1
|
Au HM, Nong W, Hui JHL. Whole Genome Duplication in the Genomics Era: The Hidden Gems in Invertebrates? Genome Biol Evol 2025; 17:evaf073. [PMID: 40275750 PMCID: PMC12056724 DOI: 10.1093/gbe/evaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Whole genome duplication (WGD) events generate potent new genomic resources for rewiring existing genetic regulatory networks. Studying WGDs in vertebrates is of considerable importance to understand vertebrate evolution. Recent studies have shown that different invertebrate lineages, including lophotrochozoans/spiralians and ecdysozoans, have also undergone WGDs. Here we summarize recent developments and argue that more studies of WGD events in different invertebrate lineages are required to better understand the molecular evolution of metazoans.
Collapse
Affiliation(s)
- Hing Man Au
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Tsai FY, Lin CY, Su YH, Yu JK, Kuo DH. Evolutionary History of Bilaterian FoxP Genes: Complex Ancestral Functions and Evolutionary Changes Spanning 2R-WGD in the Vertebrate Lineage. Mol Biol Evol 2025; 42:msaf072. [PMID: 40155202 PMCID: PMC11998571 DOI: 10.1093/molbev/msaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
Human and fly FoxP homologs are well-known for their roles in the development of cognitive abilities. These findings have led to the hypothesis that the ancestral function of FoxP was in the development of cognitive neural circuits. However, complex brains in human and fly evolved independently, and the similar cognitive function of FoxP in human and fly may thus be interpreted as a result of convergent evolution. In addition, the 4 gnathostome FoxP paralogs also possess diverse developmental functions unrelated to neurodevelopment, which might have been overlooked in comparative studies of invertebrate FoxP homologs. To resolve these uncertainties, we set out to improve the phylogenetic reconstruction of vertebrate FoxP homologs and broaden the taxonomic sampling of gene expression profiling to include an invertebrate chordate, ambulacrarian deuterostomes, and a spiralian protostome. Using phylogenetic analysis combined with synteny mapping, we elaborated the hypothesis that the 4 FoxP paralogs arose through the 2R-WGD events shared by all gnathostome species. Based on this evolutionary scenario, we examined the FoxP expression pattern in amphioxus development and concluded that FoxP already had complex developmental functions across all germ layers in the chordate ancestor. Moreover, in sea urchin, hemichordate, and catenulid flatworm, FoxP was expressed in the gut prominently, in addition to the anterior neurogenic ectoderm. This surprising similarity shared among these distantly related species implies that FoxP may have a significant function in gut development in addition to the neural development function in the last common ancestor of bilaterians.
Collapse
Affiliation(s)
- Fu-Yu Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Museum of Zoology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Gyoja F, Sato K, Yamashita T, Kusakabe TG. An Extensive Survey of Vertebrate-specific, Nonvisual Opsins Identifies a Novel Subfamily, Q113-Bistable Opsin. Genome Biol Evol 2025; 17:evaf032. [PMID: 40036976 PMCID: PMC11893379 DOI: 10.1093/gbe/evaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
A group of nonvisual opsins specific to vertebrates is essential to understand evolution of lateral eyes, one of the most prominent innovations in this lineage. Nevertheless, our knowledge of their evolutionary history remains limited. To develop an integrated view of their evolution, we surveyed these non-visual opsins (VA opsin, pinopsin, parapinopsin, parietopsin, and parapinopsin-like) in 451 vertebrate genomes. Through extensive manual curation, we completed a high-quality catalog. We could not find them in 202 mammals, supporting previous reports of their loss. VA opsins are highly conserved among nonmammals. In contrast, other opsin subfamilies experienced more dynamic molecular evolution with many secondary losses. In addition, we found a previously unreported opsin subfamily that we named Q113-Bistable (QB) opsin. We found its orthologs only in several lizards and the tuatara. Nevertheless, QB opsin pseudogenes were discovered in diverse taxa, including ray-finned fishes, indicating its ancient origin. QB opsin, parapinopsin, and parietopsin are extremely prone to be lost in the course of evolution, and loss events involving these opsins seem to occur concomitantly. Furthermore, we demonstrated the spectral properties of QB opsin as a UV-sensitive, bistable photo-pigment. This study provides the first integrated view of the entire evolutionary history of this group of opsins.
Collapse
Affiliation(s)
- Fuki Gyoja
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Department of Biology, Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Keita Sato
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Department of Biology, Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
4
|
Adkins P, Bishop J, Harley J, Holland PWH. The genome sequence of the amphioxus, Branchiostoma lanceolatum (Pallas, 1774). Wellcome Open Res 2025; 10:95. [PMID: 40093594 PMCID: PMC11907188 DOI: 10.12688/wellcomeopenres.23671.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
We present a genome assembly from a specimen of Branchiostoma lanceolatum (Amphioxus; Chordata; Leptocardii; Amphioxiformes; Branchiostomatidae). The assembly contains two haplotypes with total lengths of 468.40 megabases and 465.81 megabases, respectively. Most of haplotype 1 (99.34%) is scaffolded into 19 chromosomal pseudomolecules. Haplotype 2 is a scaffold level assembly. The mitochondrial genome has also been assembled and is 15.14 kilobases in length.
Collapse
Affiliation(s)
- Patrick Adkins
- The Marine Biological Association, Plymouth, England, UK
| | - John Bishop
- The Marine Biological Association, Plymouth, England, UK
| | - Joanna Harley
- The Marine Biological Association, Plymouth, England, UK
| | | |
Collapse
|
5
|
Dai Y, Pan R, Pan Q, Wu X, Cai Z, Fu Y, Shi C, Sheng Y, Li J, Lin Z, Liu G, Zhu P, Li M, Li G, Zhou X. Single-cell profiling of the amphioxus digestive tract reveals conservation of endocrine cells in chordates. SCIENCE ADVANCES 2024; 10:eadq0702. [PMID: 39705360 DOI: 10.1126/sciadv.adq0702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Despite their pivotal role, the evolutionary origins of vertebrate digestive systems remain enigmatic. We explored the cellular characteristics of the amphioxus (Branchiostoma floridae) digestive tract, a model for the presumed primitive chordate digestive system, using bulk tissue companioned with single-cell RNA sequencing. Our findings reveal segmentation and a rich diversity of cell clusters, and we highlight the presence of epithelial-like, ciliated cells in the amphioxus midgut and describe three types of endocrine-like cells that secrete insulin-like, glucagon-like, and somatostatin-like peptides. Furthermore, Pdx, Ilp1, Ilp2, and Ilpr knockout amphioxus lines revealed that, in amphioxus, Pdx does not influence Ilp expression. We also unravel similarity between amphioxus Ilp1 and vertebrate insulin-like growth factor 1 (Igf1) in terms of predicted structure, effects on body growth and amino acid metabolism, and interactions with Igf-binding proteins. These findings indicate that the evolutionary alterations involving the regulatory influence of Pdx over insulin gene expression could have been instrumental in the development of the vertebrate digestive system.
