1
|
Rossi R, Torelli S, Moore M, Ala P, Morgan J, Malhotra J, Muntoni F. Golodirsen restores DMD transcript imbalance in Duchenne Muscular Dystrophy patient muscle cells. Skelet Muscle 2024; 14:28. [PMID: 39614336 DOI: 10.1186/s13395-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Antisense oligonucleotides (AON) represent a promising treatment for Duchenne muscular dystrophy (DMD) carrying out-of-frame deletions, but also show limitations. In a completed clinical trial golodirsen, approved by FDA to induce skipping of DMD gene exon 53 in eligible patients, we demonstrated increase in DMD expression and protein production, albeit with inter-patient variability. METHODS Here, we investigate further the golodirsen mechanism of action using myotubes derived from MyoD transfected fibroblasts isolated from DMD patients at the baseline of the clinical trial SRP-4053. RESULTS We confirm golodirsen's selectivity and efficiency in removing only exon 53. For the first time in human cells, we revealed a significant reduction in the so called DMD "transcript imbalance", in golodirsen-treated DMD muscle cultures. The transcript imbalance is a unique DMD phenomenon characterized by non-homogeneous transcript expression along its entire length and responsible for the reduced stability of the transcript. Our in-vivo study also showed that the efficiency of exon skipping did not always correspond to a proportional restoration of the dystrophin protein. Predominant nuclear localization of the DMD transcript, observed in patients and animal models, persists even after exon skipping. CONCLUSION All these findings suggest challenges other than AON delivery for high level of protein restoration in DMD, highlighting the importance of investigating the biological mechanisms upstream of protein production to further enhance the efficiency of any AON treatment in this condition.
Collapse
Affiliation(s)
- Rachele Rossi
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Silvia Torelli
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Marc Moore
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | | | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK.
| |
Collapse
|
2
|
Segarra-Casas A, Yépez VA, Demidov G, Laurie S, Esteve-Codina A, Gagneur J, Parkhurst Y, Muni-Lofra R, Harris E, Marini-Bettolo C, Straub V, Töpf A. An Integrated Transcriptomics and Genomics Approach Detects an X/Autosome Translocation in a Female with Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:7793. [PMID: 39063034 PMCID: PMC11276803 DOI: 10.3390/ijms25147793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene are copy number variants (CNVs), and most patients achieve their genetic diagnosis through Multiplex Ligation-dependent Probe Amplification (MLPA) or exome sequencing. Here, we investigated a female patient presenting with muscular dystrophy who remained genetically undiagnosed after MLPA and exome sequencing. RNA sequencing (RNAseq) from the patient's muscle biopsy identified an 85% reduction in DMD expression compared to 116 muscle samples included in the cohort. A de novo balanced translocation between chromosome 17 and the X chromosome (t(X;17)(p21.1;q23.2)) disrupting the DMD and BCAS3 genes was identified through trio whole genome sequencing (WGS). The combined analysis of RNAseq and WGS played a crucial role in the detection and characterisation of the disease-causing variant in this patient, who had been undiagnosed for over two decades. This case illustrates the diagnostic odyssey of female DMD patients with complex structural variants that are not detected by current panel or exome sequencing analysis.
Collapse
Affiliation(s)
- Alba Segarra-Casas
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK; (A.S.-C.)
- Genetics Department, Institut de Recerca Sant Pau (IR SANT PAU), Hospital de la Santa Creu i Sant Pau, Genetics and Microbiology Department, Universitat Autonoma de Barcelona, 08041 Barcelona, Spain
| | - Vicente A. Yépez
- School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - German Demidov
- Universitätsklinikum Tübingen—Institut für Medizinische Genetik und angewandte Genomik, 72076 Tübingen, Germany
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), 08028 Barcelona, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), 08028 Barcelona, Spain
- Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Computational Health Center, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Yolande Parkhurst
- Muscle Immunoanalysis Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Robert Muni-Lofra
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK; (A.S.-C.)
| | - Elizabeth Harris
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK; (A.S.-C.)
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK; (A.S.-C.)
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK; (A.S.-C.)
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK; (A.S.-C.)
| |
Collapse
|
3
|
Dennhag N, Kahsay A, Nissen I, Nord H, Chermenina M, Liu J, Arner A, Liu JX, Backman LJ, Remeseiro S, von Hofsten J, Pedrosa Domellöf F. fhl2b mediates extraocular muscle protection in zebrafish models of muscular dystrophies and its ectopic expression ameliorates affected body muscles. Nat Commun 2024; 15:1950. [PMID: 38431640 PMCID: PMC10908798 DOI: 10.1038/s41467-024-46187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.
Collapse
Affiliation(s)
- Nils Dennhag
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Abraha Kahsay
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Itzel Nissen
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Hanna Nord
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Maria Chermenina
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Jiao Liu
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anders Arner
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
| | - Jing-Xia Liu
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Silvia Remeseiro
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
| | - Fatima Pedrosa Domellöf
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Psaras Y, Toepfer CN. Targeted genetic therapies for inherited disorders that affect both cardiac and skeletal muscle. Exp Physiol 2024; 109:175-189. [PMID: 38095849 PMCID: PMC10988723 DOI: 10.1113/ep090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Skeletal myopathies and ataxias with secondary cardiac involvement are complex, progressive and debilitating conditions. As life expectancy increases across these conditions, cardiac involvement often becomes more prominent. This highlights the need for targeted therapies that address these evolving cardiac pathologies. Musculopathies by and large lack cures that directly target the genetic basis of the diseases; however, as our understanding of the genetic causes of these conditions has evolved, it has become tractable to develop targeted therapies using biologics, to design precision approaches to target the primary genetic causes of these varied diseases. Using the examples of Duchenne muscular dystrophy, Friedreich ataxia and Pompe disease, we discuss how the genetic causes of such diseases derail diverse homeostatic, energetic and signalling pathways, which span multiple cellular systems in varied tissues across the body. We outline existing therapeutics and treatments in the context of emerging novel genetic approaches. We discuss the hurdles that the field must overcome to deliver targeted therapies across the many tissue types affected in primary myopathies.
Collapse
Affiliation(s)
- Yiangos Psaras
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Christopher N. Toepfer
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Wijekoon N, Gonawala L, Ratnayake P, Liyanage R, Amaratunga D, Hathout Y, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Title-molecular diagnostics of dystrophinopathies in Sri Lanka towards phenotype predictions: an insight from a South Asian resource limited setting. Eur J Med Res 2024; 29:37. [PMID: 38195599 PMCID: PMC10775540 DOI: 10.1186/s40001-023-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The phenotype of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients is determined by the type of DMD gene variation, its location, effect on reading frame, and its size. The primary objective of this investigation was to determine the frequency and distribution of DMD gene variants (deletions/duplications) in Sri Lanka through the utilization of a combined approach involving multiplex polymerase chain reaction (mPCR) followed by Multiplex Ligation Dependent Probe Amplification (MLPA) and compare to the international literature. The current consensus is that MLPA is a labor efficient yet expensive technique for identifying deletions and duplications in the DMD gene. METHODOLOGY Genetic analysis was performed in a cohort of 236 clinically suspected pediatric and adult myopathy patients in Sri Lanka, using mPCR and MLPA. A comparative analysis was conducted between our findings and literature data. RESULTS In the entire patient cohort (n = 236), mPCR solely was able to identify deletions in the DMD gene in 131/236 patients (DMD-120, BMD-11). In the same cohort, MLPA confirmed deletions in 149/236 patients [DMD-138, BMD -11]. These findings suggest that mPCR has a detection rate of 95% (131/138) among all patients who received a diagnosis. The distal and proximal deletion hotspots for DMD were exons 45-55 and 6-15. Exon 45-60 identified as a novel in-frame variation hotspot. Exon 45-59 was a hotspot for BMD deletions. Comparisons with the international literature show significant variations observed in deletion and duplication frequencies in DMD gene across different populations. CONCLUSION DMD gene deletions and duplications are concentrated in exons 45-55 and 2-20 respectively, which match global variation hotspots. Disparities in deletion and duplication frequencies were observed when comparing our data to other Asian and Western populations. Identified a 95% deletion detection rate for mPCR, making it a viable initial molecular diagnostic approach for low-resource countries where MLPA could be used to evaluate negative mPCR cases and cases with ambiguous mutation borders. Our findings may have important implications in the early identification of DMD with limited resources in Sri Lanka and to develop tailored molecular diagnostic algorithms that are regional and population specific and easily implemented in resource limited settings.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | | | - Roshan Liyanage
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Harry W M Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - K Ranil D de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands.
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka.
| |
Collapse
|
6
|
Hildyard JCW, Piercy RJ. When Size Really Matters: The Eccentricities of Dystrophin Transcription and the Hazards of Quantifying mRNA from Very Long Genes. Biomedicines 2023; 11:2082. [PMID: 37509720 PMCID: PMC10377302 DOI: 10.3390/biomedicines11072082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
At 2.3 megabases in length, the dystrophin gene is enormous: transcription of a single mRNA requires approximately 16 h. Principally expressed in skeletal muscle, the dystrophin protein product protects the muscle sarcolemma against contraction-induced injury, and dystrophin deficiency results in the fatal muscle-wasting disease, Duchenne muscular dystrophy. This gene is thus of key clinical interest, and therapeutic strategies aimed at eliciting dystrophin restoration require quantitative analysis of its expression. Approaches for quantifying dystrophin at the protein level are well-established, however study at the mRNA level warrants closer scrutiny: measured expression values differ in a sequence-dependent fashion, with significant consequences for data interpretation. In this manuscript, we discuss these nuances of expression and present evidence to support a transcriptional model whereby the long transcription time is coupled to a short mature mRNA half-life, with dystrophin transcripts being predominantly nascent as a consequence. We explore the effects of such a model on cellular transcriptional dynamics and then discuss key implications for the study of dystrophin gene expression, focusing on both conventional (qPCR) and next-gen (RNAseq) approaches.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Comparative Neuromuscular Disease Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK;
| | | |
Collapse
|
7
|
Taglietti V, Kefi K, Rivera L, Bergiers O, Cardone N, Coulpier F, Gioftsidi S, Drayton-Libotte B, Hou C, Authier FJ, Pietri-Rouxel F, Robert M, Bremond-Gignac D, Bruno C, Fiorillo C, Malfatti E, Lafuste P, Tiret L, Relaix F. Thyroid-stimulating hormone receptor signaling restores skeletal muscle stem cell regeneration in rats with muscular dystrophy. Sci Transl Med 2023; 15:eadd5275. [PMID: 36857434 DOI: 10.1126/scitranslmed.add5275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive myopathy leading to motor and cardiorespiratory impairment. We analyzed samples from patients with DMD and a preclinical rat model of severe DMD and determined that compromised repair capacity of muscle stem cells in DMD is associated with early and progressive muscle stem cell senescence. We also found that extraocular muscles (EOMs), which are spared by the disease in patients, contain muscle stem cells with long-lasting regenerative potential. Using single-cell transcriptomics analysis of muscles from a rat model of DMD, we identified the gene encoding thyroid-stimulating hormone receptor (Tshr) as highly expressed in EOM stem cells. Further, TSHR activity was involved in preventing senescence. Forskolin, which activates signaling downstream of TSHR, was found to reduce senescence of skeletal muscle stem cells, increase stem cell regenerative potential, and promote myogenesis, thereby improving muscle function in DMD rats. These findings indicate that stimulation of adenylyl cyclase leads to muscle repair in DMD, potentially providing a therapeutic approach for patients with the disease.
