1
|
Strope BS, Pendleton KE, Bowie WZ, Echeverria GV, Zhu Q. Xenomake: a pipeline for processing and sorting xenograft reads from spatial transcriptomic experiments. Bioinformatics 2024; 40:btae608. [PMID: 39400332 PMCID: PMC11583937 DOI: 10.1093/bioinformatics/btae608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024] Open
Abstract
SUMMARY Xenograft models are attractive models that mimic human tumor biology and permit one to perturb the tumor microenvironment and study its drug response. Spatially resolved transcriptomics (SRT) provides a powerful way to study the organization of xenograft models, but currently there is a lack of specialized pipeline for processing xenograft reads originated from SRT experiments. Xenomake is a standalone pipeline for the automated handling of spatial xenograft reads. Xenomake handles read processing, alignment, xenograft read sorting, and connects well with downstream spatial analysis packages. We additionally show that Xenomake can correctly assign organism-specific reads, reduce sparsity of data by increasing gene counts, while maintaining biological relevance for studies. AVAILABILITY AND IMPLEMENTATION Xenomake is an open-source program that is available on Github (https://github.com/qianzhulab/Xenomake). Complete documentation can be found at the link.
Collapse
Affiliation(s)
- Benjamin S Strope
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, United States
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Katherine E Pendleton
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, United States
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, United States
| | - William Z Bowie
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, United States
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Gloria V Echeverria
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, United States
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Qian Zhu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, United States
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, United States
| |
Collapse
|
2
|
Gameiro‐Ros I, Popova D, Prytkova I, Pang ZP, Liu Y, Dick D, Bucholz KK, Agrawal A, Porjesz B, Goate AM, Xuei X, Kamarajan C, Tischfield JA, Edenberg HJ, Slesinger PA, Hart RP. 5. Collaborative Study on the Genetics of Alcoholism: Functional genomics. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12855. [PMID: 37533187 PMCID: PMC10550792 DOI: 10.1111/gbb.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Alcohol Use Disorder is a complex genetic disorder, involving genetic, neural, and environmental factors, and their interactions. The Collaborative Study on the Genetics of Alcoholism (COGA) has been investigating these factors and identified putative alcohol use disorder risk genes through genome-wide association studies. In this review, we describe advances made by COGA in elucidating the functional changes induced by alcohol use disorder risk genes using multimodal approaches with human cell lines and brain tissue. These studies involve investigating gene regulation in lymphoblastoid cells from COGA participants and in post-mortem brain tissues. High throughput reporter assays are being used to identify single nucleotide polymorphisms in which alternate alleles differ in driving gene expression. Specific single nucleotide polymorphisms (both coding or noncoding) have been modeled using induced pluripotent stem cells derived from COGA participants to evaluate the effects of genetic variants on transcriptomics, neuronal excitability, synaptic physiology, and the response to ethanol in human neurons from individuals with and without alcohol use disorder. We provide a perspective on future studies, such as using polygenic risk scores and populations of induced pluripotent stem cell-derived neurons to identify signaling pathways related with responses to alcohol. Starting with genes or loci associated with alcohol use disorder, COGA has demonstrated that integration of multimodal data within COGA participants and functional studies can reveal mechanisms linking genomic variants with alcohol use disorder, and potential targets for future treatments.
Collapse
Affiliation(s)
- Isabel Gameiro‐Ros
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dina Popova
- Human Genetics Institute of New JerseyRutgers UniversityPiscatawayNew JerseyUSA
| | - Iya Prytkova
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Zhiping P. Pang
- Human Genetics Institute of New JerseyRutgers UniversityPiscatawayNew JerseyUSA
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Danielle Dick
- Rutgers Addiction Research Center, Robert Wood Johnson Medical SchoolRutgers UniversityPiscatawayNew JerseyUSA
| | - Kathleen K. Bucholz
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Arpana Agrawal
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral SciencesSUNY Downstate Health Sciences UniversityBrooklynNew YorkUSA
| | - Alison M. Goate
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Xiaoling Xuei
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Chella Kamarajan
- Department of Psychiatry and Behavioral SciencesSUNY Downstate Health Sciences UniversityBrooklynNew YorkUSA
| | | | - Jay A. Tischfield
- Human Genetics Institute of New JerseyRutgers UniversityPiscatawayNew JerseyUSA
- Department of GeneticsRutgers UniversityPiscatawayNew JerseyUSA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisIndianaUSA
| | - Paul A. Slesinger
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ronald P. Hart
- Human Genetics Institute of New JerseyRutgers UniversityPiscatawayNew JerseyUSA
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
3
|
Heuristic Pairwise Alignment in Database Environments. Genes (Basel) 2022; 13:genes13112005. [DOI: 10.3390/genes13112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Biological data have gained wider recognition during the last few years, although managing and processing these data in an efficient way remains a challenge in many areas. Increasingly, more DNA sequence databases can be accessed; however, most algorithms on these sequences are performed outside of the database with different bioinformatics software. In this article, we propose a novel approach for the comparative analysis of sequences, thereby defining heuristic pairwise alignment inside the database environment. This method takes advantage of the benefits provided by the database management system and presents a way to exploit similarities in data sets to quicken the alignment algorithm. We work with the column-oriented MonetDB, and we further discuss the key benefits of this database system in relation to our proposed heuristic approach.
Collapse
|
4
|
Rasquinha MT, Lasrado N, Petro-Turnquist E, Weaver E, Venkataraman T, Anderson D, Laserson U, Larman HB, Reddy J. PhIP-Seq Reveals Autoantibodies for Ubiquitously Expressed Antigens in Viral Myocarditis. BIOLOGY 2022; 11:biology11071055. [PMID: 36101433 PMCID: PMC9312229 DOI: 10.3390/biology11071055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Myocarditis is the inflammation of the heart muscle, and viral infections are a common cause of this disease. Myocarditis in some patients can progress to dilated cardiomyopathy (DCM). The mouse model of coxsackievirus B3 (CVB3) is commonly used to understand this disease progression in DCM patients. In this paper, we have attempted to analyze antibodies for heart antigens that could be produced as a result of heart damage in animals infected with CVB3 using a technique called Phage ImmunoPrecipitation Sequencing (PhIP-Seq). The analyses led us to identify antibodies for several proteins that were not previously reported that may have relevance to human disease. Abstract Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.
Collapse
Affiliation(s)
- Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Eric Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Thiagarajan Venkataraman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel Anderson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| |
Collapse
|
5
|
Foe VE. Does the Pachytene Checkpoint, a Feature of Meiosis, Filter Out Mistakes in Double-Strand DNA Break Repair and as a side-Effect Strongly Promote Adaptive Speciation? Integr Org Biol 2022; 4:obac008. [PMID: 36827645 PMCID: PMC8998493 DOI: 10.1093/iob/obac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This essay aims to explain two biological puzzles: why eukaryotic transcription units are composed of short segments of coding DNA interspersed with long stretches of non-coding (intron) DNA, and the near ubiquity of sexual reproduction. As is well known, alternative splicing of its coding sequences enables one transcription unit to produce multiple variants of each encoded protein. Additionally, padding transcription units with non-coding DNA (often many thousands of base pairs long) provides a readily evolvable way to set how soon in a cell cycle the various mRNAs will begin being expressed and the total amount of mRNA that each transcription unit can make during a cell cycle. This regulation complements control via the transcriptional promoter and facilitates the creation of complex eukaryotic cell types, tissues, and organisms. However, it also makes eukaryotes exceedingly vulnerable to double-strand DNA breaks, which end-joining break repair pathways can repair incorrectly. Transcription units cover such a large fraction of the genome that any mis-repair producing a reorganized chromosome has a high probability of destroying a gene. During meiosis, the synaptonemal complex aligns homologous chromosome pairs and the pachytene checkpoint detects, selectively arrests, and in many organisms actively destroys gamete-producing cells with chromosomes that cannot adequately synapse; this creates a filter favoring transmission to the next generation of chromosomes that retain the parental organization, while selectively culling those with interrupted transcription units. This same meiotic checkpoint, reacting to accidental chromosomal reorganizations inflicted by error-prone break repair, can, as a side effect, provide a mechanism for the formation of new species in sympatry. It has been a long-standing puzzle how something as seemingly maladaptive as hybrid sterility between such new species can arise. I suggest that this paradox is resolved by understanding the adaptive importance of the pachytene checkpoint, as outlined above.