Collapse
Affiliation(s)
- Yichen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Zexin Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yongheng Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yuyu Sheng
- Becton Dickinson Medical Devices (Shanghai) Co. Ltd., Beijing 100000, China
| | - Jingjing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Zhe Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Negrón-Piñeiro LJ, Di Gregorio A. Single-cell Transcriptomic Studies Unveil Potential Nodes of the Notochord Gene Regulatory Network. Integr Comp Biol 2024; 64:1194-1213. [PMID: 38914463 PMCID: PMC11579531 DOI: 10.1093/icb/icae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins able to modulate the timing, location, and levels of gene expression by binding to regulatory DNA regions. Therefore, the repertoire of TFs present in the genome of a multicellular organism and the expression of variable constellations of TFs in different cellular cohorts determine the distinctive characteristics of developing tissues and organs. The information on tissue-specific assortments of TFs, their cross-regulatory interactions, and the genes/regulatory regions targeted by each TF is summarized in gene regulatory networks (GRNs), which provide genetic blueprints for the specification, development, and differentiation of multicellular structures. In this study, we review recent transcriptomic studies focused on the complement of TFs expressed in the notochord, a distinctive feature of all chordates. We analyzed notochord-specific datasets available from organisms representative of the three chordate subphyla, and highlighted lineage-specific variations in the suite of TFs expressed in their notochord. We framed the resulting findings within a provisional evolutionary scenario, which allows the formulation of hypotheses on the genetic/genomic changes that sculpted the structure and function of the notochord on an evolutionary scale.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
7
|
Li Z, Li M, Huang S, Yu J, Liu M, Liu Y, Xu M. The expression pattern of Wnt6, Wnt10A, and HOXA13 during regenerating tails of Gekko Japonicus. Gene Expr Patterns 2024; 53:119374. [PMID: 39128795 DOI: 10.1016/j.gep.2024.119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Wnt signal is crucial to correctly regenerate tissues along the original axis in many animals. Lizards are able to regenerate their tails spontaneously, while the anterior-posterior axis information required for the successful regeneration is still elusive. In this study, we investigated the expression pattern of Wnt ligands and HOX genes during regeneration. The results of in situ hybridization revealed that Wnt6 and Wnt10A mRNA levels are higher in wound epithelium (WE) than that in blastema during regeneration. In addition, we showed that Wnt agonist positively regulated the expression of HOXA13 in cultured blastema cells, while did not show similar effect on that of HOXB13, HOXC13 and HOXD13. Finally, we found that HOXA13 showed a gradient level along the anterior-posterior axis of regenerated blastema, with higher level at the caudal end. These data proposed that Wnt6, Wnt10A and HOXA13 might play an important role in establishing distal position for regeneration.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jing Yu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Lin CY, Marlétaz F, Pérez-Posada A, Martínez-García PM, Schloissnig S, Peluso P, Conception GT, Bump P, Chen YC, Chou C, Lin CY, Fan TP, Tsai CT, Gómez Skarmeta JL, Tena JJ, Lowe CJ, Rank DR, Rokhsar DS, Yu JK, Su YH. Chromosome-level genome assemblies of 2 hemichordates provide new insights into deuterostome origin and chromosome evolution. PLoS Biol 2024; 22:e3002661. [PMID: 38829909 PMCID: PMC11175523 DOI: 10.1371/journal.pbio.3002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications. We show that hemichordate chromosomes (1N = 23) exhibit remarkable chromosome-scale macrosynteny when compared to other deuterostomes and can be derived from 24 deuterostome ancestral linkage groups (ALGs). These deuterostome ALGs in turn match previously inferred bilaterian ALGs, consistent with a relatively short transition from the last common bilaterian ancestor to the origin of deuterostomes. Based on this deuterostome ALG complement, we deduced chromosomal rearrangement events that occurred in different lineages. For example, a fusion-with-mixing event produced an Ambulacraria-specific ALG that subsequently split into 2 chromosomes in extant hemichordates, while this homologous ALG further fused with another chromosome in sea urchins. Orthologous genes distributed in these rearranged chromosomes are enriched for functions in various developmental processes. We found that the deeply conserved Hox clusters are located in highly rearranged chromosomes and that maintenance of the clusters are likely due to lower densities of transposable elements within the clusters. We also provide evidence that the deuterostome-specific pharyngeal gene cluster was established via the combination of 3 pre-assembled microsyntenic blocks. We suggest that since chromosomal rearrangement events and formation of new gene clusters may change the regulatory controls of developmental genes, these events may have contributed to the evolution of diverse body plans among deuterostomes.
Collapse
Affiliation(s)
- Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ferdinand Marlétaz
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Alberto Pérez-Posada
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | | | - Paul Peluso
- Pacific Biosciences, Menlo Park, California, United States of America
| | | | - Paul Bump
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California, United States of America
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Cindy Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Tai Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - José Luis Gómez Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Christopher J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California, United States of America
- Chan-Zuckerberg Biohub, San Francisco, California, United States of America
| | - David R. Rank
- Pacific Biosciences, Menlo Park, California, United States of America
| | - Daniel S. Rokhsar
- Chan-Zuckerberg Biohub, San Francisco, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Molecular Genetics Unit, Okinawa Institute for Science and Technology, Onna, Japan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Fritzsch B, Glover JC. Gene networks and the evolution of olfactory organs, eyes, hair cells and motoneurons: a view encompassing lancelets, tunicates and vertebrates. Front Cell Dev Biol 2024; 12:1340157. [PMID: 38533086 PMCID: PMC10963430 DOI: 10.3389/fcell.2024.1340157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Key developmental pathways and gene networks underlie the formation of sensory cell types and structures involved in chemosensation, vision and mechanosensation, and of the efferents these sensory inputs can activate. We describe similarities and differences in these pathways and gene networks in selected species of the three main chordate groups, lancelets, tunicates, and vertebrates, leading to divergent development of olfactory receptors, eyes, hair cells and motoneurons. The lack of appropriately posited expression of certain transcription factors in lancelets and tunicates prevents them from developing vertebrate-like olfactory receptors and eyes, although they generate alternative structures for chemosensation and vision. Lancelets and tunicates lack mechanosensory cells associated with the sensation of acoustic stimuli, but have gravisensitive organs and ciliated epidermal sensory cells that may (and in some cases clearly do) provide mechanosensation and thus the capacity to respond to movement relative to surrounding water. Although functionally analogous to the vertebrate vestibular apparatus and lateral line, homology is questionable due to differences in the expression of the key transcription factors Neurog and Atoh1/7, on which development of vertebrate hair cells depends. The vertebrate hair cell-bearing inner ear and lateral line thus likely represent major evolutionary advances specific to vertebrates. Motoneurons develop in vertebrates under the control of the ventral signaling molecule hedgehog/sonic hedgehog (Hh,Shh), against an opposing inhibitory effect mediated by dorsal signaling molecules. Many elements of Shh-signaling and downstream genes involved in specifying and differentiating motoneurons are also exhibited by lancelets and tunicates, but the repertoire of MNs in vertebrates is broader, indicating greater diversity in motoneuron differentiation programs.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joel C. Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Hu J, Song L, Ning M, Niu X, Han M, Gao C, Feng X, Cai H, Li T, Li F, Li H, Gong D, Song W, Liu L, Pu J, Liu J, Smith J, Sun H, Huang Y. A new chromosome-scale duck genome shows a major histocompatibility complex with several expanded multigene families. BMC Biol 2024; 22:31. [PMID: 38317190 PMCID: PMC10845735 DOI: 10.1186/s12915-024-01817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A virus (IAV), harbors almost all subtypes of IAVs and resists to many IAVs which cause extreme virulence in chicken and human. However, the response of duck's adaptive immune system to IAV infection is poorly characterized due to lack of a detailed gene map of the major histocompatibility complex (MHC). RESULTS We herein reported a chromosome-scale Beijing duck assembly by integrating Nanopore, Bionano, and Hi-C data. This new reference genome SKLA1.0 covers 40 chromosomes, improves the contig N50 of the previous duck assembly with highest contiguity (ZJU1.0) of more than a 5.79-fold, surpasses the chicken and zebra finch references in sequence contiguity and contains a complete genomic map of the MHC. Our 3D MHC genomic map demonstrated that gene family arrangement in this region was primordial; however, families such as AnplMHCI, AnplMHCIIβ, AnplDMB, NKRL (NK cell receptor-like genes) and BTN underwent gene expansion events making this area complex. These gene families are distributed in two TADs and genes sharing the same TAD may work in a co-regulated model. CONCLUSIONS These observations supported the hypothesis that duck's adaptive immunity had been optimized with expanded and diversified key immune genes which might help duck to combat influenza virus. This work provided a high-quality Beijing duck genome for biological research and shed light on new strategies for AIV control.