Collapse
Affiliation(s)
| | - Kaouthar Kefi
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Lea Rivera
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Oriane Bergiers
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Nastasia Cardone
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Fanny Coulpier
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | | | | | - Cyrielle Hou
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - François-Jérôme Authier
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France
| | - France Pietri-Rouxel
- Sorbonne Université, INSERM, UMRS974, Center for Research in Myology, F-75013, Paris, France
| | - Matthieu Robert
- Borelli centre, UMR 9010, CNRS - SSA - ENS Paris Saclay - Université Paris Cité, F-75016, Paris, France.,Ophthalmology Department, Necker Enfants Malades University Hospital, AP-HP, F-75015, Paris, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker Enfants Malades University Hospital, AP-HP, F-75015, Paris, France.,INSERM, UMRS1138, Team 17, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Gaslini Institute, DINOGMI, University of Genova, 16147, Genova, Italy
| | - Chiara Fiorillo
- Center of Translational and Experimental Myology, IRCCS Gaslini Institute, DINOGMI, University of Genova, 16147, Genova, Italy
| | - Edoardo Malfatti
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France
| | - Peggy Lafuste
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,École nationale vétérinaire d'Alfort, IMRB, F-94700, Maisons-Alfort, France
| | - Frédéric Relaix
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France.,École nationale vétérinaire d'Alfort, IMRB, F-94700, Maisons-Alfort, France.,EFS, IMRB, F-94010, Creteil, France
| |
Collapse
|
8
|
Chiraphapphaiboon W, Thongnoppakhun W, Limjindaporn T, Sawasdichai S, Roothumnong E, Prangphan K, Pamornpol B, Limwongse C, Pithukpakorn M. STK11 Causative Variants and Copy Number Variations Identified in Thai Patients With Peutz-Jeghers Syndrome. Cureus 2023; 15:e34495. [PMID: 36874343 PMCID: PMC9983355 DOI: 10.7759/cureus.34495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant inherited disorder caused by germline mutations in the serine-threonine kinase 11 (STK11) tumor suppressor gene. This syndrome is characterized by hamartomatous gastrointestinal polyps, mucocutaneous melanin pigmentation, and a higher risk of developing various cancers. Methods We summarized the clinical and molecular characteristics of five unrelated Thai patients with PJS. Denaturing high-performance liquid chromatography (DHPLC) screening, coupled with direct DNA sequencing and multiplex ligation-dependent probe amplification (MLPA), were applied for the molecular analysis of STK11. Results A total of four STK11 pathogenic changeswere identified in the five PJS patients, including two frameshift variants (a novel c.199dup, p.Leu67ProfsTer96 and a known c.834_835del, p.Cys278TrpfsTer6) and two types of copy number variations (CNV), exon 1 deletion and exons 2-3 deletion. Among reported STK11 exonic deletions, exon 1 and exons 2-3 deletions were found to be the two most commonly deleted exons. Conclusion All identified STK11 mutations were null mutations that were associated with more severe PJS phenotypes and cancers. This study broadens the phenotypic and mutational spectrum of STK11 in PJS.
Collapse
Affiliation(s)
| | - Wanna Thongnoppakhun
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | | | - Sunisa Sawasdichai
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Ekkapong Roothumnong
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Kanjana Prangphan
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Benjaporn Pamornpol
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Chanin Limwongse
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA.,Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Manop Pithukpakorn
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA.,Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| |
Collapse
|
9
|
Billington CJ, Chapman KA, Leon E, Meltzer BW, Berger SI, Olson M, Figler RA, Hoang SA, Wanxing C, Wamhoff BR, Collado MS, Cusmano‐Ozog K. Genomic and biochemical analysis of repeatedly observed variants in DBT in individuals with maple syrup urine disease of Central American ancestry. Am J Med Genet A 2022; 188:2738-2749. [PMID: 35799415 PMCID: PMC9542135 DOI: 10.1002/ajmg.a.62893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023]
Abstract
Maple syrup urine disease (MSUD) is an intoxication-type inherited metabolic disorder in which hyperleucinemia leads to brain swelling and death without treatment. MSUD is caused by branched-chain alpha-ketoacid dehydrogenase deficiency due to biallelic loss of the protein products from the genes BCKDHA, BCKDHB, or DBT, while a distinct but related condition is caused by loss of DLD. In this case series, eleven individuals with MSUD caused by two pathogenic variants in DBT are presented. All eleven individuals have a deletion of exon 2 (delEx2, NM_001918.3:c.48_171del); six individuals are homozygous and five individuals are compound heterozygous with a novel missense variant (NM_001918.5:c.916 T > C [p.Ser306Pro]) confirmed to be in trans. Western Blot indicates decreased amount of protein product in delEx2;c.916 T > C liver cells and absence of protein product in delEx2 homozygous hepatocytes. Ultrahigh performance liquid chromatography-tandem mass spectrometry demonstrates an accumulation of branched-chain amino acids and alpha-ketoacids in explanted hepatocytes. Individuals with these variants have a neonatal-onset, non-thiamine-responsive, classical form of MSUD. Strikingly, the entire cohort is derived from families who immigrated to the Washington, DC, metro area from Honduras or El Salvador suggesting the possibility of a founder effect.
Collapse
Affiliation(s)
- Charles J. Billington
- Children's National Rare Disease InstituteWashingtonDistrict of ColumbiaUSA
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Eyby Leon
- Children's National Rare Disease InstituteWashingtonDistrict of ColumbiaUSA
| | - Beatrix W. Meltzer
- Laboratory Medicine, Children's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Seth I. Berger
- Children's National Rare Disease InstituteWashingtonDistrict of ColumbiaUSA
| | - Matthew Olson
- HemoShear Therapeutics, Inc.CharlottesvilleVirginiaUSA
| | | | | | - Cui Wanxing
- Georgetown University HospitalWashingtonDistrict of ColumbiaUSA
| | | | | | | |
Collapse
|
10
|
Taglietti V, Kefi K, Bronisz-Budzyńska I, Mirciloglu B, Rodrigues M, Cardone N, Coulpier F, Periou B, Gentil C, Goddard M, Authier FJ, Pietri-Rouxel F, Malfatti E, Lafuste P, Tiret L, Relaix F. Duchenne muscular dystrophy trajectory in R-DMDdel52 preclinical rat model identifies COMP as biomarker of fibrosis. Acta Neuropathol Commun 2022; 10:60. [PMID: 35468843 PMCID: PMC9036715 DOI: 10.1186/s40478-022-01355-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene and for which there is currently no cure. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R-DMDdel52) causing a complete lack of dystrophin protein. Here we show that R-DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R-DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around 1 year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein, a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R-DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.
Collapse
|
11
|
Waldrop MA, Moore SA, Mathews KD, Darbro BW, Medne L, Finkel R, Connolly AM, Crawford TO, Drachman D, Wein N, Habib AA, Krzesniak-Swinarska MA, Zaidman CM, Collins JJ, Jokela M, Udd B, Day JW, Ortiz-Guerrero G, Statland J, Butterfield RJ, Dunn DM, Weiss RB, Flanigan KM. Intron mutations and early transcription termination in Duchenne and Becker muscular dystrophy. Hum Mutat 2022; 43:511-528. [PMID: 35165973 PMCID: PMC9901284 DOI: 10.1002/humu.24343] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/11/2022]
Abstract
DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.
Collapse
Affiliation(s)
- Megan A. Waldrop
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205,Department of Neurology, The Ohio State University, Columbus, OH 43205,Department of Pediatrics, The Ohio State University, Columbus, OH 43205
| | - Steven A. Moore
- Department of Pathology, The University of Iowa, Iowa City, IA, 52242
| | | | | | - Livja Medne
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Anne M. Connolly
- Department of Neurology, Washington University, Saint Louis, MO 63110
| | | | | | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205
| | | | | | - Craig M. Zaidman
- Department of Neurology, Washington University, Saint Louis, MO 63110
| | - James J. Collins
- Department of Pediatric Neurology, Mercy Hospitals, Springfield, MO 65804
| | - Manu Jokela
- Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland,Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - John W. Day
- Department of Neurology, University of Minnesota Medical Center, Minneapolis, MN 55454
| | | | - Jeff Statland
- Department of Neurology, University of Kansas, Kansas City, KS
| | - Russell J. Butterfield
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Diane M. Dunn
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Robert B. Weiss
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84112,Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205,Department of Neurology, The Ohio State University, Columbus, OH 43205,Department of Pediatrics, The Ohio State University, Columbus, OH 43205
| |
Collapse
|
12
|
Qi M, Stenson PD, Ball EV, Tainer JA, Bacolla A, Kehrer-Sawatzki H, Cooper DN, Zhao H. Distinct sequence features underlie microdeletions and gross deletions in the human genome. Hum Mutat 2021; 43:328-346. [PMID: 34918412 PMCID: PMC9069542 DOI: 10.1002/humu.24314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Microdeletions and gross deletions are important causes (~20%) of human inherited disease and their genomic locations are strongly influenced by the local DNA sequence environment. This notwithstanding, no study has systematically examined their underlying generative mechanisms. Here, we obtained 42,098 pathogenic microdeletions and gross deletions from the Human Gene Mutation Database (HGMD) that together form a continuum of germline deletions ranging in size from 1 to 28,394,429 bp. We analyzed the DNA sequence within 1 kb of the breakpoint junctions and found that the frequencies of non‐B DNA‐forming repeats, GC‐content, and the presence of seven of 78 specific sequence motifs in the vicinity of pathogenic deletions correlated with deletion length for deletions of length ≤30 bp. Further, we found that the presence of DR, GQ, and STR repeats is important for the formation of longer deletions (>30 bp) but not for the formation of shorter deletions (≤30 bp) while significantly (χ2, p < 2E−16) more microhomologies were identified flanking short deletions than long deletions (length >30 bp). We provide evidence to support a functional distinction between microdeletions and gross deletions. Finally, we propose that a deletion length cut‐off of 25–30 bp may serve as an objective means to functionally distinguish microdeletions from gross deletions.