Collapse
|
6
|
Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. Front Oncol 2022; 12:815037. [PMID: 35372085 PMCID: PMC8966105 DOI: 10.3389/fonc.2022.815037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML, research in MDS has been hindered by the lack of preclinical models that faithfully replicate the complexity of the disease and capture the heterogeneity. The complex molecular landscape of the disease poses a unique challenge when creating transgenic mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In recent years, progress has been made in the development of both transgenic and xenograft murine models advancing our understanding of individual contributors to MDS pathology as well as the complex primary interplay of genetic and microenvironment aberrations. We here present a comprehensive review of these transgenic and xenograft models for MDS and future directions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Patric Teodorescu
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
8
|
Gupta N, Matsumoto T, Hiratsuka K, Saiz EG, Zhang C, Galichon P, Miyoshi T, Susa K, Tatsumoto N, Yamashita M, Morizane R. Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Sci Transl Med 2022; 14:eabj4772. [PMID: 35235339 PMCID: PMC9161367 DOI: 10.1126/scitranslmed.abj4772] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kidneys have the capacity for intrinsic repair, preserving kidney architecture with return to a basal state after tubular injury. When injury is overwhelming or repetitive, however, that capacity is exceeded and incomplete repair results in fibrotic tissue replacing normal kidney parenchyma. Loss of nephrons correlates with reduced kidney function, which defines chronic kidney disease (CKD) and confers substantial morbidity and mortality to the worldwide population. Despite the identification of pathways involved in intrinsic repair, limited treatments for CKD exist, partly because of the limited throughput and predictivity of animal studies. Here, we showed that kidney organoids can model the transition from intrinsic to incomplete repair. Single-nuclear RNA sequencing of kidney organoids after cisplatin exposure identified 159 differentially expressed genes and 29 signal pathways in tubular cells undergoing intrinsic repair. Homology-directed repair (HDR) genes including Fanconi anemia complementation group D2 (FANCD2) and RAD51 recombinase (RAD51) were transiently up-regulated during intrinsic repair but were down-regulated in incomplete repair. Single cellular transcriptomics in mouse models of obstructive and hemodynamic kidney injury and human kidney samples of immune-mediated injury validated HDR gene up-regulation during tubular repair. Kidney biopsy samples with tubular injury and varying degrees of fibrosis confirmed loss of FANCD2 during incomplete repair. Last, we performed targeted drug screening that identified the DNA ligase IV inhibitor, SCR7, as a therapeutic candidate that rescued FANCD2/RAD51-mediated repair to prevent the progression of CKD in the cisplatin-induced organoid injury model. Our findings demonstrate the translational utility of kidney organoids to identify pathologic pathways and potential therapies.
Collapse
Affiliation(s)
- Navin Gupta
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Takuya Matsumoto
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ken Hiratsuka
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Edgar Garcia Saiz
- Harvard Medical School, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Chengcheng Zhang
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Galichon
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tomoya Miyoshi
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Koichiro Susa
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ryuji Morizane
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Nephrology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Coburn PT, Li X, Li JY, Kishimoto Y, Li-Jessen NY. Progress in Vocal Fold Regenerative Biomaterials: An Immunological Perspective. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100119. [PMID: 35434718 PMCID: PMC9007544 DOI: 10.1002/anbr.202100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vocal folds, housed in the upper respiratory tract, are important to daily breathing, speech and swallowing functions. Irreversible changes to the vocal fold mucosae, such as scarring and atrophy, require a regenerative medicine approach to promote a controlled regrowth of the extracellular matrix (ECM)-rich mucosa. Various biomaterial systems have been engineered with an emphasis on stimulating local vocal fold fibroblasts to produce new ECM. At the same time, it is imperative to limit the foreign body reaction and associated immune components that can hinder the integration of the biomaterial into the host tissue. Modern biomaterial designs have become increasingly focused on actively harnessing the immune system to accelerate and optimize the process of tissue regeneration. An array of physical and chemical biomaterial parameters have been reported to effectively modulate local immune cells, such as macrophages, to initiate tissue repair, stimulate ECM production, promote biomaterial-tissue integration, and restore the function of the vocal folds. In this perspective paper, the unique immunological profile of the vocal folds will first be reviewed. Key physical and chemical biomaterial properties relevant to immunomodulation will then be highlighted and discussed. A further examination of the physicochemical properties of recent vocal fold biomaterials will follow to generate deeper insights into corresponding immune-related outcomes. Lastly, a perspective will be offered on the opportunity of integrating material-led immunomodulatory strategies into future vocal fold tissue engineering therapies.
Collapse
Affiliation(s)
- Patrick T. Coburn
- School of Communication Sciences and Disorders, McGill University, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, Canada
| | - Jianyu. Y. Li
- Department of Mechanical Engineering, McGill University, Canada
- Department of Biomedical Engineering, McGill University, Canada
| | - Yo Kishimoto
- Department of Otolaryngology – Head & Neck Surgery, Kyoto University, Kyoto, Japan
| | - Nicole Y.K. Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Canada
- Department of Biomedical Engineering, McGill University, Canada
- Department of Otolaryngology – Head & Neck Surgery, McGill University, Canada
| |
Collapse
|
10
|
Liu Q, Zhang L, Allman EL, Hubbard TD, Murray IA, Hao F, Tian Y, Gui W, Nichols RG, Smith PB, Anitha M, Perdew GH, Patterson AD. The aryl hydrocarbon receptor activates ceramide biosynthesis in mice contributing to hepatic lipogenesis. Toxicology 2021; 458:152831. [PMID: 34097992 DOI: 10.1016/j.tox.2021.152831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
Aryl hydrocarbon receptor (AHR) activation via 2,3,7,8-tetrachlorodibenzofuran (TCDF) induces the accumulation of hepatic lipids. Here we report that AHR activation by TCDF (24 μg/kg body weight given orally for five days) induced significant elevation of hepatic lipids including ceramides in mice, was associated with increased expression of key ceramide biosynthetic genes, and increased activity of their respective enzymes. Results from chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and cell-based reporter luciferase assays indicated that AHR directly activated the serine palmitoyltransferase long chain base subunit 2 (Sptlc2, encodes serine palmitoyltransferase 2 (SPT2)) gene whose product catalyzes the initial rate-limiting step in de novo sphingolipid biosynthesis. Hepatic ceramide accumulation was further confirmed by mass spectrometry-based lipidomics. Taken together, our results revealed that AHR activation results in the up-regulation of Sptlc2, leading to ceramide accumulation, thus promoting lipogenesis, which can induce hepatic lipid accumulation.
Collapse
Affiliation(s)
- Qing Liu
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
| | - Erik L Allman
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Troy D Hubbard
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Iain A Murray
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuan Tian
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wei Gui
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Robert G Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Philip B Smith
- Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Mallappa Anitha
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary H Perdew
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Costantini A, Muurinen MH, Mäkitie O. New gene discoveries in skeletal diseases with short stature. Endocr Connect 2021; 10:R160-R174. [PMID: 33830070 PMCID: PMC8183621 DOI: 10.1530/ec-21-0083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
In the last decade, the widespread use of massively parallel sequencing has considerably boosted the number of novel gene discoveries in monogenic skeletal diseases with short stature. Defects in genes playing a role in the maintenance and function of the growth plate, the site of longitudinal bone growth, are a well-known cause of skeletal diseases with short stature. However, several genes involved in extracellular matrix composition or maintenance as well as genes partaking in various biological processes have also been characterized. This review aims to describe the latest genetic findings in spondyloepiphyseal dysplasias, spondyloepimetaphyseal dysplasias, and some monogenic forms of isolated short stature. Some examples of novel genetic mechanisms leading to skeletal conditions with short stature will be described. Strategies on how to successfully characterize novel skeletal phenotypes with short stature and genetic approaches to detect and validate novel gene-disease correlations will be discussed in detail. In summary, we review the latest gene discoveries underlying skeletal diseases with short stature and emphasize the importance of characterizing novel molecular mechanisms for genetic counseling, for an optimal management of the disease, and for therapeutic innovations.