Collapse
Affiliation(s)
- Jiaxiang Hu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Linfei Song
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xinyu Niu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengying Han
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Chuze Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xingwei Feng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Han Cai
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Te Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Fangtao Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Huifang Li
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weitao Song
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
11
|
Huang X, Ren Q, Wang Y, Shimeld SM, Li G. Amphioxus Gli knockout disrupts the development of left-right asymmetry but has limited impact on neural patterning. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:492-499. [PMID: 38045549 PMCID: PMC10689630 DOI: 10.1007/s42995-023-00195-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/18/2023] [Indexed: 12/05/2023]
Abstract
The Gli transcription factors are the primary mediators of Hedgehog (Hh) signaling. Vertebrate genomes contain multiple Gli paralogues with different functions downstream of Hh signal receipt, in part explaining the complexity of cellular responses to Hh that allow concentration-dependent target gene activation. Amphioxus is a chordate that split from the vertebrate lineage early in the evolution of chordates, before the genome duplications that occurred in early vertebrate evolution. It has a single Gli gene whose transcripts can be alternately spliced to yield two protein isoforms called GliS and GliL. We generated two knockout mutations in amphioxus Gli, one that affects the whole gene and a second that only affects GliL. Both knockouts showed major morphological and molecular defects in the development of left-right asymmetry, a phenotype that is similar but not identical to that previously found in Hh mutants. Hh signaling also patterns the amphioxus neural tube. Here, however, knockout of GliL showed no identifiable phenotype, while knockout of the full gene showed only small changes to the expression of one gene family, Olig. Other genes that were prominently affected by Hh knockout were not altered in expression in either knockout. Reasons for the differences between Hh and Gli knockouts in the pharynx and neural tube are discussed in the context of the likely different functions of amphioxus Gli isoforms. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00195-w.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Qiongqiong Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | | | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| |
Collapse
|
12
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
13
|
Sharma PP. The Impact of Whole Genome Duplication on the Evolution of the Arachnids. Integr Comp Biol 2023; 63:825-842. [PMID: 37263789 DOI: 10.1093/icb/icad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Almeida-Silva F, Van de Peer Y. Whole-genome Duplications and the Long-term Evolution of Gene Regulatory Networks in Angiosperms. Mol Biol Evol 2023; 40:msad141. [PMID: 37405949 PMCID: PMC10321489 DOI: 10.1093/molbev/msad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Angiosperms have a complex history of whole-genome duplications (WGDs), with varying numbers and ages of WGD events across clades. These WGDs have greatly affected the composition of plant genomes due to the biased retention of genes belonging to certain functional categories following their duplication. In particular, regulatory genes and genes encoding proteins that act in multiprotein complexes have been retained in excess following WGD. Here, we inferred protein-protein interaction (PPI) networks and gene regulatory networks (GRNs) for seven well-characterized angiosperm species and explored the impact of both WGD and small-scale duplications (SSDs) in network topology by analyzing changes in frequency of network motifs. We found that PPI networks are enriched in WGD-derived genes associated with dosage-sensitive intricate systems, and strong selection pressures constrain the divergence of WGD-derived genes at the sequence and PPI levels. WGD-derived genes in network motifs are mostly associated with dosage-sensitive processes, such as regulation of transcription and cell cycle, translation, photosynthesis, and carbon metabolism, whereas SSD-derived genes in motifs are associated with response to biotic and abiotic stress. Recent polyploids have higher motif frequencies than ancient polyploids, whereas WGD-derived network motifs tend to be disrupted on the longer term. Our findings demonstrate that both WGD and SSD have contributed to the evolution of angiosperm GRNs, but in different ways, with WGD events likely having a more significant impact on the short-term evolution of polyploids.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Macairan JR, Nguyen B, Li F, Tufenkji N. Tissue Clearing To Localize Microplastics via Three-Dimensional Imaging of Whole Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37256715 DOI: 10.1021/acs.est.2c07209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Understanding the biological impacts of plastic pollution requires an effective methodology to detect unlabeled microplastics in environmental samples. Detecting unlabeled microplastics in an organism generally requires a digestion protocol, which results in the loss of spatial information on the distribution of microplastic within the organism and could lead to the disappearance of the smaller plastics. Fluorescence microscopy allows visualization of ingested microplastics but many labeling strategies are nonspecific and label biomass, thus limiting our ability to distinguish internalized plastics. While prelabeled plastics can be used to avoid nonspecific labeling, this approach precludes the detection of environmental microplastics in organisms. Also, using prelabeled microplastics can affect the viability of the organism and impact plastic uptake. Thus, a method was developed that employs nonspecific labeling with a tissue-clearing technique. Briefly, unlabeled microplastics are stained with a fluorescent dye after ingestion by the organism. The tissue-clearing technique then removes tissue-bound dye while rendering the structurally intact organism transparent. The internalized plastics remain stained and can be visualized in the cleared tissue with fluorescence microscopy. The technique is demonstrated using polystyrene beads in living aquatic organismsTigriopus californicusandDaphnia magnaand by spiking a model vertebrate (Cephalochordata) with different microplastics.
Collapse
Affiliation(s)
- Jun-Ray Macairan
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Brian Nguyen
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Frank Li
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
16
|
Holland ND, Holland LZ. Cephalochordate Hemocytes: First Demonstration for Asymmetron lucayanum (Bahamas Lancelet) Plus Augmented Description for Branchiostoma floridae (Florida Amphioxus). THE BIOLOGICAL BULLETIN 2023; 244:71-81. [PMID: 37725696 DOI: 10.1086/726774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
AbstractWithin phylum Chordata, the subphylum Cephalochordata (amphioxus and lancelets) has figured large in considerations of the evolutionary origin of the vertebrates. To date, these discussions have been predominantly based on knowledge of a single cephalochordate genus (Branchiostoma), almost to the exclusion of the other two genera (Asymmetron and Epigonichthys). This uneven pattern is illustrated by cephalochordate hematology, until now known entirely from work done on Branchiostoma. The main part of the present study is to describe hemocytes in the dorsal aorta of a species of Asymmetron by serial block-face scanning electron microscopy. This technique, which demonstrates three-dimensional fine structure, showed that the hemocytes have a relatively uniform morphology characterized by an oval shape and scanty cytoplasm. Ancillary information is also included for Branchiostoma hemocytes, known from previous studies to have relatively abundant cytoplasm; our serial block-face scanning electron microscopy provides more comprehensive views of the highly variable shapes of these cells, which typically extend one or several pseudopodium-like protrusions. The marked difference in hemocyte morphology found between Asymmetron and Branchiostoma was unexpected and directs attention to investigating comparable cells in the genus Epigonichthys. A broader knowledge of the hemocytes in all three cephalochordate genera would provide more balanced insights into the evolution of vertebrate hematopoiesis.
Collapse
|
17
|
Huang Z, Xu L, Cai C, Zhou Y, Liu J, Xu Z, Zhu Z, Kang W, Cen W, Pei S, Chen D, Shi C, Wu X, Huang Y, Xu C, Yan Y, Yang Y, Xue T, He W, Hu X, Zhang Y, Chen Y, Bi C, He C, Xue L, Xiao S, Yue Z, Jiang Y, Yu JK, Jarvis E, Li G, Lin G, Zhang Q, Zhou Q. Three amphioxus reference genomes reveal gene and chromosome evolution of chordates. Proc Natl Acad Sci U S A 2023; 120:e2201504120. [PMID: 36867684 PMCID: PMC10013865 DOI: 10.1073/pnas.2201504120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/18/2023] [Indexed: 03/05/2023] Open
Abstract
The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding of the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention, or rearrangements between descendants of whole-genome duplications, which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its three-dimensional chromatin architecture at the onset of zygotic activation and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes and provide high-quality references for understanding the mechanisms of chordate functional genome evolution.
