1
|
Tancredi R, Sobhani N, Catalano M, Roviello G, Generali D. Current Trends in Liquid Biopsy Tracking Resistance in Molecular Breast Cancer-Targeted Therapies. Genes (Basel) 2025; 16:443. [PMID: 40282403 PMCID: PMC12027453 DOI: 10.3390/genes16040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Breast cancer (BC) is the most commonly occurring type of cancer in women, being a major cancer-related cause of mortality worldwide. With the advancement in current therapeutic options, including hormone therapy and targeted therapies, there is a need for more accurate and less invasive options to monitor cancer progression in patients. Liquid biopsy has evolved rapidly, being able to detect small quantities of nucleic acids or cell-free DNA in the blood of BC patients. This method addresses three major issues of needle biopsy: firstly, it is more permissive by being less invasive and does not require needling the organs; secondly, it covers for the heterogeneous nature of the tumor of origin, which could lead to an otherwise inaccurate representation of the cancer-driving mutations; thirdly, it better represents the type of tumor that the primary tumor is going to evolve into before it starts to metastasize. This current review will address the current advancements in liquid biopsy in the context of BC, highlighting the pros and challenges.
Collapse
Affiliation(s)
- Richard Tancredi
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100 Cremona, Italy;
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy;
| |
Collapse
|
2
|
Kaur R, Gupta S, Kulshrestha S, Khandelwal V, Pandey S, Kumar A, Sharma G, Kumar U, Parashar D, Das K. Metabolomics-Driven Biomarker Discovery for Breast Cancer Prognosis and Diagnosis. Cells 2024; 14:5. [PMID: 39791706 PMCID: PMC11720085 DOI: 10.3390/cells14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Breast cancer is a cancer with global prevalence and a surge in the number of cases with each passing year. With the advancement in science and technology, significant progress has been achieved in the prevention and treatment of breast cancer to make ends meet. The scientific intradisciplinary subject of "metabolomics" examines every metabolite found in a cell, tissue, system, or organism from different sources of samples. In the case of breast cancer, little is known about the regulatory pathways that could be resolved through metabolic reprogramming. Evidence related to the significant changes taking place during the onset and prognosis of breast cancer can be obtained using metabolomics. Innovative metabolomics approaches identify metabolites that lead to the discovery of biomarkers for breast cancer therapy, diagnosis, and early detection. The use of diverse analytical methods and instruments for metabolomics includes Magnetic Resonance Spectroscopy, LC/MS, UPLC/MS, etc., which, along with their high-throughput analysis, give insights into the metabolites and the molecular pathways involved. For instance, metabolome research has led to the discovery of the glutamate-to-glutamate ratio and aerobic glycolysis as biomarkers in breast cancer. The present review comprehends the updates in metabolomic research and its processes that contribute to breast cancer prognosis and metastasis. The metabolome holds a future, and this review is an attempt to amalgamate the present relevant literature that might yield crucial insights for creating innovative therapeutic strategies aimed at addressing metastatic breast cancer.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Sunanda Kulshrestha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Vishal Khandelwal
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Swadha Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anil Kumar
- National Institute of Immunology, New Delhi 110067, India;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Advanced Imaging Research Center (AIRC), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Ghaziabad 201015, Uttar Pradesh, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
3
|
Chen J, Liu X, Zhang Z, Su R, Geng Y, Guo Y, Zhang Y, Su M. Early Diagnostic Markers for Esophageal Squamous Cell Carcinoma: Copy Number Alteration Gene Identification and cfDNA Detection. J Transl Med 2024; 104:102127. [PMID: 39182610 DOI: 10.1016/j.labinv.2024.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The high mortality rate of esophageal squamous cell carcinoma (ESCC) is exacerbated by the absence of early diagnostic markers. The pronounced heterogeneity of mutations in ESCC renders copy number alterations (CNAs) more prevalent among patients. The identification of CNA genes within esophageal squamous dysplasia (ESD), a precancerous stage of ESCC, is crucial for advancing early detection efforts. Utilization of liquid biopsies via droplet-based digital PCR (ddPCR) offers a novel strategy for detecting incipient tumor traces. This study undertook a thorough investigation of CNA profiles across ESCC development stages, integrating data from existing databases and prior investigations to pinpoint and confirm CNA markers conducive to early detection of ESCC. Targeted sequencing was employed to select potential early detection genes, followed by the establishment of prediction models for ESCC early detection using ddPCR. Our analysis revealed widespread CNAs during the ESD stage, mirroring the CNA landscape observed in ESCC. A total of 40 CNA genes were identified as highly frequent in both ESCC and ESD lesions, through a comprehensive gene-level CNA analysis encompassing ESD and ESCC tissues, ESCC cell lines, and pan-cancer data sets. Subsequent validation of 5 candidate markers via ddPCR underscored the efficacy of combined predictive models encompassing PIK3CA, SOX2, EGFR, MYC, and CCND1 in early ESCC screening, as evidenced by the area-under-the-curve values exceeding 0.92 (P < .0001) across various detection contexts. The findings highlighted the significant utility of CNA genes in the early screening of ESCC, presenting robust models that could facilitate early detection, broad-scale population screening, and adjunctive diagnosis.
