap endonuclease 1, FEN1, which plays a critical role in DNA replication, recombination and repair. RECQL5β dramatically stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that RECQL5β and FEN1 interact physically and co-localize in the nucleus in response to DNA damage. Our findings, together with the previous literature on WRN, BLM and RECQL4’s stimulation of FEN1, suggests that the ability of RecQ helicases to stimulate FEN1 may be a general feature of this class of enzymes. This could indicate a common role for the RecQ helicases in the processing of oxidative DNA damage.
Collapse
Affiliation(s)
- Elzbieta Speina
- National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee CH, Shin YK, Phung TTH, Bae JS, Kang YH, Nguyen TA, Kim JH, Kim DH, Kang MJ, Bae SH, Seo YS. Involvement of Vts1, a structure-specific RNA-binding protein, in Okazaki fragment processing in yeast. Nucleic Acids Res 2009; 38:1583-95. [PMID: 20007605 PMCID: PMC2836565 DOI: 10.1093/nar/gkp1135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The non-essential VTS1 gene of Saccharomyces cerevisiae is highly conserved in eukaryotes and encodes a sequence- and structure-specific RNA-binding protein. The Vts1 protein has been implicated in post-transcriptional regulation of a specific set of mRNAs that contains its-binding site at their 3'-untranslated region. In this study, we identified VTS1 as a multi-copy suppressor of dna2-K1080E, a lethal mutant allele of DNA2 that lacks DNA helicase activity. The suppression was allele-specific, since overexpression of Vts1 did not suppress the temperature-dependent growth defects of dna2Delta405N devoid of the N-terminal 405-amino-acid residues. Purified recombinant Vts1 stimulated the endonuclease activity of wild-type Dna2, but not the endonuclease activity of Dna2Delta405N, indicating that the activation requires the N-terminal domain of Dna2. Stimulation of Dna2 endonuclease activity by Vts1 appeared to be the direct cause of suppression, since the multi-copy expression of Dna2-K1080E suppressed the lethality observed with its single-copy expression. We found that vts1Delta dna2Delta405N and vts1Deltadna2-7 double mutant cells displayed synergistic growth defects, in support of a functional interaction between two genes. Our results provide both in vivo and in vitro evidence that Vts1 is involved in lagging strand synthesis by modulating the Dna2 endonuclease activity that plays an essential role in Okazaki fragment processing.
Collapse
Affiliation(s)
- Chul-Hwan Lee
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Singh P, Yang M, Dai H, Yu D, Huang Q, Tan W, Kernstine KH, Lin D, Shen B. Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. Mol Cancer Res 2009; 6:1710-7. [PMID: 19010819 DOI: 10.1158/1541-7786.mcr-08-0269] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific nuclease best known for its critical roles in Okazaki fragment maturation, DNA repair, and apoptosis-induced DNA fragmentation. Functional deficiencies in FEN1, in the forms of somatic mutations and polymorphisms, have recently been shown to lead to autoimmunity, chronic inflammation, and predisposition to and progression of cancer. To explore how FEN1 contributes to cancer progression, we examined FEN1 expression using 241 matched pairs of cancer and corresponding normal tissues on a gene expression profiling array and validated differential expression by quantitative real-time PCR and immunohistochemistry. Furthermore, we defined the minimum promoter of human FEN1 and examined the methylation statuses of the 5' region of the gene in paired breast cancer tissues. We show that FEN1 is significantly up-regulated in multiple cancers and the aberrant expression of FEN1 is associated with hypomethylation of the CpG island within the FEN1 promoter in tumor cells. The overexpression and promoter hypomethylation of FEN1 may serve as biomarkers for monitoring the progression of cancers.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:134-149. [DOI: 10.1016/j.mrrev.2008.06.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 01/03/2023]
|
46
|
Schärer OD. XPG: its products and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:83-92. [PMID: 19181113 DOI: 10.1007/978-0-387-09599-8_9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xeroderma pigmetosum patients of the complementation group G are rare. One group of XP-G patients displays a rather mild and typical XP phenotype. Mutations in these patients interfere with the function of XPG in the nucleotide excision repair, where it has a structural role in the assembly of the preincision complex and a catalytic role in making the incision 3' to the damaged site in DNA. Another set of XP-G patient is much more severely affected, displaying combined symptoms of xeroderma pigmentosum and Cockayne syndrome, referred to as XP/CS complex. Although the molecular basis leading to the XP/CS complex has not yet been fully established, current evidence suggests that these patients suffer from a mild defect in transcription in addition to a repair defect. Here, the history of how the XPG gene was discovered, the biochemical properties of the XPG protein and the molecular defects found in XP-G patients and mouse models are reviewed.
Collapse
Affiliation(s)
- Orlando D Schärer
- Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, NY 11974-3400, USA.
| |
Collapse
|
47
|
Nucleolar localization and dynamic roles of flap endonuclease 1 in ribosomal DNA replication and damage repair. Mol Cell Biol 2008; 28:4310-9. [PMID: 18443037 DOI: 10.1128/mcb.00200-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the wealth of information available on the biochemical functions and our recent findings of its roles in genome stability and cancer avoidance of the structure-specific flap endonuclease 1 (FEN1), its cellular compartmentalization and dynamics corresponding to its involvement in various DNA metabolic pathways are not yet elucidated. Several years ago, we demonstrated that FEN1 migrates into the nucleus in response to DNA damage and under certain cell cycle conditions. In the current paper, we found that FEN1 is superaccumulated in the nucleolus and plays a role in the resolution of stalled DNA replication forks formed at the sites of natural replication fork barriers. In response to UV irradiation and upon phosphorylation, FEN1 migrates to nuclear plasma to participate in the resolution of UV cross-links on DNA, most likely employing its concerted action of exonuclease and gap-dependent endonuclease activities. Based on yeast complementation experiments, the mutation of Ser(187)Asp, mimicking constant phosphorylation, excludes FEN1 from nucleolar accumulation. The replacement of Ser(187) by Ala, eliminating the only phosphorylation site, retains FEN1 in nucleoli. Both of the mutations cause UV sensitivity, impair cellular UV damage repair capacity, and decline overall cellular survivorship.