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mari H Muurinen
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Correspondence should be addressed to O Mäkitie:
| |
Collapse
|
12
|
Icick R, Forget B, Cloëz-Tayarani I, Pons S, Maskos U, Besson M. Genetic susceptibility to nicotine addiction: Advances and shortcomings in our understanding of the CHRNA5/A3/B4 gene cluster contribution. Neuropharmacology 2020; 177:108234. [PMID: 32738310 DOI: 10.1016/j.neuropharm.2020.108234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Over the last decade, robust human genetic findings have been instrumental in elucidating the heritable basis of nicotine addiction (NA). They highlight coding and synonymous polymorphisms in a cluster on chromosome 15, encompassing the CHRNA5, CHRNA3 and CHRNB4 genes, coding for three subunits of the nicotinic acetylcholine receptor (nAChR). They have inspired an important number of preclinical studies, and will hopefully lead to the definition of novel drug targets for treating NA. Here, we review these candidate gene and genome-wide association studies (GWAS) and their direct implication in human brain function and NA-related phenotypes. We continue with a description of preclinical work in transgenic rodents that has led to a mechanistic understanding of several of the genetic hits. We also highlight important issues with regards to CHRNA3 and CHRNB4 where we are still lacking a dissection of their role in NA, including even in preclinical models. We further emphasize the use of human induced pluripotent stem cell-derived models for the analysis of synonymous and intronic variants on a human genomic background. Finally, we indicate potential avenues to further our understanding of the role of this human genetic variation. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis, Lariboisière, Fernand Widal, Assistance-Publique Hôpitaux de Paris, Paris, F-75010, France; INSERM UMR-S1144, Paris, F-75006, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Génétique Humaine et Fonctions Cognitives, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Isabelle Cloëz-Tayarani
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Stéphanie Pons
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France.
| |
Collapse
|
13
|
Eltokhi A, Kurpiers B, Pitzer C. Behavioral tests assessing neuropsychiatric phenotypes in adolescent mice reveal strain- and sex-specific effects. Sci Rep 2020; 10:11263. [PMID: 32647155 PMCID: PMC7347854 DOI: 10.1038/s41598-020-67758-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
In humans, infancy and adolescence are associated with major changes in synaptic functions and ongoing maturation of neural networks, which underlie the major behavioral changes during these periods. Among adult cases with neuropsychiatric disorders including autism spectrum disorder, schizophrenia, attention deficit hyperactivity, and bipolar disorders, 50% have developed behavioral symptoms and received a diagnosis before 15 years of age. However, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we explored which behavioral experiments assessing neuropsychiatric phenotypes can be performed during a specific window of development in adolescent male and female C57BL/6N, DBA/2, and FVB/N mice that are typically used as background strains for generating genetically-modified mouse models. The three wild-type strains were evaluated across anxiety, social behaviors, and cognitive functions in order to cover the main behavioral impairments that occur in neuropsychiatric disorders. During adolescence, the three strains displayed significant differences under certain behavioral paradigms. In addition, C57BL/6N and FVB/N, but not DBA/2 mice revealed some sex-related differences. Our results provide new insights into discrete behaviors during development and emphasize the crucial importance of the genetic background, sex, and experimental settings in the age-dependent regulation of different behaviors.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. .,Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany.
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
14
|
Sun S, White RR, Fischer KE, Zhang Z, Austad SN, Vijg J. Inducible aging in Hydra oligactis implicates sexual reproduction, loss of stem cells, and genome maintenance as major pathways. GeroScience 2020; 42:1119-1132. [PMID: 32578072 DOI: 10.1007/s11357-020-00214-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Freshwater polyps of the genus Hydra do not age. However, temperature stress induces aging and a shift from reproduction by asexual budding to sexual gamete production in a cold-sensitive (CS) strain of H. oligactis. We sequenced the transcriptome of a male CS strain before and after this life history shift and compared changes in gene expression relative to those seen in a cold-resistant (CR) strain that does not undergo a life history shift in response to altered temperature. We found that the switch from non-aging asexual reproduction to aging and sexual reproduction involves upregulation of genes not only involved in gametogenesis but also genes involved in cellular senescence, apoptosis, and DNA repair accompanied by a downregulation of genes involved in stem cell maintenance. These results suggest that aging is a byproduct of sexual reproduction-associated cellular reprogramming and underscore the power of these H. oligactis strains to identify intrinsic mechanisms of aging.
Collapse
Affiliation(s)
- Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ryan R White
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Kathleen E Fischer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Kwofie SK, Adobor C, Quansah E, Bentil J, Ampadu M, Miller WA, Wilson MD. Molecular docking and dynamics simulations studies of OmpATb identifies four potential novel natural product-derived anti-Mycobacterium tuberculosis compounds. Comput Biol Med 2020; 122:103811. [PMID: 32479349 DOI: 10.1016/j.compbiomed.2020.103811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/18/2022]
Abstract
The outer membrane protein A (OmpATb) of Mycobacterium tuberculosis is a virulence factor that neutralizes the host pH to impede the uptake of hydrophilic antitubercular drugs. Identifying natural compounds with the potential to inhibit OmpATb could allow circumvention of the porin-like activities of OmpATb. Four potential leads comprising ZINC000003958185, ZINC000000157405, ZINC000000001392 and ZINC000034268676 were obtained by virtual screening of 6394 diverse natural products. Characterization of the binding interactions of the potential leads with OmpATb revealed nine critical residues comprising ARG86, LEU110, LEU113, LEU114, ALA115, PHE142, SER145, VAL146, and PHE151. Molecular dynamics simulations also revealed very stable protein-lead complexes. Most residues contributed lower binding energies to the overall molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energies of the interactions between the molecules and OmpATb protein. Induced Fit Docking (IFD) of the compounds regenerated poses of the molecular docking using AutoDock Vina. These molecules could be starting templates for designing inhibitors to bypass the pore mediating activities of OmpATb. Based on structural similarity, ZINC000034268676 was suggested as a potential scaffold for designing efflux pump inhibitors of the gate mediating activities of OmpATb and may enhance the uptake of hydrophilic drugs to reduce the duration time of tuberculosis treatment. Furthermore, structurally similar compounds available in the DrugBank database with a similarity threshold of 0.7 have been reported to exhibit antitubercular and anti-mycobacterial activities. These biomolecules can be further characterized experimentally to corroborate their antitubercular activity. Also, the skeletons of the molecules can be adopted as sub-structures for the design of future anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana; Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, 29528, USA.