Collapse
Affiliation(s)
- Mengling Qi
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| |
Collapse
|
13
|
Liu W, Shi X, Li Y, Qiao F, Wu Y. The identification of a novel splicing mutation in the DMD gene of a Chinese family. Clin Case Rep 2021; 9:e05166. [PMID: 34938549 PMCID: PMC8659554 DOI: 10.1002/ccr3.5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/14/2022] Open
Abstract
The proband is a five-year-old boy diagnosed with Duchenne muscular dystrophy (DMD) by clinical manifestations and laboratory examination, but clinical phenotype of his parents is normal. In the study, his mother had a second pregnancy, and they went to obstetrics for genetic counseling to make informed reproductive choices.
Collapse
Affiliation(s)
- Wanlu Liu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinwei Shi
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuqi Li
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fuyuan Qiao
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Wu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
14
|
Nagabushana D, Polavarapu K, Bardhan M, Arunachal G, Gunasekaran S, Preethish-Kumar V, Anjanappa RM, Thomas P, Sadasivan A, Vengalil S, Nashi S, Chawla T, Warrier M, Keerthipriya M, Raju S, Mohan D, Nalini A. Comparison of The Carrier Frequency of Pathogenic Variants of DMD Gene in an Indian Cohort. J Neuromuscul Dis 2021; 8:525-535. [PMID: 33843695 DOI: 10.3233/jnd-210658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked disorder caused due to large deletions, duplications,and small pathogenic variants. This article compares the carrier frequency of different pathogenic variants in the DMD gene for the first time in an Indian cohort. METHODS Ninety-one mothers of genetically confirmed DMD probands are included in this study. Pathogenic variants in the DMD gene in probands were detected by multiplex ligation-dependent probe amplification (MLPA) or next-generation sequencing (NGS). Maternal blood samples were evaluated either by MLPA or Sanger sequencing. The demographic and clinical details for screening of muscle weakness and cardiomyopathy were collected from the confirmed carriers. RESULTS Out of 91 probands, large deletions and duplications were identified in 46 and 6 respectively, while 39 had small variants. Among the small variants, substitutions predicted to cause nonsense mutations were the most common (61.5%), followed by frameshift causing small insertion/deletions (25.6%) and splice affecting intronic variants (12.8%). Notably, 19 novel small variants predicted to be disease-causing were identified. Of the 91 mothers, 53 (58.7%) were confirmed to be carriers. Exonic deletions had a significantly lower carrier frequency of 47.8% as compared to small variants (64.1%). The mean age of the carriers at evaluation was 30 years. Among the carriers, two were symptomatic with onset in the 4th decade, manifesting with progressive proximal muscle weakness and dilated cardiomyopathy. CONCLUSION Carrier frequency of small pathogenic variants differs significantly from large deletions. Small pathogenic variants are more commonly inherited, whereas large deletions arise de novo.
Collapse
Affiliation(s)
- Divya Nagabushana
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.,Children's Hospital of Eastern Ontario Research Institute, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, ON, Canada
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Swetha Gunasekaran
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Ram Murthy Anjanappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - PriyaTreesa Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun Sadasivan
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Tanushree Chawla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Manjusha Warrier
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Muddasu Keerthipriya
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sanita Raju
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Dhaarini Mohan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
15
|
Geng C, Tong Y, Zhang S, Ling C, Wu X, Wang D, Dai Y. Sequence and Structure Characteristics of 22 Deletion Breakpoints in Intron 44 of the DMD Gene Based on Long-Read Sequencing. Front Genet 2021; 12:638220. [PMID: 34211494 PMCID: PMC8240811 DOI: 10.3389/fgene.2021.638220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: Exon deletions make up to 80% of mutations in the DMD gene, which cause Duchenne and Becker muscular dystrophy. Exon 45-55 regions were reported as deletion hotspots and intron 44 harbored more than 25% of deletion start points. We aimed to investigate the fine structures of breakpoints in intron 44 to find potential mechanisms of large deletions in intron 44. Methods: Twenty-two dystrophinopathy patients whose deletion started in intron 44 were sequenced using long-read sequencing of a DMD gene capture panel. Sequence homology, palindromic sequences, and polypyrimidine sequences were searched at the breakpoint junctions. RepeatMasker was used to analyze repetitive elements and Mfold was applied to predict secondary DNA structure. Results: With a designed DMD capture panel, 22 samples achieved 2.25 gigabases and 1.28 million reads on average. Average depth was 308× and 99.98% bases were covered at least 1×. The deletion breakpoints in intron 44 were scattered and no breakpoints clustered in any region less than 500 bp. A total of 72.7% of breakpoints located in distal 100 kb of intron 44 and more repetitive elements were found in this region. Microhomologies of 0–1 bp were found in 36.4% (8/22) of patients, which corresponded with non-homologous end-joining. Microhomologies of 2–20 bp were found in 59.1% (13/22) of patients, which corresponded with microhomology-mediated end-joining. Moreover, a 7 bp insertion was found in one patient, which might be evidence of aberrant replication origin firing. Palindromic sequences, polypyrimidine sequences, and small hairpin loops were found near several breakpoint junctions. No evidence of large hairpin loop formation in deletion root sequences was observed. Conclusion: This study was the first to explore possible mechanisms underlying exon deletions starting from intron 44 of the DMD gene based on long-read sequencing. Diverse mechanisms might be associated with deletions in the DMD gene.
Collapse
Affiliation(s)
- Chang Geng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanren Tong
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Chao Ling
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wu
- GrandOmics Biosciences, Beijing, China
| | | | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
EMQN best practice guidelines for genetic testing in dystrophinopathies. Eur J Hum Genet 2020; 28:1141-1159. [PMID: 32424326 PMCID: PMC7608854 DOI: 10.1038/s41431-020-0643-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023] Open
Abstract
Dystrophinopathies are X-linked diseases, including Duchenne muscular dystrophy and Becker muscular dystrophy, due to DMD gene variants. In recent years, the application of new genetic technologies and the availability of new personalised drugs have influenced diagnostic genetic testing for dystrophinopathies. Therefore, these European best practice guidelines for genetic testing in dystrophinopathies have been produced to update previous guidelines published in 2010.These guidelines summarise current recommended technologies and methodologies for analysis of the DMD gene, including testing for deletions and duplications of one or more exons, small variant detection and RNA analysis. Genetic testing strategies for diagnosis, carrier testing and prenatal diagnosis (including non-invasive prenatal diagnosis) are then outlined. Guidelines for sequence variant annotation and interpretation are provided, followed by recommendations for reporting results of all categories of testing. Finally, atypical findings (such as non-contiguous deletions and dual DMD variants), implications for personalised medicine and clinical trials and incidental findings (identification of DMD gene variants in patients where a clinical diagnosis of dystrophinopathy has not been considered or suspected) are discussed.
Collapse
|
17
|
Wonkam‐Tingang E, Nguefack S, Esterhuizen AI, Chelo D, Wonkam A. DMD-related muscular dystrophy in Cameroon: Clinical and genetic profiles. Mol Genet Genomic Med 2020; 8:e1362. [PMID: 32543101 PMCID: PMC7434738 DOI: 10.1002/mgg3.1362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Most of the previous studies on Duchenne Muscular Dystrophy (DMD) were conducted in Caucasian, Asian, and Arab populations. Therefore, little is known about the features of this disease in Africans. In this study, we aimed to determine the clinical characteristics of DMD, and the common mutations associated with this condition in a group of Cameroonian patients. METHODS We recruited DMD patients and performed a general physical examination on each of them. Multiplex ligand-dependant probe amplification was carried out to investigate exon deletions and duplications in the DMD gene (OMIM: 300377) of patients and their mothers. RESULTS A total of 17 male patients from 14 families were recruited, aged 14 ± 5.1 (8-23) years. The mean age at onset of symptoms was 4.6 ± 1.5 years, and the mean age at diagnosis was 12.1 ± 5.2 years. Proximal muscle weakness was noted in all patients and calf hypertrophy in the large majority of them (88.2%; 15/17). Flexion contractures were particularly frequent on the ankle (85.7%; 12/14). Wasting of shoulder girdle and thigh muscles was present in 50% (6/12) and 46.2% (6/13) of patients, respectively. No patient presented with hearing impairment. Deletions in DMD gene (OMIM: 300377) occurred in 45.5% of patients (5/11), while duplications were observed in 27.3% (3/11). Both mutation types were clustered between exons 45 and 50, and the proportion of de novo mutation was estimated at 18.2% (2/11). CONCLUSION Despite the first symptoms of DMD occurring in infancy, the diagnosis is frequently made later in adolescence, indicating an underestimation of the number of cases of DMD in Cameroon. Future screening of deletions and duplications in patients from Cameroon should focus on the distal part of the gene.