Collapse
Affiliation(s)
- Jiamin Chen
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Xi Liu
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Zhihua Zhang
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Ruibing Su
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China; Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yiqun Geng
- Department of Molecular Pathology, Shantou University Medical College, Shantou, China
| | - Yi Guo
- Department of Endoscopy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yimin Zhang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Min Su
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
4
|
Shaw JA, Page K, Wren E, de Bruin EC, Kalashnikova E, Hastings R, McEwen R, Zhang E, Wadsley M, Acheampong E, Renner D, Gleason KL, Ambasager B, Stetson D, Fernandez-Garcia D, Guttery D, Allsopp RC, Rodriguez A, Zimmermann B, Sethi H, Aleshin A, Liu MC, Richards C, Stebbing J, Ali S, Rehman F, Cleator S, Kenny L, Ahmed S, Armstrong AC, Coombes RC. Serial Postoperative Circulating Tumor DNA Assessment Has Strong Prognostic Value During Long-Term Follow-Up in Patients With Breast Cancer. JCO Precis Oncol 2024; 8:e2300456. [PMID: 38691816 PMCID: PMC11161241 DOI: 10.1200/po.23.00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/09/2023] [Accepted: 01/18/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE Here, we report the sensitivity of a personalized, tumor-informed circulating tumor DNA (ctDNA) assay (Signatera) for detection of molecular relapse during long-term follow-up of patients with breast cancer. METHODS A total of 156 patients with primary breast cancer were monitored clinically for up to 12 years after surgery and adjuvant chemotherapy. Semiannual blood samples were prospectively collected, and analyzed retrospectively to detect residual disease by ultradeep sequencing using ctDNA assays, developed from primary tumor whole-exome sequencing data. RESULTS Personalized Signatera assays detected ctDNA ahead of clinical or radiologic relapse in 30 of the 34 patients who relapsed (patient-level sensitivity of 88.2%). Relapse was predicted with a lead interval of up to 38 months (median, 10.5 months; range, 0-38 months), and ctDNA positivity was associated with shorter relapse-free survival (P < .0001) and overall survival (P < .0001). All relapsing triple-negative patients (n = 7/23) had a ctDNA-positive test within a median of 8 months (range, 0-19 months), while the 16 nonrelapsed patients with triple-negative breast cancer remained ctDNA-negative during a median follow-up of 58 months (range, 8-99 months). The four patients who had negative tests before relapse all had hormone receptor-positive (HR+) disease and conversely, five of the 122 nonrelapsed patients (all HR+) had an occasional positive test. CONCLUSION Serial postoperative ctDNA assessment has strong prognostic value, provides a potential window for earlier therapeutic intervention, and may enable more effective monitoring than current clinical tests such as cancer antigen 15-3. Our study provides evidence that those with serially negative ctDNA tests have superior clinical outcomes, providing reassurance to patients with breast cancer. For select cases with HR+ disease, decisions about treatment management might require serial monitoring despite the ctDNA-positive result.
Collapse
Affiliation(s)
- Jacqueline A. Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Karen Page
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Evie Wren
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Elza C. de Bruin
- Oncology R&D, Research & Early Development, AstraZeneca, Cambridge, United Kingdom
| | | | - Robert Hastings
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rob McEwen
- Oncology R&D, Research & Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Eddie Zhang
- Oncology R&D, Research & Early Development, AstraZeneca, Waltham, MA
| | - Marc Wadsley
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Emmanuel Acheampong
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Kelly L.T. Gleason
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Bana Ambasager
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel Stetson
- Oncology R&D, Research & Early Development, AstraZeneca, Waltham, MA
| | | | - David Guttery
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rebecca C. Allsopp
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | - Cathy Richards
- University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Farah Rehman
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Susan Cleator
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Laura Kenny
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Samreen Ahmed
- University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - Anne C. Armstrong
- Division of Cancer Sciences, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Zavarykina TM, Lomskova PK, Pronina IV, Khokhlova SV, Stenina MB, Sukhikh GT. Circulating Tumor DNA Is a Variant of Liquid Biopsy with Predictive and Prognostic Clinical Value in Breast Cancer Patients. Int J Mol Sci 2023; 24:17073. [PMID: 38069396 PMCID: PMC10706922 DOI: 10.3390/ijms242317073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This paper introduces the reader to the field of liquid biopsies and cell-free nucleic acids, focusing on circulating tumor DNA (ctDNA) in breast cancer (BC). BC is the most common type of cancer in women, and progress with regard to treatment has been made in recent years. Despite this, there remain a number of unresolved issues in the treatment of BC; in particular, early detection and diagnosis, reliable markers of response to treatment and for the prediction of recurrence and metastasis, especially for unfavorable subtypes, are needed. It is also important to identify biomarkers for the assessment of drug resistance and for disease monitoring. Our work is devoted to ctDNA, which may be such a marker. Here, we describe its main characteristics and potential applications in clinical oncology. This review considers the results of studies devoted to the analysis of the prognostic and predictive roles of various methods for the determination of ctDNA in BC patients. Currently known epigenetic changes in ctDNA with clinical significance are reviewed. The possibility of using ctDNA as a predictive and prognostic marker for monitoring BC and predicting the recurrence and metastasis of cancer is also discussed, which may become an important part of a precision approach to the treatment of BC.
Collapse
Affiliation(s)
- Tatiana M. Zavarykina
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Polina K. Lomskova
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
| | - Svetlana V. Khokhlova
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Marina B. Stenina
- “N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of the Russian Federation, Moscow 115522, Russia;
| | - Gennady T. Sukhikh
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| |
Collapse
|
6
|
Neagu AN, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules 2023; 28:4768. [PMID: 37375323 DOI: 10.3390/molecules28124768] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bvd, No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Celeste A Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
7
|
Allsopp RC, Page K, Ambasager B, Wadsley MK, Acheampong E, Ntereke TP, Guo Q, Lall GM, Gleason KLT, Wren E, Nteliopoulos G, Rushton AJ, Coombes RC, Shaw JA. A Rapid, Shallow Whole Genome Sequencing Workflow Applicable to Limiting Amounts of Cell-Free DNA. Clin Chem 2023; 69:510-518. [PMID: 36747279 DOI: 10.1093/clinchem/hvac220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/02/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Somatic copy number alterations (sCNAs) acquired during the evolution of breast cancer provide valuable prognostic and therapeutic information. Here we present a workflow for screening sCNAs using picogram amounts of cell-free DNA (cfDNA) and single circulating tumor cells (CTCs). METHODS We repurposed the Ion ReproSeq PGS™ preimplantation genetic testing kit to perform shallow whole genome sequencing on 178 cfDNA samples (300 pg) and individual CTCs from 10 MBC patients with metastatic breast cancer (MBC) recovered by CellSearch®/DEPArray™. Results were analyzed using a tailored ichorCNA workflow. RESULTS sCNAs were detected in cfDNA of 41/105 (39%) patients with MBC and 3/23 (13%) primary breast cancers on follow-up (PBC FU), all of whom subsequently relapsed. In 8 of 10 MBCs, individual CTCs had a higher copy number count than matched cfDNA. The median tumor fraction detected by ichorCNA was 0.34 (range 0.17-0.58) for MBC and 0.36 (range 0.31-0.37) for PBC FU. Patients with detectable tumor fraction (≥ 0.1) and TFx and OncomineTM variants had significantly lower overall survival rates (P values P = 0.002 and P < 0.0001 for the log-rank test, respectively). CONCLUSIONS The ReproSeq PGS assay is rapid, at approximately $120 per sample, providing both a sCNA profile and estimation of the tumor DNA fraction from limiting cfDNA template (300pg) and individual CTCs. The approach could be used to examine the copy number landscape over time to guide treatment decisions, support future trial designs, and be applied to low volume blood spot samples enabling remote monitoring.