| | - Courage Adobor
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Erasmus Quansah
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Joana Bentil
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Michael Ampadu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Whelton A Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana; Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| |
Collapse
|
16
|
Mitigating Effect of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol (PLAG) on a Murine Model of 5-Fluorouracil-Induced Hematological Toxicity. Cancers (Basel) 2019; 11:cancers11111811. [PMID: 31752148 PMCID: PMC6896120 DOI: 10.3390/cancers11111811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022] Open
Abstract
5-Fluorouracil (5-FU) is an antimetabolite chemotherapy widely used for the treatment of various cancers. However, many cancer patients experience hematological side effects following 5-FU treatment. Here, we investigated the protective effects of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) as a mitigator against 5-FU-induced hematologic toxicity, including neutropenia, monocytopenia, thrombocytopenia, and thrombocytosis, in Balb/c mice injected with 5-FU (100 mg/kg, i.p.). Administration of PLAG significantly and dose-dependently reduced the duration of neutropenia and improved the nadirs of absolute neutrophil counts (ANCs). Moreover, while the ANCs of all mice in the control fell to the severely neutropenic range, none of the mice in the PLAG 200 and 400 mg/kg-treated groups experienced severe neutropenia. Administration of PLAG significantly delayed the mean first day of monocytopenia and reduced the duration of monocytopenia. PLAG also effectively reduced extreme changes in platelet counts induced by 5-FU treatment, thus preventing 5-FU-induced thrombocytopenia and thrombocytosis. PLAG significantly decreased plasma levels of the chemokine (C–X–C motif) ligand 1 (CXCL1), CXCL2, interleukin (IL)-6, and C-reactive protein (CRP), which were elevated consistently with the occurrence time of neutropenia, monocytopenia, and thrombocytopenia. When compared with olive oil and palmitic linoleic hydroxyl glycerol (PLH), only PLAG effectively mitigated 5-FU-induced hematological toxicity, indicating that it has a distinctive mechanism of action. In conclusion, PLAG may have therapeutic potential as a mitigator for 5-FU-induced neutropenia and other hematological disorders.
Collapse
|
17
|
Myocardial regeneration: role of epicardium and implicated genes. Mol Biol Rep 2019; 46:6661-6674. [PMID: 31549371 DOI: 10.1007/s11033-019-05075-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
Abstract
Lower invertebrates' hearts such as those of zebrafish have the capacity for scarless myocardial regeneration which is lost by mammalian hearts as they form a fibrotic scar tissue instead of regenerating the injured area. However, neonatal mammalian hearts have a remarkable capacity for regeneration highlighting conserved evolutionary mechanisms underlying such a process. Studies investigated the underlying mechanism of myocardial regeneration in species capable to do so, to see its applicability on mammals. The epicardium, the mesothelial outer layer of the vertebrate heart, has proven to play an important role in the process of repair and regeneration. It serves as an important source of smooth muscle cells, cardiac fibroblasts, endothelial cells, stem cells, and signaling molecules that are involved in this process. Here we review the role of the epicardium in myocardial regeneration focusing on the different involved; Activation, epithelial to mesenchymal transition, and differentiation. In addition, we will discuss its contributory role to different aspects that support myocardial regeneration. Of these we will discuss angiogenesis and the formation of a regenerate extracellular matrix. Moreover, we will discuss several factors that act on the epicardium to affect regeneration. Finally, we will highlight the utility of the epicardium as a mode of cell therapy in the treatment of myocardial injury.
Collapse
|
18
|
Woo XY, Srivastava A, Graber JH, Yadav V, Sarsani VK, Simons A, Beane G, Grubb S, Ananda G, Liu R, Stafford G, Chuang JH, Airhart SD, Karuturi RKM, George J, Bult CJ. Genomic data analysis workflows for tumors from patient-derived xenografts (PDXs): challenges and guidelines. BMC Med Genomics 2019; 12:92. [PMID: 31262303 PMCID: PMC6604205 DOI: 10.1186/s12920-019-0551-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) models are in vivo models of human cancer that have been used for translational cancer research and therapy selection for individual patients. The Jackson Laboratory (JAX) PDX resource comprises 455 models originating from 34 different primary sites (as of 05/08/2019). The models undergo rigorous quality control and are genomically characterized to identify somatic mutations, copy number alterations, and transcriptional profiles. Bioinformatics workflows for analyzing genomic data obtained from human tumors engrafted in a mouse host (i.e., Patient-Derived Xenografts; PDXs) must address challenges such as discriminating between mouse and human sequence reads and accurately identifying somatic mutations and copy number alterations when paired non-tumor DNA from the patient is not available for comparison. RESULTS We report here data analysis workflows and guidelines that address these challenges and achieve reliable identification of somatic mutations, copy number alterations, and transcriptomic profiles of tumors from PDX models that lack genomic data from paired non-tumor tissue for comparison. Our workflows incorporate commonly used software and public databases but are tailored to address the specific challenges of PDX genomics data analysis through parameter tuning and customized data filters and result in improved accuracy for the detection of somatic alterations in PDX models. We also report a gene expression-based classifier that can identify EBV-transformed tumors. We validated our analytical approaches using data simulations and demonstrated the overall concordance of the genomic properties of xenograft tumors with data from primary human tumors in The Cancer Genome Atlas (TCGA). CONCLUSIONS The analysis workflows that we have developed to accurately predict somatic profiles of tumors from PDX models that lack normal tissue for comparison enable the identification of the key oncogenic genomic and expression signatures to support model selection and/or biomarker development in therapeutic studies. A reference implementation of our analysis recommendations is available at https://github.com/TheJacksonLaboratory/PDX-Analysis-Workflows .
Collapse
Affiliation(s)
- Xing Yi Woo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Anuj Srivastava
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Joel H Graber
- MDI Biological Laboratory, Bar Harbor, ME, 04609, USA
| | - Vinod Yadav
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Present Address: Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vishal Kumar Sarsani
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04609, USA
- Present Address: University of Massachusetts, Amherst, MA, 01003, USA
| | - Al Simons
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04609, USA
| | - Glen Beane
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04609, USA
| | - Stephen Grubb
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04609, USA
| | - Guruprasad Ananda
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Rangjiao Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Present Address: Novogene Corporation, Rockville, MD, 20850, USA
| | - Grace Stafford
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04609, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Susan D Airhart
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04609, USA
| | | | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA.
| | - Carol J Bult
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
19
|
Abstract
Rapidly improving sequencing technology coupled with computational developments in sequence assembly are making reference-quality genome assembly economical. Hundreds of vertebrate genome assemblies are now publicly available, and projects are being proposed to sequence thousands of additional species in the next few years. Such dense sampling of the tree of life should give an unprecedented new understanding of evolution and allow a detailed determination of the events that led to the wealth of biodiversity around us. To gain this knowledge, these new genomes must be compared through genome alignment (at the sequence level) and comparative annotation (at the gene level). However, different alignment and annotation methods have different characteristics; before starting a comparative genomics analysis, it is important to understand the nature of, and biases and limitations inherent in, the chosen methods. This review is intended to act as a technical but high-level overview of the field that should provide this understanding. We briefly survey the state of the genome alignment and comparative annotation fields and potential future directions for these fields in a new, large-scale era of comparative genomics.
Collapse
Affiliation(s)
- Joel Armstrong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| | - Ian T Fiddes
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
- 10x Genomics, Pleasanton, California 94566, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
20
|
|
21
|
Nery TGM, Silva EM, Tavares R, Passetti F. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 2018; 67:150-164. [PMID: 30554402 DOI: 10.1007/s12031-018-1220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, Parkinson's disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.
Collapse
Affiliation(s)
- Thais Guimarães Martins Nery
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Esdras Matheus Silva
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
22
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
23
|
Zhang H, Hou K, Chen J, Dyer BA, Chen JC, Liu X, Zhang F, Rong Y, Qiu J. Fabrication of an anthropomorphic heterogeneous mouse phantom for multimodality medical imaging. Phys Med Biol 2018; 63:195011. [PMID: 30183686 DOI: 10.1088/1361-6560/aadf2b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work presents a comprehensive methodology for constructing a tissue equivalent mouse phantom using image modeling and 3D printing technology. The phantom can be used in multimodality imaging and irradiation experiments, quality control, and management. Computed tomography (CT) images of a mouse were acquired and imported into 3D modeling software. A skeleton and skin shell models were segmented in the modeling software and manufactured using 3D printing technology. The bone model was constructed with VERO-WHITE printing material with additional ingredients, including a photosensitive resin, polyurethane epoxy resin, and acrylate. Acrylonitrile butadiene styrene resin material was used to construct the skin shell. The skin shell was attached to the skeleton and filled with a specially formulated gel to act as a soft tissue substitute. The gel consisted of agarose, micro-pearl powder, sodium chloride, and magnevist solution (gadopentetate dimeglumine). A micro-container filled with 18F-fluorodeoxyglucose (18F-FDG) radioactive tracer was placed in the abdomen for micro and human positron emission tomography (PET)/CT imaging. The mouse phantom had tissue equivalency in dose attenuation with x-rays and relaxation times with magnetic resonance imaging (MRI). The CT Hounsfield Unit (HU) range for the gel soft tissue material was 31-36 HU. The 3D printed bone mimetic material had equivalent tissue/bone contrast compared with in vivo mouse measurements with a mean value of 130 ± 10 HU. At different magnetic field strengths, the T 1 relaxation time of the soft tissue was 382.75-506.48 ms, and T 2 was 51.11-70.76 ms. 18F-FDG tracer could be clearly observed in PET imaging. The 3D printed mouse phantom was successfully constructed with tissue-equivalent materials. Our model can be used for CT, MRI, and PET as a standard device for small-animal imaging and quality control.
