1
|
Lone IM, Zohud O, Midlej K, Brenner C, Iraqi FA. System genetic analysis of intestinal cancer and periodontitis development as influenced by aging and diabesity using Collaborative Cross mice. Animal Model Exp Med 2025; 8:758-770. [PMID: 39921239 PMCID: PMC12008441 DOI: 10.1002/ame2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/09/2025] [Indexed: 02/10/2025] Open
Abstract
It is increasingly recognized that young, chow-fed inbred mice poorly model the complexity of human carcinogenesis. In humans, age and adiposity are major risk factors for malignancies, but most genetically engineered mouse models (GEMM) induce carcinogenesis too rapidly to study these influences. Standard strains, such as C57BL/6, commonly used in GEMMs, further limit the exploration of aging and metabolic health effects. A similar challenge arises in modeling periodontitis, a disease influenced by aging, diabesity, and genetic architecture. We propose using diverse mouse populations with hybrid vigor, such as the Collaborative Cross (CC) × ApcMin hybrid, to slow disease progression and better model human colorectal cancer (CRC) and comorbidities. This perspective highlights the advantages of this model, where delayed carcinogenesis reveals interactions with aging and adiposity. Unlike ApcMin mice, which develop cancer rapidly, CC × ApcMin hybrids recapitulate human-like progression. This facilitates the identification of modifier loci affecting inflammation, diet susceptibility, organ size, and polyposis distribution. The CC × ApcMin model offers a transformative platform for studying CRC as a disease of adulthood, reflecting its complex interplay with aging and comorbidities. The insights gained from this approach will enhance early detection, management, and treatment strategies for CRC and related conditions.
Collapse
Affiliation(s)
- Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Charles Brenner
- Department of Diabetes and Cancer MetabolismBeckman Research InstituteDuarteCaliforniaUSA
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
2
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of Hepatic Lentiviral Vector Transduction: Implications for Preclinical Studies and Clinical Gene Therapy Protocols. Viruses 2025; 17:276. [PMID: 40007031 PMCID: PMC11861806 DOI: 10.3390/v17020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Lentiviral vector-transduced T cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the effects of host genetic variation on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that the CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, a moderate correlation between mouse-strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intrastrain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes found in the above QTLs are potential targets for personalized gene therapy protocols. Importantly, we identified two mouse strains that open new directions for characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel clinical protocols should be considered for non-fatal diseases.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Kuriakose D, Zhu HM, Zhao YL, Iraqi FA, Morahan G, Xiao ZC. Upstream regulation of microRNA-9 through a complex cellular machinery during neurogenesis. Brain Res 2025; 1848:149328. [PMID: 39547498 DOI: 10.1016/j.brainres.2024.149328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
While microRNAs (miRs) like miR-9 are crucial for neurogenesis and neuronal differentiation, their regulatory mechanisms are not well understood. miR-9 is highly expressed in the brain and plays a significant role in neurogenesis. Using the Collaborative Cross resource, we identified significant quantitative trait loci (QTL) through genetic analyses. We then characterized over 130 candidate genes within these QTL regions using RNA interference, qPCR, and neuronal differentiation assays, narrowing them down to 13 promising candidates. Among these, Panx2, Polr1c, and Mgea5 were found to colocalize in the neurogenic niches of the SVZ and DG regions, as shown by immunofluorescence. Further ChIP-seq and Co-IP analyses revealed their interaction and binding to the miR-9 locus, forming a DNA-protein regulatory complex we termed 'miRSome-9.' A 3C/ChIP-loop assay confirmed the chromatin organization of miRSome-9 at the miR-9 locus, shedding light on the upstream mechanisms regulating miR-9 expression during neurogenesis.
Collapse
Affiliation(s)
- Diji Kuriakose
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia.
| | - Hong-Mei Zhu
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Yi-Ling Zhao
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Fuad A Iraqi
- Department of Human Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, University of Western Australia of Medical Research, Perth, Australia
| | - Zhi-Cheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| |
Collapse
|
4
|
Paz A, Midlej K, Zohud O, Lone IM, Iraqi FA. The collaborative cross mouse for studying the effect of host genetic background on memory impairments due to obesity and diabetes. Animal Model Exp Med 2025; 8:126-141. [PMID: 39468690 PMCID: PMC11798739 DOI: 10.1002/ame2.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Over the past few decades, a threefold increase in obesity and type 2 diabetes (T2D) has placed a heavy burden on the health-care system and society. Previous studies have shown correlations between obesity, T2D, and neurodegenerative diseases, including dementia. It is imperative to further understand the relationship between obesity, T2D, and cognitive deficits. METHODS This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet (HFD) and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross (CC) mice. The CC mice are a genetically diverse panel derived from eight inbred strains. RESULTS Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line, C57BL/6J. CC037 line exhibited a substantial increase in body weight on HFD, whereas line CC005 exhibited differing responses based on sex. Glucose tolerance tests revealed significant variations, with some lines like CC005 showing a marked increase in area under the curve (AUC) values on HFD. Organ weights, including brain, spleen, liver, and kidney, varied significantly among the lines and sexes in response to HFD. Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background. CONCLUSIONS Our study establishes a foundation for future quantitative trait loci mapping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease (AD), caused by obesity and T2D. The genetic components may offer new tools for early prediction and prevention.
Collapse
Affiliation(s)
- Avia Paz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
5
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608805. [PMID: 39229157 PMCID: PMC11370356 DOI: 10.1101/2024.08.20.608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lentiviral vector-transduced T-cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the host genetic variation effects on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge-gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, moderate correlation between mouse strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intra-strain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes comprised in the above QTLs are potential targets to personalize gene therapy protocols. Importantly, we identified two mouse strains that open new directions in characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel escalating dose-based clinical protocols should be considered.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Carolina Institute for developmental disabilities, 27510 Carrboro, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, 27599 Chapel Hill, North Carolina
| |
Collapse
|
6
|
Fisher SA, Patrick K, Hoang T, Marcq E, Behrouzfar K, Young S, Miller TJ, Robinson BWS, Bueno R, Nowak AK, Lesterhuis WJ, Morahan G, Lake RA. The MexTAg collaborative cross: host genetics affects asbestos related disease latency, but has little influence once tumours develop. FRONTIERS IN TOXICOLOGY 2024; 6:1373003. [PMID: 38694815 PMCID: PMC11061428 DOI: 10.3389/ftox.2024.1373003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Objectives: This study combines two innovative mouse models in a major gene discovery project to assess the influence of host genetics on asbestos related disease (ARD). Conventional genetics studies provided evidence that some susceptibility to mesothelioma is genetic. However, the identification of host modifier genes, the roles they may play, and whether they contribute to disease susceptibility remain unknown. Here we report a study designed to rapidly identify genes associated with mesothelioma susceptibility by combining the Collaborative Cross (CC) resource with the well-characterised MexTAg mesothelioma mouse model. Methods: The CC is a powerful mouse resource that harnesses over 90% of common genetic variation in the mouse species, allowing rapid identification of genes mediating complex traits. MexTAg mice rapidly, uniformly, and predictably develop mesothelioma, but only after asbestos exposure. To assess the influence of host genetics on ARD, we crossed 72 genetically distinct CC mouse strains with MexTAg mice and exposed the resulting CC-MexTAg (CCMT) progeny to asbestos and monitored them for traits including overall survival, the time to ARD onset (latency), the time between ARD onset and euthanasia (disease progression) and ascites volume. We identified phenotype-specific modifier genes associated with these traits and we validated the role of human orthologues in asbestos-induced carcinogenesis using human mesothelioma datasets. Results: We generated 72 genetically distinct CCMT strains and exposed their progeny (2,562 in total) to asbestos. Reflecting the genetic diversity of the CC, there was considerable variation in overall survival and disease latency. Surprisingly, however, there was no variation in disease progression, demonstrating that host genetic factors do have a significant influence during disease latency but have a limited role once disease is established. Quantitative trait loci (QTL) affecting ARD survival/latency were identified on chromosomes 6, 12 and X. Of the 97-protein coding candidate modifier genes that spanned these QTL, eight genes (CPED1, ORS1, NDUFA1, HS1BP3, IL13RA1, LSM8, TES and TSPAN12) were found to significantly affect outcome in both CCMT and human mesothelioma datasets. Conclusion: Host genetic factors affect susceptibility to development of asbestos associated disease. However, following mesothelioma establishment, genetic variation in molecular or immunological mechanisms did not affect disease progression. Identification of multiple candidate modifier genes and their human homologues with known associations in other advanced stage or metastatic cancers highlights the complexity of ARD and may provide a pathway to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Scott A. Fisher
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Kimberley Patrick
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Tracy Hoang
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Elly Marcq
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiarash Behrouzfar
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Sylvia Young
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Timothy J. Miller
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Bruce W. S. Robinson
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Raphael Bueno
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | | | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Dumont BL, Gatti DM, Ballinger MA, Lin D, Phifer-Rixey M, Sheehan MJ, Suzuki TA, Wooldridge LK, Frempong HO, Lawal RA, Churchill GA, Lutz C, Rosenthal N, White JK, Nachman MW. Into the Wild: A novel wild-derived inbred strain resource expands the genomic and phenotypic diversity of laboratory mouse models. PLoS Genet 2024; 20:e1011228. [PMID: 38598567 PMCID: PMC11034653 DOI: 10.1371/journal.pgen.1011228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for over a century. However, laboratory mice capture only a subset of the genetic variation found in wild mouse populations, ultimately limiting the potential of classical inbred strains to uncover phenotype-associated variants and pathways. Wild mouse populations are reservoirs of genetic diversity that could facilitate the discovery of new functional and disease-associated alleles, but the scarcity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently developed, sequenced, and phenotyped a set of 11 inbred strains derived from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from one of five environmentally distinct locations across North and South America. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the GRCm39 mouse reference, with 42.5% of variants in the Nachman strain genomes absent from current classical inbred mouse strain panels. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels. These novel wild-derived inbred mouse strain resources are set to empower new discoveries in both basic and preclinical research.