Collapse
|
48
|
Ruymgaart AP, Heater SJ, Oehlers LP, Rains JD, Walter RB. Characterization and purification of flap endonuclease-1 (xiFEN-1) from Xiphophorus maculatus. Zebrafish 2008; 1:273-85. [PMID: 18248237 DOI: 10.1089/zeb.2004.1.273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cloning, gene structure, and expression of flap endonuclease-1 (xiFEN1) from Xiphophorus maculates are presented. The xiFEN1 gene structure was found to include 8 exons and 7 introns. The Xiphophorus FEN1 cDNA sequence contained an open reading frame that encoded a 380 amino acid protein with a predicted mass of 43 kDa. The intact FEN1 cDNA was subcloned into a bacterial expression vector (pET101-xiFEN1ct) and recombinant xiFEN1 enzyme purified from E. colicell extracts. The pET101-xiFEN1ct translation product was a 3' fusion protein with a ~3 kDa vector-encoded carboxy terminal extension designed to facilitate protein recognition and purification. The xiFEN1 fusion protein was purified and its amino acid sequence verified by Western blot analysis and tryptic peptide mass fingerprinting. The purified recombinant protein was assessed for enzyme specificity using several different oligonucleotide substrates having select flap overhangs. Also reported are Michaelis steady state kinetic values of enzymatic activity for the xiFEN1 directly compared with human FEN1 activity. xiFEN1 displayed a five-fold greater Km and six-fold lower catalytic efficiency (kcat/Km) than observed for the hFEN1.
Collapse
Affiliation(s)
- Arnold P Ruymgaart
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | | | | | | | | |
Collapse
|
49
|
Saldivar JS, Wu X, Follen M, Gershenson D. Nucleotide excision repair pathway review I: Implications in ovarian cancer and platinum sensitivity. Gynecol Oncol 2007; 107:S56-71. [PMID: 17884153 DOI: 10.1016/j.ygyno.2007.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 02/03/2023]
Abstract
Platinum-based chemotherapy has been the mainstay of treatment for advanced gynecological cancers following cytoreductive surgery and in radiation sensitization of cervical cancer. Despite its initial high overall clinical response rate, a significant number of patients develop resistance to platinum combination therapies. The precise mechanism of platinum-resistance is multifactorial and accumulation of multiple genetic changes may lead to the drug-resistant phenotype. Platinum chemotherapy exerts its cytotoxic effect by forming DNA adducts and subsequently inhibiting DNA replication. It is now clear that the nucleotide excision repair (NER) pathway repairs platinum-DNA adducts in cellular DNA. Evaluation of genetic polymorphisms in cancer susceptibility as one etiology for platinum resistance may help us to understand the significance of these factors in the identification of individuals at higher risk of developing resistance to anti-cancer drug therapies. In this review, we summarized the relevant studies, both in vitro and in vivo, that pertain to NER in ovarian cancer and platinum resistance. It is evident also that there are a few limited studies in genetic polymorphisms of NER and ovarian cancer. These studies reviewed suggest that concurrent up-regulation of genes involved in NER may be important in clinical resistance to platinum-based chemotherapy in ovarian cancer. In the future, larger and well-designed population-based studies will be needed for a more complete understanding of relevant genetic factors that may result in improved strategies for determining both chemotherapy choice and efficacy in patients with advanced ovarian and cervical cancer. Review II will focus on the NER pathway in cervical cancer and platinum sensitivity.
Collapse
Affiliation(s)
- J Salvador Saldivar
- Center for Biomedical Engineering, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
50
|
Baião AMT, Wowk PF, Sandrin-Garcia P, Junta CM, Fachin AL, Mello SS, Sakamoto-Hojo ET, Donadi EA, Passos GAS. cDNA microarray analysis of cyclosporin A (CsA)-treated human peripheral blood mononuclear cells reveal modulation of genes associated with apoptosis, cell-cycle regulation and DNA repair. Mol Cell Biochem 2007; 304:235-41. [PMID: 17534698 DOI: 10.1007/s11010-007-9505-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 05/03/2007] [Indexed: 11/25/2022]
Abstract
Cyclosporin A (CsA) is a potent immunosuppressant that has been extensively used to attenuate patient immune response following organ transplantation. The molecular biological mechanism of CsA has been extensively investigated in human T cells, and it has been shown to involve modulation of the intracellular calcineurin pathway. However, it is plausible that this chemical immunosuppressant certainly up- or down-regulate many other biochemical pathways of immune cells. In the present study, we used the cDNA microarray method to characterize the gene expression profile of human peripheral blood mononuclear cells (PBMC) treated in vitro with CsA and controls. The CsA treated PBMC displayed statistically significant induction of genes involved in the control of cell-cycle regulation (TRRAP), apoptosis/DNA repair (PRKDC, MAEA, TIA1), DNA metabolism/response to DNA damage stimulus (PRKDC, FEN1), transcription (NR4A2, THRA) and cell proliferation (FEN1, BIN1), whose data have permitted identification of target genes involved in CsA immunosuppression.
Collapse
Affiliation(s)
- Ana Maria T Baião
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Sao Carlos, SP 13565-905, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|