Collapse
Affiliation(s)
- Rebecca C Allsopp
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Karen Page
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Bana Ambasager
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Marc K Wadsley
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Emmanuel Acheampong
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Tumisang P Ntereke
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Qi Guo
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Gurdeep Matharu Lall
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Kelly L T Gleason
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Evie Wren
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Georgios Nteliopoulos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Amelia J Rushton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - R Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Jacqueline A Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
8
|
Balasundaram A, Kumar S U, D TK, Anil Dedge A, R G, K SS, R S, C GPD. The targeted next-generation sequence revealed SMAD4, AKT1, and TP53 mutations from circulating cell-free DNA of breast cancer and its effect on protein structure - A computational approach. J Biomol Struct Dyn 2023; 41:15584-15597. [PMID: 37011004 DOI: 10.1080/07391102.2023.2191122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer biomarkers that detect marginally advanced stages are still challenging. The detection of specific abnormalities, targeted therapy selection, prognosis, and monitoring of treatment effectiveness over time are all made possible by circulating free DNA (cfDNA) analysis. The proposed study will detect specific genetic abnormalities from the plasma cfDNA of a female breast cancer patient by sequencing a cancer-related gene panel (MGM455 - Oncotrack Ultima), including 56 theranostic genes (SNVs and small INDELs). Initially, we determined the pathogenicity of the observed mutations using PredictSNP, iStable, Align-GVGD, and ConSurf servers. As a next step, molecular dynamics (MD) was implemented to determine the functional significance of SMAD4 mutation (V465M). Lastly, the mutant gene relationships were examined using the Cytoscape plug-in GeneMANIA. Using ClueGO, we determined the gene's functional enrichment and integrative analysis. The structural characteristics of SMAD4 V465M protein by MD simulation analysis further demonstrated that the mutation was deleterious. The simulation showed that the native structure was more significantly altered by the SMAD4 (V465M) mutation. Our findings suggest that SMAD4 V465M mutation might be significantly associated with breast cancer, and other patient-found mutations (AKT1-E17K and TP53-R175H) are synergistically involved in the process of SMAD4 translocate to nuclease, which affects the target gene translation. Therefore, this combination of gene mutations could alter the TGF-β signaling pathway in BC. We further proposed that the SMAD4 protein loss may contribute to an aggressive phenotype by inhibiting the TGF-β signaling pathway. Thus, breast cancer's SMAD4 (V465M) mutation might increase their invasive and metastatic capabilities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Aditi Anil Dedge
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Satish Srinivas K
- Department of Radiation Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Siva R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Sun Y, Zhu C, Xu F, Cui S, Guan X. Circulating Tumor DNA as a Novel Biomarker Optimizing Treatment for Triple Negative Breast Cancer. Clin Breast Cancer 2023; 23:339-349. [PMID: 36966079 DOI: 10.1016/j.clbc.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/23/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Triple-negative breast cancer is a sub-type of clinically and molecularly heterogeneous malignant disease with a worse prognosis and earlier recurrence than HER2-amplified or hormone-receptor positive breast cancer. Because of the lack of personalized therapy, genetic information is essential to early diagnosing, identifying the high risk of recurrence, guiding therapeutic management, and monitoring treatment efficiency. Circulating tumor DNA (ctDNA) is a novel noninvasive, timely, and tumor specified biomarker that reliably reflects the comprehensive tumor genetic profiles. Thus, it holds significant expectations in personalized therapy, including accurate diagnosis, treatment monitoring, and early detection of recurrence of TNBC. In this review, we summarize the results from recent and ongoing ctDNA-based biomarker-driven clinical trials, with respect to ctDNA analysis' predictive role, in adjuvant, neo-adjuvant, and metastatic settings. Collectively, we anticipate that ctDNA will ultimately be integrated into the management of TNBC to foster precise treatment.
Collapse
Affiliation(s)
- Yue Sun
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shiyun Cui
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Truskowski K, Amend SR, Pienta KJ. Dormant cancer cells: programmed quiescence, senescence, or both? Cancer Metastasis Rev 2023; 42:37-47. [PMID: 36598661 PMCID: PMC10014758 DOI: 10.1007/s10555-022-10073-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Metastasis is the overwhelming driver of cancer mortality, accounting for the majority of cancer deaths. Many patients present with metastatic relapse years after eradication of the primary lesion. Disseminated cancer cells can undergo a durable proliferative arrest and lie dormant in secondary tissues before reentering the cell cycle to seed these lethal relapses. This process of cancer cell dormancy remains poorly understood, largely due to difficulties in studying these dormant cells. In the face of these challenges, the application of knowledge from the cellular senescence and quiescence fields may help to guide future thinking on the study of dormant cancer cells. Both senescence and quiescence are common programs of proliferative arrest that are integral to tissue development and homeostasis. Despite phenotypic differences, these two states also share common characteristics, and both likely play a role in cancer dormancy and delayed metastatic relapse. Understanding the cell biology behind these states, their overlaps and unique characteristics is critical to our future understanding of dormant cancer cells, as these cells likely employ some of the same molecular programs to promote survival and dissemination. In this review, we highlight the biology underlying these non-proliferative states, relate this knowledge to what we currently know about dormant cancer cells, and discuss implications for future work toward targeting these elusive metastatic seeds.