Collapse
Affiliation(s)
- Beth L. Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Daniel M. Gatti
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Mallory A. Ballinger
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Dana Lin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan Phifer-Rixey
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Taichi A. Suzuki
- College of Health Solutions and Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, United States of America
| | - Lydia K. Wooldridge
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Hilda Opoku Frempong
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Raman Akinyanju Lawal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jacqueline K. White
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology, Museum of Vertebrate Zoology, and Center for Computational Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
8
|
Shannon T, Cotter C, Fitzgerald J, Houle S, Levine N, Shen Y, Rajjoub N, Dobres S, Iyer S, Xenakis J, Lynch R, de Villena FPM, Kokiko-Cochran O, Gu B. Genetic diversity drives extreme responses to traumatic brain injury and post-traumatic epilepsy. Exp Neurol 2024; 374:114677. [PMID: 38185315 DOI: 10.1016/j.expneurol.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Traumatic brain injury (TBI) is a complex and heterogeneous condition that can cause wide-spectral neurological sequelae such as behavioral deficits, sleep abnormalities, and post-traumatic epilepsy (PTE). However, understanding the interaction of TBI phenome is challenging because few animal models can recapitulate the heterogeneity of TBI outcomes. We leveraged the genetically diverse recombinant inbred Collaborative Cross (CC) mice panel and systematically characterized TBI-related outcomes in males from 12 strains of CC and the reference C57BL/6J mice. We identified unprecedented extreme responses in multiple clinically relevant traits across CC strains, including weight change, mortality, locomotor activity, cognition, and sleep. Notably, we identified CC031 mouse strain as the first rodent model of PTE that exhibit frequent and progressive post-traumatic seizures after moderate TBI induced by lateral fluid percussion. Multivariate analysis pinpointed novel biological interactions and three principal components across TBI-related modalities. Estimate of the proportion of TBI phenotypic variability attributable to strain revealed large range of heritability, including >70% heritability of open arm entry time of elevated plus maze. Our work provides novel resources and models that can facilitate genetic mapping and the understanding of the pathobiology of TBI and PTE.
Collapse
Affiliation(s)
- Tyler Shannon
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Christopher Cotter
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Julie Fitzgerald
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Samuel Houle
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Noah Levine
- Electrical and Computer Engineering Program, Ohio State University, Columbus, USA
| | - Yuyan Shen
- Department of Neuroscience, Ohio State University, Columbus, USA; College of Veterinary Medicine, Ohio State University, Columbus, USA
| | - Noora Rajjoub
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Shannon Dobres
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Sidharth Iyer
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - James Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Rachel Lynch
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Olga Kokiko-Cochran
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA; Chronic Brain Injury Program, Ohio State University, Columbus, USA
| | - Bin Gu
- Department of Neuroscience, Ohio State University, Columbus, USA; Chronic Brain Injury Program, Ohio State University, Columbus, USA.
| |
Collapse
|
9
|
Yosief RHS, Lone IM, Nachshon A, Himmelbauer H, Gat‐Viks I, Iraqi FA. Identifying genetic susceptibility to Aspergillus fumigatus infection using collaborative cross mice and RNA-Seq approach. Animal Model Exp Med 2024; 7:36-47. [PMID: 38356021 PMCID: PMC10961901 DOI: 10.1002/ame2.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Aspergillus fumigatus (Af) is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic background. The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus (Af) using an RNAseq approach in CC lines and hepatic gene expression. METHODS We studied 31 male mice from 25 CC lines at 8 weeks old; the mice were infected with Af. Liver tissues were extracted from these mice 5 days post-infection, and next-generation RNA-sequencing (RNAseq) was performed. The GENE-E analysis platform was used to generate a clustered heat map matrix. RESULTS Significant variation in body weight changes between CC lines was observed. Hepatic gene expression revealed 12 top prioritized candidate genes differentially expressed in resistant versus susceptible mice based on body weight changes. Interestingly, three candidate genes are located within genomic intervals of the previously mapped quantitative trait loci (QTL), including Gm16270 and Stox1 on chromosome 10 and Gm11033 on chromosome 8. CONCLUSIONS Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af. As a next step, eQTL analysis will be performed for our RNA-Seq data. Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.
Collapse
Affiliation(s)
- Roa'a H. S. Yosief
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Aharon Nachshon
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 181190 ViennaAustria
| | - Irit Gat‐Viks
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
10
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
11
|
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023; 12:2178242. [PMID: 36748729 PMCID: PMC9970229 DOI: 10.1080/22221751.2023.2178242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China, Jiangning Liu
| |
Collapse
|
12
|
Qahaz N, Lone IM, Khadija A, Ghnaim A, Zohud O, Nun NB, Nashef A, Abu El-Naaj I, Iraqi FA. Host Genetic Background Effect on Body Weight Changes Influenced by Heterozygous Smad4 Knockout Using Collaborative Cross Mouse Population. Int J Mol Sci 2023; 24:16136. [PMID: 38003328 PMCID: PMC10671513 DOI: 10.3390/ijms242216136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity and its attendant conditions have become major health problems worldwide, and obesity is currently ranked as the fifth most common cause of death globally. Complex environmental and genetic factors are causes of the current obesity epidemic. Diet, lifestyle, chemical exposure, and other confounding factors are difficult to manage in humans. The mice model is helpful in researching genetic BW gain because genetic and environmental risk factors can be controlled in mice. Studies in mouse strains with various genetic backgrounds and established genetic structures provide unparalleled opportunities to find and analyze trait-related genomic loci. In this study, we used the Collaborative Cross (CC), a large panel of recombinant inbred mouse strains, to present a predictive study using heterozygous Smad4 knockout profiles of CC mice to understand and effectively identify predispositions to body weight gain. Male C57Bl/6J Smad4+/- mice were mated with female mice from 10 different CC lines to create F1 mice (Smad4+/-x CC). Body weight (BW) was measured weekly until week 16 and then monthly until the end of the study (week 48). The heritability (H2) of the assessed traits was estimated and presented. Comparative analysis of various machine learning algorithms for predicting the BW changes and genotype of mice was conducted. Our data showed that the body weight records of F1 mice with different CC lines differed between wild-type and mutant Smad4 mice during the experiment. Genetic background affects weight gain and some lines gained more weight in the presence of heterozygous Smad4 knockout, while others gained less, but, in general, the mutation caused overweight mice, except for a few lines. In both control and mutant groups, female %BW had a higher heritability (H2) value than males. Additionally, both sexes with wild-type genotypes showed higher heritability values than the mutant group. Logistic regression provides the most accurate mouse genotype predictions using machine learning. We plan to validate the proposed method on more CC lines and mice per line to expand the literature on machine learning for BW prediction.
Collapse
Affiliation(s)
- Nayrouz Qahaz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Aya Khadija
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Aya Ghnaim
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Nadav Ben Nun
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Aysar Nashef
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya 15208, Israel; (A.N.); (I.A.E.-N.)
| | - Imad Abu El-Naaj
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya 15208, Israel; (A.N.); (I.A.E.-N.)
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| |
Collapse
|
13
|
Lone IM, Zohud O, Midlej K, Awadi O, Masarwa S, Krohn S, Kirschneck C, Proff P, Watted N, Iraqi FA. Narrating the Genetic Landscape of Human Class I Occlusion: A Perspective-Infused Review. J Pers Med 2023; 13:1465. [PMID: 37888076 PMCID: PMC10608728 DOI: 10.3390/jpm13101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
This review examines a prevalent condition with multifaceted etiology encompassing genetic, environmental, and oral behavioral factors. It stands as a significant ailment impacting oral functionality, aesthetics, and quality of life. Longitudinal studies indicate that malocclusion in primary dentition may progress to permanent malocclusion. Recognizing and managing malocclusion in primary dentition is gaining prominence. The World Health Organization ranks malocclusions as the third most widespread oral health issue globally. Angle's classification system is widely used to categorize malocclusions, with Class I occlusion considered the norm. However, its prevalence varies across populations due to genetic and examination disparities. Genetic factors, including variants in genes like MSX1, PAX9, and AXIN2, have been associated with an increased risk of Class I occlusion. This review aims to provide a comprehensive overview of clinical strategies for managing Class I occlusion and consolidate genetic insights from both human and murine populations. Additionally, genomic relationships among craniofacial genes will be assessed in individuals with Class I occlusion, along with a murine model, shedding light on phenotype-genotype associations of clinical relevance. The prevalence of Class I occlusion, its impact, and treatment approaches will be discussed, emphasizing the importance of early intervention. Additionally, the role of RNA alterations in skeletal Class I occlusion will be explored, focusing on variations in expression or structure that influence craniofacial development. Mouse models will be highlighted as crucial tools for investigating mandible size and prognathism and conducting QTL analysis to gain deeper genetic insights. This review amalgamates cellular, molecular, and clinical trait data to unravel correlations between malocclusion and Class I phenotypes.
Collapse
Affiliation(s)
- Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.); (K.M.)
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.); (K.M.)
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.); (K.M.)
| | - Obaida Awadi
- Center for Dentistry Research and Aesthetics, Jatt 45911, Israel; (O.A.); (S.M.); (N.W.)
| | - Samir Masarwa
- Center for Dentistry Research and Aesthetics, Jatt 45911, Israel; (O.A.); (S.M.); (N.W.)
| | - Sebastian Krohn
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany; (S.K.); (C.K.); (P.P.)
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany; (S.K.); (C.K.); (P.P.)
| | - Peter Proff
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany; (S.K.); (C.K.); (P.P.)
| | - Nezar Watted
- Center for Dentistry Research and Aesthetics, Jatt 45911, Israel; (O.A.); (S.M.); (N.W.)
- Department of Orthodontics, Faculty of Dentistry, Arab America University, Jenin 919000, Palestine
- Gathering for Prosperity Initiative, Jatt 45911, Israel
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.); (K.M.)
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany; (S.K.); (C.K.); (P.P.)
- Gathering for Prosperity Initiative, Jatt 45911, Israel
| |
Collapse
|
14
|
Dumont BL, Gatti D, Ballinger MA, Lin D, Phifer-Rixey M, Sheehan MJ, Suzuki TA, Wooldridge LK, Frempong HO, Churchill G, Lutz C, Rosenthal N, White JK, Nachman MW. Into the Wild: A novel wild-derived inbred strain resource expands the genomic and phenotypic diversity of laboratory mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558738. [PMID: 37790321 PMCID: PMC10542534 DOI: 10.1101/2023.09.21.558738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for a century. However, laboratory mice capture a narrow subset of the genetic variation found in wild mouse populations. This consideration inherently restricts the scope of potential discovery in laboratory models and narrows the pool of potentially identified phenotype-associated variants and pathways. Wild mouse populations are reservoirs of predicted functional and disease-associated alleles, but the sparsity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently imported, sequenced, and phenotyped a set of 11 wild-derived inbred strains developed from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from five environmentally diverse locations across North and South America: Saratoga Springs, New York, USA; Gainesville, Florida, USA; Manaus, Brazil; Tucson, Arizona, USA; and Edmonton, Alberta, Canada. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the mouse reference assembly, with 42.5% of variants in the Nachman strain genomes absent from classical inbred mouse strains. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels alone. Taken together, our work introduces a novel wild-derived inbred mouse strain resource that will enable new discoveries in basic and preclinical research. These strains are currently available through The Jackson Laboratory Repository under laboratory code NachJ.