Collapse
Affiliation(s)
- Zhen Huang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian350108, China
| | - Luohao Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing400715, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Cheng Cai
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yitao Zhou
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Zaoxu Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing400715, China
| | - Zexian Zhu
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wen Kang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wan Cen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Surui Pei
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
| | - Duo Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian350108, China
| | - Chaohua Xu
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Yanan Yan
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Ying Yang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Ting Xue
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Wenjin He
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Xuefeng Hu
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Yanding Zhang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Youqiang Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Changwei Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu210096, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu210096, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou, Fujian350002, China
| | - Shijun Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin130118, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Yu Jiang
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei11529, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan26242, Taiwan
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY10065
- HHMI, Chevy Chase, MD20815
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Gang Lin
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Qiujin Zhang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Qi Zhou
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang310052, China
- Evolutionary and Organismal Biology Research Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
18
|
Mulhair PO, Crowley L, Boyes DH, Harper A, Lewis OT, Holland PWH. Diversity, duplication, and genomic organization of homeobox genes in Lepidoptera. Genome Res 2023; 33:32-44. [PMID: 36617663 PMCID: PMC9977156 DOI: 10.1101/gr.277118.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Homeobox genes encode transcription factors with essential roles in patterning and cell fate in developing animal embryos. Many homeobox genes, including Hox and NK genes, are arranged in gene clusters, a feature likely related to transcriptional control. Sparse taxon sampling and fragmentary genome assemblies mean that little is known about the dynamics of homeobox gene evolution across Lepidoptera or about how changes in homeobox gene number and organization relate to diversity in this large order of insects. Here we analyze an extensive data set of high-quality genomes to characterize the number and organization of all homeobox genes in 123 species of Lepidoptera from 23 taxonomic families. We find most Lepidoptera have around 100 homeobox loci, including an unusual Hox gene cluster in which the lab gene is repositioned and the ro gene is next to pb A topologically associating domain spans much of the gene cluster, suggesting deep regulatory conservation of the Hox cluster arrangement in this insect order. Most Lepidoptera have four Shx genes, divergent zen-derived loci, but these loci underwent dramatic duplication in several lineages, with some moths having over 165 homeobox loci in the Hox gene cluster; this expansion is associated with local LINE element density. In contrast, the NK gene cluster content is more stable, although there are differences in organization compared with other insects, as well as major rearrangements within butterflies. Our analysis represents the first description of homeobox gene content across the order Lepidoptera, exemplifying the potential of newly generated genome assemblies for understanding genome and gene family evolution.
Collapse
Affiliation(s)
- Peter O Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Liam Crowley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Douglas H Boyes
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Amber Harper
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Peter W H Holland
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
19
|
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022; 11:cells11243966. [PMID: 36552730 PMCID: PMC9776813 DOI: 10.3390/cells11243966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart J. Jaeger
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Correspondence:
| |
Collapse
|
20
|
Iwasaki-Yokozawa S, Nanjo R, Akiyama-Oda Y, Oda H. Lineage-specific, fast-evolving GATA-like gene regulates zygotic gene activation to promote endoderm specification and pattern formation in the Theridiidae spider. BMC Biol 2022; 20:223. [PMID: 36203191 PMCID: PMC9535882 DOI: 10.1186/s12915-022-01421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background
The process of early development varies across the species-rich phylum Arthropoda. Owing to the limited research strategies for dissecting lineage-specific processes of development in arthropods, little is known about the variations in early arthropod development at molecular resolution. The Theridiidae spider, Parasteatoda tepidariorum, has its genome sequenced and could potentially contribute to dissecting early embryonic processes. Results We present genome-wide identification of candidate genes that exhibit locally restricted expression in germ disc forming stage embryos of P. tepidariorum, based on comparative transcriptomes of isolated cells from different regions of the embryo. A subsequent pilot screen by parental RNA interference identifies three genes required for body axis formation. One of them is a GATA-like gene that has been fast evolving after duplication and divergence from a canonical GATA family gene. This gene is designated fuchi nashi (fuchi) after its knockdown phenotypes, where the cell movement toward the formation of a germ disc was reversed. fuchi expression occurs in cells outside a forming germ disc and persists in the endoderm. Transcriptome and chromatin accessibility analyses of fuchi pRNAi embryos suggest that early fuchi activity regulates chromatin state and zygotic gene activation to promote endoderm specification and pattern formation. We also show that there are many uncharacterized genes regulated by fuchi. Conclusions Our genome-based research using an arthropod phylogenetically distant from Drosophila identifies a lineage-specific, fast-evolving gene with key developmental roles in one of the earliest, genome-wide regulatory events, and allows for molecular exploration of the developmental variations in early arthropod embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01421-0.
Collapse
Affiliation(s)
- Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan
| | - Ryota Nanjo
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.,Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
21
|
Wei M, Qin Z, Kong D, Liu D, Zheng Q, Bai S, Zhang Z, Ma Y. Echiuran Hox genes provide new insights into the correspondence between Hox subcluster organization and collinearity pattern. Proc Biol Sci 2022; 289:20220705. [PMID: 36264643 PMCID: PMC9449475 DOI: 10.1098/rspb.2022.0705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/29/2022] [Indexed: 09/16/2023] Open
Abstract
In many bilaterians, Hox genes are generally clustered along the chromosomes and expressed in spatial and temporal order. In vertebrates, the expression of Hox genes follows a whole-cluster spatio-temporal collinearity (WSTC) pattern, whereas in some invertebrates the expression of Hox genes exhibits a subcluster-level spatio-temporal collinearity pattern. In bilaterians, the diversity of collinearity patterns and the cause of collinearity differences in Hox gene expression remain poorly understood. Here, we investigate genomic organization and expression pattern of Hox genes in the echiuran worm Urechis unicinctus (Annelida, Echiura). Urechis unicinctus has a split cluster with four subclusters divided by non-Hox genes: first subcluster (Hox1 and Hox2), second subcluster (Hox3), third subcluster (Hox4, Hox5, Lox5, Antp and Lox4), fourth subcluster (Lox2 and Post2). The expression of U. unicinctus Hox genes shows a subcluster-based whole-cluster spatio-temporal collinearity (S-WSTC) pattern: the anterior-most genes in each subcluster are activated in a spatially and temporally colinear manner (reminiscent of WSTC), with the subsequent genes in each subcluster then being very similar to their respective anterior-most subcluster gene. Combining genomic organization and expression profiles of Hox genes in different invertebrate lineages, we propose that the spatio-temporal collinearity of invertebrate Hox is subcluster-based.
Collapse
Affiliation(s)
- Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qiaojun Zheng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, People's Republic of China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
22
|
Hintermann A, Guerreiro I, Lopez-Delisle L, Bolt CC, Gitto S, Duboule D, Beccari L. Developmental and evolutionary comparative analysis of a regulatory landscape in mouse and chicken. Development 2022; 149:275867. [PMID: 35770682 PMCID: PMC9307994 DOI: 10.1242/dev.200594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Modifications in gene regulation are driving forces in the evolution of organisms. Part of these changes involve cis-regulatory elements (CREs), which contact their target genes through higher-order chromatin structures. However, how such architectures and variations in CREs contribute to transcriptional evolvability remains elusive. We use Hoxd genes as a paradigm for the emergence of regulatory innovations, as many relevant enhancers are located in a regulatory landscape highly conserved in amniotes. Here, we analysed their regulation in murine vibrissae and chicken feather primordia, two skin appendages expressing different Hoxd gene subsets, and compared the regulation of these genes in these appendages with that in the elongation of the posterior trunk. In the two former structures, distinct subsets of Hoxd genes are contacted by different lineage-specific enhancers, probably as a result of using an ancestral chromatin topology as an evolutionary playground, whereas the gene regulation that occurs in the mouse and chicken embryonic trunk partially relies on conserved CREs. A high proportion of these non-coding sequences active in the trunk have functionally diverged between species, suggesting that transcriptional robustness is maintained, despite considerable divergence in enhancer sequences. Summary: Analyses of the relationships between chromatin architecture and regulatory activities at the HoxD locus show that ancestral transcription patterns can be maintained while new regulations evolve.