Collapse
Affiliation(s)
- Haozhao Zhang
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, Shandong, 271016, People's Republic of China. HZ and KH contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
25
|
Golestan Hashemi FS, Razi Ismail M, Rafii Yusop M, Golestan Hashemi MS, Nadimi Shahraki MH, Rastegari H, Miah G, Aslani F. Intelligent mining of large-scale bio-data: Bioinformatics applications. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1364977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Farahnaz Sadat Golestan Hashemi
- Plant Genetics, AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liege, Liege, Belgium
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Razi Ismail
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Rafii Yusop
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mahboobe Sadat Golestan Hashemi
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Hossein Nadimi Shahraki
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Hamid Rastegari
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
| | - Gous Miah
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Jennings CG, Landman R, Zhou Y, Sharma J, Hyman J, Movshon JA, Qiu Z, Roberts AC, Roe AW, Wang X, Zhou H, Wang L, Zhang F, Desimone R, Feng G. Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat Neurosci 2017; 19:1123-30. [PMID: 27571191 DOI: 10.1038/nn.4362] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Abstract
Molecular genetic tools have had a profound impact on neuroscience, but until recently their application has largely been confined to a few model species, most notably mouse, zebrafish, Drosophila melanogaster and Caenorhabditis elegans. With the development of new genome engineering technologies such as CRISPR, it is becoming increasingly feasible to apply these molecular tools in a wider range of species, including nonhuman primates. This will lead to many opportunities for brain research, but it will also pose challenges. Here we identify some of these opportunities and challenges in light of recent and foreseeable technological advances and offer some suggestions. Our main focus is on the creation of new primate disease models for understanding the pathological mechanisms of brain disorders and for developing new approaches to effective treatment. However, we also emphasize that primate genetic models have great potential to address many fundamental questions about brain function, providing an essential foundation for future progress in disease research.
Collapse
Affiliation(s)
- Charles G Jennings
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rogier Landman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yang Zhou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jitendra Sharma
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Julia Hyman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, New York, USA
| | - Zilong Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, China
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huihui Zhou
- The Brain Cognition and Brain Disease Institute (BCBDI) for Collaboration Research of SIAT at CAS and McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI) for Collaboration Research of SIAT at CAS and McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Feng Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Fine B, Vunjak-Novakovic G. Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue. ACS Biomater Sci Eng 2017; 3:1884-1897. [PMID: 33440547 DOI: 10.1021/acsbiomaterials.6b00662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We provide here an historical context of how studies utilizing engineered human cardiac muscle can complement and in some cases substitute animal and cell models for studies of disease and drug testing. We give an overview of the development of animal models and discuss the ability of novel human tissue models to overcome limited predictive power of cell culture and animal models in studies of drug efficacy and safety. The in vitro generation of cardiac tissue is discussed in the context of state of the art in the field. Finally we describe the assembly of multitissue platforms for more accurate representation of integrated human cardiac physiology and consider the advantages of in silico drug trials to augment our ability to predict drug-drug and organ-organ interactions in humans.
Collapse
Affiliation(s)
- Barry Fine
- Department of Biomedical Engineering and ‡Department of Medicine, Columbia University, New York, New York 10027, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York, New York 10027, United States
| |
Collapse
|
28
|
Flaherty EK, Brennand KJ. Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Res 2017; 1655:283-293. [PMID: 26581337 PMCID: PMC4865445 DOI: 10.1016/j.brainres.2015.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a neuropsychological disorder with a strong heritable component; genetic risk for schizophrenia is conferred by both common variants of relatively small effect and rare variants with high penetrance. Genetically engineered mouse models can recapitulate rare variants, displaying some behavioral defects associated with schizophrenia; however, these mouse models cannot recapitulate the full genetic architecture underlying the disorder. Patient-derived human induced pluripotent stem cells (hiPSCs) present an alternative approach for studying rare variants, in the context of all other risk alleles. Genome editing technologies, such as CRISPR-Cas9, enable the generation of isogenic hiPSC lines with which to examine the functional contribution of single variants within any genetic background. Studies of these rare variants using hiPSCs have the potential to identify commonly disrupted pathways in schizophrenia and allow for the identification of new therapeutic targets. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Erin K Flaherty
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1425 Madison Ave, New York, NY 10029, United States
| | - Kristen J Brennand
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1425 Madison Ave, New York, NY 10029, United States.
| |
Collapse
|
29
|
Kirkconnell KS, Magnuson B, Paulsen MT, Lu B, Bedi K, Ljungman M. Gene length as a biological timer to establish temporal transcriptional regulation. Cell Cycle 2017; 16:259-270. [PMID: 28055303 DOI: 10.1080/15384101.2016.1234550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs.
Collapse
Affiliation(s)
- Killeen S Kirkconnell
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,b Department of Human Genetics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Brian Magnuson
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Michelle T Paulsen
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Brian Lu
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Karan Bedi
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Mats Ljungman
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
30
|
Ludwig KR, Dahl R, Hummon AB. Evaluation of the mirn23a Cluster through an iTRAQ-based Quantitative Proteomic Approach. J Proteome Res 2016; 15:1497-505. [PMID: 27028342 DOI: 10.1021/acs.jproteome.5b01101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that are implicated in a number of disease states. MiRNAs can exist as individual entities or may be clustered and transcribed as a single polycistron. The mirn23a cluster consists of three miRNAs: miR-23a, miR-24-2, and miR-27a. Although these miRNAs are transcribed together, they often exist at varying levels in the cell. Despite the fact that the mirn23a cluster is known to play a role in a number of diseases and developmental processes, few direct targets have been identified. In this study, we examined the effects of miR-23a, miR-24-2, miR-27a, or the mirn23a cluster overexpression on the proteome of 70Z/3 pre-B lymphoblast cells. Quantitative mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ) allowed for the global profiling of cell lines after miRNA overexpression. We identified a number of targets of each miRNA that contained predicted miRNA seed sequences and are likely direct targets. In addition, we discovered a cohort of shared miRNA targets and cluster targets, demonstrating the importance of studying miRNA clusters in their entirety.