Collapse
Affiliation(s)
- Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA
- The University of Maine, Graduate School of Biomedical Science and Engineering, 5775 Stodder Hall, Room 46, Orono, ME, 04469, USA
| | - Daniel Gatti
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Mallory A Ballinger
- Department of Integrative Biology, Center for Computational Biology, and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dana Lin
- Department of Integrative Biology, Center for Computational Biology, and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Michael J Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Taichi A Suzuki
- College of Health Solutions and Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA 85281
| | | | - Hilda Opoku Frempong
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- The University of Maine, Graduate School of Biomedical Science and Engineering, 5775 Stodder Hall, Room 46, Orono, ME, 04469, USA
| | - Gary Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA
- The University of Maine, Graduate School of Biomedical Science and Engineering, 5775 Stodder Hall, Room 46, Orono, ME, 04469, USA
| | - Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA
- The University of Maine, Graduate School of Biomedical Science and Engineering, 5775 Stodder Hall, Room 46, Orono, ME, 04469, USA
| | | | - Michael W Nachman
- Department of Integrative Biology, Center for Computational Biology, and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Tyler AL, Spruce C, Kursawe R, Haber A, Ball RL, Pitman WA, Fine AD, Raghupathy N, Walker M, Philip VM, Baker CL, Mahoney JM, Churchill GA, Trowbridge JJ, Stitzel ML, Paigen K, Petkov PM, Carter GW. Variation in histone configurations correlates with gene expression across nine inbred strains of mice. Genome Res 2023; 33:857-871. [PMID: 37217254 PMCID: PMC10519406 DOI: 10.1101/gr.277467.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.
Collapse
Affiliation(s)
- Anna L Tyler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Catrina Spruce
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Annat Haber
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Robyn L Ball
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Wendy A Pitman
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Alexander D Fine
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - Michael Walker
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - J Matthew Mahoney
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Kenneth Paigen
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Petko M Petkov
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA;
| | - Gregory W Carter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| |
Collapse
|
16
|
Amer‐Sarsour F, Tarabeih R, Ofek I, Iraqi FA. Lowering fasting blood glucose with non-dialyzable material of cranberry extract is dependent on host genetic background, sex and diet. Animal Model Exp Med 2023; 6:196-210. [PMID: 36404387 PMCID: PMC10272894 DOI: 10.1002/ame2.12291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a polygenic metabolic disease, characterized by high fasting blood glucose (FBG). The ability of cranberry (CRN) fruit to regulate glycemia in T2D patients is well known. Here, a cohort of 13 lines of the genetically diverse Collaborative Cross (CC) mouse model was assessed for the effect of non-dialyzable material (NDM) of cranberry extract in lowering fasting blood glucose. METHODS Eight-week-old mice were maintained on either a standard chow diet (control group) or a high-fat diet (HFD) for 12 weeks, followed by injections of intraperitoneal (IP) NDM (50 mg/kg) per mouse, three times a week for the next 6 weeks. Absolute FBG (mg/dl) was measured bi-weekly and percentage changes in FBG (%FBG) between weeks 0 and 12 were calculated. RESULTS Statistical analysis showed a significant decrease in FBG between weeks 0 and 12 in male and female mice maintained on CHD. However, a non-significant increase in FBG values was observed in male and female mice maintained on HFD during the same period. Following administration of NDM during the following 6 weeks, the results show a variation in significant levels of FBG lowering between lines, male and female mice and under the different diets. CONCLUSION The results suggest that the efficacy of NDM treatment in lowering FGB depends on host genetic background (pharmacogenetics), sex of the mouse (pharmacosex), and diet (pharmacodiet). All these results support the need for follow-up research to better understand and implement a personalized medicine approach/utilization of NDM for reducing FBG.
Collapse
Affiliation(s)
- Fatima Amer‐Sarsour
- Department of Clinical Microbiology and ImmunologySackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Rana Tarabeih
- Department of Clinical Microbiology and ImmunologySackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Itzhak Ofek
- Department of Clinical Microbiology and ImmunologySackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and ImmunologySackler Faculty of Medicine, Tel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
17
|
Ghnaim A, Lone IM, Nun NB, Iraqi FA. Unraveling the Host Genetic Background Effect on Internal Organ Weight Influenced by Obesity and Diabetes Using Collaborative Cross Mice. Int J Mol Sci 2023; 24:ijms24098201. [PMID: 37175908 PMCID: PMC10179483 DOI: 10.3390/ijms24098201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a severe chronic epidemic that results from the body's improper usage of the hormone insulin. Globally, 700 million people are expected to have received a diabetes diagnosis by 2045, according to the International Diabetes Federation (IDF). Cancer and macro- and microvascular illnesses are only a few immediate and long-term issues it could lead to. T2DM accelerates the effect of organ weights by triggering a hyperinflammatory response in the body's organs, inhibiting tissue repair and resolving inflammation. Understanding how genetic variation translates into different clinical presentations may highlight the mechanisms through which dietary elements may initiate or accelerate inflammatory disease processes and suggest potential disease-prevention techniques. To address the host genetic background effect on the organ weight by utilizing the newly developed mouse model, the Collaborative Cross mice (CC). The study was conducted on 207 genetically different CC mice from 8 CC lines of both sexes. The experiment started with 8-week-old mice for 12 weeks. During this period, one group maintained a standard chow diet (CHD), while the other group maintained a high-fat diet (HFD). In addition, body weight was recorded bi-weekly, and at the end of the study, a glucose tolerance test, as well as tissue collection (liver, spleen, heart), were conducted. Our study observed a strong effect of HFD on blood glucose clearance among different CC lines. The HFD decreased the blood glucose clearance displayed by the significant Area Under Curve (AUC) values in both populations. In addition, variation in body weight changes among the different CC lines in response to HFD. The female liver weight significantly increased compared to males in the overall population when exposed to HFD. Moreover, males showed higher heritability values than females on the same diet. Regardless of the dietary challenge, the liver weight in the overall male population correlated positively with the final body weight. The liver weight results revealed that three different CC lines perform well under classification models. The regression results also varied among organs. Accordingly, the differences among these lines correspond to the genetic variance, and we suspect that some genetic factors invoke different body responses to HFD. Further investigations, such as quantitative trait loci (QTL) analysis and genomic studies, could find these genetic elements. These findings would prove critical factors for developing personalized medicine, as they could indicate future body responses to numerous situations early, thus preventing the development of complex diseases.
Collapse
Affiliation(s)
- Aya Ghnaim
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Iqbal M Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nadav Ben Nun
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
18
|
Lone IM, Zohud O, Nashef A, Kirschneck C, Proff P, Watted N, Iraqi FA. Dissecting the Complexity of Skeletal-Malocclusion-Associated Phenotypes: Mouse for the Rescue. Int J Mol Sci 2023; 24:ijms24032570. [PMID: 36768894 PMCID: PMC9916875 DOI: 10.3390/ijms24032570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Skeletal deformities and malocclusions being heterogeneous traits, affect populations worldwide, resulting in compromised esthetics and function and reduced quality of life. Skeletal Class III prevalence is the least common of all angle malocclusion classes, with a frequency of 7.2%, while Class II prevalence is approximately 27% on average, varying in different countries and between ethnic groups. Orthodontic malocclusions and skeletal deformities have multiple etiologies, often affected and underlined by environmental, genetic and social aspects. Here, we have conducted a comprehensive search throughout the published data until the time of writing this review for already reported quantitative trait loci (QTL) and genes associated with the development of skeletal deformation-associated phenotypes in different mouse models. Our search has found 72 significant QTL associated with the size of the mandible, the character, shape, centroid size and facial shape in mouse models. We propose that using the collaborative cross (CC), a highly diverse mouse reference genetic population, may offer a novel venue for identifying genetic factors as a cause for skeletal deformations, which may help to better understand Class III malocclusion-associated phenotype development in mice, which can be subsequently translated to humans. We suggest that by performing a genome-wide association study (GWAS), an epigenetics-wide association study (EWAS), RNAseq analysis, integrating GWAS and expression quantitative trait loci (eQTL), micro and small RNA, and long noncoding RNA analysis in tissues associated with skeletal deformation and Class III malocclusion characterization/phenotypes, including mandibular basic bone, gum, and jaw, in the CC mouse population, we expect to better identify genetic factors and better understand the development of this disease.
Collapse
Affiliation(s)
- Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Aysar Nashef
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center Poriya, Poriya 1520800, Israel
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93047 Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93047 Regensburg, Germany
| | - Nezar Watted
- Center for Dentistry Research and Aesthetics, Jatt 4491800, Israel
- Department of Orthodontics, Faculty of Dentistry, Arab America University, Jenin P.O. Box 240, Palestine
- Gathering for Prosperity Initiative, Jatt 4491800, Israel
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93047 Regensburg, Germany
- Gathering for Prosperity Initiative, Jatt 4491800, Israel
- Correspondence:
| |
Collapse
|
19
|
Identification of collaborative cross mouse strains permissive to Salmonella enterica serovar Typhi infection. Sci Rep 2023; 13:393. [PMID: 36624251 PMCID: PMC9829673 DOI: 10.1038/s41598-023-27400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica serovar Typhi is the causative agent of typhoid fever restricted to humans and does not replicate in commonly used inbred mice. Genetic variation in humans is far greater and more complex than that in a single inbred strain of mice. The Collaborative Cross (CC) is a large panel of recombinant inbred strains which has a wider range of genetic diversity than laboratory inbred mouse strains. We found that the CC003/Unc and CC053/Unc strains are permissive to intraperitoneal but not oral route of S. Typhi infection and show histopathological changes characteristic of human typhoid. These CC strains are immunocompetent, and immunization induces antigen-specific responses that can kill S. Typhi in vitro and control S. Typhi in vivo. Our results indicate that CC003/Unc and CC053/Unc strains can help identify the genetic basis for typhoid susceptibility, S. Typhi virulence mechanism(s) in vivo, and serve as a preclinical mammalian model system to identify effective vaccines and therapeutics strategies.