Collapse
Affiliation(s)
- Kevin Truskowski
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| |
Collapse
|
11
|
Jayasinghe R, Jayarajah U, Seneviratne S. Circulating Biomarkers in the Management of Breast Cancer. Biomark Med 2022. [DOI: 10.2174/9789815040463122010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating biomarkers have become a promising modality in the
management of many cancers. Similarly, in breast cancer, circulatory biomarkers are
useful, non-invasive methods in the diagnosis, prognostication, and evaluation of
response to treatment. Invasive surgical biopsies can be potentially replaced by “liquid
biopsy,” which involves analysing circulatory biomarkers that may reveal features of
primary and metastatic disease. Therefore, providing an insight into the cancer biology
can be utilised to monitor treatment response, treatment-induced adaptation and tumour
and disease progression through non-invasive means. The objective of this review is to
provide an overview of the current status of the circulating biomarkers highlighting
their promising impact on the management of patients with breast cancer.
Collapse
Affiliation(s)
- Ravindri Jayasinghe
- Faculty of Medicine, University of Colombo,Department of Surgery,Department of Surgery, Faculty of Medicine, University of Colombo, Colombo,Sri Lanka
| | - Umesh Jayarajah
- Faculty of Medicine, University of Colombo,Department of Surgery,Department of Surgery, Faculty of Medicine, University of Colombo, Colombo,Sri Lanka
| | - Sanjeewa Seneviratne
- Faculty of Medicine, University of Colombo,Department of Surgery,Department of Surgery, Faculty of Medicine, University of Colombo, Colombo,Sri Lanka
| |
Collapse
|
12
|
Ring A, Spataro M, Wicki A, Aceto N. Clinical and Biological Aspects of Disseminated Tumor Cells and Dormancy in Breast Cancer. Front Cell Dev Biol 2022; 10:929893. [PMID: 35837334 PMCID: PMC9274007 DOI: 10.3389/fcell.2022.929893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Progress in detection and treatment have drastically improved survival for early breast cancer patients. However, distant recurrence causes high mortality and is typically considered incurable. Cancer dissemination occurs via circulating tumor cells (CTCs) and up to 75% of breast cancer patients could harbor micrometastatses at time of diagnosis, while metastatic recurrence often occurs years to decades after treatment. During clinical latency, disseminated tumor cells (DTCs) can enter a state of cell cycle arrest or dormancy at distant sites, and are likely shielded from immune detection and treatment. While this is a challenge, it can also be seen as an outstanding opportunity to target dormant DTCs on time, before their transformation into lethal macrometastatic lesions. Here, we review and discuss progress made in our understanding of DTC and dormancy biology in breast cancer. Strides in our mechanistic insights of these features has led to the identification of possible targeting strategies, yet, their integration into clinical trial design is still uncertain. Incorporating minimally invasive liquid biopsies and rationally designed adjuvant therapies, targeting both proliferating and dormant tumor cells, may help to address current challenges and improve precision cancer care.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Spataro
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- *Correspondence: Nicola Aceto,
| |
Collapse
|
13
|
Chedid J, Allam S, Chamseddine N, Bou Zerdan M, El Nakib C, Assi HI. Role of circulating tumor DNA and circulating tumor cells in breast cancer: History and updates. SAGE Open Med 2022; 10:20503121221077838. [PMID: 35223029 PMCID: PMC8874178 DOI: 10.1177/20503121221077838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Circulating tumor DNA, cell-free DNA, and circulating tumor cells have been at the epitome of recent research in breast cancer. These forms of liquid biopsies have been used in monitoring disease progression, estimating the risk of relapse, and response to treatment. Much has been done in relation to serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. Some studies have also explored their use in monitoring treatment response. As the field of liquid biopsies expands, more prospective studies are needed to tailor management in an individualistic approach. In this literature review, the authors explore the multiple uses of circulating tumor DNA and circulating tumor cells in breast cancer.
Collapse
Affiliation(s)
- Julien Chedid
- Department of Obstetrics and Gynecology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Sabine Allam
- Faculty of Medicine, University of Balamand, Beirut, Lebanon
| | - Nathalie Chamseddine
- Department of Obstetrics and Gynecology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
14
|
Page K, Martinson LJ, Fernandez-Garcia D, Hills A, Gleason KLT, Gray MC, Rushton AJ, Nteliopoulos G, Hastings RK, Goddard K, Ions C, Parmar V, Primrose L, Openshaw MR, Guttery DS, Palmieri C, Ali S, Stebbing J, Coombes RC, Shaw JA. Circulating Tumor DNA Profiling From Breast Cancer Screening Through to Metastatic Disease. JCO Precis Oncol 2021; 5:PO.20.00522. [PMID: 34849446 PMCID: PMC8624092 DOI: 10.1200/po.20.00522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE We investigated the utility of the Oncomine Breast cfDNA Assay for detecting circulating tumor DNA (ctDNA) in women from a breast screening population, including healthy women with no abnormality detected by mammogram, and women on follow-up through to advanced breast cancer. MATERIALS AND METHODS Blood samples were taken from 373 women (127 healthy controls recruited through breast screening, 28 ductal carcinoma in situ, 60 primary breast cancers, 47 primary breast cancer on follow-up, and 111 metastatic breast cancers [MBC]) to recover plasma and germline DNA for analysis with the Oncomine Breast cfDNA Assay on the Ion S5 platform. RESULTS One hundred sixteen of 373 plasma samples had one or more somatic variants detected across eight of the 10 genes and were called ctDNA-positive; MBC had the highest proportion of ctDNA-positive samples (61; 55%) and healthy controls the lowest (20; 15.7%). ESR1, TP53, and PIK3CA mutations account for 93% of all variants detected and predict poor overall survival in MBC (hazard ratio = 3.461; 95% CI, 1.866 to 6.42; P = .001). Patients with MBC had higher plasma cell-free DNA levels, higher variant allele frequencies, and more polyclonal variants, notably in ESR1 than in all other groups. Only 15 individuals had evidence of potential clonal hematopoiesis of indeterminate potential mutations. CONCLUSION We were able detect ctDNA across the breast cancer spectrum, notably in MBC where variants in ESR1, TP53, and PIK3CA predicted poor overall survival. The assay could be used to monitor emergence of resistance mutations such as in ESR1 that herald resistance to aromatase inhibitors to tailor adjuvant therapies. However, we suggest caution is needed when interpreting results from a single plasma sample as variants were also detected in a small proportion of HCs.