Collapse
Affiliation(s)
- Katelyn R Ludwig
- Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46617 United States
| | - Richard Dahl
- Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46617 United States.,Department of Microbiology and Immunology, Indiana University School of Medicine , South Bend, Indiana 46202 United States
| | - Amanda B Hummon
- Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46617 United States
| |
Collapse
|
31
|
Yu N, Guo X, Gu F, Pan Y. Signalign: An Ontology of DNA as Signal for Comparative Gene Structure Prediction Using Information-Coding-and-Processing Techniques. IEEE Trans Nanobioscience 2016; 15:119-30. [DOI: 10.1109/tnb.2016.2537831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Pseudo-Reference-Based Assembly of Vertebrate Transcriptomes. Genes (Basel) 2016; 7:genes7030010. [PMID: 26927182 PMCID: PMC4808791 DOI: 10.3390/genes7030010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 11/17/2022] Open
Abstract
High-throughput RNA sequencing (RNA-seq) provides a comprehensive picture of the transcriptome, including the identity, structure, quantity, and variability of expressed transcripts in cells, through the assembly of sequenced short RNA-seq reads. Although the reference-based approach guarantees the high quality of the resulting transcriptome, this approach is only applicable when the relevant reference genome is present. Here, we developed a pseudo-reference-based assembly (PRA) that reconstructs a transcriptome based on a linear regression function of the optimized mapping parameters and genetic distances of the closest species. Using the linear model, we reconstructed transcriptomes of four different aves, the white leg horn, turkey, duck, and zebra finch, with the Gallus gallus genome as a pseudo-reference, and of three primates, the chimpanzee, gorilla, and macaque, with the human genome as a pseudo-reference. The resulting transcriptomes show that the PRAs outperformed the de novo approach for species with within about 10% mutation rate among orthologous transcriptomes, enough to cover distantly related species as far as chicken and duck. Taken together, we suggest that the PRA method can be used as a tool for reconstructing transcriptome maps of vertebrates whose genomes have not yet been sequenced.
Collapse
|
33
|
Chen J, Shishkin AA, Zhu X, Kadri S, Maza I, Guttman M, Hanna JH, Regev A, Garber M. Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biol 2016; 17:19. [PMID: 26838501 PMCID: PMC4739325 DOI: 10.1186/s13059-016-0880-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/14/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recent advances in transcriptome sequencing have enabled the discovery of thousands of long non-coding RNAs (lncRNAs) across many species. Though several lncRNAs have been shown to play important roles in diverse biological processes, the functions and mechanisms of most lncRNAs remain unknown. Two significant obstacles lie between transcriptome sequencing and functional characterization of lncRNAs: identifying truly non-coding genes from de novo reconstructed transcriptomes, and prioritizing the hundreds of resulting putative lncRNAs for downstream experimental interrogation. RESULTS We present slncky, a lncRNA discovery tool that produces a high-quality set of lncRNAs from RNA-sequencing data and further uses evolutionary constraint to prioritize lncRNAs that are likely to be functionally important. Our automated filtering pipeline is comparable to manual curation efforts and more sensitive than previously published computational approaches. Furthermore, we developed a sensitive alignment pipeline for aligning lncRNA loci and propose new evolutionary metrics relevant for analyzing sequence and transcript evolution. Our analysis reveals that evolutionary selection acts in several distinct patterns, and uncovers two notable classes of intergenic lncRNAs: one showing strong purifying selection on RNA sequence and another where constraint is restricted to the regulation but not the sequence of the transcript. CONCLUSION Our results highlight that lncRNAs are not a homogenous class of molecules but rather a mixture of multiple functional classes with distinct biological mechanism and/or roles. Our novel comparative methods for lncRNAs reveals 233 constrained lncRNAs out of tens of thousands of currently annotated transcripts, which we make available through the slncky Evolution Browser.
Collapse
Affiliation(s)
- Jenny Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA
| | - Alexander A Shishkin
- Division of Biology and Biological Engineering, California Institute of Technology, Cambridge, MA, 02140, USA
| | - Xiaopeng Zhu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Sabah Kadri
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Itay Maza
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Cambridge, MA, 02140, USA
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA. .,Program in Molecular Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
34
|
Wu C, Sudheendran N, Singh M, Larina IV, Dickinson ME, Larin KV. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26002. [PMID: 26848543 PMCID: PMC4748608 DOI: 10.1117/1.jbo.21.2.026002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT.
Collapse
Affiliation(s)
- Chen Wu
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Narendran Sudheendran
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, 36 Lenin Avenue, Tomsk 634050, Russia
- Address all correspondence to: Kirill V. Larin, E-mail:
| |
Collapse
|
35
|
A Comprehensive Review of Emerging Computational Methods for Gene Identification. JOURNAL OF INFORMATION PROCESSING SYSTEMS 2016. [DOI: 10.3745/jips.04.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Khan MI, Kamal MS, Chowdhury L. MSuPDA: A Memory Efficient Algorithm for Sequence Alignment. Interdiscip Sci 2015; 8:84-94. [PMID: 26253720 DOI: 10.1007/s12539-015-0275-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/07/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022]
Abstract
Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair.
Collapse
Affiliation(s)
- Mohammad Ibrahim Khan
- Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Cuet Road, Chittagong, 4349, Bangladesh
| | - Md Sarwar Kamal
- Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Cuet Road, Chittagong, 4349, Bangladesh
| | - Linkon Chowdhury
- Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Cuet Road, Chittagong, 4349, Bangladesh.
| |
Collapse
|
37
|
Microfluidic Chip-LC/MS-based Glycomic Analysis Revealed Distinct N-glycan Profile of Rat Serum. Sci Rep 2015; 5:12844. [PMID: 26248949 PMCID: PMC4650694 DOI: 10.1038/srep12844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/03/2015] [Indexed: 12/30/2022] Open
Abstract
The rat is an important alternative for studying human pathology owing to certain similarities to humans. Glycomic studies on rat serum have revealed that variations in the N-glycans of glycoproteins correlated with disease progression, which is consistent with the findings in human serum. Therefore, we comprehensively characterized the rat serum N-glycome using microfluidic chip-LC-ESI-QTOF MS and MS/MS techniques. In total, 282 N-glycans, including isomers, were identified. This study is the first to present comprehensive profiling of N-glycans containing O-acetylated sialic acid, among which 27 N-glycans are novel. In addition, the co-existence of N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc) in a single N-glycan ('mixed' N-glycan) was detected and represents a new type of N-glycan in rat serum. The existence of O-acetylated sialic acid is the characteristic feature of rat serum that distinguishes it from mouse and human sera. Comparisons between the rat, mouse, and human serum glycomes revealed that the rat glycome is more similar to that of human sera than to that of mouse sera. Our findings highlight the similarities between the glycomic profile of rat and human sera and provided important selection criteria for choosing an appropriate animal model for pathological and pharmacological studies.
Collapse
|
38
|
Weirick T, John D, Dimmeler S, Uchida S. C-It-Loci: a knowledge database for tissue-enriched loci. Bioinformatics 2015; 31:3537-43. [PMID: 26163692 DOI: 10.1093/bioinformatics/btv410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023] Open
Abstract
MOTIVATION Increasing evidences suggest that most of the genome is transcribed into RNAs, but many of them are not translated into proteins. All those RNAs that do not become proteins are called 'non-coding RNAs (ncRNAs)', which outnumbers protein-coding genes. Interestingly, these ncRNAs are shown to be more tissue specifically expressed than protein-coding genes. Given that tissue-specific expressions of transcripts suggest their importance in the expressed tissue, researchers are conducting biological experiments to elucidate the function of such ncRNAs. Owing greatly to the advancement of next-generation techniques, especially RNA-seq, the amount of high-throughput data are increasing rapidly. However, due to the complexity of the data as well as its high volume, it is not easy to re-analyze such data to extract tissue-specific expressions of ncRNAs from published datasets. RESULTS Here, we introduce a new knowledge database called 'C-It-Loci', which allows a user to screen for tissue-specific transcripts across three organisms: human, mouse and zebrafish. C-It-Loci is intuitive and easy to use to identify not only protein-coding genes but also ncRNAs from various tissues. C-It-Loci defines homology through sequence and positional conservation to allow for the extraction of species-conserved loci. C-It-Loci can be used as a starting point for further biological experiments. AVAILABILITY AND IMPLEMENTATION C-It-Loci is freely available online without registration at http://c-it-loci.uni-frankfurt.de. CONTACT uchida@med.uni-frankfurt.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tyler Weirick
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt and German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt and German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt and German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main, Germany
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt and German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Su Y, Zhu L, Menius A, Osborne J. Mixture models for gene expression experiments with two species. Hum Genomics 2014; 8:12. [PMID: 25085578 PMCID: PMC4135333 DOI: 10.1186/1479-7364-8-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 06/23/2014] [Indexed: 11/10/2022] Open
Abstract
Cross-species research in drug development is novel and challenging. A bivariate mixture model utilizing information across two species was proposed to solve the fundamental problem of identifying differentially expressed genes in microarray experiments in order to potentially improve the understanding of translation between preclinical and clinical studies for drug development. The proposed approach models the joint distribution of treatment effects estimated from independent linear models. The mixture model posits up to nine components, four of which include groups in which genes are differentially expressed in both species. A comprehensive simulation to evaluate the model performance and one application on a real world data set, a mouse and human type II diabetes experiment, suggest that the proposed model, though highly structured, can handle various configurations of differential gene expression and is practically useful on identifying differentially expressed genes, especially when the magnitude of differential expression due to different treatment intervention is weak. In the mouse and human application, the proposed mixture model was able to eliminate unimportant genes and identify a list of genes that were differentially expressed in both species and could be potential gene targets for drug development.