Collapse
Affiliation(s)
- Edmond Wonkam‐Tingang
- Division of Human GeneticsDepartment of PathologyUniversity of Cape TownCape TownSouth Africa
| | - Séraphin Nguefack
- Department of PaediatricsFaculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundéCameroon
- Paediatrics UnitDivision of Paediatric NeurologyGynaeco‐Obstetric and Paediatric HospitalYaoundéCameroon
| | - Alina I. Esterhuizen
- Division of Human GeneticsDepartment of PathologyUniversity of Cape TownCape TownSouth Africa
- National Health Laboratory ServiceGroote Schuur HospitalCape TownSouth Africa
| | - David Chelo
- Department of PaediatricsFaculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundéCameroon
- Division of Paediatric Cardiology, Mother and Child HospitalYaoundéCameroon
| | - Ambroise Wonkam
- Division of Human GeneticsDepartment of PathologyUniversity of Cape TownCape TownSouth Africa
- Department of MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
18
|
Deciphering the complexity of simple chromosomal insertions by genome sequencing. Hum Genet 2020; 140:361-380. [PMID: 32728808 DOI: 10.1007/s00439-020-02210-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Chromosomal insertions are thought to be rare structural rearrangements. The current understanding of the underlying mechanisms of their origin is still limited. In this study, we sequenced 16 cases with apparent simple insertions previously identified by karyotyping and/or chromosomal microarray analysis. Using mate-pair genome sequencing (GS), we identified all 16 insertions and revised previously designated karyotypes in 75.0% (12/16) of the cases. Additional cryptic rearrangements were identified in 68.8% of the cases (11/16). The incidence of additional cryptic rearrangements in chromosomal insertions was significantly higher compared to balanced translocations and inversions reported in other studies by GS. We characterized and classified the cryptic insertion rearrangements into four groups, which were not mutually exclusive: (1) insertion segments were fragmented and their subsegments rearranged and clustered at the insertion site (10/16, 62.5%); (2) one or more cryptic subsegments were not inserted into the insertion site (5/16, 31.3%); (3) segments of the acceptor chromosome were scattered and rejoined with the insertion segments (2/16, 12.5%); and (4) copy number gains were identified in the flanking regions of the insertion site (2/16, 12.5%). In addition to the observation of these chromothripsis- or chromoanasynthesis-like events, breakpoint sequence analysis revealed microhomology to be the predominant feature. However, no significant correlation was found between the number of cryptic rearrangements and the size of the insertion. Overall, our study provide molecular characterization of karyotypically apparent simple insertions, demonstrate previously underappreciated complexities, and evidence that chromosomal insertions are likely formed by nonhomologous end joining and/or microhomology-mediated replication-based DNA repair.
Collapse
|
19
|
Exon skipping in Duchenne Muscle dystrophy due to a silent p.Ser443= mutation in the DMD gene. J Clin Neurosci 2020; 76:229-232. [PMID: 32317190 DOI: 10.1016/j.jocn.2020.04.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/12/2020] [Indexed: 11/23/2022]
Abstract
Duchenne Muscle dystrophy (DMD) is a X-linked inherited disease predominantly caused by severe mutations in DMD gene leading to absence of dystrophin protein. Here we report a 14-year-old Mongolian boy suffering from proximal muscle weakness, pseudohypertrophic deltoid and gastrocnemius muscles since early childhood. Lactate dehydrogenase (LDH) and creatine kinase (CK) levels were elevated. Mutation analysis including MLPA and sequencing of the DMD gene revealed a hemizygous silent variant, c.1329C>T (p.Ser443=) in exon 11. This silent mutation, listed in the SNP database (rs1060502631), was described as a variant of unknown significance (VUS) in ClinVar database. cDNA analysis demonstrated partial skipping of exon 11 due to this mutation. Although silent mutations are usually considered non-pathogenic, our case emphasizes that silent mutations can be potentially pathogenic. Hence, if silent variants are not annotated in database or not known to be benign, they should be analysed further at cDNA level.
Collapse
|
20
|
Neri M, Rossi R, Trabanelli C, Mauro A, Selvatici R, Falzarano MS, Spedicato N, Margutti A, Rimessi P, Fortunato F, Fabris M, Gualandi F, Comi G, Tedeschi S, Seia M, Fiorillo C, Traverso M, Bruno C, Giardina E, Piemontese MR, Merla G, Cau M, Marica M, Scuderi C, Borgione E, Tessa A, Astrea G, Santorelli FM, Merlini L, Mora M, Bernasconi P, Gibertini S, Sansone V, Mongini T, Berardinelli A, Pini A, Liguori R, Filosto M, Messina S, Vita G, Toscano A, Vita G, Pane M, Servidei S, Pegoraro E, Bello L, Travaglini L, Bertini E, D'Amico A, Ergoli M, Politano L, Torella A, Nigro V, Mercuri E, Ferlini A. The Genetic Landscape of Dystrophin Mutations in Italy: A Nationwide Study. Front Genet 2020; 11:131. [PMID: 32194622 PMCID: PMC7063120 DOI: 10.3389/fgene.2020.00131] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dystrophinopathies are inherited diseases caused by mutations in the dystrophin (DMD) gene for which testing is mandatory for genetic diagnosis, reproductive choices and eligibility for personalized trials. We genotyped the DMD gene in our Italian cohort of 1902 patients (BMD n = 740, 39%; DMD n =1162, 61%) within a nationwide study involving 11 diagnostic centers in a 10-year window (2008–2017). In DMD patients, we found deletions in 57%, duplications in 11% and small mutations in 32%. In BMD, we found deletions in 78%, duplications in 9% and small mutations in 13%. In BMD, there are a higher number of deletions, and small mutations are more frequent than duplications. Among small mutations that are generally frequent in both phenotypes, 44% of DMD and 36% of BMD are nonsense, thus, eligible for stop codon read-through therapy; 63% of all out-of-frame deletions are eligible for single exon skipping. Patients were also assigned to Italian regions and showed interesting regional differences in mutation distribution. The full genetic characterization in this large, nationwide cohort has allowed us to draw several correlations between DMD/BMD genotype landscapes and mutation frequency, mutation types, mutation locations along the gene, exon/intron architecture, and relevant protein domain, with effects on population genetic characteristics and new personalized therapies.
Collapse
Affiliation(s)
- Marcella Neri
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Cecilia Trabanelli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Mauro
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Noemi Spedicato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alice Margutti
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Rimessi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Fabris
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giacomo Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Silvana Tedeschi
- Laboratory of Medical Genetics, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Seia
- Laboratory of Medical Genetics, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fiorillo
- Paediatric Neurology and Muscular Diseases Unit, University of Genoa and G. Gaslini Institute, Genoa, Italy
| | - Monica Traverso
- Paediatric Neurology and Muscular Diseases Unit, University of Genoa and G. Gaslini Institute, Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Gaslini, Genova, Italy
| | - Emiliano Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | | | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Milena Cau
- Laboratory of Genetics and Genomics, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Marica
- Clinica Pediatrica e Malattie Rare, Brotzu, Cagliari, Italy
| | - Carmela Scuderi
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Troina, Italy
| | - Eugenia Borgione
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Troina, Italy
| | - Alessandra Tessa
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Guia Astrea
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | | | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Sansone
- Neurorehabilitation Unit, Department Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Angela Berardinelli
- Child Neurology and Psychiatry Unit, "Casimiro Mondino" Foundation, Pavia, Italy
| | - Antonella Pini
- Child Neurology Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuro Motor Sciences, University of Bologna, Bologna, Italy
| | - Massimiliano Filosto
- Laboratory of Medical Genetics, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center, Messina, Italy
| | - Gianluca Vita
- Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center, Messina, Italy
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center, Messina, Italy
| | - Giuseppe Vita
- Department of Clinical and Experimental Medicine, University of Messina and Nemo Sud Clinical Center, Messina, Italy
| | - Marika Pane
- Centro Clinico Nemo, Policlinico A. Gemelli, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Serenella Servidei
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesu Children's Research Hospital IRCCS, Rome, Italy
| | - Manuela Ergoli
- Cardiomiology and Medical Genetics, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Eugenio Mercuri
- Centro Clinico Nemo, Policlinico A. Gemelli, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Pediatric Neurology, Catholic University, Rome, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Dubowitz Neuromuscular Unit, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
21
|
Ling C, Dai Y, Fang L, Yao F, Liu Z, Qiu Z, Cui L, Xia F, Zhao C, Zhang S, Wang K, Zhang X. Exonic rearrangements in DMD in Chinese Han individuals affected with Duchenne and Becker muscular dystrophies. Hum Mutat 2019; 41:668-677. [PMID: 31705731 PMCID: PMC7028077 DOI: 10.1002/humu.23953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 01/12/2023]
Abstract
Exonic deletions and duplications within DMD are the main pathogenic variants in Duchenne and Becker muscular dystrophies (DMD/BMD). However, few studies have profiled the flanking sequences of breakpoints and the potential mechanism underlying the breakpoints in different fragile regions of DMD. In this study, 896 Chinese male probands afflicted with DMD/BMD were selected from unrelated families and analyzed using multiplex ligation‐dependent probe amplification of the DMD gene, in which we identified exon deletions in 784 subjects and duplications in 112 subjects. Deletions occurred most frequently in the genomic region encompassing exons 45–55, accounting for 73% of all deletion patterns. Furthermore, to unravel the potential mechanism that induced breaks, DMD gene capture and sequencing were performed to identify the breakpoints in 37 subjects with deletions encompassing exons 45–55 of DMD; we found that DMD instability did not arise from a single cause; instead, long‐sequence motifs, nonconsensus microhomologies, low‐copy repeats, and microindels were embedded around the breakpoints, which may predispose DMD to instability. In summary, this study highlights the heterogeneous characteristics of the flanking sequences around the breakpoints and helps us to understand the mechanism underlying DMD gene instability.