Collapse
Affiliation(s)
- Karen Page
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Luke J. Martinson
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Allison Hills
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Kelly L. T. Gleason
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Molly C. Gray
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Amelia J. Rushton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Georgios Nteliopoulos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Robert K. Hastings
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Kate Goddard
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Charlotte Ions
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Vilas Parmar
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Lindsay Primrose
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Mark R. Openshaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - David S. Guttery
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Carlo Palmieri
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Jacqueline A. Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
15
|
Honoré N, Galot R, van Marcke C, Limaye N, Machiels JP. Liquid Biopsy to Detect Minimal Residual Disease: Methodology and Impact. Cancers (Basel) 2021; 13:5364. [PMID: 34771526 PMCID: PMC8582541 DOI: 10.3390/cancers13215364] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
One reason why some patients experience recurrent disease after a curative-intent treatment might be the persistence of residual tumor cells, called minimal residual disease (MRD). MRD cannot be identified by standard radiological exams or clinical evaluation. Tumor-specific alterations found in the blood indirectly diagnose the presence of MRD. Liquid biopsies thus have the potential to detect MRD, allowing, among other things, the detection of circulating tumor DNA (ctDNA), circulating tumor cells (CTC), or tumor-specific microRNA. Although liquid biopsy is increasingly studied, several technical issues still limit its clinical applicability: low sensitivity, poor standardization or reproducibility, and lack of randomized trials demonstrating its clinical benefit. Being able to detect MRD could give clinicians a more comprehensive view of the risk of relapse of their patients and could select patients requiring treatment escalation with the goal of improving cancer survival. In this review, we are discussing the different methodologies used and investigated to detect MRD in solid cancers, their respective potentials and issues, and the clinical impacts that MRD detection will have on the management of cancer patients.
Collapse
Affiliation(s)
- Natasha Honoré
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
| | - Rachel Galot
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Cédric van Marcke
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Nisha Limaye
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Jean-Pascal Machiels
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
16
|
Duque G, Manterola C, Otzen T, Arias C, Galindo B, Mora M, Guerrero E, García N. Clinical utility of liquid biopsy in breast cancer: A systematic review. Clin Genet 2021; 101:285-295. [PMID: 34687555 DOI: 10.1111/cge.14077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Advancements in genetic sequencing techniques along with the identification of specific mutations and structural changes in multiple cancer genes, make it possible to identify circulating tumor cells and cell free nucleic acids as blood-based biomarkers, serving as a liquid biopsy (LB) with great utility for the diagnosis, treatment and follow-up of patients with neoplasms. This systematic review focuses on the clinical utility of LB in patients with breast cancer (BC). Articles published between 1990 and 2021 were included. Databases searched: Trip Database, WoS, EMBASE, PubMed, SCOPUS, and Clinical Keys. Variables studied: Publication year, country, number of cases, primary study design, LB detection methods, genes found, overall survival, disease-free survival, stage, response to treatment, clinical utility, BC molecular type, systemic treatment and methodological quality of primary studies. Of 2619 articles, 74 were retained representing 12 658 patients, mainly cohort studies (66.2%), the majority were from China (15%) and Japan (12.2%). All primary studies described clinical stage and type of systemic treatment used. Most used biomarker detection method: DNA (52.7%) and type of analysis: quantification of total cfDNA (35.1%). PIK3CA mutation was most frequent (62.9%). Evidence suggests clinically useful applications of BC. Though heterogeneous, publications suggest that LB will constitute part of the standard diagnostic-therapeutic process of BC.
Collapse
Affiliation(s)
- Galo Duque
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador
| | - Carlos Manterola
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Tamara Otzen
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Cristina Arias
- Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador
| | - Bryan Galindo
- Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador
| | - Miriann Mora
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador
| | - Enmanuel Guerrero
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile.,Solca Cancer Institute, Sociedad de Lucha Contra el Cáncer, Cuenca, Ecuador
| | - Nayeli García
- PhD Program in Medical Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
17
|
Tay TKY, Tan PH. Liquid Biopsy in Breast Cancer: A Focused Review. Arch Pathol Lab Med 2021; 145:678-686. [PMID: 32045277 DOI: 10.5858/arpa.2019-0559-ra] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 01/27/2023]
Abstract
CONTEXT.— The role of liquid biopsy in cancer management has been gaining increased prominence in the past decade, with well-defined clinical applications now being established in lung cancer. Recently, the US Food and Drug Administration also approved the Therascreen PIK3CA RGQ polymerase chain reaction assay as a companion diagnostic assay to detect PIK3CA mutations in breast cancer for both tissue and liquid biopsies, bringing the role of liquid biopsy in breast cancer management to the fore. Its utility in other aspects of breast cancer, however, is yet to be clearly defined. OBJECTIVE.— To review the studies that looked at liquid biopsies in breast cancer and examine their potential for clinical application in the areas of early diagnosis, prognostication, monitoring disease response, detecting minimal residual disease, and predicting risk of progression or relapse. We focus mainly on circulating tumor cells and circulating tumor DNA. DATA SOURCES.— Peer-reviewed articles in PubMed. CONCLUSIONS.— Liquid biopsies in breast cancers have yielded promising results, especially in the areas of monitoring treatment response and predicting disease progression or relapse. With further study, and hopefully coupled with continued improvements in technologies that isolate tumor-derived materials, liquid biopsies may go on to play a greater role in the breast cancer clinic.