Collapse
Affiliation(s)
- Aurélie Hintermann
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Isabel Guerreiro
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Lucille Lopez-Delisle
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
| | - Christopher Chase Bolt
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
| | - Sandra Gitto
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Denis Duboule
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
- Collège de France 3 , 11 Place Marcelin Berthelot, 75005 Paris , France
| | - Leonardo Beccari
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| |
Collapse
|
23
|
Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, Thomas PJ, Holloway AC. An Emerging Cross-Species Marker for Organismal Health: Tryptophan-Kynurenine Pathway. Int J Mol Sci 2022; 23:6300. [PMID: 35682980 PMCID: PMC9181223 DOI: 10.3390/ijms23116300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Amrita Debnath
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Jade V. Wish
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Jason C. Raine
- Quesnel River Research Centre, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| | - Gregg T. Tomy
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| |
Collapse
|
24
|
Meister L, Escriva H, Bertrand S. Functions of the FGF signalling pathway in cephalochordates provide insight into the evolution of the prechordal plate. Development 2022; 149:275365. [PMID: 35575387 PMCID: PMC9188755 DOI: 10.1242/dev.200252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor (FGF) signalling pathway plays various roles during vertebrate embryogenesis, from mesoderm formation to brain patterning. This diversity of functions relies on the fact that vertebrates possess the largest FGF gene complement among metazoans. In the cephalochordate amphioxus, which belongs to the chordate clade together with vertebrates and tunicates, we have previously shown that the main role of FGF during early development is the control of rostral somite formation. Inhibition of this signalling pathway induces the loss of these structures, resulting in an embryo without anterior segmented mesoderm, as in the vertebrate head. Here, by combining several approaches, we show that the anterior presumptive paraxial mesoderm cells acquire an anterior axial fate when FGF signal is inhibited and that they are later incorporated in the anterior notochord. Our analysis of notochord formation in wild type and in embryos in which FGF signalling is inhibited also reveals that amphioxus anterior notochord presents transient prechordal plate features. Altogether, our results give insight into how changes in FGF functions during chordate evolution might have participated to the emergence of the complex vertebrate head. Summary: FGF signalling inhibition in cephalochordates induces a loss of anteriormost somites. After FGFR inhibition, the presomitic anterior region cells are incorporated in the anterior notochord which transiently present prechordal plate features.
Collapse
Affiliation(s)
- Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| |
Collapse
|
25
|
Zhu Y, Lu N, Chen JY, He C, Huang Z, Lu Z. Deep whole-genome resequencing sheds light on the distribution and effect of amphioxus SNPs. BMC Genom Data 2022; 23:26. [PMID: 35395709 PMCID: PMC8994340 DOI: 10.1186/s12863-022-01038-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/13/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Amphioxus is a model organism for vertebrate evolutionary research. The significant contrast between morphological phenotypic similarity and high-level genetic polymorphism among amphioxus populations has aroused scientists' attention. Here we resequenced 21 amphioxus genomes to over 100X depth and mapped them to a haploid reference. RESULTS More than 11.5 million common SNPs were detected in the amphioxus population, which mainly affect genes enriched in ion transport, signal transduction and cell adhesion, while protein structure analysis via AlphaFold2 revealed that these SNPs fail to bring effective structural variants. CONCLUSIONS Our work provides explanation for "amphioxus polymorphism paradox" in a micro view, and generates an enhanced genomic dataset for amphioxus research.
Collapse
Affiliation(s)
- Yunchi Zhu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - Na Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - J-Y Chen
- Nanjing Institute of Paleontology and Geology, Nanjing, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China.
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
- Key Laboratory of Special Marine Bio-Resources Sustainable Utilization of Fujian Province, Fuzhou, Fujian, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Fritzsch B, Martin PR. Vision and retina evolution: how to develop a retina. IBRO Neurosci Rep 2022; 12:240-248. [PMID: 35449767 PMCID: PMC9018162 DOI: 10.1016/j.ibneur.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Early in vertebrate evolution, a single homeobox (Hox) cluster in basal chordates was quadrupled to generate the Hox gene clusters present in extant vertebrates. Here we ask how this expanded gene pool may have influenced the evolution of the visual system. We suggest that a single neurosensory cell type split into ciliated sensory cells (photoreceptors, which transduce light) and retinal ganglion cells (RGC, which project to the brain). In vertebrates, development of photoreceptors is regulated by the basic helix-loop-helix (bHLH) transcription factor Neurod1 whereas RGC development depends on Atoh7 and related bHLH genes. Lancelet (a basal chordate) does not express Neurod or Atoh7 and possesses a few neurosensory cells with cilia that reach out of the opening of the neural tube. Sea-squirts (Ascidians) do not express Neurod and express a different bHLH gene, Atoh8, that is likely expressed in the anterior vesicle. Recent data indicate the neurosensory cells in lancelets may correspond to three distinct eye fields in ascidians, which in turn may be the basis of the vertebrate retina, pineal and parapineal. In this review we contrast the genetic control of visual structure development in these chordates with that of basal vertebrates such as lampreys and hagfish, and jawed vertebrates. We propose an evolutionary sequence linking whole-genome duplications, initially to a split between photoreceptor and projection neurons (RGC) and subsequently between pineal and lateral eye structures.
Collapse
|
27
|
Liu S, Hu G, Luo S, Wu W, Zhou Q, Jin R, Zhang Y, Ruan H, Huang H, Li H. Insights into the evolution of the ISG15 and UBA7 system. Genomics 2022; 114:110302. [DOI: 10.1016/j.ygeno.2022.110302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
28
|
On JSW, Su L, Shen H, Arokiaraj AWR, Cardoso JCR, Li G, Chow BKC. PACAP/GCGa Is an Important Modulator of the Amphioxus CNS-Hatschek's Pit Axis, the Homolog of the Vertebrate Hypothalamic-Pituitary Axis in the Basal Chordates. Front Endocrinol (Lausanne) 2022; 13:850040. [PMID: 35498398 PMCID: PMC9049855 DOI: 10.3389/fendo.2022.850040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The Hatschek's pit in the cephalochordate amphioxus, an invertebrate deuterostome basal to chordates is suggested to be the functional homolog structure of the vertebrate adenohypophysis based on anatomy and expression of homologous neuroendocrine genes. However, the endocrine potential of the cephalochordate Hatschek's pit remains to be demonstrated as well as the physiological actions of the secreted neuropeptides. In this study, we have explored the distribution and characterize the potential function of the amphioxus PACAP/GCG precursor, which is the ortholog of the hypothalamic PACAP neuropeptide in vertebrates. In amphioxi, two PACAP/GCG transcripts PACAP/GCGa and PACAP/GCGbc that are alternative isoforms of a single gene with different peptide coding potentials were isolated. Immunofluorescence staining detected their expression around the nucleus of Rohde, supporting that this structure may be homologous of the neurosecretory cells of the vertebrate hypothalamus where abundant PACAP is found. PACAP/GCGa was also detected in the infundibulum-like downgrowth approaching the Hatschek's pit, indicating diffusion of PACAP/GCGa from the CNS to the pit via the infundibulum-like downgrowth. Under a high salinity challenge, PACAP/GCGa was upregulated in amphioxi head and PACAP/GCGa treatment increased expression of GHl in Hatschek's pit in a dose-dependent manner, suggesting that PACAP/GCGa may be involved in the regulation of GHl via hypothalamic-pituitary (HP)-like axis similar as in the vertebrates. Our results support that the amphioxus Hatschek's pit is likely to be the functional homolog of pituitary gland in vertebrates.
Collapse
Affiliation(s)
- Jason S. W. On
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hong Shen
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - João C. R. Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Billy K. C. Chow, ; Guang Li,
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Billy K. C. Chow, ; Guang Li,
| |
Collapse
|
29
|
Buckley KM. Bioinformatics Approaches for Analyzing Multigene Families Encoding Immune Receptors. Methods Mol Biol 2022; 2421:151-169. [PMID: 34870818 DOI: 10.1007/978-1-0716-1944-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genome sequences are quickly becoming available from a variety of organisms, providing researchers with an abundance of previously inaccessible information and an important source of insight into immune mechanisms. There are a variety of methods to accurately characterize genes from new genome sequences, but immune receptors pose special challenges for these techniques. Immune receptors, particularly those that directly recognize pathogens, often diverge rapidly among species and are commonly found in large, complex multigene families. Because of these characteristics, immune receptors tend to be overlooked or misannotated in large-scale genomic surveys. We describe here a strategy to characterize homologs of immune receptors and to identify putative receptors from newly assembled genome or transcriptome sequences. The description of these protocols is aimed at a typical immunologist and does not rely on substantial a priori knowledge of bioinformatics. The approach is based on using low-stringency sequence searches to identify divergent homologs. For receptors with multiple domains, the intersection of low-stringency searches can be used to identify divergent receptor sequences with high confidence. For multigene families, these predictions can be refined using sequence conservation among gene family paralogs. Assembled genome sequences serve as a critical foundation for subsequent functional characterization and remove long-standing barriers in understanding the evolution of immune recognition systems.