Collapse
Affiliation(s)
- Yuhua Su
- Dr, Su's Statistics & Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
40
|
Ma D, Cardoso MJ, Modat M, Powell N, Wells J, Holmes H, Wiseman F, Tybulewicz V, Fisher E, Lythgoe MF, Ourselin S. Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion. PLoS One 2014; 9:e86576. [PMID: 24475148 PMCID: PMC3903537 DOI: 10.1371/journal.pone.0086576] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/13/2013] [Indexed: 11/23/2022] Open
Abstract
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework.
Collapse
Affiliation(s)
- Da Ma
- Centre for Medical Imaging Computing, University College London, London, England, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, England, United Kingdom
| | - Manuel J. Cardoso
- Centre for Medical Imaging Computing, University College London, London, England, United Kingdom
| | - Marc Modat
- Centre for Medical Imaging Computing, University College London, London, England, United Kingdom
| | - Nick Powell
- Centre for Medical Imaging Computing, University College London, London, England, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, England, United Kingdom
| | - Jack Wells
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, England, United Kingdom
| | - Holly Holmes
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, England, United Kingdom
| | - Frances Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, England, United Kingdom
| | - Victor Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, England, United Kingdom
| | - Elizabeth Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, England, United Kingdom
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, England, United Kingdom
| | - Sébastien Ourselin
- Centre for Medical Imaging Computing, University College London, London, England, United Kingdom
| |
Collapse
|
41
|
Carotenoids gene markers for sweetpotato (Ipomoea batatas L. Lam): applications in genetic mapping, diversity evaluation and cross-species transference. Mol Genet Genomics 2014; 289:237-51. [PMID: 24384928 DOI: 10.1007/s00438-013-0803-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Carotenoids play essential biological roles in plants, and genes involved in the carotenoid biosynthesis pathway are evolutionarily conserved. Orange sweetpotato is an important source of β-carotene, a precursor of vitamin A. In spite of this, only a few research studies have focussed on the molecular aspects of carotenoid genes regarding their specific sequence and structure. In this study, we used published carotenoid gene sequences from Ipomoea and other species for "exon-primed intron-crossing" approaches. Fifteen pairs of primers representing six carotenoid genes were designed for different introns, eleven of which amplified scorable and reproducible alleles. The sequence of PCR products showed high homology to the original ones. Moreover, the structure and sequence of the introns and exons from five carotenoid structural genes were partially defined. Intron length polymorphism and intron single nucleotide polymorphisms were detected in amplified sequences. Marker dosages and allelic segregations were analysed in a mapping population. The developed markers were evaluated in a set of Ipomoeas batatas accessions so as to analyse genetic diversity and conservation applicability. Using CG strategy combined with EPIC-PCR technique, we developed carotenoid gene markers in sweetpotato. We reported the first set of polymorphic Candidate Gene markers for I. batatas, and demonstrated transferability in seven wild Ipomoea species. We described the sequence and structure of carotenoid genes and introduced new information about genomic constitution and allele dosage.
Collapse
|
42
|
Adi SS, Ferreira CE. Syntenic global alignment and its application to the gene prediction problem. JOURNAL OF THE BRAZILIAN COMPUTER SOCIETY 2013. [DOI: 10.1007/s13173-013-0115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstract
Given the increasing number of available genomic sequences, one now faces the task of identifying their protein coding regions. The gene prediction problem can be addressed in several ways, and one of the most promising methods makes use of information derived from the comparison of homologous sequences. In this work, we develop a new comparative-based gene prediction program, called Exon_Finder2. This tool is based on a new type of alignment we propose, called syntenic global alignment, that can deal satisfactorily with sequences that share regions with different rates of conservation. In addition to this new type of alignment itself, we also describe a dynamic programming algorithm that computes a best syntenic global alignment of two sequences, as well as its related score. The applicability of our approach was validated by the promising initial results achieved by Exon_Finder2. On a benchmark including 120 pairs of human and mouse genomic sequences, most of their encoded genes were successfully identified by our program.
Collapse
|
43
|
Heuristic alignment methods. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 1079:29-43. [PMID: 24170393 DOI: 10.1007/978-1-62703-646-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Computation of multiple sequence alignment (MSA) is usually formulated as a combinatory optimization problem of an objective function. Solving the problem for virtually all sensible objective functions is known to be NP-complete implying that some heuristics must be adopted. Several general strategies have been proven effective to obtain accurate MSAs in reasonable computational costs. This chapter is devoted to a brief summary of most successful heuristic approaches.
Collapse
|
44
|
Fong JH, Murphy TD, Pruitt KD. Comparison of RefSeq protein-coding regions in human and vertebrate genomes. BMC Genomics 2013; 14:654. [PMID: 24063302 PMCID: PMC3882889 DOI: 10.1186/1471-2164-14-654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Advances in high-throughput sequencing technology have yielded a large number of publicly available vertebrate genomes, many of which are selected for inclusion in NCBI's RefSeq project and subsequently processed by NCBI's eukaryotic annotation pipeline. Genome annotation results are affected by differences in available support evidence and may be impacted by annotation pipeline software changes over time. The RefSeq project has not previously assessed annotation trends across organisms or over time. To address this deficiency, we have developed a comparative protocol which integrates analysis of annotated protein-coding regions across a data set of vertebrate orthologs in genomic sequence coordinates, protein sequences, and protein features. RESULTS We assessed an ortholog dataset that includes 34 annotated vertebrate RefSeq genomes including human. We confirm that RefSeq protein-coding gene annotations in mammals exhibit considerable similarity. Over 50% of the orthologous protein-coding genes in 20 organisms are supported at the level of splicing conservation with at least three selected reference genomes. Approximately 7,500 ortholog sets include at least half of the analyzed organisms, show highly similar sequence and conserved splicing, and may serve as a minimal set of mammalian "core proteins" for initial assessment of new mammalian genomes. Additionally, 80% of the proteins analyzed pass a suite of tests to detect proteins that lack splicing conservation and have unusual sequence or domain annotation. We use these tests to define an annotation quality metric that is based directly on the annotated proteins thus operates independently of other quality metrics such as availability of transcripts or assembly quality measures. Results are available on the RefSeq FTP site [http://ftp.ncbi.nlm.nih.gov/refseq/supplemental/ProtCore/SM1.txt]. CONCLUSIONS Our multi-factored analysis demonstrates a high level of consistency in RefSeq protein representation among vertebrates. We find that the majority of the RefSeq vertebrate proteins for which we have calculated orthology are good as measured by these metrics. The process flow described provides specific information on the scope and degree of conservation for the analyzed protein sequences and annotations and will be used to enrich the quality of RefSeq records by identifying targets for further improvement in the computational annotation pipeline, and by flagging specific genes for manual curation.