Collapse
Affiliation(s)
- Timothy Kwang Yong Tay
- From the Department of Anatomical Pathology (Tay, Tan), Singapore General Hospital, Singapore
| | - Puay Hoon Tan
- From the Department of Anatomical Pathology (Tay, Tan), Singapore General Hospital, Singapore.,The Division of Pathology (Tan), Singapore General Hospital, Singapore
| |
Collapse
|
18
|
Zhang W, Zhang YM, Gao Y, Zhang S, Chu W, Wei G, Li K, He X, Chen L, Guo L, Luan S, Zhang P. A novel decision tree model based on chromosome imbalances in cell-free DNA and CA-125 in the differential diagnosis of ovarian cancer. Int J Biol Markers 2021; 36:3-13. [PMID: 34053311 DOI: 10.1177/1724600821992356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE CA-125 is widely used as biomarker of ovarian cancer. However, CA-125 suffers low accuracy. We developed a hybrid analytical model, the Ovarian Cancer Decision Tree (OCDT), employing a two-layer decision tree, which considers genetic alteration information from cell-free DNA along with CA-125 value to distinguish malignant tumors from benign tumors. METHODS We consider major copy number alterations at whole chromosome and chromosome-arm level as the main feature of our detection model. Fifty-eight patients diagnosed with malignant tumors, 66 with borderline tumors, and 10 with benign tumors were enrolled. RESULTS Genetic analysis revealed significant arm-level imbalances in most malignant tumors, especially in high-grade serous cancers in which 12 chromosome arms with significant aneuploidy (P<0.01) were identified, including 7 arms with significant gains and 5 with significant losses. The area under receiver operating characteristic curve (AUC) was 0.8985 for copy number variations analysis, compared to 0.8751 of CA125. The OCDT was generated with a cancerous score (CScore) threshold of 5.18 for the first level, and a CA-125 value of 103.1 for the second level. Our most optimized OCDT model achieved an AUC of 0.975. CONCLUSIONS The results suggested that genetic variations extracted from cfDNA can be combined with CA-125, and together improved the differential diagnosis of malignant from benign ovarian tumors. The model would aid in the pre-operative assessment of women with adnexal masses. Future clinical trials need to be conducted to further evaluate the value of CScore in clinical settings and search for the optimal threshold for malignancy detection.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Yu-Min Zhang
- Biological Testing Department, Heze Food and Drug Testing Institute, Heze, Shandong Province, China
| | - Yuan Gao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Shengmiao Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Weixin Chu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Guopeng Wei
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Ke Li
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Xuesong He
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Long Chen
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Li Guo
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Shufang Luan
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| |
Collapse
|
19
|
Bushnell GG, Deshmukh AP, den Hollander P, Luo M, Soundararajan R, Jia D, Levine H, Mani SA, Wicha MS. Breast cancer dormancy: need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer 2021; 7:66. [PMID: 34050189 PMCID: PMC8163741 DOI: 10.1038/s41523-021-00269-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in the USA. Although advances in treatment over the past several decades have significantly improved the outlook for this disease, most women who are diagnosed with estrogen receptor positive disease remain at risk of metastatic relapse for the remainder of their life. The cellular source of late relapse in these patients is thought to be disseminated tumor cells that reactivate after a long period of dormancy. The biology of these dormant cells and their natural history over a patient's lifetime is largely unclear. We posit that research on tumor dormancy has been significantly limited by the lack of clinically relevant models. This review will discuss existing dormancy models, gaps in biological understanding, and propose criteria for future models to enhance their clinical relevance.
Collapse
Affiliation(s)
- Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Abhijeet P Deshmukh
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Luo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics and Departments of Physics and Bioengineering, Northeastern University, Boston, MA, USA.
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Shen Z, Chen C, Sun J, Huang J, Liu S. The status of WIF1 methylation in cell-free DNA is associated with the insusceptibility for gefitinib in the treatment of lung cancer. J Cancer Res Clin Oncol 2021; 147:2239-2248. [PMID: 34037837 DOI: 10.1007/s00432-021-03640-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Targeted cancer therapy has shed light on the treatment of tumor, especially for patients with non-small cell lung cancer. However, only a limited portion of NSCLC patients carrying specific mutations showed an ideal drug response. In addition, DNA methylation status showed a great potential for cancer detection and prognosis prediction. METHODS Bisulfite sequencing was performed to analyze the DNA methylation of WIF1 promoter in cfDNA and tumor tissue samples collected from NSCLC patients. PFS and OS analyses were carried out to evaluate the prognosis of gefitinib treatment in patients with differential levels of WIF1 DNA methylation. Quantitative real-time PCR was used to analyze the expression of WIF1 mRNA, while immunohistochemistry was performed to assess the expression of WIF1 protein. Furthermore, ELISA was carried out to evaluate the WIF1 activity in plasma. RESULTS The DNA methylation level of WIF1 promoter was lower in the cfDNA of NSCLC patients with a complete or partial response to gefitinib, and NSCLC patients with hypomethylated WIF1 showed better PFS and OS. The DNA methylation of WIF1 promoter in the resected tumor tissues was consistent with WIF1 DNA methylation in cfDNA, indicating that cfDNA was mainly derived from lung cancer tissues. As a result, the expression of WIF1 in tissue samples and the WIF1 activity in plasma was inhibited in patients with hypermethylated WIF1. Moreover, the cell viability of gefitinib-resistant cells was decreased by the suppressed WIF1 methylation in vitro. And the expression level of WIF1 mRNA was higher in gefitinib-resistant cells overexpressing ALKBH5, a known suppressor of WIF1 methylation. CONCLUSION In summary, the findings of this study demonstrated that the level of WIF1 methylation in cfDNA was associated with the insusceptibility of gefitinib in the treatment of lung cancer.