Collapse
Affiliation(s)
- Chao Ling
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Fang
- Department of Pathology & Laboratory Medicine, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fengxia Yao
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhe Liu
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhengqing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Chen Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kai Wang
- Department of Pathology & Laboratory Medicine, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xue Zhang
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, McKusick-Zhang Center for GeneticMedicine, School of Basic Medicine Peking, Union Medical College, Beijing, China
| |
Collapse
|
22
|
Consensus on the diagnosis, treatment and follow-up of patients with Duchenne muscular dystrophy. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
23
|
Toksoy G, Durmus H, Aghayev A, Bagirova G, Sevinc Rustemoglu B, Basaran S, Avci S, Karaman B, Parman Y, Altunoglu U, Yapici Z, Tekturk P, Deymeer F, Topaloglu H, Kayserili H, Oflazer-Serdaroglu P, Uyguner ZO. Mutation spectrum of 260 dystrophinopathy patients from Turkey and important highlights for genetic counseling. Neuromuscul Disord 2019; 29:601-613. [DOI: 10.1016/j.nmd.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
|
24
|
Is Molecular Diagnosis Necessary for Children with Duchenne Muscular Dystrophy? Indian Pediatr 2019. [DOI: 10.1007/s13312-019-1551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Behlmann AM, Goyal NA, Yang X, Chen PH, Ankala A. A Hemizygous Deletion Within the PGK1 Gene in Males with PGK1 Deficiency. JIMD Rep 2018; 45:105-110. [PMID: 30570712 PMCID: PMC6336546 DOI: 10.1007/8904_2018_147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/24/2018] [Accepted: 09/25/2018] [Indexed: 02/05/2023] Open
Abstract
Phosphoglycerate kinase-1 (PGK1) deficiency is a rare X-linked disorder caused by pathogenic variants in the PGK1 gene. Complete loss-of-function variants have not been reported in this gene, indicating that residual enzyme function is critical for viability in males. Therefore, copy number variants (CNVs) that include single exon or multiple exon deletions or duplications are generally not expected in individuals with PGK1 deficiency. Here we describe a 64-year-old male presenting with a family history (three additional affected males) and a personal history of childhood-onset metabolic myopathy that involves episodes of muscle pain, stiffness after activity, exercise intolerance, and myoglobinuria after exertion. Biochemical analysis on a muscle biopsy indicated significantly reduced activity (15% compared to normal) for phosphoglycerate kinase (PGK1), a glycolytic enzyme encoded by PGK1. A diagnosis of PGK1 deficiency was established by molecular analysis which detected an approximately 886 kb deletion involving the polyadenylation site in the 3'UTR of the PGK1 gene. RNA analysis showed significantly reduced PGK1 transcript levels (30% compared to normal). This is the first deletion reported in the PGK1 gene and is the first pathogenic variant involving the 3'UTR polyadenylation site of this gene. Our report emphasizes the role of 3'UTR variants in human disorders and underscores the need for exploring noncoding regions of disease-associated genes when seeking a molecular diagnosis.
Collapse
Affiliation(s)
- Andrea Medrano Behlmann
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Namita A. Goyal
- grid.266093.80000 0001 0668 7243Department of Neurology, University of California, Irvine, CA USA
| | - Xiaoyu Yang
- grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | - Ping H. Chen
- grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | - Arunkanth Ankala
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA ,EGL Genetic Diagnostics LLC, Tucker, GA USA
| |
Collapse
|
26
|
Ortiz Madinaveitia S, del Valle Sanchez M, Sagarra Mur D. Distrofia muscular de Emery-Dreifuss tipo 2: nueva mutación de novo en el gen la lamina A/C. Neurologia 2018; 33:554-555. [DOI: 10.1016/j.nrl.2016.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 11/24/2022] Open
|
27
|
Ortiz Madinaveitia S, del Valle Sanchez M, Sagarra Mur D. Emery-Dreifuss muscular dystrophy type 2: New de novo mutation in the lamin A/C gene. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Kehrer‐Sawatzki H, Kordes U, Seiffert S, Summerer A, Hagel C, Schüller U, Farschtschi S, Schneppenheim R, Bendszus M, Godel T, Mautner V. Co-occurrence of schwannomatosis and rhabdoid tumor predisposition syndrome 1. Mol Genet Genomic Med 2018; 6:627-637. [PMID: 29779243 PMCID: PMC6081224 DOI: 10.1002/mgg3.412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The clinical phenotype associated with germline SMARCB1 mutations has as yet not been fully documented. It is known that germline SMARCB1 mutations may cause rhabdoid tumor predisposition syndrome (RTPS1) or schwannomatosis. However, the co-occurrence of rhabdoid tumor and schwannomas in the same patient has not so far been reported. METHODS We investigated a family with members harboring a germline SMARCB1 deletion by means of whole-body MRI as well as high-resolution microstructural magnetic resonance neurography (MRN). Breakpoint-spanning PCRs were performed to characterize the SMARCB1 deletion and its segregation in the family. RESULTS The index patient of this family was in complete continuous remission for an atypical teratoid/rhabdoid tumor (AT/RT) treated at the age of 2 years. However, at the age of 21 years, she exhibited paraparesis of her legs and MRI investigations revealed multiple intrathoracic and spinal schwannomas. Breakpoint-spanning PCRs indicated that the germline deletion segregating in the family encompasses 6.4-kb and includes parts of SMARCB1 intron 7, exons 8-9 and 3.3-kb located telomeric to exon 9 including the SMARCB1 3' UTR. The analysis of sequences at the deletion breakpoints showed that the deletion has been caused by replication errors including template-switching. The patient had inherited the deletion from her 56-year-old healthy mother who did not exhibit schwannomas or other tumors as determined by whole-body MRI. However, MRN of the peripheral nerves of the mother's extremities revealed multiple fascicular microlesions which have been previously identified as indicative of schwannomatosis-associated subclinical peripheral nerve pathology. CONCLUSION The occurrence of schwannomatosis-associated clinical symptoms independent of the AT/RT as the primary disease should be considered in long-term survivors of AT/RT. Furthermore, our investigations indicate that germline SMARCB1 mutation carriers not presenting RTs or schwannomatosis-associated clinical symptoms may nevertheless exhibit peripheral nerve pathology as revealed by MRN.
Collapse
Affiliation(s)
| | - Uwe Kordes
- Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Anna Summerer
- Institute of Human GeneticsUniversity of UlmUlmGermany
| | - Christian Hagel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ulrich Schüller
- Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Research Institute Children's Cancer Center HamburgHamburgGermany
| | - Said Farschtschi
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Martin Bendszus
- Department of NeuroradiologyUniversity of Heidelberg Medical CenterHeidelbergGermany
| | - Tim Godel
- Department of NeuroradiologyUniversity of Heidelberg Medical CenterHeidelbergGermany
| | - Victor‐Felix Mautner
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
29
|
Elhawary NA, Jiffri EH, Jambi S, Mufti AH, Dannoun A, Kordi H, Khogeer A, Jiffri OH, Elhawary AN, Tayeb MT. Molecular characterization of exonic rearrangements and frame shifts in the dystrophin gene in Duchenne muscular dystrophy patients in a Saudi community. Hum Genomics 2018; 12:18. [PMID: 29631625 PMCID: PMC5891934 DOI: 10.1186/s40246-018-0152-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In individuals with Duchenne muscular dystrophy (DMD), exon skipping treatment to restore a wild-type phenotype or correct the frame shift of the mRNA transcript of the dystrophin (DMD) gene are mutation-specific. To explore the molecular characterization of DMD rearrangements and predict the reading frame, we simultaneously screened all 79 DMD gene exons of 45 unrelated male DMD patients using a multiplex ligation-dependent probe amplification (MLPA) assay for deletion/duplication patterns. Multiplex PCR was used to confirm single deletions detected by the MLPA. RESULTS There was an obvious diagnostic delay, with an extremely statistically significant difference between the age at initial symptoms and the age of clinical evaluation of DMD cases (t value, 10.3; 95% confidence interval 5.95-8.80, P < 0.0001); the mean difference between the two groups was 7.4 years. Overall, we identified 147 intragenic rearrangements: 46.3% deletions and 53.7% duplications. Most of the deletions (92.5%) were between exons 44 and 56, with exon 50 being the most frequently involved (19.1%). Eight new rearrangements, including a mixed deletion/duplication and double duplications, were linked to seven cases with DMD. Of all the cases, 17.8% had duplications with no hot spots. In addition, confirmation of the reading frame hypothesis helped account for new DMD rearrangements in this study. We found that 81% of our Saudi patients would potentially benefit from exon skipping, of which 42.9% had a mutation amenable to skipping of exon 51. CONCLUSIONS Our study could generate considerable data on mutational rearrangements that may promote future experimental therapies in Saudi Arabia.
Collapse
Affiliation(s)
- Nasser A Elhawary
- Department of Medical Genetics, Medicine College, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955, Saudi Arabia.
- Department of Molecular Genetics, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt.
| | - Essam H Jiffri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Samira Jambi
- Department of Pediatrics, Al Hada Military Hospital, Al Hada, Saudi Arabia
| | - Ahmad H Mufti
- Department of Medical Genetics, Medicine College, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955, Saudi Arabia
| | - Anas Dannoun
- Department of Medical Genetics, Medicine College, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955, Saudi Arabia
| | - Hassan Kordi
- Department of Medical Genetics, Medicine College, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955, Saudi Arabia
| | - Asim Khogeer
- Department of Plan and Research, General Directorate of Health Affairs, Mecca Region, Ministry of Health, Mecca, Saudi Arabia
| | - Osama H Jiffri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | | | - Mohammed T Tayeb
- Department of Medical Genetics, Medicine College, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955, Saudi Arabia
| |
Collapse
|
30
|
Molecular characterization of exonic rearrangements and frame shifts in the dystrophin gene in Duchenne muscular dystrophy patients in a Saudi community. Hum Genomics 2018. [PMID: 29631625 DOI: 10.1186/s40246-018-0152-8]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In individuals with Duchenne muscular dystrophy (DMD), exon skipping treatment to restore a wild-type phenotype or correct the frame shift of the mRNA transcript of the dystrophin (DMD) gene are mutation-specific. To explore the molecular characterization of DMD rearrangements and predict the reading frame, we simultaneously screened all 79 DMD gene exons of 45 unrelated male DMD patients using a multiplex ligation-dependent probe amplification (MLPA) assay for deletion/duplication patterns. Multiplex PCR was used to confirm single deletions detected by the MLPA. RESULTS There was an obvious diagnostic delay, with an extremely statistically significant difference between the age at initial symptoms and the age of clinical evaluation of DMD cases (t value, 10.3; 95% confidence interval 5.95-8.80, P < 0.0001); the mean difference between the two groups was 7.4 years. Overall, we identified 147 intragenic rearrangements: 46.3% deletions and 53.7% duplications. Most of the deletions (92.5%) were between exons 44 and 56, with exon 50 being the most frequently involved (19.1%). Eight new rearrangements, including a mixed deletion/duplication and double duplications, were linked to seven cases with DMD. Of all the cases, 17.8% had duplications with no hot spots. In addition, confirmation of the reading frame hypothesis helped account for new DMD rearrangements in this study. We found that 81% of our Saudi patients would potentially benefit from exon skipping, of which 42.9% had a mutation amenable to skipping of exon 51. CONCLUSIONS Our study could generate considerable data on mutational rearrangements that may promote future experimental therapies in Saudi Arabia.