Collapse
|
30
|
Gower DJ, Fleming JF, Pisani D, Vonk FJ, Kerkkamp HMI, Peichl L, Meimann S, Casewell NR, Henkel CV, Richardson MK, Sanders KL, Simões BF. Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake. Genome Biol Evol 2021; 13:6430116. [PMID: 34791190 PMCID: PMC8643396 DOI: 10.1093/gbe/evab253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular genetic data have recently been incorporated in attempts to reconstruct the ecology of the ancestral snake, though this has been limited by a paucity of data for one of the two main extant snake taxa, the highly fossorial Scolecophidia. Here we present and analyze vision genes from the first eye-transcriptomic and genome-wide data for Scolecophidia, for Anilios bicolor, and A. bituberculatus, respectively. We also present immunohistochemistry data for retinal anatomy and visual opsin-gene expression in Anilios. Analyzed in the context of 19 lepidosaurian genomes and 12 eye transcriptomes, the new genome-wide and transcriptomic data provide evidence for a much more reduced visual system in Anilios than in non-scolecophidian (=alethinophidian) snakes and in lizards. In Anilios, there is no evidence of the presence of 7 of the 12 genes associated with alethinophidian photopic (cone) phototransduction. This indicates extensive gene loss and many of these candidate gene losses occur also in highly fossorial mammals with reduced vision. Although recent phylogenetic studies have found evidence for scolecophidian paraphyly, the loss in Anilios of visual genes that are present in alethinophidians implies that the ancestral snake had a better-developed visual system than is known for any extant scolecophidian.
Collapse
Affiliation(s)
- David J Gower
- Life Sciences, The Natural History Museum, London, United Kingdom
| | - James F Fleming
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Davide Pisani
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Freek J Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Leo Peichl
- Institute of Cellular and Molecular Anatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany.,Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sonja Meimann
- Institute of Cellular and Molecular Anatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christiaan V Henkel
- Institute of Biology, University of Leiden, Leiden, The Netherlands.,Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Bruno F Simões
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
31
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
32
|
Wang KL, Chen SN, Huo HJ, Nie P. Identification and expression analysis of sixteen Toll-like receptor genes, TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR7-9, TLR13a-c, TLR14, TLR21-23 in mandarin fish Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104100. [PMID: 33862097 DOI: 10.1016/j.dci.2021.104100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Toll-like receptors (TLRs), as a family of pattern recognition receptors (PRRs), possess specific pathogen-related molecular pattern (PAMP) recognition spectrum in inducing immune responses. In this study, sixteen TLRs were identified and characterized in mandarin fish (Siniperca chuatsi). All these TLRs consist of leucine-rich repeats (LRRs), a transmembrane domain and a Toll/interleukin-I receptor (TIR) domain, with the exception of TLR5S which lacks TIR domain, and they can be clustered into five branches, i.e. TLR1 subfamily, TLR3 subfamily, TLR5 subfamily, TLR7 subfamily and TLR11 subfamily in phylogenetic tree. These TLR genes were expressed in all tested tissues and had high expression levels in immune-related tissues such as head-kidney and spleen or mucosa-related tissues such as intestine and pyloric caecum. The transcripts of TLR2a, TLR2b, TLR3, TLR13a, TLR14, TLR22 and TLR23 were all significantly up-regulated after stimulation with poly(I:C); TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR13a and TLR13b transcripts were all significantly up-regulated after stimulation with PGN; and TLR2a, TLR2b, TLR5M, TLR5S, TLR7, TLR8, TLR9, TLR13c, TLR14 and TLR22 transcripts were all significantly up-regulated after stimulation with LPS in isolated head kidney lymphocytes of mandarin fish. The findings in this study may provide a valuable basis for functional study on TLR genes in mandarin fish.
Collapse
Affiliation(s)
- Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| | - Hui Jun Huo
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
33
|
Li J, Li Y, Fan Z, Chen S, Yan X, Yue Z, Huang G, Liu S, Zhang H, Chen S, Dong M, Xu A, Huang S. Two Amphioxus ApeC-Containing Proteins Bind to Microbes and Inhibit the TRAF6 Pathway. Front Immunol 2021; 12:715245. [PMID: 34394119 PMCID: PMC8361754 DOI: 10.3389/fimmu.2021.715245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The apextrin C-terminal (ApeC) domain is a class of newly discovered protein domains with an origin dating back to prokaryotes. ApeC-containing proteins (ACPs) have been found in various marine and aquatic invertebrates, but their functions and the underlying mechanisms are largely unknown. Early studies suggested that amphioxus ACP1 and ACP2 bind to bacterial cell walls and have a role in immunity. Here we identified another two amphioxus ACPs (ACP3 and ACP5), which belong to the same phylogenetic clade with ACP1/2, but show distinct expression patterns and sequence divergence (40-50% sequence identities). Both ACP3 and ACP5 were mainly expressed in the intestine and hepatic cecum, and could be up-regulated after bacterial challenge. Both prokaryotic-expressed recombinant ACP3 and ACP5 could bind with several species of bacteria and yeasts, showing agglutinating activity but no microbicidal activity. ELISA assays suggested that their ApeC domains could interact with peptidoglycan (PGN), but not with lipoteichoic acid (LTA), lipopolysaccharides (LPS) and zymosan A. Furthermore, they can only bind to Lys-type PGN from Staphylococcus aureus, but not to DAP-type PGN from Bacillus subtilis and not to moieties of PGN such as MDPs, NAMs and NAGs. This recognition spectrum is different from that of ACP1/2. We also found that when expressed in mammalian cells, ACP3 could interact with TRAF6 via a conserved non-ApeC region, which inhibited the ubiquitination of TRAF6 and hence suppressed downstream NF-κB activation. This work helped define a novel subfamily of ACPs, which have conserved structures, and have related yet diversified molecular functions. Its members have dual roles, with ApeC as a lectin and a conserved unknown region as a signal transduction regulator. These findings expand our understanding of the ACP functions and may guide future research on the role of ACPs in different animal clades.
Collapse
Affiliation(s)
- Jin Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuhui Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhaoyu Fan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shenghui Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Yan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zirui Yue
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shumin Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shangwu Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meiling Dong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shengfeng Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
34
|
PALI1 facilitates DNA and nucleosome binding by PRC2 and triggers an allosteric activation of catalysis. Nat Commun 2021; 12:4592. [PMID: 34321472 PMCID: PMC8319299 DOI: 10.1038/s41467-021-24866-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
The polycomb repressive complex 2 (PRC2) is a histone methyltransferase that maintains cell identities. JARID2 is the only accessory subunit of PRC2 that known to trigger an allosteric activation of methyltransferase. Yet, this mechanism cannot be generalised to all PRC2 variants as, in vertebrates, JARID2 is mutually exclusive with most of the accessory subunits of PRC2. Here we provide functional and structural evidence that the vertebrate-specific PRC2 accessory subunit PALI1 emerged through a convergent evolution to mimic JARID2 at the molecular level. Mechanistically, PRC2 methylates PALI1 K1241, which then binds to the PRC2-regulatory subunit EED to allosterically activate PRC2. PALI1 K1241 is methylated in mouse and human cell lines and is essential for PALI1-induced allosteric activation of PRC2. High-resolution crystal structures revealed that PALI1 mimics the regulatory interactions formed between JARID2 and EED. Independently, PALI1 also facilitates DNA and nucleosome binding by PRC2. In acute myelogenous leukemia cells, overexpression of PALI1 leads to cell differentiation, with the phenotype altered by a separation-of-function PALI1 mutation, defective in allosteric activation and active in DNA binding. Collectively, we show that PALI1 facilitates catalysis and substrate binding by PRC2 and provide evidence that subunit-induced allosteric activation is a general property of holo-PRC2 complexes. The polycomb repressive complex 2 (PRC2) is a histone methyltransferase regulating cell differentiation and identity. Here, the authors show that the vertebrate-specific PRC2 accessory subunit PALI1 facilitates substrate binding by the complex and elucidate the allosteric mechanism of PALI1- mediated PRC2 activation.