Collapse
Affiliation(s)
- Zhijun Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, No. 26 Zhongshan Avenue, Wuhan, 430033, Hubei, China
| | - Chen Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jianhai Sun
- Department of Oncology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, 430033, Hubei, China
| | - Jingsong Huang
- Department of Transfusion, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, Fujian, China.
| | - Shiguo Liu
- Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, No. 26 Zhongshan Avenue, Wuhan, 430033, Hubei, China.
| |
Collapse
|
21
|
Liu L, Chen X, Wong KC. Early Cancer Detection from Genome-wide Cell-free DNA Fragmentation via Shuffled Frog Leaping Algorithm and Support Vector Machine. Bioinformatics 2021; 37:3099-3105. [PMID: 33837381 DOI: 10.1093/bioinformatics/btab236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION Early cancer detection is significant for the patient mortality rate reduction. Although machine learning has been widely employed in that context, there are still deficiencies. In this work, we studied different machine learning algorithms for early cancer detection and proposed an Adaptive Support Vector Machine (ASVM) method by synergizing Shuffled Frog Leaping Algorithm (SFLA) and Support Vector Machine (SVM) in this paper. RESULTS As ASVM regulates SVM for parameter adaption based on data characteristics, the experimental results demonstrated the robust generalization capability of ASVM on different datasets under different settings; for instance, ASVM can enhance the sensitivity by over 10% for early cancer detection compared with SVM. Besides, our proposed ASVM outperformed Grid Search + SVM and Random Search + SVM by significant margins in terms of the area under the ROC curve (AUC) (0.938 vs. 0.922 vs. 0.921). AVAILABILITY The proposed algorithm and dataset are available at https://github.com/ElaineLIU-920/ASVM-for-Early-Cancer-Detection. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Linjing Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Wang YH, Song Z, Hu XY, Wang HS. Circulating tumor DNA analysis for tumor diagnosis. Talanta 2021; 228:122220. [PMID: 33773726 DOI: 10.1016/j.talanta.2021.122220] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 01/10/2023]
Abstract
Tumor is a kind of abnormal organism generated by the proliferation and differentiation of cells in the body under the action of various initiating and promoting factors, which seriously threatens human life and health. Tumorigenesis is a gradual process that involves multistage reactions and the accumulation of mutations. Gene mutation usually occurs during tumorigenesis, and can be used for tumor diagnosis. Early diagnosis is the most effective way to improve the cure rate and reduce the mortality rate. Among the peripheral blood circulating tumor DNA (ctDNA), gene mutation in keeping with tumor cells can be detected, which can potentially replace tumor tissue section for early diagnosis. It has been considered as a liquid biopsy marker with good clinical application prospect. However, the high fragmentation and low concentration of ctDNA in blood result in the difficulty of tumor stage determination. Therefore, high sensitive and specific mutation detection methods have been developed to detect trace mutant ctDNA. At present, the approaches include digital PCR (dPCR), Bead, Emulsion, Amplification and Magnetic (BEAMing), Next Generation Sequencing (NGS), Amplification Refractory Mutation System (ARMS), etc. In this paper, the principle, characteristics, latest progress and application prospects of these methods are reviewed, which will facilitate researchers to choose appropriate ctDNA detection approaches.
Collapse
Affiliation(s)
- Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Feng W, Jia N, Jiao H, Chen J, Chen Y, Zhang Y, Zhu M, Zhu C, Shen L, Long W. Circulating tumor DNA as a prognostic marker in high-risk endometrial cancer. J Transl Med 2021; 19:51. [PMID: 33536036 PMCID: PMC7860194 DOI: 10.1186/s12967-021-02722-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/27/2021] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Currently, there is no reliable blood-based marker to track tumor recurrence in endometrial cancer (EC) patients. Liquid biopsies, specifically, circulating tumor DNA (ctDNA) analysis emerged as a way to monitor tumor metastasis. The objective of this study was to examine the feasibility of ctDNA in recurrence surveillance and prognostic evaluation of high-risk EC. METHODS Tumor tissues from nine high-risk EC patients were collected during primary surgery and tumor DNA was subjected to next generation sequencing to obtain the initial mutation spectrum using a 78 cancer-associated gene panel. Baseline and serial post-operative plasma samples were collected and droplet digital PCR (ddPCR) assays for patient-specific mutations were developed to track the mutations in the ctDNA in serial plasma samples. Log-rank test was used to assess the association between detection of ctDNA before or after surgery and disease-free survival. RESULTS Somatic mutations were identified in all of the cases. The most frequent mutated genes were PTEN, FAT4, ARID1A, TP53, ZFHX3, ATM, and FBXW7. For each patient, personalized ddPCR assays were designed for one-to-three high-frequent mutations. DdPCR analysis and tumor panel sequencing had a high level of agreement in the assessment of the mutant allele fractions in baseline tumor tissue DNA. CtDNA was detected in 67% (6 of 9) of baseline plasma samples, which was not predictive of disease-free survival (DFS). CtDNA was detected in serial post-operative plasma samples (ctDNA tracking) of 44% (4 of 9) of the patients, which predicted tumor relapse. The DFS was a median of 9 months (ctDNA detected) versus median DFS undefined (ctDNA not detected), with a hazard ratio of 17.43 (95% CI, 1.616-188.3). The sensitivity of post-operative ctDNA detection in estimating tumor relapse was 100% and specificity was 83.3%, which was superior to CA125 or HE4. CONCLUSIONS Personalized ctDNA detection was effective and stable for high-risk EC. CtDNA tracking in post-operative plasma is valuable for predicting tumor recurrence.