Collapse
|
20
|
Genetic Mapping of Behavioral Traits Using the Collaborative Cross Resource. Int J Mol Sci 2022; 24:ijms24010682. [PMID: 36614124 PMCID: PMC9821145 DOI: 10.3390/ijms24010682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The complicated interactions between genetic background, environment and lifestyle factors make it difficult to study the genetic basis of complex phenotypes, such as cognition and anxiety levels, in humans. However, environmental and other factors can be tightly controlled in mouse studies. The Collaborative Cross (CC) is a mouse genetic reference population whose common genetic and phenotypic diversity is on par with that of humans. Therefore, we leveraged the power of the CC to assess 52 behavioral measures associated with locomotor activity, anxiety level, learning and memory. This is the first application of the CC in novel object recognition tests, Morris water maze tasks, and fear conditioning tests. We found substantial continuous behavioral variations across the CC strains tested, and mapped six quantitative trait loci (QTLs) which influenced these traits, defining candidate genetic variants underlying these QTLs. Overall, our findings highlight the potential of the CC population in behavioral genetic research, while the identified genomic loci and genes driving the variation of relevant behavioral traits provide a foundation for further studies.
Collapse
|
21
|
Hackett J, Gibson H, Frelinger J, Buntzman A. Using the Collaborative Cross and Diversity Outbred Mice in Immunology. Curr Protoc 2022; 2:e547. [PMID: 36066328 PMCID: PMC9612550 DOI: 10.1002/cpz1.547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Collaborative Cross (CC) and the Diversity Outbred (DO) stock mouse panels are the most powerful murine genetics tools available to the genetics community. Together, they combine the strength of inbred animal models with the diversity of outbred populations. Using the 63 CC strains or a panel of DO mice, each derived from the same 8 parental mouse strains, researchers can map genetic contributions to exceptionally complex immunological and infectious disease traits that would require far greater powering if performed by genome-wide association studies (GWAS) in human populations. These tools allow genes to be studied in heterozygous and homozygous states and provide a platform to study epistasis between interacting loci. Most importantly, once a quantitative phenotype is investigated and quantitative trait loci are identified, confirmatory genetic studies can be performed, which is often problematic using the GWAS approach. In addition, novel stable mouse models for immune phenotypes are often derived from studies utilizing the DO and CC mice that can serve as stronger model systems than existing ones in the field. The CC/DO systems have contributed to the fields of cancer immunology, autoimmunity, vaccinology, infectious disease, allergy, tissue rejection, and tolerance but have thus far been greatly underutilized. In this article, we present a recent review of the field and point out key areas of immunology that are ripe for further investigation and awaiting new CC/DO research projects. We also highlight some of the strong computational tools that have been developed for analyzing CC/DO genetic and phenotypic data. Additionally, we have formed a centralized community on the CyVerse infrastructure where immunogeneticists can utilize those software tools, collaborate with groups across the world, and expand the use of the CC and DO systems for investigating immunogenetic phenomena. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Jeffrey Frelinger
- University of Arizona, Valley Fever Center for Excellence, Tucson, Arizona
- Department of Microbiology and Immunology, University of North Carolina System, Chapel Hill, North Carolina
| | - Adam Buntzman
- University of Arizona, BIO5 Institute, Valley Fever Center for Excellence, Tucson, Arizona
| |
Collapse
|
22
|
Gonçalves SM, Cunha C, Carvalho A. Understanding the genetic basis of immune responses to fungal infection. Expert Rev Anti Infect Ther 2022; 20:987-996. [PMID: 35385368 DOI: 10.1080/14787210.2022.2063839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fungal infections represent a global public health problem that affect millions of people. Despite remarkable advances achieved over the last decades, available diagnostic and therapeutic tools remain insufficient for the optimal management of these diseases. The clinical course of fungal infection is highly variable, and evidence accumulated from patients with rare mutations and cohort-based studies suggests that the trajectory of disease is largely defined by patient genetics and its impact on immune responses. Therefore, there is an urgent need to elucidate the precise mechanisms by which which genetic variants influence the risk, progression, and outcome of fungal infection. AREAS COVERED In this review, we highlight recent advances in our understanding of the genetic factors that influence antifungal immune responses based on candidate gene studies and genome-wide approaches performed in different experimental and clinical models. EXPERT OPINION Research on genetics of susceptibility to infection is expected to lead to a detailed knowledge framework for the pathogenesis of human fungal infections and unveil novel targets and pathways amenable to clinical intervention.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
23
|
Kohn EM, Taira C, Dobson H, Dias LDS, Okaa U, Wiesner DL, Wüthrich M, Klein BS. Variation in Host Resistance to Blastomyces dermatitidis: Potential Use of Genetic Reference Panels and Advances in Immunophenotyping of Diverse Mouse Strains. mBio 2022; 13:e0340021. [PMID: 35089087 PMCID: PMC8725596 DOI: 10.1128/mbio.03400-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Host genetic determinants that underpin variation in susceptibility to systemic fungal infection are poorly understood. Genes responsible for complex traits can be identified by correlating variation in phenotype with allele in founder strains of wild mice with known genetic variation, assembled in genetic reference panels. In this work, we describe wide natural variation in both primary and acquired resistance to experimental pulmonary blastomycosis in eight founder strains, including 129, A/J, BL/6, CAST, NOD, NZO, PWK, and WSB of the Collaborative Cross collection, and the inbred DBA strain. These differences in susceptibility across strains were accompanied by sharp differences in the accumulation and function of immune cells in the lungs. Immune perturbations were mapped by identifying reagents that phenotypically mark immune cell populations in the distinct strains of mice. In particular, we uncovered marked differences between BL/6 and DBA/2 mouse strains in the development of acquired resistance. Our findings highlight the potential value in using genetic reference panels of mice, and particularly the BXD (recombinant inbred strains of mice from a cross of C57BL/6J and DBA/2J mice) collection harboring a cross between resistant BL/6 and susceptible DBA/2 mice, for unveiling genes linked with host resistance to fungal infection. IMPORTANCE Host genetic variation significantly impacts vulnerability to infectious diseases. While host variation in susceptibility to fungal infection with dimorphic fungi has long been recognized, genes that underpin this variation are poorly understood. We used a collection of seven mouse strains that represent nearly 90% of the genetic variation in mice to identify genetic variability among the strains in resistance to pulmonary infection with the dimorphic fungus Blastomyces dermatitidis. We analyzed differences between the strains in innate resistance by infecting naive mice and in acquired resistance by infecting vaccinated mice. We identified extreme variations in both innate and acquired resistance among the strains. In particular, we found sharp differences between C57BL/6 and DBA/2 strains in the ability to acquire vaccine-induced resistance. We also identified commercial reagents that allowed the phenotyping of immune cells from this strain collection of mice. Because there are additional mice harboring a genetic cross of the C57BL/6 and DBA/2 strains (BXD collection), such mice will permit future investigations to identify the genes that underlie differences in the ability to acquire resistance to infection.
Collapse
Affiliation(s)
- Elaine M. Kohn
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Cleison Taira
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Hanah Dobson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Lucas Dos Santos Dias
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Uju Okaa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Darin L. Wiesner
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Bruce S. Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Lone IM, Iraqi FA. Genetics of murine type 2 diabetes and comorbidities. Mamm Genome 2022; 33:421-436. [PMID: 35113203 DOI: 10.1007/s00335-022-09948-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
ABSTRAC Type 2 diabetes (T2D) is a polygenic and multifactorial complex disease, defined as chronic metabolic disorder. It's a major global health concern with an estimated 463 million adults aged 20-79 years with diabetes and projected to increase up to 700 million by 2045. T2D was reported to be one of the four leading causes of non-communicable disease (NCD) deaths in 2012. Environmental factors play a part in the development of polygenic forms of diabetes. Polygenic forms of diabetes often run-in families. Fortunately, T2D, which accounts for 90-95% of the entire four types of diabetes including, Type 1 diabetes (T1D), T2D, monogenic diabetes syndromes (MGDS), and Gestational diabetes mellitus, can be prevented or delayed through nutrition and lifestyle changes as well as through pharmacologic interventions. Typical symptom of the T2D is high blood glucose levels and comprehensive insulin resistance of the body, producing an impaired glucose tolerance. Impaired glucose tolerance of T2D is accompanied by extensive health complications, including cardiovascular diseases (CVD) that vary in morbidity and mortality among populations. The pathogenesis of T2D varies between populations and/or ethnic groupings and is known to be attributed extremely by genetic components and environmental factors. It is evident that genetic background plays a critical role in determining the host response toward certain environmental conditions, whether or not of developing T2D (susceptibility versus resistant). T2D is considered as a silent disease that can progress for years before its diagnosis. Once T2D is diagnosed, many metabolic malfunctions are observed whether as side effects or as independent comorbidity. Mouse models have been proven to be a powerful tool for mapping genetic factors that underline the susceptibility to T2D development as well its comorbidities. Here, we have conducted a comprehensive search throughout the published data covering the time span from early 1990s till the time of writing this review, for already reported quantitative trait locus (QTL) associated with murine T2D and comorbidities in different mouse models, which contain different genetic backgrounds. Our search has resulted in finding 54 QTLs associated with T2D in addition to 72 QTLs associated with comorbidities associated with the disease. We summarized the genomic locations of these mapped QTLs in graphical formats, so as to show the overlapping positions between of these mapped QTLs, which may suggest that some of these QTLs could be underlined by sharing gene/s. Finally, we reviewed and addressed published reports that show the success of translation of the identified mouse QTLs/genes associated with the disease in humans.
Collapse
Affiliation(s)
- Iqbal M Lone
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
25
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
26
|
Lawley KS, Rech RR, Elenwa F, Han G, Perez Gomez AA, Amstalden K, Welsh CJ, Young CR, Threadgill DW, Brinkmeyer-Langford CL. Host genetic diversity drives variable central nervous system lesion distribution in chronic phase of Theiler's Murine Encephalomyelitis Virus (TMEV) infection. PLoS One 2021; 16:e0256370. [PMID: 34415947 PMCID: PMC8378701 DOI: 10.1371/journal.pone.0256370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Host genetic background is a significant driver of the variability in neurological responses to viral infection. Here, we leverage the genetically diverse Collaborative Cross (CC) mouse resource to better understand how chronic infection by Theiler's Murine Encephalomyelitis Virus (TMEV) elicits diverse clinical and morphologic changes in the central nervous system (CNS). We characterized the TMEV-induced clinical phenotype responses, and associated lesion distributions in the CNS, in six CC mouse strains over a 90 day infection period. We observed varying degrees of motor impairment in these strains, as measured by delayed righting reflex, paresis, paralysis, seizures, limb clasping, ruffling, and encephalitis phenotypes. All strains developed neuroparenchymal necrosis and mineralization in the brain, primarily localized to the hippocampal regions. Two of the six strains presented with axonal degeneration with myelin loss of the nerve roots in the lumbar spinal cord. Moreover, we statistically correlated lesion distribution with overall frequencies of clinical phenotypes and phenotype progression to better understand how and where TMEV targets the CNS, based on genetic background. Specifically, we assessed lesion distribution in relation to the clinical progression of these phenotypes from early to late TMEV disease, finding significant relationships between progression and lesion distribution. Finally, we identified quantitative trait loci associated with frequency of lesions in a particular brain region, revealing several loci of interest for future study: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1). Together, these results indicate that the genetic background influences the type and severity of clinical phenotypes, phenotypic resilience to TMEV, and the lesion distribution across strains.