Collapse
|
35
|
Leypold NA, Speicher MR. Evolutionary conservation in noncoding genomic regions. Trends Genet 2021; 37:903-918. [PMID: 34238591 DOI: 10.1016/j.tig.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022]
Abstract
Humans may share more genomic commonalities with other species than previously thought. According to current estimates, ~5% of the human genome is functionally constrained, which is a much larger fraction than the ~1.5% occupied by annotated protein-coding genes. Hence, ~3.5% of the human genome comprises likely functional conserved noncoding elements (CNEs) preserved among organisms, whose common ancestors existed throughout hundreds of millions of years of evolution. As whole-genome sequencing emerges as a standard procedure in genetic analyses, interpretation of variations in CNEs, including the elucidation of mechanistic and functional roles, becomes a necessity. Here, we discuss the phenomenon of noncoding conservation via four dimensions (sequence, regulatory conservation, spatiotemporal expression, and structure) and the potential significance of CNEs in phenotype variation and disease.
Collapse
Affiliation(s)
- Nicole A Leypold
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
36
|
Aase-Remedios ME, Ferrier DEK. Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.703163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative approaches to understanding chordate genomes have uncovered a significant role for gene duplications, including whole genome duplications (WGDs), giving rise to and expanding gene families. In developmental biology, gene families created and expanded by both tandem and WGDs are paramount. These genes, often involved in transcription and signalling, are candidates for underpinning major evolutionary transitions because they are particularly prone to retention and subfunctionalisation, neofunctionalisation, or specialisation following duplication. Under the subfunctionalisation model, duplication lays the foundation for the diversification of paralogues, especially in the context of gene regulation. Tandemly duplicated paralogues reside in the same regulatory environment, which may constrain them and result in a gene cluster with closely linked but subtly different expression patterns and functions. Ohnologues (WGD paralogues) often diversify by partitioning their expression domains between retained paralogues, amidst the many changes in the genome during rediploidisation, including chromosomal rearrangements and extensive gene losses. The patterns of these retentions and losses are still not fully understood, nor is the full extent of the impact of gene duplication on chordate evolution. The growing number of sequencing projects, genomic resources, transcriptomics, and improvements to genome assemblies for diverse chordates from non-model and under-sampled lineages like the coelacanth, as well as key lineages, such as amphioxus and lamprey, has allowed more informative comparisons within developmental gene families as well as revealing the extent of conserved synteny across whole genomes. This influx of data provides the tools necessary for phylogenetically informed comparative genomics, which will bring us closer to understanding the evolution of chordate body plan diversity and the changes underpinning the origin and diversification of vertebrates.
Collapse
|
37
|
Lazcano I, Rodríguez Rodríguez A, Uribe RM, Orozco A, Joseph-Bravo P, Charli JL. Evolution of thyrotropin-releasing factor extracellular communication units. Gen Comp Endocrinol 2021; 305:113642. [PMID: 33039406 DOI: 10.1016/j.ygcen.2020.113642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Adair Rodríguez Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Aurea Orozco
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
38
|
Wang W, Wang C, Chen W, Ding S. Advances in immunological research of amphioxus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103992. [PMID: 33387559 DOI: 10.1016/j.dci.2020.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Amphioxus, one of the most closely related invertebrates to vertebrates, is an important animal model for studying the origin and evolution of vertebrate immunity, especially the transition from innate immunity to adaptive immunity. The current research progresses of amphioxus in the field of immune organs, immune cells, complement system, cytokines, nuclear factor kappa B, immune-related lectins and enzymes are summarized, and some issues that remain to be understood or are in need of further clarification are highlighted. We hope to provide references for more in-depth study of the amphioxus immune system and lay a solid foundation for the construction of three-dimensional immune network in amphioxus from ontogeny to phylogeny.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| |
Collapse
|
39
|
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1236-1280. [PMID: 33893979 DOI: 10.1007/s11427-020-1915-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.
Collapse
|
40
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. More Than One-to-Four via 2R: Evidence of an Independent Amphioxus Expansion and Two-Gene Ancestral Vertebrate State for MyoD-Related Myogenic Regulatory Factors (MRFs). Mol Biol Evol 2021; 37:2966-2982. [PMID: 32520990 PMCID: PMC7530620 DOI: 10.1093/molbev/msaa147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Clara Coll-Lladó
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
41
|
Oreste U, Ametrano A, Coscia MR. On Origin and Evolution of the Antibody Molecule. BIOLOGY 2021; 10:biology10020140. [PMID: 33578914 PMCID: PMC7916673 DOI: 10.3390/biology10020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary Like many other molecules playing vital functions in animals, the antibody molecule possesses a complex structure with distinctive features. The structure of the basic unit, i.e., the immunoglobulin domain of very ancient origin is substantially simple. However, high complexity resides in the types and numbers of the domains composing the whole molecule. The emergence of the antibody molecule during evolution overturned the effectiveness of the organisms’ defense system. The particular organization of the coding genes, the mechanisms generating antibody diversity, and the plasticity of the overall protein structure, attest to an extraordinary successful evolutionary history. Here, we attempt to trace, across the evolutionary scale, the very early origins of the most significant features characterizing the structure of the antibody molecule and of the molecular mechanisms underlying its major role in recognizing an almost unlimited number of pathogens. Abstract The vertebrate immune system provides a powerful defense because of the ability to potentially recognize an unlimited number of pathogens. The antibody molecule, also termed immunoglobulin (Ig) is one of the major mediators of the immune response. It is built up from two types of Ig domains: the variable domain, which provides the capability to recognize and bind a potentially infinite range of foreign substances, and the constant domains, which exert the effector functions. In the last 20 years, advances in our understanding of the molecular mechanisms and structural features of antibody in mammals and in a variety of other organisms have uncovered the underlying principles and complexity of this fundamental molecule. One notable evolutionary topic is the origin and evolution of antibody. Many aspects have been clearly stated, but some others remain limited or obscure. By considering a wide range of prokaryotic and eukaryotic organisms through a literature survey about the topic, we have provided an integrated view of the emergence of antibodies in evolution and underlined the very ancient origins.
Collapse
Affiliation(s)
- Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
| | - Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Correspondence: ; Tel.: +39-081-6132556
| |
Collapse
|
42
|
Xing Q, Liao H, Peng C, Zheng G, Yang Z, Wang J, Lu W, Huang X, Bao Z. Identification, characterization and expression analyses of cholinesterases genes in Yesso scallop (Patinopecten yessoensis) reveal molecular function allocation in responses to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105736. [PMID: 33422860 DOI: 10.1016/j.aquatox.2020.105736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guiliang Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
43
|
Abstract
Cephalochordates (amphioxus) are invertebrate chordates closely related to vertebrates. As they are evolving very slowly, they are proving to be very appropriate for developmental genetics studies aimed at understanding how vertebrates evolved from their invertebrate ancestors. To date, techniques for gene knockdown and overexpression have been developed, but methods for continuous breeding cultures and generating germline mutants have been developed only recently. Here we describe methods for continuous laboratory breeding cultures of the cephalochordate Branchiostoma floridae and the TALEN and Tol2 methods for mutagenesis. Included are strategies for analyzing the mutants and raising successive generations to obtain homozygotes. These methods should be applicable to any warm water species of cephalochordates with a relatively short generation time of 3-4 months and a life span of 3 years or more.