Collapse
Affiliation(s)
- Jessica H Fong
- National Center for Biotechnology Information, U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
- Current address: 6425 Penn Ave. Suite 700, Pittsburgh, PA 15206, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
45
|
Neale DB, Langley CH, Salzberg SL, Wegrzyn JL. Open access to tree genomes: the path to a better forest. Genome Biol 2013; 14:120. [PMID: 23796049 PMCID: PMC3706761 DOI: 10.1186/gb-2013-14-6-120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An open-access culture and a well-developed comparative-genomics infrastructure must be developed in forest trees to derive the full potential of genome sequencing in this diverse group of plants that are the dominant species in much of the earth's terrestrial ecosystems.
Collapse
|
46
|
Menconi G, Battaglia G, Grossi R, Pisanti N, Marangoni R. Mobilomics in Saccharomyces cerevisiae strains. BMC Bioinformatics 2013; 14:102. [PMID: 23514613 PMCID: PMC3684551 DOI: 10.1186/1471-2105-14-102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/11/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus-like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. RESULTS Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non-conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra-specific comparison are sharp markers of inter-specific evolution: indeed, many events of non-conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. CONCLUSIONS The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to infer MGEs also for low coverage genomes with unresolved bases, where traditional approaches are largely ineffective.
Collapse
Affiliation(s)
- Giulia Menconi
- Istituto Nazionale di Alta Matematica, Città Universitaria, Roma, Italia
| | | | | | | | | |
Collapse
|
47
|
Unique profile of ordered arrangements of repetitive elements in the C57BL/6J mouse genome implicating their functional roles. PLoS One 2012; 7:e35156. [PMID: 22529984 PMCID: PMC3329453 DOI: 10.1371/journal.pone.0035156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/09/2012] [Indexed: 12/18/2022] Open
Abstract
The entirety of all protein coding sequences is reported to represent a small fraction (∼2%) of the mouse and human genomes; the vast majority of the rest of the genome is presumed to be repetitive elements (REs). In this study, the C57BL/6J mouse reference genome was subjected to an unbiased RE mining to establish a whole-genome profile of RE occurrence and arrangement. The C57BL/6J mouse genome was fragmented into an initial set of 5,321 units of 0.5 Mb, and surveyed for REs using unbiased self-alignment and dot-matrix protocols. The survey revealed that individual chromosomes had unique profiles of RE arrangement structures, named RE arrays. The RE populations in certain genomic regions were arranged into various forms of complexly organized structures using combinations of direct and/or inverse repeats. Some of these RE arrays spanned stretches of over 2 Mb, which may contribute to the structural configuration of the respective genomic regions. There were substantial differences in RE density among the 21 chromosomes, with chromosome Y being the most densely populated. In addition, the RE array population in the mouse chromosomes X and Y was substantially different from those of the reference human chromosomes. Conversion of the dot-matrix data pertaining to a tandem 13-repeat structure within the Ch7.032 genome unit into a line map of known REs revealed a repeat unit of ∼11.3 Kb as a mosaic of six different RE types. The data obtained from this study allowed for a comprehensive RE profiling, including the establishment of a library of RE arrays, of the reference mouse genome. Some of these RE arrays may participate in a spectrum of normal and disease biology that are specific for mice.
Collapse
|
48
|
Chua WWK, Kim JJ. BOAT: automatic alignment of biomedical ontologies using term informativeness and candidate selection. J Biomed Inform 2011; 45:337-49. [PMID: 22155335 DOI: 10.1016/j.jbi.2011.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/10/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
The biomedical sciences is one of the few domains where ontologies are widely being developed to facilitate information retrieval and knowledge sharing, but there still remains the problem that applications using different ontologies cannot share knowledge without explicit references between overlapping concepts. Ontology alignment is the task of identifying such equivalence relations between concepts across ontologies. Its application to the biomedical domain should address two open issues: (1) determining the equivalence of concept-pairs which have overlapping terms in their names, and (2) the high run-time required to align large ontologies which are typical in the biomedical domain. To address them, we present a novel approach, named the Biomedical Ontologies Alignment Technique (BOAT), which is state-of-the-art in terms of F-measure, precision and speed. A key feature of BOAT is that it considers the informativeness of each component word in the concept labels, which has significant impact on biomedical ontologies, resulting in a 12.2% increase in F-measure. Another important feature of BOAT is that it selects for comparison only concept pairs that show high likelihoods of equivalence, based on the similarity of their annotations. BOAT's F-measure of 0.88 for the alignment of the mouse and human anatomy ontologies is on par with that of another state-of-the-art matcher, AgreementMaker, while taking a shorter time.
Collapse
Affiliation(s)
- Watson Wei Khong Chua
- School of Computer Engineering, Nanyang Technological University, Block N4, 02a-32, Nanyang Avenue, Singapore 639798, Singapore.
| | | |
Collapse
|
49
|
Angunawela R, Poh R, Chaurasia S, Tan D, Mehta J. A mouse model of lamellar intrastromal femtosecond laser keratotomy: ultra-structural, inflammatory, and wound healing responses. Mol Vis 2011; 17:3005-12. [PMID: 22171154 PMCID: PMC3236073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/10/2011] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The availability of knockout mouse species provide a highly versatile platform for critically examining the corneal wound healing response. We aimed to develop and characterize the wound healing response in a mouse model of intrastromal femtosecond laser (FSL) keratotomy. METHODS An intrastromal lamellar dissection using a Visumax FSL was performed on 16 wild type mice (C57BL6) . The energy level was optimized at 150nJ. The FSL was programmed to perform a lamellar dissection at 50 µM depth without sidecut. The flap was not lifted. Fellow eyes were used as controls. Slit lamp photography and confocal microscopy were performed immediately before the mice were sacrificed 4 h, 1, 3, and 7 days post surgery. Corneas were harvested for immunocytochemistry, transmission electron microscopy (TEM) and light microscopy (LM). RESULTS Confocal microscopy showed an absence of keratocytes in the area immediately surrounding the dissection plane. The dissection plane and individual FSL plasma cavitation bubbles were clearly evident on TEM. There was evidence of Keratocyte cell death along the laser resection plane on TEM. LM revealed the dissection plane at a 20 µM depth, although not all epithelial cell layers were intact. Staining for monocytes using antibodies for CD11b (cluster of differentiation 11b) showed early migration at the peripheries at 4 h that increased at 24 h and became more central in treated corneas (p<0.001). Apoptotic cells were evident on TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay in the immediate ablation zone and were significantly raised at 4 and 24 h (p<0.001). Ki67 (Kiel 67 protein) positive proliferating keratocytes are evident at 3 days and increased significantly by 7 days (p<0.001). Minimal fibroblast (cluster of differentiation 90, CD90) transformation was seen at 1 week. No myofibroblasts were detected. DISCUSSION We have demonstrated that FSL lamellar cuts can be effectively performed on mice and that this model exhibits typical signs of the corneal wound healing response. This model could provide a ubiquitous platform in which to study corneal wound healing responses in both wild type and knockout mice species. The ability to create such a lamellar pocket may be utilizzd for intrastromal drug delivery.
Collapse
Affiliation(s)
- R.I. Angunawela
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore,Singapore National Eye Centre, Singapore
| | - R. Poh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - S.S. Chaurasia
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - D.T. Tan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore,Singapore National Eye Centre, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - J.S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore,Singapore National Eye Centre, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
50
|
Abstract
Fungal genome annotation is the starting point for analysis of genome content. This generally involves the application of diverse methods to identify features on a genome assembly such as protein-coding and non-coding genes, repeats and transposable elements, and pseudogenes. Here we describe tools and methods leveraged for eukaryotic genome annotation with a focus on the annotation of fungal nuclear and mitochondrial genomes. We highlight the application of the latest technologies and tools to improve the quality of predicted gene sets. The Broad Institute eukaryotic genome annotation pipeline is described as one example of how such methods and tools are integrated into a sequencing center's production genome annotation environment.
Collapse
Affiliation(s)
- Brian J Haas
- Genome Sequencing and Analysis Program, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, U.S.A
| | | | | | | | | |
Collapse
|