Collapse
Affiliation(s)
- Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Raquel R. Rech
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Department of Veterinary Pathobiology, College Station, TX, United States of America
| | - Faith Elenwa
- Texas A&M University, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, College Station, TX, United States of America
- School of Public Health, College Station, TX, United States of America
| | - Gang Han
- Texas A&M University, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, College Station, TX, United States of America
- School of Public Health, College Station, TX, United States of America
| | - Aracely A. Perez Gomez
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Department of Veterinary Pathobiology, College Station, TX, United States of America
- Texas A&M Institute for Neuroscience, College Station, TX, United States of America
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - David W. Threadgill
- Texas A&M University, College Station, TX, United States of America
- Department of Molecular and Cellular Medicine, College Station, TX, United States of America
| | - Candice L. Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Texas A&M Institute for Neuroscience, College Station, TX, United States of America
| |
Collapse
|
27
|
Dalaijamts C, Cichocki JA, Luo YS, Rusyn I, Chiu WA. Quantitative Characterization of Population-Wide Tissue- and Metabolite-Specific Variability in Perchloroethylene Toxicokinetics in Male Mice. Toxicol Sci 2021; 182:168-182. [PMID: 33988684 DOI: 10.1093/toxsci/kfab057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Quantification of interindividual variability is a continuing challenge in risk assessment, particularly for compounds with complex metabolism and multi-organ toxicity. Toxicokinetic variability for perchloroethylene (perc) was previously characterized across 3 mouse strains and in 1 mouse strain with various degrees of liver steatosis. To further characterize the role of genetic variability in toxicokinetics of perc, we applied Bayesian population physiologically based pharmacokinetic (PBPK) modeling to the data on perc and metabolites in blood/plasma and tissues of male mice from 45 inbred strains from the Collaborative Cross (CC) mouse population. After identifying the most influential PBPK parameters based on global sensitivity analysis, we fit the model with a hierarchical Bayesian population analysis using Markov chain Monte Carlo simulation. We found that the data from 3 commonly used strains were not representative of the full range of variability in perc and metabolite blood/plasma and tissue concentrations across the CC population. Using interstrain variability as a surrogate for human interindividual variability, we calculated dose-dependent, chemical-, and tissue-specific toxicokinetic variability factors (TKVFs) as candidate science-based replacements for the default uncertainty factor for human toxicokinetic variability of 100.5. We found that toxicokinetic variability factors for glutathione conjugation metabolites of perc showed the greatest variability, often exceeding the default, whereas those for oxidative metabolites and perc itself were generally less than the default. Overall, we demonstrate how a combination of a population-based mouse model such as the CC with Bayesian population PBPK modeling can reduce uncertainty in human toxicokinetic variability and increase accuracy and precision in quantitative risk assessment.
Collapse
Affiliation(s)
- Chimeddulam Dalaijamts
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Joseph A Cichocki
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
28
|
Dorman A, Binenbaum I, Abu-Toamih Atamni HJ, Chatziioannou A, Tomlinson I, Mott R, Iraqi FA. Genetic mapping of novel modifiers for Apc Min induced intestinal polyps' development using the genetic architecture power of the collaborative cross mice. BMC Genomics 2021; 22:566. [PMID: 34294033 PMCID: PMC8299641 DOI: 10.1186/s12864-021-07890-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Familial adenomatous polyposis is an inherited genetic disease, characterized by colorectal polyps. It is caused by inactivating mutations in the Adenomatous polyposis coli (Apc) gene. Mice carrying a nonsense mutation in the Apc gene at R850, which is designated ApcMin/+ (Multiple intestinal neoplasia), develop intestinal adenomas. Several genetic modifier loci of Min (Mom) were previously mapped, but so far, most of the underlying genes have not been identified. To identify novel modifier loci associated with ApcMin/+, we performed quantitative trait loci (QTL) analysis for polyp development using 49 F1 crosses between different Collaborative Cross (CC) lines and C57BL/6 J-ApcMin/+mice. The CC population is a genetic reference panel of recombinant inbred lines, each line independently descended from eight genetically diverse founder strains. C57BL/6 J-ApcMin/+ males were mated with females from 49 CC lines. F1 offspring were terminated at 23 weeks and polyp counts from three sub-regions (SB1-3) of small intestinal and colon were recorded. RESULTS The number of polyps in all these sub-regions and colon varied significantly between the different CC lines. At 95% genome-wide significance, we mapped nine novel QTL for variation in polyp number, with distinct QTL associated with each intestinal sub-region. QTL confidence intervals varied in width between 2.63-17.79 Mb. We extracted all genes in the mapped QTL at 90 and 95% CI levels using the BioInfoMiner online platform to extract, significantly enriched pathways and key linker genes, that act as regulatory and orchestrators of the phenotypic landscape associated with the ApcMin/+ mutation. CONCLUSIONS Genomic structure of the CC lines has allowed us to identify novel modifiers and confirmed some of the previously mapped modifiers. Key genes involved mainly in metabolic and immunological processes were identified. Future steps in this analysis will be to identify regulatory elements - and possible epistatic effects - located in the mapped QTL.
Collapse
Affiliation(s)
- Alexandra Dorman
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Ramat Aviv, 69978 Tel-Aviv, Israel
| | - Ilona Binenbaum
- Department of Biology, University of Patras, Patras, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Hanifa J. Abu-Toamih Atamni
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Ramat Aviv, 69978 Tel-Aviv, Israel
| | | | - Ian Tomlinson
- Cancer Research UK Edinburgh Centre, Charles and Ethel Barr Chair of Cancer Research, University of Edinburgh, Edinburgh, UK
| | - Richard Mott
- Department of Genetics, University Collage of London, London, UK
| | - Fuad A. Iraqi
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Ramat Aviv, 69978 Tel-Aviv, Israel
| |
Collapse
|
29
|
Nashef A, Qahaz N, El-Naaj IA, Iraqi FA. Systems genetics analysis of oral squamous cell carcinoma susceptibility using the mouse model: current position and new perspective. Mamm Genome 2021; 32:323-331. [PMID: 34155540 DOI: 10.1007/s00335-021-09885-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 01/17/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common human malignancies with complex etiology and poor prognosis. Although environmental carcinogens and carcinogenic viruses are still considered the main etiologic factors for OSCC development, genetic factors obviously play a key role in the initiation and progression of this neoplasm, given that not all individuals exposed to carcinogens develop the same severity of the disease, if any. Identifying genetic loci modulating OSCC risk may have several important clinical implications, including early detection, prevention and developing new treatment strategies. Due to limitations in controlled and standardized genetic studies in humans, genetic components underlying susceptibility of OSCC development remain largely unknown. A combination of quantitative trait loci mapping in mice, with complementary association studies in humans, has the potential to discover novel cancer risk loci. As of today, a limited number of genetic analyses were applied on rodent models to locate novel genetic loci associated with human OSCC. Here, we discuss the current status of the mouse models use for dissecting the genetic basis of OSCC and highlight how systems genetics analysis using mouse models, may increase our understanding of human OSCC susceptibility.
Collapse
Affiliation(s)
- Aysar Nashef
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya, Israel
| | - Nayrouz Qahaz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Imad Abu El-Naaj
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
30
|
The First Immunocompetent Mouse Model of Strictly Human Pathogen, Borrelia recurrentis. Infect Immun 2021; 89:e0004821. [PMID: 33875475 DOI: 10.1128/iai.00048-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spirochetal bacterium Borrelia recurrentis causes louse-borne relapsing fever (LBRF). B. recurrentis is unique because, as opposed to other Borrelia spirochetes, this strictly human pathogen is transmitted by lice. Despite the high mortality and historically proven epidemic potential and current outbreaks in African countries and Western Europe, research on LBRF has been obstructed by the lack of suitable animal models. The previously used grivet monkey model is associated with ethical concerns, among other issues. An existing immunodeficient mouse model does not limit bacteremia due to its impaired immune system. In this study, we used genetically diverse Collaborative Cross (CC) lines to develop the first LBRF immunocompetent mouse model. Out of 12 CC lines tested, CC046 mice consistently developed B. recurrentis-induced spirochetemia during the first 3 days postchallenge as concordantly detected by dark-field microscopy, culture, and quantitative PCR. However, spirochetemia was not detected from day 4 through day 10 postchallenge. The high-level spirochetemia (>107 cells/ml of blood) observed in CC046 mice was similar to that recorded in LBRF patients as well as immunocompetent mouse strains experimentally infected by tick-borne relapsing fever (RF) spirochetes, Borrelia hermsii and Borrelia persica. In contrast to the Old World and New World RF spirochetes, which develop multiple relapses (n = 3 to 9), B. recurrentis produced only single culture-detectable spirochetemia in CC046 mice. The lack of relapses may not be surprising, as LBRF patients and the grivet monkey model usually develop no or only 1 to 2 spirochetemic relapses. The novel model will now allow scientists to study B. recurrentis in the context of intact immunity.