Collapse
|
44
|
Holland ND, Somorjai IML. Tail regeneration in a cephalochordate, the Bahamas lancelet, Asymmetron lucayanum. J Morphol 2020; 282:217-229. [PMID: 33179804 DOI: 10.1002/jmor.21297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/16/2023]
Abstract
Lancelets (Phylum Chordata, subphylum Cephalochordata) readily regenerate a lost tail. Here, we use light microscopy and serial blockface scanning electron microscopy (SBSEM) to describe tail replacement in the Bahamas lancelet, Asymmetron lucayanum. One day after amputation, the monolayered epidermis has migrated over the wound surface. At 4 days, the regenerate is about 3% as long as the tail length removed. The re-growing nerve cord is a tubular outgrowth of ependymal cells, and the new part of the notochord consists of several degenerating lamellar cells anterior to numerous small vacuolated cells. The cut edges of the mesothelium project into the regenerate as tubular extensions. These tubes anastomose with each other and with midline mesodermal canals beneath the regenerating edges of the dorsal and ventral fins. SBSEM did not reveal a blastema-like aggregation of undifferentiated cells anywhere in the regenerate. At 6 days, the regenerate (10% of the amputated tail length) includes a notochord in which the small vacuolated cells mentioned above are differentiating into lamellar cells. At 10 days, the regenerate is 22% of the amputated tail length: myocytes have appeared in the walls of the myomeres, and sclerocoels have formed. By 14 days, the regenerate is 35% the length of the amputated tail, and the new tissues resemble smaller versions of those originally lost. The present results for A. lucayanum, a species regenerating quickly and with little inter-specimen variability, provide the morphological background for future cell-tracer, molecular genetic, and genomic studies of cephalochordate regeneration.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, San Diego, California, USA
| | | |
Collapse
|
45
|
Touceda-Suárez M, Kita EM, Acemel RD, Firbas PN, Magri MS, Naranjo S, Tena JJ, Gómez-Skarmeta JL, Maeso I, Irimia M. Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications. Mol Biol Evol 2020; 37:2857-2864. [PMID: 32421818 PMCID: PMC7530604 DOI: 10.1093/molbev/msaa123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated how the two rounds of whole-genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene’s exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved noncoding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits.
Collapse
Affiliation(s)
- María Touceda-Suárez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain
| | - Elizabeth M Kita
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Panos N Firbas
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Marta S Magri
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Jose Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
46
|
Abstract
Many of the immunoglobulin superfamily (IgSF) molecules play pivotal roles in cell communication. The Sidekick (Sdk) gene, first described in Drosophila, encodes the single-pass transmembrane protein, Sdk, which is one of the largest among IgSF membrane proteins. Sdk first appeared in multicellular animals during the Precambrian age and later evolved to Sdk1 and Sdk2 in vertebrates by gene duplication. In flies, a single Sdk is involved in positioning photoreceptor neurons and their axons in the visual system and is responsible for dynamically rearranging cell shapes by strictly populating tricellular adherens junctions in epithelia. In vertebrates, Sdk1 and Sdk2 are expressed by unique sets of cell types and distinctively participate in the formation and/or maintenance of neural circuits in the retina, indicating that they are determinants of synaptic specificity. These functions are mediated by specific homophilic binding of their ectodomains and by intracellular association with PDZ scaffold proteins. Recent human genetic studies as well as animal experiments implicate that Sdk genes may influence various neurodevelopmental and psychiatric disorders, such as autism spectrum disorders, attention-deficit hyperactivity disorder, addiction, and depression. The gigantic Sdk1 gene is susceptible to erratic gene rearrangements or mutations in both somatic and germ-line cells, potentially contributing to neurological disorders and some types of cancers. This review summarizes what is known about the structure and roles of Sdks.
Collapse
Affiliation(s)
- Masahito Yamagata
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
47
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
48
|
Pergner J, Vavrova A, Kozmikova I, Kozmik Z. Molecular Fingerprint of Amphioxus Frontal Eye Illuminates the Evolution of Homologous Cell Types in the Chordate Retina. Front Cell Dev Biol 2020; 8:705. [PMID: 32850825 PMCID: PMC7417673 DOI: 10.3389/fcell.2020.00705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The evolution of the vertebrate eye remains so far unresolved. Amphioxus frontal eye pigment cells and photoreceptors were proposed to be homologous to vertebrate photoreceptors and retinal pigmented epithelium, based on ultrastructural morphology and gene expression analysis in B. floridae. Here, we present comparative molecular data using two additional amphioxus species, a closely related B. lanceolatum, and the most divergent A. lucayanum. Taking advantage of a unique set of specific antibodies we characterized photoreceptors and putative interneurons of the frontal eye and investigated its neuronal circuitry. Our results corroborate generally conserved molecular fingerprint among cephalochordate species. Furthermore, we performed pharmacological perturbations and found that the Notch signaling pathway, a key regulator of retina development in vertebrates, is required for correct ratios among frontal eye cell types. In summary, our study provides a valuable insight into cell-type relationships in chordate visual organs and strengthens the previously proposed homology between amphioxus frontal eye and vertebrate eyes.
Collapse
Affiliation(s)
- Jiri Pergner
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Vavrova
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
49
|
Bi C, Lu N, Huang Z, Chen J, He C, Lu Z. Whole-genome resequencing reveals the pleistocene temporal dynamics of Branchiostoma belcheri and Branchiostoma floridae populations. Ecol Evol 2020; 10:8210-8224. [PMID: 32788973 PMCID: PMC7417228 DOI: 10.1002/ece3.6527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Global climatic fluctuations governed the ancestral demographic histories of species and contributed to place the current population status into a more extensive ecological and evolutionary context. Genetic variations will leave unambiguous signatures in the patterns of intraspecific genetic variation in extant species since the genome of each individual is an imperfect mosaic of the ancestral genomes. Here, we report the genome sequences of 20 Branchiostoma individuals by whole-genome resequencing strategy. We detected over 140 million genomic variations for each Branchiostoma individual. In particular, we applied the pairwise sequentially Markovian coalescent (PSMC) method to estimate the trajectories of changes in the effective population size (N e) of Branchiostoma population during the Pleistocene. We evaluated the threshold of sequencing depth for proper inference of demographic histories using PSMC was ≥25×. The PSMC results highlight the role of historical global climatic fluctuations in the long-term population dynamics of Branchiostoma. The inferred ancestral N e of the Branchiostoma belcheri populations from Zhanjiang and Xiamen (China) seawaters was different in amplitude before the first (mutation rate = 3 × 10-9) or third glaciation (mutation rate = 9 × 10-9) of the Pleistocene, indicating that the two populations most probably started to evolve in isolation in their respective seas after the first or third glaciation of the Pleistocene. A pronounced population bottleneck coinciding with the last glacial maximum was observed in all Branchiostoma individuals, followed by a population expansion occurred during the late Pleistocene. Species that have experienced long-term declines may be especially vulnerable to recent anthropogenic activities. Recently, the industrial pollution and the exploitation of sea sand have destroyed the harmonious living environment of amphioxus species. In the future, we need to protect the habitat of Branchiostoma and make full use of these detected genetic variations to facilitate the functional study of Branchiostoma for adaptation to local environments.
Collapse
Affiliation(s)
- Changwei Bi
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Na Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhouChina
- Key Laboratory of Special Marine Bio‐resources Sustainable Utilization of Fujian ProvinceFuzhouChina
| | - Junyuan Chen
- Nanjing Institute of Paleontology and GeologyChinese Academy of SciencesNanjingChina
| | - Chunpeng He
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zuhong Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
50
|
Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. Nat Commun 2020; 11:3051. [PMID: 32561724 PMCID: PMC7305137 DOI: 10.1038/s41467-020-16801-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
The phylum Cnidaria represents a close outgroup to Bilateria and includes familiar animals including sea anemones, corals, hydroids, and jellyfish. Here we report genome sequencing and assembly for true jellyfish Sanderia malayensis and Rhopilema esculentum. The homeobox gene clusters are characterised by interdigitation of Hox, NK, and Hox-like genes revealing an alternate pathway of ANTP class gene dispersal and an intact three gene ParaHox cluster. The mitochondrial genomes are linear but, unlike in Hydra, we do not detect nuclear copies, suggesting that linear plastid genomes are not necessarily prone to integration. Genes for sesquiterpenoid hormone production, typical for arthropods, are also now found in cnidarians. Somatic and germline cells both express piwi-interacting RNAs in jellyfish revealing a conserved cnidarian feature, and evidence for tissue-specific microRNA arm switching as found in Bilateria is detected. Jellyfish genomes reveal a mosaic of conserved and divergent genomic characters evolved from a shared ancestral genetic architecture.
Collapse
|