Collapse
|
31
|
Marey I, Ben Yaou R, Deburgrave N, Vasson A, Nectoux J, Leturcq F, Eymard B, Laforet P, Behin A, Stojkovic T, Mayer M, Tiffreau V, Desguerre I, Boyer FC, Nadaj-Pakleza A, Ferrer X, Wahbi K, Becane HM, Claustres M, Chelly J, Cossee M. Non Random Distribution of DMD Deletion Breakpoints and Implication of Double Strand Breaks Repair and Replication Error Repair Mechanisms. J Neuromuscul Dis 2018; 3:227-245. [PMID: 27854212 DOI: 10.3233/jnd-150134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Dystrophinopathies are mostly caused by copy number variations, especially deletions, in the dystrophin gene (DMD). Despite the large size of the gene, deletions do not occur randomly but mainly in two hot spots, the main one involving exons 45 to 55. The underlying mechanisms are complex and implicate two main mechanisms: Non-homologous end joining (NHEJ) and micro-homology mediated replication-dependent recombination (MMRDR). OBJECTIVE Our goals were to assess the distribution of intronic breakpoints (BPs) in the genomic sequence of the main hot spot of deletions within DMD gene and to search for specific sequences at or near to BPs that might promote BP occurrence or be associated with DNA break repair. METHODS Using comparative genomic hybridization microarray, 57 deletions within the intron 44 to 55 region were mapped. Moreover, 21 junction fragments were sequenced to search for specific sequences. RESULTS Non-randomly distributed BPs were found in introns 44, 47, 48, 49 and 53 and 50% of BPs clustered within genomic regions of less than 700bp. Repeated elements (REs), known to promote gene rearrangement via several mechanisms, were present in the vicinity of 90% of clustered BPs and less frequently (72%) close to scattered BPs, illustrating the important role of such elements in the occurrence of DMD deletions. Palindromic and TTTAAA sequences, which also promote DNA instability, were identified at fragment junctions in 20% and 5% of cases, respectively. Micro-homologies (76%) and insertions or deletions of small sequences were frequently found at BP junctions. CONCLUSIONS Our results illustrate, in a large series of patients, the important role of RE and other genomic features in DNA breaks, and the involvement of different mechanisms in DMD gene deletions: Mainly replication error repair mechanisms, but also NHEJ and potentially aberrant firing of replication origins. A combination of these mechanisms may also be possible.
Collapse
Affiliation(s)
- Isabelle Marey
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Rabah Ben Yaou
- UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Nathalie Deburgrave
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Aurélie Vasson
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Juliette Nectoux
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - France Leturcq
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Bruno Eymard
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Pascal Laforet
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Anthony Behin
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Tanya Stojkovic
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Michèle Mayer
- AP-HP, Hôpital Armand TROUSSEAU, Centre de référence de pathologie neuromusculaire Paris-Est, Paris, France
| | - Vincent Tiffreau
- Université de Lille 2, EA 4488, Centre de référence des maladies neuromusculaires du CHRU de Lille, Service de médecine physique et réadaptation, Hôpital Swynghedauw, Lille, France
| | - Isabelle Desguerre
- AP-HP, Hôpital Necker-Enfants Malades, Service de Neuropédiatrie, Centre de référence de pathologie neuromusculaires Garches-Necker-Mondor-Hendaye, Paris, France
| | - François Constant Boyer
- Service de Médecine Physique et Réadaptation, Centre de référence de pathologie neuromusculaires, Hôpital Sébastopol, CHU de Reims, Reims, France
| | - Aleksandra Nadaj-Pakleza
- Service de neurologie, Centre de référence de pathologie neuromusculaires Pays de Loire, Hôpital Larrey, CHU d'Angers, Angers, France
| | - Xavier Ferrer
- Service de neurologie, Centre de référence de pathologie neuromusculaires Aquitaine, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Karim Wahbi
- APHP, service de cardiologie, Hôpital Cochin, Paris, France
| | - Henri-Marc Becane
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Mireille Claustres
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| | - Jamel Chelly
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Mireille Cossee
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| |
Collapse
|
32
|
Nascimento Osorio A, Medina Cantillo J, Camacho Salas A, Madruga Garrido M, Vilchez Padilla JJ. Consensus on the diagnosis, treatment and follow-up of patients with Duchenne muscular dystrophy. Neurologia 2018. [PMID: 29526319 DOI: 10.1016/j.nrl.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is the most common myopathy in children, with a worldwide prevalence of approximately 0.5 cases per 10,000 male births. It is characterised by a progressive muscular weakness manifesting in early childhood, with the subsequent appearance of musculoskeletal, respiratory, and cardiac complications, causing disability, dependence, and premature death. Currently, DMD is mainly managed with multidisciplinary symptomatic treatment, with favourable results in terms of the progression of the disease. It is therefore crucial to establish clear, up-to-date guidelines enabling early detection, appropriate treatment, and monitoring of possible complications. DEVELOPMENT We performed a literature search of the main biomedical databases for articles published in the last 10years in order to obtain an overview of the issues addressed by current guidelines and to identify relevant issues for which no consensus has yet been established. The degree of evidence and level of recommendation of the information obtained were classified and ordered according to the criteria of the American Academy of Neurology. CONCLUSIONS DMD management should be multidisciplinary and adapted to the patient's profile and the stage of clinical progression. In addition to corticotherapy, treatment targeting gastrointestinal, respiratory, cardiac, and orthopaedic problems, as well as physiotherapy, should be provided with a view to improving patients' quality of life. Genetic studies play a key role in the management of the disease, both in detecting cases and potential carriers and in characterising the mutation involved and developing new therapies.
Collapse
Affiliation(s)
- A Nascimento Osorio
- Unidad de Patología Neuromuscular, Servicio de Neurología, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, España
| | - J Medina Cantillo
- Servicio de Medicina Física y Rehabilitación, Hospital Sant Joan de Déu Esplugues de Llobregat, Barcelona, España
| | - A Camacho Salas
- Sección de Neurología Infantil, Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España
| | - M Madruga Garrido
- Sección de Neurología Pediátrica, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - J J Vilchez Padilla
- Servicio de Neurología, Hospital Universitario y Politécnico de La Fe, Valencia, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) y Departamento de Medicina, Universidad de Valencia, Valencia, España.
| |
Collapse
|
33
|
Mahdieh N, Mikaeeli S, Tavasoli AR, Rezaei Z, Maleki M, Rabbani B. Genotype, phenotype and in silico pathogenicity analysis of HEXB mutations: Panel based sequencing for differential diagnosis of gangliosidosis. Clin Neurol Neurosurg 2018; 167:43-53. [PMID: 29448188 DOI: 10.1016/j.clineuro.2018.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Gangliosidosis is an inherited metabolic disorder causing neurodegeneration and motor regression. Preventive diagnosis is the first choice for the affected families due to lack of straightforward therapy. Genetic studies could confirm the diagnosis and help families for carrier screening and prenatal diagnosis. An update of HEXB gene variants concerning genotype, phenotype and in silico analysis are presented. PATIENTS AND METHODS Panel based next generation sequencing and direct sequencing of four cases were performed to confirm the clinical diagnosis and for reproductive planning. Bioinformatic analyses of the HEXB mutation database were also performed. RESULTS Direct sequencing of HEXA and HEXB genes showed recurrent homozygous variants at c.509G>A (p.Arg170Gln) and c.850C>T (p.Arg284Ter), respectively. A novel variant at c.416T>A (p.Leu139Gln) was identified in the GLB1 gene. Panel based next generation sequencing was performed for an undiagnosed patient which showed a novel mutation at c.1602C>A (p.Cys534Ter) of HEXB gene. Bioinformatic analysis of the HEXB mutation database showed 97% consistency of in silico genotype analysis with the phenotype. Bioinformatic analysis of the novel variants predicted to be disease causing. In silico structural and functional analysis of the novel variants showed structural effect of HEXB and functional effect of GLB1 variants which would provide fast analysis of novel variants. CONCLUSIONS Panel based studies could be performed for overlapping symptomatic patients. Consequently, genetic testing would help affected families for patients' management, carrier detection, and family planning's.
Collapse
Affiliation(s)
- Nejat Mahdieh
- Genetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahar Mikaeeli
- Genetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Children's Hospital Center, Pediatric Center of Excellence, Tehran University of Medical Center, Tehran, Iran; Growth and Development Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Children's Hospital Center, Pediatric Center of Excellence, Tehran University of Medical Center, Tehran, Iran
| | - Majid Maleki
- Genetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Genetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Growth and Development Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Precise mapping of 17 deletion breakpoints within the central hotspot deletion region (introns 50 and 51) of the DMD gene. J Hum Genet 2017; 62:1057-1063. [PMID: 28878337 DOI: 10.1038/jhg.2017.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
Exon deletions in the human DMD gene, which encodes the dystrophin protein, are the molecular defect in 50-70% of cases of Duchenne/Becker muscular dystrophies. Deletions are preferentially clustered in the 5' (exons 2-20) and the central (exons 45-53) region of DMD, likely because local DNA structure predisposes to specific breakage or recombination events. Notably, innovative therapeutic strategies may rescue dystrophin function by homology-based specific targeting of sequences within the central DMD hot spot deletion region. To further study molecular mechanisms that generate such frequent genome variations and to identify residual intronic sequences, we sequenced 17 deletion breakpoints within introns 50 and 51 of DMD and analyzed the surrounding genomic architecture. There was no breakpoint clustering within the introns nor extensive homology between sequences adjacent to each junction. However, at or near the breakpoint, we found microhomology, short tandem repeats, interspersed repeat elements and short sequence stretches that predispose to DNA deletion or bending. Identification of such structural elements contributes to elucidate general mechanisms generating deletion within the DMD gene. Moreover, precise mapping of deletion breakpoints and localization of repeated elements are of interest, because residual intronic sequences may be targeted by therapeutic strategies based on genome editing correction.