Collapse
|
31
|
Graham JB, Swarts JL, Edwards KR, Voss KM, Green R, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, Pardo-Manuel de Villena F, Gale M, Lund JM. Correlation of Regulatory T Cell Numbers with Disease Tolerance upon Virus Infection. Immunohorizons 2021; 5:157-169. [PMID: 33893179 PMCID: PMC8281504 DOI: 10.4049/immunohorizons.2100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022] Open
Abstract
The goal of a successful immune response is to clear the pathogen while sparing host tissues from damage associated with pathogen replication and active immunity. Regulatory T cells (Treg) have been implicated in maintaining this balance as they contribute both to the organization of immune responses as well as restriction of inflammation and immune activation to limit immunopathology. To determine if Treg abundance prior to pathogen encounter can be used to predict the success of an antiviral immune response, we used genetically diverse mice from the collaborative cross infected with West Nile virus (WNV). We identified collaborative cross lines with extreme Treg abundance at steady state, either high or low, and used mice with these extreme phenotypes to demonstrate that baseline Treg quantity predicted the magnitude of the CD8 T cell response to WNV infection, although higher numbers of baseline Tregs were associated with reduced CD8 T cell functionality in terms of TNF and granzyme B expression. Finally, we found that abundance of CD44+ Tregs in the spleen at steady state was correlated with an increased early viral load within the spleen without an association with clinical disease. Thus, we propose that Tregs participate in disease tolerance in the context of WNV infection by tuning an appropriately focused and balanced immune response to control the virus while at the same time minimizing immunopathology and clinical disease. We hypothesize that Tregs limit the antiviral CD8 T cell function to curb immunopathology at the expense of early viral control as an overall host survival strategy.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR.,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Michael Gale
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA; .,Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
32
|
Amer-Sarsour F, Abu Saleh R, Ofek I, Iraqi FA. Studying the pharmacogenomic effect of cranberry extract on reducing body weight using collaborative cross mice. Food Funct 2021; 12:4972-4982. [PMID: 34100468 DOI: 10.1039/d0fo02865g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The non-dialyzable material (NDM) of polyphenol-rich cranberry extract (CRE) powder (NDM-CRE) was studied for its effect of inducing body weight (BW) loss in 13 different mouse lines with well-defined genetically diverse backgrounds, named the collaborative cross (CC). From the age of 8 weeks, the mice were maintained on a high-fat diet (HFD) for 18 weeks, to induce obesity, and BW was measured biweekly. From week 12, CRE was injected intraperitoneally (IP) (50 mg kg-1) 3 times a week per mouse for a 6 week period. Statistical analysis results have shown a significant increase in body weight between week 0 and week 12; the increase in BW of 13 lines of mice on HFD was in the range of 10.41% to 68.65% for males and 9.78% to 64.74% for females. After injecting NDM-CRE extract, our analysis has shown an induced change in BW between week 12 and week 18. In males, NDM-CRE caused a significant decrease in BW of 5 out of the 13 lines in the range of -5.68% to -16.69% and a significant increase of 8.31% in BW of one male line, whereas in seven lines there was no significant decrease (-2.14% to -4.09%). In females, NDM-CRE caused a significant decrease in BW of 5 out of the 13 lines in the range of -3.90% to -11.83%, whereas in eight lines there were no significant changes in BW and it ranged between -1.50% and 4.90%. The broad-sense heritability (H2) and genetic coefficient of variation (CVg) were estimated and found to be between 0.71 and 0.81 for H2, and 0.18 and 0.24 for CVg of females and males, respectively, with respect to the efficacy of NDM-CRE on body weight reduction. Our results have shown that hosts with different genetic backgrounds respond differently to body weight increase, as well as to NDM-CRE treatment for body weight reduction. These results provide a platform for assessing more CC lines and mapping genes underlying the efficacy of the NDM-CRE treatment as a way of understanding pharmacogenomics.
Collapse
Affiliation(s)
- Fatima Amer-Sarsour
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| | | | | | | |
Collapse
|
33
|
Liu-Wei W, Kafkas Ş, Chen J, Dimonaco NJ, Tegnér J, Hoehndorf R. DeepViral: prediction of novel virus-host interactions from protein sequences and infectious disease phenotypes. Bioinformatics 2021; 37:2722-2729. [PMID: 33682875 PMCID: PMC8428617 DOI: 10.1093/bioinformatics/btab147] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Infectious diseases caused by novel viruses have become a major public health concern. Rapid identification of virus-host interactions can reveal mechanistic insights into infectious diseases and shed light on potential treatments. Current computational prediction methods for novel viruses are based mainly on protein sequences. However, it is not clear to what extent other important features, such as the symptoms caused by the viruses, could contribute to a predictor. Disease phenotypes (i.e., signs and symptoms) are readily accessible from clinical diagnosis and we hypothesize that they may act as a potential proxy and an additional source of information for the underlying molecular interactions between the pathogens and hosts. RESULTS We developed DeepViral, a deep learning based method that predicts protein-protein interactions (PPI) between humans and viruses. Motivated by the potential utility of infectious disease phenotypes, we first embedded human proteins and viruses in a shared space using their associated phenotypes and functions, supported by formalized background knowledge from biomedical ontologies. By jointly learning from protein sequences and phenotype features, DeepViral significantly improves over existing sequence-based methods for intra- and inter-species PPI prediction. AVAILABILITY Code and datasets for reproduction and customization are available at https://github.com/bio-ontology-research-group/DeepViral. Prediction results for 14 virus families are available at https://doi.org/10.5281/zenodo.4429824.
Collapse
Affiliation(s)
- Wang Liu-Wei
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Şenay Kafkas
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jun Chen
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Nicholas J Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3BQ, Wales, UK
| | - Jesper Tegnér
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
34
|
Milhem A, Abu Toamih‐Atamni HJ, Karkar L, Houri‐Haddad Y, Iraqi FA. Studying host genetic background effects on multimorbidity of intestinal cancer development, type 2 diabetes and obesity in response to oral bacterial infection and high-fat diet using the collaborative cross (CC) lines. Animal Model Exp Med 2021; 4:27-39. [PMID: 33738434 PMCID: PMC7954829 DOI: 10.1002/ame2.12151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Background Multimorbidity of intestinal cancer (IC), type 2 diabetes (T2D) and obesity is a complex set of diseases, affected by environmental and genetic risk factors. High-fat diet (HFD) and oral bacterial infection play important roles in the etiology of these diseases through inflammation and various biological mechanisms. Methods To study the complexity of this multimorbidity, we used the collaborative cross (CC) mouse genetics reference population. We aimed to study the multimorbidity of IC, T2D, and obesity using CC lines, measuring their responses to HFD and oral bacterial infection. The study used 63 mice of both sexes generated from two CC lines (IL557 and IL711). For 12 weeks, experimental mice were maintained on specific dietary regimes combined with co-infection with oral bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, while control groups were not infected. Body weight (BW) and results of a intraperitoneal glucose tolerance test (IPGTT) were recorded at the end of 12 weeks, after which length and size of the intestines were assessed for polyp counts. Results Polyp counts ranged between 2 and 10 per CC line. The combination of HFD and infection significantly reduced (P < .01) the colon polyp size of IL557 females to 2.5 cm2, compared to the other groups. Comparing BW gain, IL557 males on HFD gained 18 g, while the females gained 10 g under the same conditions and showed the highest area under curve (AUC) values of 40 000-45 000 (min mg/dL) in the IPGTT. Conclusion The results show that mice from different genetic backgrounds respond differently to a high fat diet and oral infection in terms of polyp development and glucose tolerance, and this effect is gender related.
Collapse
Affiliation(s)
- Asal Milhem
- Department of Clinical Microbiology and ImmunologySackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Hanifa J. Abu Toamih‐Atamni
- Department of Clinical Microbiology and ImmunologySackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Luna Karkar
- Department of Clinical Microbiology and ImmunologySackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Yael Houri‐Haddad
- Department of ProsthodonticsDental SchoolThe Hebrew UniversityHadassah JerusalemIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and ImmunologySackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
35
|
Binenbaum I, Atamni HAT, Fotakis G, Kontogianni G, Koutsandreas T, Pilalis E, Mott R, Himmelbauer H, Iraqi FA, Chatziioannou AA. Container-aided integrative QTL and RNA-seq analysis of Collaborative Cross mice supports distinct sex-oriented molecular modes of response in obesity. BMC Genomics 2020; 21:761. [PMID: 33143653 PMCID: PMC7640698 DOI: 10.1186/s12864-020-07173-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Collaborative Cross (CC) mouse population is a valuable resource to study the genetic basis of complex traits, such as obesity. Although the development of obesity is influenced by environmental factors, underlying genetic mechanisms play a crucial role in the response to these factors. The interplay between the genetic background and the gene expression pattern can provide further insight into this response, but we lack robust and easily reproducible workflows to integrate genomic and transcriptomic information in the CC mouse population. RESULTS We established an automated and reproducible integrative workflow to analyse complex traits in the CC mouse genetic reference panel at the genomic and transcriptomic levels. We implemented the analytical workflow to assess the underlying genetic mechanisms of host susceptibility to diet induced obesity and integrated these results with diet induced changes in the hepatic gene expression of susceptible and resistant mice. Hepatic gene expression differs significantly between obese and non-obese mice, with a significant sex effect, where male and female mice exhibit different responses and coping mechanisms. CONCLUSION Integration of the data showed that different genes but similar pathways are involved in the genetic susceptibility and disturbed in diet induced obesity. Genetic mechanisms underlying susceptibility to high-fat diet induced obesity are different in female and male mice. The clear distinction we observed in the systemic response to the high-fat diet challenge and to obesity between male and female mice points to the need for further research into distinct sex-related mechanisms in metabolic disease.
Collapse
Affiliation(s)
- Ilona Binenbaum
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biology, University of Patras, Patras, Greece
| | - Hanifa Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Georgios Fotakis
- Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
- e-NIOS PC, Kallithea, Athens, Greece
| | - Georgia Kontogianni
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodoros Koutsandreas
- e-NIOS PC, Kallithea, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pilalis
- e-NIOS PC, Kallithea, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard Mott
- Department of Genetics, University College of London, London, UK
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Life Sciences and Natural Resources, Vienna (BOKU), Vienna, Austria
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Aristotelis A Chatziioannou
- e-NIOS PC, Kallithea, Athens, Greece.
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
36
|
Bubier JA, He H, Philip VM, Roy T, Hernandez CM, Bernat R, Donohue KD, O'Hara BF, Chesler EJ. Genetic variation regulates opioid-induced respiratory depression in mice. Sci Rep 2020; 10:14970. [PMID: 32917924 PMCID: PMC7486296 DOI: 10.1038/s41598-020-71804-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
In the U.S., opioid prescription for treatment of pain nearly quadrupled from 1999 to 2014. The diversion and misuse of prescription opioids along with increased use of drugs like heroin and fentanyl, has led to an epidemic in addiction and overdose deaths. The most common cause of opioid overdose and death is opioid-induced respiratory depression (OIRD), a life-threatening depression in respiratory rate thought to be caused by stimulation of opioid receptors in the inspiratory-generating regions of the brain. Studies in mice have revealed that variation in opiate lethality is associated with strain differences, suggesting that sensitivity to OIRD is genetically determined. We first tested the hypothesis that genetic variation in inbred strains of mice influences the innate variability in opioid-induced responses in respiratory depression, recovery time and survival time. Using the founders of the advanced, high-diversity mouse population, the Diversity Outbred (DO), we found substantial sex and genetic effects on respiratory sensitivity and opiate lethality. We used DO mice treated with morphine to map quantitative trait loci for respiratory depression, recovery time and survival time. Trait mapping and integrative functional genomic analysis in GeneWeaver has allowed us to implicate Galnt11, an N-acetylgalactosaminyltransferase, as a gene that regulates OIRD.
Collapse
Affiliation(s)
| | - Hao He
- The Jackson Laboratory, Bar Harbor, ME, 04605, USA
| | | | - Tyler Roy
- The Jackson Laboratory, Bar Harbor, ME, 04605, USA
| | | | | | - Kevin D Donohue
- Signal Solutions, LLC, Lexington, KY, USA
- Electrical and Computer Engineering Department, University of Kentucky, Lexington, KY, USA
| | - Bruce F O'Hara
- Signal Solutions, LLC, Lexington, KY, USA
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
37
|
Omariba G, Xu F, Wang M, Li K, Zhou Y, Xiao J. Genome-Wide Analysis of MicroRNA-related Single Nucleotide Polymorphisms (SNPs) in Mouse Genome. Sci Rep 2020; 10:5789. [PMID: 32238847 PMCID: PMC7113310 DOI: 10.1038/s41598-020-62588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are widely referred to as gene expression regulators for different diseases. The integration between single nucleotide polymorphisms (SNPs) and miRNAs has been associated with both human and animal diseases. In order to gain new insights on the effects of SNPs on miRNA and their related sequences, we steadily characterized a whole mouse genome miRNA related SNPs, analyzed their effects on the miRNA structural stability and target alteration. In this study, we collected 73643859 SNPs across the mouse genome, analyzed 1187 pre-miRNAs and 2027 mature miRNAs. Upon mapping the SNPs, 1700 of them were identified in 702 pre-miRNAs and 609 SNPs in mature miRNAs. We also discovered that SNP densities of the pre-miRNA and mature miRNAs are lower than the adjacent flanking regions. Also the flanking regions far away from miRNAs appeared to have higher SNP density. In addition, we also found that transitions were more frequent than transversions in miRNAs. Notably, 841 SNPs could change their corresponding miRNA's secondary structure from stable to unstable. We also performed target gain and loss analysis of 163 miRNAs and our results showed that few miRNAs remained unchanged and many miRNAs from wild mice gained target site. These results outline the first case of SNP variations in the mouse whole genome scale. Those miRNAs with changes in structure or target could be of interest for further studies.
Collapse
Affiliation(s)
- Gideon Omariba
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Fuyi Xu
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Maochun Wang
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yuxun Zhou
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
38
|
Nashef A, Matthias M, Weiss E, Loos BG, Jepsen S, van der Velde N, Uitterlinden AG, Wellmann J, Berger K, Hoffmann P, Laudes M, Lieb W, Franke A, Dommisch H, Schäfer A, Houri-Haddad Y, Iraqi FA. Translation of mouse model to human gives insights into periodontitis etiology. Sci Rep 2020; 10:4892. [PMID: 32184465 PMCID: PMC7078197 DOI: 10.1038/s41598-020-61819-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/03/2020] [Indexed: 01/16/2023] Open
Abstract
To suggest candidate genes involved in periodontitis, we combined gene expression data of periodontal biopsies from Collaborative Cross (CC) mouse lines, with previous reported quantitative trait loci (QTL) in mouse and with human genome-wide association studies (GWAS) associated with periodontitis. Periodontal samples from two susceptible, two resistant and two lines that showed bone formation after periodontal infection were collected during infection and naïve status. Differential expressed genes (DEGs) were analyzed in a case-control and case-only design. After infection, eleven protein-coding genes were significantly stronger expressed in resistant CC lines compared to susceptible ones. Of these, the most upregulated genes were MMP20 (P = 0.001), RSPO4 (P = 0.032), CALB1 (P = 1.06×10-4), and AMTN (P = 0.05). In addition, human orthologous of candidate genes were tested for their association in a case-controls samples of aggressive (AgP) and chronic (CP) periodontitis (5,095 cases, 9,908 controls). In this analysis, variants at two loci, TTLL11/PTGS1 (rs9695213, P = 5.77×10-5) and RNASE2 (rs2771342, P = 2.84×10-5) suggested association with both AgP and CP. In the association analysis with AgP only, the most significant associations were located at the HLA loci HLA-DQH1 (rs9271850, P = 2.52×10-14) and HLA-DPA1 (rs17214512, P = 5.14×10-5). This study demonstrates the utility of the CC RIL populations as a suitable model to investigate the mechanism of periodontal disease.
Collapse
Affiliation(s)
- Aysar Nashef
- Department of Prosthodontics, Dental school, The Hebrew University, Hadassah Jerusalem, Israel
- Department of Oral and Maxillofacial surgery, Poriya Medical center, Poriya, Israel
- Department of Clinical. Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Munz Matthias
- Department of Periodontology and Synoptic Medicine, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Ervin Weiss
- School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Bruno G Loos
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine section of Geriatrics, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jürgen Wellmann
- Institute of Epidemiology and Social Medicine, University Münster, Münster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University Münster, Münster, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | | | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Berlin, Germany
| | - Henrik Dommisch
- Department of Oral and Maxillofacial surgery, Poriya Medical center, Poriya, Israel
| | - Arne Schäfer
- Department of Periodontology and Synoptic Medicine, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany.
- Institute for Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany.
| | - Yael Houri-Haddad
- Department of Prosthodontics, Dental school, The Hebrew University, Hadassah Jerusalem, Israel.
| | - Fuad A Iraqi
- Department of Clinical. Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
39
|
Soller M, Abu-Toamih Atamni HJ, Binenbaum I, Chatziioannou A, Iraqi FA. Designing a QTL Mapping Study for Implementation in the Realized Collaborative Cross Genetic Reference Population. ACTA ACUST UNITED AC 2020; 9:e66. [PMID: 31756057 DOI: 10.1002/cpmo.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Collaborative Cross (CC) mouse resource is a next-generation mouse genetic reference population (GRP) designed for high-resolution mapping of quantitative trait loci (QTL) of large effect affecting complex traits during health and disease. The CC resource consists of a set of 72 recombinant inbred lines (RILs) generated by reciprocal crossing of five classical and three wild-derived mouse founder strains. Complex traits are controlled by variations within multiple genes and environmental factors, and their mutual interactions. These traits are observed at multiple levels of the animals' systems, including metabolism, body weight, immune profile, and susceptibility or resistance to the development and progress of infectious or chronic diseases. Herein, we present general guidelines for design of QTL mapping experiments using the CC resource-along with full step-by-step protocols and methods that were implemented in our lab for the phenotypic and genotypic characterization of the different CC lines-for mapping the genes underlying host response to infectious and chronic diseases. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: CC lines for whole body mass index (BMI) Basic Protocol 2: A detailed assessment of the power to detect effect sizes based on the number of lines used, and the number of replicates per line Basic Protocol 3: Obtaining power for QTL with given target effect by interpolating in Table 1 of Keele et al. (2019).
Collapse
Affiliation(s)
- Morris Soller
- Department of Genetics, Silverman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| | - Hanifa J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Ilona Binenbaum
- Department of Biology, University of Patras, Patras, Greece.,Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | | | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
40
|
Lorè NI, Sipione B, He G, Strug LJ, Atamni HJ, Dorman A, Mott R, Iraqi FA, Bragonzi A. Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease. mBio 2020; 11:e00097-20. [PMID: 32127447 PMCID: PMC7064750 DOI: 10.1128/mbio.00097-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Human genetics influence a range of pathological and clinical phenotypes in respiratory infections; however, the contributions of disease modifiers remain underappreciated. We exploited the Collaborative Cross (CC) mouse genetic-reference population to map genetic modifiers that affect the severity of Pseudomonas aeruginosa lung infection. Screening for P. aeruginosa respiratory infection in a cohort of 39 CC lines exhibits distinct disease phenotypes ranging from complete resistance to lethal disease. Based on major changes in the survival times, a quantitative-trait locus (QTL) was mapped on murine chromosome 3 to the genomic interval of Mb 110.4 to 120.5. Within this locus, composed of 31 protein-coding genes, two candidate genes, namely, dihydropyrimidine dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1), were identified according to the level of genome-wide significance and disease gene prioritization. Functional validation of the S1pr1 gene by pharmacological targeting in C57BL/6NCrl mice confirmed its relevance in P. aeruginosa pathophysiology. However, in a cohort of Canadian patients with cystic fibrosis (CF) disease, regional genetic-association analysis of the syntenic human locus on chromosome 1 (Mb 97.0 to 105.0) identified two single-nucleotide polymorphisms (rs10875080 and rs11582736) annotated to the Dpyd gene that were significantly associated with age at first P. aeruginosa infection. Thus, there is evidence that both genes might be implicated in this disease. Our results demonstrate that the discovery of murine modifier loci may generate information that is relevant to human disease progression.IMPORTANCE Respiratory infection caused by P. aeruginosa is one of the most critical health burdens worldwide. People affected by P. aeruginosa infection include patients with a weakened immune system, such as those with cystic fibrosis (CF) genetic disease or non-CF bronchiectasis. Disease outcomes range from fatal pneumonia to chronic life-threatening infection and inflammation leading to the progressive deterioration of pulmonary function. The development of these respiratory infections is mediated by multiple causes. However, the genetic factors underlying infection susceptibility are poorly known and difficult to predict. Our study employed novel approaches and improved mouse disease models to identify genetic modifiers that affect the severity of P. aeruginosa lung infection. We identified candidate genes to enhance our understanding of P. aeruginosa infection in humans and provide a proof of concept that could be exploited for other human pathologies mediated by bacterial infection.
Collapse
Affiliation(s)
- Nicola Ivan Lorè
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Sipione
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gengming He
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Lisa J Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Hanifa J Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexandra Dorman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard Mott
- Genetics Institute, University College London, London, United Kingdom
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
Levy R, Levet C, Cohen K, Freeman M, Mott R, Iraqi F, Gabet Y. A genome-wide association study in mice reveals a role for Rhbdf2 in skeletal homeostasis. Sci Rep 2020; 10:3286. [PMID: 32094386 PMCID: PMC7039944 DOI: 10.1038/s41598-020-60146-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Low bone mass and an increased risk of fracture are predictors of osteoporosis. Individuals who share the same bone-mineral density (BMD) vary in their fracture risk, suggesting that microstructural architecture is an important determinant of skeletal strength. Here, we utilized the rich diversity of the Collaborative Cross mice to identify putative causal genes that contribute to the risk of fractures. Using microcomputed tomography, we examined key structural features that pertain to bone quality in the femoral cortical and trabecular compartments of male and female mice. We estimated the broad-sense heritability to be 50–60% for all examined traits, and we identified five quantitative trait loci (QTL) significantly associated with six traits. We refined each QTL by combining information inferred from the ancestry of the mice, ranging from RNA-Seq data and published literature to shortlist candidate genes. We found strong evidence for new candidate genes, particularly Rhbdf2, whose close association with the trabecular bone volume fraction and number was strongly suggested by our analyses. We confirmed our findings with mRNA expression assays of Rhbdf2 in extreme-phenotype mice, and by phenotyping bones of Rhbdf2 knockout mice. Our results indicate that Rhbdf2 plays a decisive role in bone mass accrual and microarchitecture.