Collapse
|
35
|
Masset H, Hestand MS, Van Esch H, Kleinfinger P, Plaisancié J, Afenjar A, Molignier R, Schluth-Bolard C, Sanlaville D, Vermeesch JR. A Distinct Class of Chromoanagenesis Events Characterized by Focal Copy Number Gains. Hum Mutat 2016; 37:661-8. [DOI: 10.1002/humu.22984] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/24/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Heleen Masset
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | | | | | - Pascale Kleinfinger
- Laboratoire Cerba; Département de Génétique Humaine; Saint-Ouen l'Aumône France
| | - Julie Plaisancié
- Service de Génétique Médicale; Hôpital Purpan; CHU Toulouse France
| | - Alexandra Afenjar
- APHP; Hôpital Armand-Trousseau; Service de Génétique Clinique; Paris France
- APHP; Hôpital Armand-Trousseau; Service de Neuropédiatrie; Paris France
| | - Romain Molignier
- Laboratoire de Biologie Clinique; Clinique Saint Jean Languedoc; Toulouse France
| | - Caroline Schluth-Bolard
- Laboratoire de Cytogénétique Constitutionnelle; Hospices Civils de Lyon; France
- Lyon Neuroscience Research Center; CNRS UMR5292, INSERM U1028, UCBL Lyon France
| | - Damien Sanlaville
- Laboratoire de Cytogénétique Constitutionnelle; Hospices Civils de Lyon; France
- Lyon Neuroscience Research Center; CNRS UMR5292, INSERM U1028, UCBL Lyon France
| | | |
Collapse
|
36
|
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy are caused by mutations in the dystrophin-encoding DMD gene. Large deletions and duplications are most common, but small mutations have been found as well. Having a correct diagnosis is important for family planning and providing proper care to patients according to published guidelines. With mutation-specific therapies under development for DMD, a correct diagnosis is now also important for assessing whether patients are eligible for treatments. This review discusses different mutations causing DMD, diagnostic techniques available for making a genetic diagnosis for children suspected of DMD and the importance of having a specific genetic diagnosis in the context of emerging genetic therapies for DMD.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands,John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular diseases, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Ieke B Ginjaar
- Laboratory for Diagnostics Genome Analysis, Leiden University Medical Center, Leiden, The Netherlands
| | - Kate Bushby
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular diseases, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
37
|
Aartsma-Rus A, Ginjaar IB, Bushby K. The importance of genetic diagnosis for Duchenne muscular dystrophy. J Med Genet 2016; 53:145-51. [PMID: 26754139 PMCID: PMC4789806 DOI: 10.1136/jmedgenet-2015-103387] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy are caused by mutations in the dystrophin-encoding DMD gene. Large deletions and duplications are most common, but small mutations have been found as well. Having a correct diagnosis is important for family planning and providing proper care to patients according to published guidelines. With mutation-specific therapies under development for DMD, a correct diagnosis is now also important for assessing whether patients are eligible for treatments. This review discusses different mutations causing DMD, diagnostic techniques available for making a genetic diagnosis for children suspected of DMD and the importance of having a specific genetic diagnosis in the context of emerging genetic therapies for DMD.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular diseases, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Ieke B Ginjaar
- Laboratory for Diagnostics Genome Analysis, Leiden University Medical Center, Leiden, The Netherlands
| | - Kate Bushby
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular diseases, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
38
|
Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KBM, Messiaen L. Decoding NF1 Intragenic Copy-Number Variations. Am J Hum Genet 2015; 97:238-49. [PMID: 26189818 DOI: 10.1016/j.ajhg.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arkadiusz Piotrowski
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chuanhua Fu
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan, 185 9000 Gent, Belgium
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
39
|
Nallamilli BRR, Ankala A, Hegde M. Molecular diagnosis of Duchenne muscular dystrophy. ACTA ACUST UNITED AC 2014; 83:9.25.1-29. [PMID: 25271841 DOI: 10.1002/0471142905.hg0925s83] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked inherited neuromuscular disorder caused by mutations in the dystrophin gene (DMD; locus Xp21.2). The mutation spectrum of DMD is unique in that 65% of causative mutations are intragenic deletions, with intragenic duplications and point mutations (along with other sequence variants) accounting for 6% to 10% and 30% to 35%, respectively. The strategy for molecular diagnostic testing for DMD involves initial screening for deletions/duplications using microarray-based comparative genomic hybridization (array-CGH) followed by full-sequence analysis of DMD for sequence variants. Recently, next-generation sequencing (NGS)-based targeted gene analysis has become clinically available for detection of point mutations and other sequence variants (small insertions, deletions, and indels). This unit initially discusses the strategic algorithm for establishing a molecular diagnosis of DMD and later provides detailed protocols of current molecular diagnostic methods for DMD, including array-CGH, PCR-based Sanger sequencing, and NGS-based sequencing assay.
Collapse
|
40
|
Chen C, Ma H, Zhang F, Chen L, Xing X, Wang S, Zhang X, Luo Y. Screening of Duchenne muscular dystrophy (DMD) mutations and investigating its mutational mechanism in Chinese patients. PLoS One 2014; 9:e108038. [PMID: 25244321 PMCID: PMC4171529 DOI: 10.1371/journal.pone.0108038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA) and denaturing high performance liquid chromatography (DHPLC) followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2%) and 81 patients with DMD deletions/duplications (del/dup) (68.1%), of which 64 (79.0%) were deletions, 16 (19.8%) were duplications, and one (1.2%) was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot), we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43–55 and exon 10–23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements.
Collapse
Affiliation(s)
- Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongwei Ma
- Department of Developing Pediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shusen Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
41
|
Baskin B, Stavropoulos DJ, Rebeiro PA, Orr J, Li M, Steele L, Marshall CR, Lemire EG, Boycott KM, Gibson W, Ray PN. Complex genomic rearrangements in the dystrophin gene due to replication-based mechanisms. Mol Genet Genomic Med 2014; 2:539-47. [PMID: 25614876 PMCID: PMC4303224 DOI: 10.1002/mgg3.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023] Open
Abstract
Genomic rearrangements such as intragenic deletions and duplications are the most prevalent type of mutations in the dystrophin gene resulting in Duchenne and Becker muscular dystrophy (D/BMD). These copy number variations (CNVs) are nonrecurrent and can result from either nonhomologous end joining (NHEJ) or microhomology-mediated replication-dependent recombination (MMRDR). We characterized five DMD patients with complex genomic rearrangements using a combination of MLPA/mRNA transcript analysis/custom array comparative hybridization arrays (CGH) and breakpoint sequence analysis to investigate the mechanisms for these rearrangements. Two patients had complex rearrangements that involved microhomologies at breakpoints. One patient had a noncontiguous insertion of 89.7 kb chromosome 4 into intron 43 of DMD involving three breakpoints with 2–5 bp microhomology at the junctions. A second patient had an inversion of exon 44 flanked by intronic deletions with two breakpoint junctions each showing 2 bp microhomology. The third patient was a female with an inherited deletion of exon 47 in DMD on the maternal allele and a de novo noncontiguous duplication of exons 45–49 in DMD and MID1 on the paternal allele. The other two patients harbored complex noncontiguous duplications within the dystrophin gene. We propose a replication-based mechanisms for all five complex DMD rearrangements. This study identifies additional underlying mechanisms in DMD, and provides insight into the molecular bases of these genomic rearrangements.
Collapse
Affiliation(s)
- Berivan Baskin
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University Uppsala, Sweden ; The Centre for Applied Genomics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- The Centre for Applied Genomics, The Hospital for Sick Children Toronto, Ontario, Canada ; Department of Laboratory Medicine and Pathology, University of Toronto Toronto, Ontario, Canada ; Division of Molecular Genetics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Paige A Rebeiro
- The Centre for Applied Genomics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Jennifer Orr
- Division of Molecular Genetics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Martin Li
- Division of Molecular Genetics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Leslie Steele
- Division of Molecular Genetics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children Toronto, Ontario, Canada ; Division of Molecular Genetics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Edmond G Lemire
- Division of Medical Genetics, Royal University Hospital & University of Saskatchewan Saskatoon, Saskatchewan, Canada
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario Ottawa, Ontario, Canada
| | - William Gibson
- Department of Medical Genetics, Child and Family Research Institute, The University of British Columbia Vancouver, British Columbia, Canada
| | - Peter N Ray
- The Centre for Applied Genomics, The Hospital for Sick Children Toronto, Ontario, Canada ; Division of Molecular Genetics, The Hospital for Sick Children Toronto, Ontario, Canada ; Department of Molecular Genetics, The University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
42
|
Hsiao MC, Piotrowski A, Alexander J, Callens T, Fu C, Mikhail FM, Claes KBM, Messiaen L. Palindrome-mediated and replication-dependent pathogenic structural rearrangements within the NF1 gene. Hum Mutat 2014; 35:891-8. [PMID: 24760680 DOI: 10.1002/humu.22569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/17/2014] [Indexed: 11/09/2022]
Abstract
Palindromic sequences can form hairpin structures or cruciform extrusions, which render them susceptible to genomic rearrangements. A 197-bp long palindromic AT-rich repeat (PATRR17) is located within intron 40 of the neurofibromatosis type 1 (NF1) gene (17q11.2). Through comprehensive NF1 analysis, we identified six unrelated patients with a rearrangement involving intron 40 (five deletions and one reciprocal translocation t(14;17)(q32;q11.2)). We hypothesized that PATRR17 may be involved in these rearrangements thereby causing NF1. Breakpoint cloning revealed that PATRR17 was indeed involved in all of the rearrangements. As microhomology was present at all breakpoint junctions of the deletions identified, and PATRR17 partner breakpoints were located within 7.1 kb upstream of PATRR17, fork stalling and template switching/microhomology-mediated break-induced replication was the most likely rearrangement mechanism. For the reciprocal translocation case, a 51 bp insertion at the translocation breakpoints mapped to a short sequence within PATRR17, proximal to the breakpoint, suggesting a multiple stalling and rereplication process, in contrast to previous studies indicating a purely replication-independent mechanism for PATRR-mediated translocations. In conclusion, we show evidence that PATRR17 is a hotspot for pathogenic intragenic deletions within the NF1 gene and suggest a novel replication-dependent mechanism for PATRR-mediated translocation.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hermetz KE, Newman S, Conneely KN, Martin CL, Ballif BC, Shaffer LG, Cody JD, Rudd MK. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet 2014; 10:e1004139. [PMID: 24497845 PMCID: PMC3907307 DOI: 10.1371/journal.pgen.1004139] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/09/2013] [Indexed: 11/27/2022] Open
Abstract
Inverted duplications are a common type of copy number variation (CNV) in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB) cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a “fold-back” intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes. Chromosomes with large inverted duplications and terminal deletions cause neurodevelopmental disorders in children. These chromosome rearrangements typically involve hundreds of genes, leading to significant changes in gene dosage. Though inverted duplications adjacent to terminal deletions are a relatively common type of chromosomal imbalance, the DNA repair mechanism responsible for their formation is not known. In this study, we analyze the genomic organization of the largest collection of human inverted duplications. We find a common inverted duplication structure, consistent with a model that requires DNA to fold back and form a dicentric chromosome intermediate. These data provide insight into the formation of nonrecurrent inverted duplications in the human genome.
Collapse
Affiliation(s)
- Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Scott Newman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America ; Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Christa L Martin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Blake C Ballif
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Jannine D Cody
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America ; The Chromosome 18 Registry and Research Society, San Antonio, Texas, United States of America
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
44
|
Sankaranarayanan K, Taleei R, Rahmanian S, Nikjoo H. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells. Mutat Res 2013; 753:114-130. [PMID: 23948232 DOI: 10.1016/j.mrrev.2013.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
Abstract
While much is known about radiation-induced DNA double-strand breaks (DSBs) and their repair, the question of how deletions of different sizes arise as a result of the processing of DSBs by the cell's repair systems has not been fully answered. In order to bridge this gap between DSBs and deletions, we critically reviewed published data on mechanisms pertaining to: (a) repair of DNA DSBs (from basic studies in this area); (b) formation of naturally occurring structural variation (SV) - especially of deletions - in the human genome (from genomic studies) and (c) radiation-induced mutations and structural chromosomal aberrations in mammalian somatic cells (from radiation mutagenesis and radiation cytogenetic studies). The specific aim was to assess the relative importance of the postulated mechanisms in generating deletions in the human genome and examine whether empirical data on radiation-induced deletions in mouse germ cells are consistent with predictions of these mechanisms. The mechanisms include (a) NHEJ, a DSB repair process that does not require any homology and which functions in all stages of the cell cycle (and is of particular relevance in G0/G1); (b) MMEJ, also a DSB repair process but which requires microhomology and which presumably functions in all cell cycle stages; (c) NAHR, a recombination-based DSB repair mechanism which operates in prophase I of meiosis in germ cells; (d) MMBIR, a microhomology-mediated, replication-based mechanism which operates in the S phase of the cell cycle, and (e) strand slippage during replication (involved in the origin of small insertions and deletions (INDELs). Our analysis permits the inference that, between them, these five mechanisms can explain nearly all naturally occurring deletions of different sizes identified in the human genome, NAHR and MMBIR being potentially more versatile in this regard. With respect to radiation-induced deletions, the basic studies suggest that those arising as a result of the operation of NHEJ/MMEJ processes, as currently formulated, are expected to be relatively small. However, data on induced mutations in mouse spermatogonial stem cells (irradiation in G0/G1 phase of the cell cycle and DSB repair presumed to be via NHEJ predominantly) show that most are associated with deletions of different sizes, some in the megabase range. There is thus a 'discrepancy' between what the basic studies suggest and the empirical observations in mutagenesis studies. This discrepancy, however, is only an apparent but not a real one. It can be resolved by considering the issue of deletions in the broader context of and in conjunction with the organization of chromatin in chromosomes and nuclear architecture, the conceptual framework for which already exists in studies carried out during the past fifteen years or so. In this paper, we specifically hypothesize that repair of DSBs induced in chromatin loops may offer a basis to explain the induction of deletions of different sizes and suggest an approach to test the hypothesis. We emphasize that the bridging of the gap between induced DSB and resulting deletions of different sizes is critical for current efforts in computational modeling of genetic risks.
Collapse
Affiliation(s)
- Krishnaswami Sankaranarayanan
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Instituet, Box 260, Stockholm SE 17176, Sweden
| | - Reza Taleei
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Instituet, Box 260, Stockholm SE 17176, Sweden
| | - Shirin Rahmanian
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Instituet, Box 260, Stockholm SE 17176, Sweden
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Instituet, Box 260, Stockholm SE 17176, Sweden.
| |
Collapse
|
45
|
Ishmukhametova A, Chen JM, Bernard R, de Massy B, Baudat F, Boyer A, Méchin D, Thorel D, Chabrol B, Vincent MC, Khau Van Kien P, Claustres M, Tuffery-Giraud S. Dissecting the Structure and Mechanism of a Complex Duplication-Triplication Rearrangement in theDMDGene. Hum Mutat 2013; 34:1080-4. [DOI: 10.1002/humu.22353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/27/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Aliya Ishmukhametova
- Université Montpellier 1; UFR médecine; Montpellier F-34000 France
- CHU Montpellier, Hôpital Arnaud de Villeneuve; Laboratoire de Génétique Moléculaire; Montpellier F-34000 France
| | - Jian-Min Chen
- INSERM U1078 and Établissement Français du Sang (EFS) - Bretagne; Brest F-29218 France
| | - Rafaëlle Bernard
- Laboratoire de Génétique Moléculaire; Hôpital de la Timone CHU; Marseille F-13385 France
| | - Bernard de Massy
- Institut de Génétique Humaine; UPR1142, CNRS; Montpellier France
| | - Frédéric Baudat
- Institut de Génétique Humaine; UPR1142, CNRS; Montpellier France
| | - Amandine Boyer
- Laboratoire de Génétique Moléculaire; Hôpital de la Timone CHU; Marseille F-13385 France
| | - Déborah Méchin
- CHU Montpellier, Hôpital Arnaud de Villeneuve; Laboratoire de Génétique Moléculaire; Montpellier F-34000 France
| | - Delphine Thorel
- CHU Montpellier, Hôpital Arnaud de Villeneuve; Laboratoire de Génétique Moléculaire; Montpellier F-34000 France
| | - Brigitte Chabrol
- CHU La Timone; Service de Neurologie Pédiatrique; Marseille F-13385 France
| | - Marie-Claire Vincent
- CHU Montpellier, Hôpital Arnaud de Villeneuve; Laboratoire de Génétique Moléculaire; Montpellier F-34000 France
| | - Philippe Khau Van Kien
- CHU Montpellier, Hôpital Arnaud de Villeneuve; Laboratoire de Génétique Moléculaire; Montpellier F-34000 France
| | - Mireille Claustres
- Université Montpellier 1; UFR médecine; Montpellier F-34000 France
- CHU Montpellier, Hôpital Arnaud de Villeneuve; Laboratoire de Génétique Moléculaire; Montpellier F-34000 France
- INSERM, U827; Montpellier F-34000 France
| | - Sylvie Tuffery-Giraud
- Université Montpellier 1; UFR médecine; Montpellier F-34000 France
- INSERM, U827; Montpellier F-34000 France
| |
Collapse
|
46
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
47
|
The medical genetics of dystrophinopathies: Molecular genetic diagnosis and its impact on clinical practice. Neuromuscul Disord 2013; 23:4-14. [DOI: 10.1016/j.nmd.2012.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 01/01/2023]
|
48
|
Li F, Li Y, Cui K, Li C, Chen W, Gao J, Zhu Y, Zeng C, Li S. Detection of pathogenic mutations and the mechanism of a rare chromosomal rearrangement in a Chinese family with Becker muscular dystrophy. Clin Chim Acta 2012; 414:20-5. [PMID: 22910583 DOI: 10.1016/j.cca.2012.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/21/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The objectives of this research are to genetically diagnose a family with Becker muscular dystrophy (BMD), to explore the molecular mechanism of the disease, and to predict the possibility of BMD development in two individuals who have not yet reached the age of onset (young individuals). METHODS The multiplex polymerase chain reaction was first employed to screen dystrophin (DMD) gene deletions, and the locations of deletion breakpoints were identified using the Sequenom platform and long-range PCR. Sanger sequencing was then performed for the undeleted exons. RESULTS All BMD patients and a young individual carry a deletion spanning exons 45 to 53 and an unreported missense mutation on exon 11 of the DMD gene. This point mutation was screened in 412 healthy individuals and heterozygous genotype was found in two females. Determination of deletion breakpoints demonstrated a 330-kb deletion and there was a 9-bp insertion between the breakpoints. This 9-bp could match a reference sequence located within the deleted region. CONCLUSIONS Two mutations of the DMD gene coexist in this family. One young child has a high disease risk. Pathogenic potential of the point mutation requires further investigation. The rare chromosomal rearrangement may be caused by short-nucleotide sequence capture or other unknown mechanisms.
Collapse
Affiliation(s)
- Feifei Li
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sun Z, Liu P, Jia X, Withers MA, Jin L, Lupski JR, Zhang F. Replicative mechanisms of CNV formation preferentially occur as intrachromosomal events: evidence from Potocki-Lupski duplication syndrome. Hum Mol Genet 2012; 22:749-56. [PMID: 23161748 DOI: 10.1093/hmg/dds482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Copy number variations (CNVs) in the human genome contribute significantly to disease. De novo CNV mutations arise via genomic rearrangements, which can occur in 'trans', i.e. via interchromosomal events, or in 'cis', i.e. via intrachromosomal events. However, what molecular mechanisms occur between chromosomes versus between or within chromatids has not been systematically investigated. We hypothesized that distinct CNV mutational mechanisms, based on their intrinsic properties, may occur in a biased intrachromosomal versus interchromosomal manner. Here, we studied 62 genomic duplications observed in association with sporadic Potocki-Lupski syndrome (PTLS), in which multiple mutational mechanisms appear to be operative. Intriguingly, more interchromosomal than intrachromosomal events were identified in recurrent PTLS duplications mediated by non-allelic homologous recombination, whereas the reciprocal distribution was found for replicative mechanisms and non-homologous end-joining, likely reflecting the differences in spacial proximity of homologous chromosomes during different mutational processes.
Collapse
Affiliation(s)
- Zhe Sun
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
50
|
De Caris L, Cecceroni L, Tummala H. On a Break with the X: The Role of Repair of Double-Stranded DNA Breaks in X-Linked Disease. BIOTECHNOL BIOTEC EQ 2012. [DOI: 10.5504/bbeq.2012.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Laura De Caris
- University of Abertay Dundee, School of Contemporary Sciences, Scotland, UK
| | - Lucia Cecceroni
- University of Abertay Dundee, School of Contemporary Sciences, Scotland, UK
| | - Hemanth Tummala
- University of Abertay Dundee, School of Contemporary Sciences, Scotland, UK
| |
Collapse
|