Collapse
Affiliation(s)
- Roei Levy
- Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Clemence Levet
- Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
| | - Keren Cohen
- Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Matthew Freeman
- Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
| | - Richard Mott
- UCL Genetics Institute, University College London, Gower St., London, WC1E 6BT, UK
| | - Fuad Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
42
|
Genetic Diversity of Collaborative Cross Mice Controls Viral Replication, Clinical Severity, and Brain Pathology Induced by Zika Virus Infection, Independently of Oas1b. J Virol 2020; 94:JVI.01034-19. [PMID: 31694939 DOI: 10.1128/jvi.01034-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022] Open
Abstract
The explosive spread of Zika virus (ZIKV) has been associated with major variations in severe disease and congenital afflictions among infected populations, suggesting an influence of host genes. We investigated how genome-wide variants could impact susceptibility to ZIKV infection in mice. We first describe that the susceptibility of Ifnar1-knockout mice is largely influenced by their genetic background. We then show that Collaborative Cross (CC) mice, which exhibit a broad genetic diversity, in which the type I interferon receptor (IFNAR) was blocked by an anti-IFNAR antibody expressed phenotypes ranging from complete resistance to severe symptoms and death, with large variations in the peak and the rate of decrease in the plasma viral load, in the brain viral load, in brain histopathology, and in the viral replication rate in infected cells. The differences in susceptibility to ZIKV between CC strains correlated with the differences in susceptibility to dengue and West Nile viruses between the strains. We identified highly susceptible and resistant mouse strains as new models to investigate the mechanisms of human ZIKV disease and other flavivirus infections. Genetic analyses revealed that phenotypic variations are driven by multiple genes with small effects, reflecting the complexity of ZIKV disease susceptibility in the human population. Notably, our results rule out the possibility of a role of the Oas1b gene in the susceptibility to ZIKV. Altogether, the findings of this study emphasize the role of host genes in the pathogeny of ZIKV infection and lay the foundation for further genetic and mechanistic studies.IMPORTANCE In recent outbreaks, ZIKV has infected millions of people and induced rare but potentially severe complications, including Guillain-Barré syndrome and encephalitis in adults. While several viral sequence variants were proposed to enhance the pathogenicity of ZIKV, the influence of host genetic variants in mediating the clinical heterogeneity remains mostly unexplored. We addressed this question using a mouse panel which models the genetic diversity of the human population and a ZIKV strain from a recent clinical isolate. Through a combination of in vitro and in vivo approaches, we demonstrate that multiple host genetic variants determine viral replication in infected cells and the clinical severity, the kinetics of blood viral load, and brain pathology in mice. We describe new mouse models expressing high degrees of susceptibility or resistance to ZIKV and to other flaviviruses. These models will facilitate the identification and mechanistic characterization of host genes that influence ZIKV pathogenesis.
Collapse
|
43
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Sarkar S, Heise MT. Mouse Models as Resources for Studying Infectious Diseases. Clin Ther 2019; 41:1912-1922. [PMID: 31540729 PMCID: PMC7112552 DOI: 10.1016/j.clinthera.2019.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Mouse models are important tools both for studying the pathogenesis of infectious diseases and for the preclinical evaluation of vaccines and therapies against a wide variety of human pathogens. The use of genetically defined inbred mouse strains, humanized mice, and gene knockout mice has allowed the research community to explore how pathogens cause disease, define the role of specific host genes in either controlling or promoting disease, and identify potential targets for the prevention or treatment of a wide range of infectious agents. This review discusses several of the most commonly used mouse model systems, as well as new resources such as the Collaborative Cross as models for studying infectious diseases.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Abu‐Toamih Atamni HJ, Iraqi FA. Efficient protocols and methods for high-throughput utilization of the Collaborative Cross mouse model for dissecting the genetic basis of complex traits. Animal Model Exp Med 2019; 2:137-149. [PMID: 31773089 PMCID: PMC6762040 DOI: 10.1002/ame2.12074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
The Collaborative Cross (CC) mouse model is a next-generation mouse genetic reference population (GRP) designated for a high-resolution quantitative trait loci (QTL) mapping of complex traits during health and disease. The CC lines were generated from reciprocal crosses of eight divergent mouse founder strains composed of five classical and three wild-derived strains. Complex traits are defined to be controlled by variations within multiple genes and the gene/environment interactions. In this article, we introduce and present variety of protocols and results of studying the host response to infectious and chronic diseases, including type 2 diabetes and metabolic diseases, body composition, immune response, colorectal cancer, susceptibility to Aspergillus fumigatus, Klebsiella pneumoniae, Pseudomonas aeruginosa, sepsis, and mixed infections of Porphyromonas gingivalis and Fusobacterium nucleatum, which were conducted at our laboratory using the CC mouse population. These traits are observed at multiple levels of the body systems, including metabolism, body weight, immune profile, susceptibility or resistance to the development and progress of infectious or chronic diseases. Herein, we present full protocols and step-by-step methods, implemented in our laboratory for the phenotypic and genotypic characterization of the different CC lines, mapping the gene underlying the host response to these infections and chronic diseases. The CC mouse model is a unique and powerful GRP for dissecting the host genetic architectures underlying complex traits, including chronic and infectious diseases.
Collapse
Affiliation(s)
- Hanifa J. Abu‐Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivRamat AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivRamat AvivIsrael
| |
Collapse
|
46
|
Antunes D, Cunha C, Carvalho A. Genetic Regulation of the Host-Fungus Interaction in the Pathogenesis of Aspergillosis. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Saul MC, Philip VM, Reinholdt LG, Chesler EJ. High-Diversity Mouse Populations for Complex Traits. Trends Genet 2019; 35:501-514. [PMID: 31133439 DOI: 10.1016/j.tig.2019.04.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Contemporary mouse genetic reference populations are a powerful platform to discover complex disease mechanisms. Advanced high-diversity mouse populations include the Collaborative Cross (CC) strains, Diversity Outbred (DO) stock, and their isogenic founder strains. When used in systems genetics and integrative genomics analyses, these populations efficiently harnesses known genetic variation for precise and contextualized identification of complex disease mechanisms. Extensive genetic, genomic, and phenotypic data are already available for these high-diversity mouse populations and a growing suite of data analysis tools have been developed to support research on diverse mice. This integrated resource can be used to discover and evaluate disease mechanisms relevant across species.
Collapse
Affiliation(s)
- Michael C Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | -
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA; UNC Chapel Hill, Chapel Hill, NC, USA; SUNY Binghamton, Binghamton, NY, USA; Pittsburgh University, Pittsburgh, PA, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA.
| |
Collapse
|
48
|
Abstract
The Collaborative Cross (CC) is a mouse genetic reference population whose range of applications includes quantitative trait loci (QTL) mapping. The design of a CC QTL mapping study involves multiple decisions, including which and how many strains to use, and how many replicates per strain to phenotype, all viewed within the context of hypothesized QTL architecture. Until now, these decisions have been informed largely by early power analyses that were based on simulated, hypothetical CC genomes. Now that more than 50 CC strains are available and more than 70 CC genomes have been observed, it is possible to characterize power based on realized CC genomes. We report power analyses from extensive simulations and examine several key considerations: 1) the number of strains and biological replicates, 2) the QTL effect size, 3) the presence of population structure, and 4) the distribution of functionally distinct alleles among the founder strains at the QTL. We also provide general power estimates to aide in the design of future experiments. All analyses were conducted with our R package, SPARCC (Simulated Power Analysis in the Realized Collaborative Cross), developed for performing either large scale power analyses or those tailored to particular CC experiments.
Collapse
|
49
|
Shorter JR, Najarian ML, Bell TA, Blanchard M, Ferris MT, Hock P, Kashfeen A, Kirchoff KE, Linnertz CL, Sigmon JS, Miller DR, McMillan L, Pardo-Manuel de Villena F. Whole Genome Sequencing and Progress Toward Full Inbreeding of the Mouse Collaborative Cross Population. G3 (BETHESDA, MD.) 2019; 9:1303-1311. [PMID: 30858237 PMCID: PMC6505143 DOI: 10.1534/g3.119.400039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Two key features of recombinant inbred panels are well-characterized genomes and reproducibility. Here we report on the sequenced genomes of six additional Collaborative Cross (CC) strains and on inbreeding progress of 72 CC strains. We have previously reported on the sequences of 69 CC strains that were publicly available, bringing the total of CC strains with whole genome sequence up to 75. The sequencing of these six CC strains updates the efforts toward inbreeding undertaken by the UNC Systems Genetics Core. The timing reflects our competing mandates to release to the public as many CC strains as possible while achieving an acceptable level of inbreeding. The new six strains have a higher than average founder contribution from non-domesticus strains than the previously released CC strains. Five of the six strains also have high residual heterozygosity (>14%), which may be related to non-domesticus founder contributions. Finally, we report on updated estimates on residual heterozygosity across the entire CC population using a novel, simple and cost effective genotyping platform on three mice from each strain. We observe a reduction in residual heterozygosity across all previously released CC strains. We discuss the optimal use of different genetic resources available for the CC population.
Collapse
Affiliation(s)
| | | | - Timothy A Bell
- Department of Genetics
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Noll KE, Ferris MT, Heise MT. The Collaborative Cross: A Systems Genetics Resource for Studying Host-Pathogen Interactions. Cell Host Microbe 2019; 25:484-498. [PMID: 30974083 PMCID: PMC6494101 DOI: 10.1016/j.chom.2019.03.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Host genetic variation has a major impact on infectious disease susceptibility. The study of pathogen resistance genes, largely aided by mouse models, has significantly advanced our understanding of infectious disease pathogenesis. The Collaborative Cross (CC), a newly developed multi-parental mouse genetic reference population, serves as a tractable model system to study how pathogens interact with genetically diverse populations. In this review, we summarize progress utilizing the CC as a platform to develop improved models of pathogen-induced disease and to map polymorphic host response loci associated with variation in susceptibility to pathogens.
Collapse
Affiliation(s)
- Kelsey E Noll
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin T Ferris
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Mark T Heise
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|