Collapse
Affiliation(s)
- Weiwei Feng
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, People's Republic of China.
| | - Nan Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200091, People's Republic of China
| | - Haining Jiao
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Jun Chen
- Shanghai Gemple Biotech Co., Ltd., Shanghai, 201210, People's Republic of China
| | - Yan Chen
- Shanghai Gemple Biotech Co., Ltd., Shanghai, 201210, People's Republic of China
| | - Yueru Zhang
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Menghan Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200091, People's Republic of China
| | - Chongying Zhu
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Lifei Shen
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Wenqing Long
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, People's Republic of China
| |
Collapse
|
24
|
Jiang T, Jiang L, Dong X, Gu K, Pan Y, Shi Q, Zhang G, Wang H, Zhang X, Yang N, Li Y, Xiong J, Yi T, Peng M, Song Y, Fan Y, Cui J, Chen G, Tan W, Zang A, Guo Q, Zhao G, Wang Z, He J, Yao W, Wu X, Chen K, Hu X, Hu C, Yue L, Jiang D, Wang G, Liu J, Yu G, Li J, Zhang H, Wu L, Fang L, Liang D, Zhao Y, Zhao W, Xie W, Ren S, Zhou C. Utilization of circulating cell-free DNA profiling to guide first-line chemotherapy in advanced lung squamous cell carcinoma. Am J Cancer Res 2021; 11:257-267. [PMID: 33391473 PMCID: PMC7681090 DOI: 10.7150/thno.51243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Platinum-based chemotherapy is one of treatment mainstay for patients with advanced lung squamous cell carcinoma (LUSC) but it is still a "one-size fits all" approach. Here, we aimed to investigate the predictive and monitoring role of circulating cell-free DNA (cfDNA) profiling for the outcome of first-line chemotherapy in patients with advanced LUSC. Methods: Peripheral blood samples of 155 patients from a phase IV trial and 42 cases from an external real-world cohort were prospectively collected. We generated a copy number variations-based classifier via machine learning algorithm to integrate molecular profiling of cfDNA, named RESPONSE SCORE (RS) to predict the treatment outcome. To monitor the treatment efficacy, cfDNA samples collected at different time points were subjected to an ultra-deep sequencing platform. Results: The results showed that patients with high RS showed substantially higher objective response rate than those with low RS in training set (P < 0.001), validation set (P < 0.001) and real-world cohort (P = 0.019). Furthermore, a significant difference was observed in both progression-free survival (training set, P < 0.001; validation set: P < 0.001; real-world cohort: P = 0.019) and overall survival (training set, P < 0.001; validation set: P = 0.037) between high and low RS group. Notably, variant allele frequency (VAF) calculated from an ultra-deep sequencing platform significantly reduced in patients experienced a complete or partial response after 2 cycles of chemotherapy (P < 0.001), while it significantly increased in these of non-responder (P < 0.001). Moreover, VAF undetectable after 2 cycles of chemotherapy was correlated with markedly better objective response rate (P < 0.001) and progression-free survival (P < 0.001) than those with detectable VAF. Conclusions: These findings indicated that the RS, a circulating cfDNA sequencing-based stratification index, could help to guide first-line chemotherapy in advanced LUSC. The change of VAF is valuable to monitor the treatment response.
Collapse
|
25
|
USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle. Int J Biochem Cell Biol 2020; 130:105886. [PMID: 33227393 DOI: 10.1016/j.biocel.2020.105886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells perform a range of complex processes, some essential for life, others specific to cell type, all of which are governed by post-translational modifications of proteins. Among the repertoire of dynamic protein modifications, ubiquitination is arguably the most arcane and profound due to its complexity. Ubiquitin conjugation consists of three main steps, the last of which involves a multitude of target-specific ubiquitin ligases that conjugate a range of ubiquitination patterns to protein substrates with diverse outcomes. In contrast, ubiquitin removal is catalysed by a relatively small number of de-ubiquitinating enzymes (DUBs), which can also display target specificity and impact decisively on cell function. Here we review the current knowledge of the intriguing ubiquitin-specific protease 17 (USP17) family of DUBs, which are expressed from a highly copy number variable gene that has been implicated in multiple cancers, although available evidence points to conflicting roles in cell proliferation and survival. We show that key USP17 substrates populate two pathways that drive cell cycle progression and that USP17 activity serves to promote one pathway but inhibit the other. We propose that this arrangement enables USP17 to stimulate or inhibit proliferation depending on the mitogenic pathway that predominates in any given cell and may partially explain evidence pointing to both oncogenic and tumour suppressor properties of USP17.
Collapse
|
26
|
Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet 2020; 11:844. [PMID: 32849827 PMCID: PMC7431953 DOI: 10.3389/fgene.2020.00844] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.
Collapse
Affiliation(s)
- Beenish Rahat
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Taqveema Ali
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
27
|
Moss EL, Gorsia DN, Collins A, Sandhu P, Foreman N, Gore A, Wood J, Kent C, Silcock L, Guttery DS. Utility of Circulating Tumor DNA for Detection and Monitoring of Endometrial Cancer Recurrence and Progression. Cancers (Basel) 2020; 12:E2231. [PMID: 32785174 PMCID: PMC7463944 DOI: 10.3390/cancers12082231] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the increasing incidence of endometrial cancer (EC) worldwide and the poor overall survival of patients who recur, no reliable biomarker exists for detecting and monitoring EC recurrence and progression during routine follow-up. Circulating tumor DNA (ctDNA) is a sensitive method for monitoring cancer activity and stratifying patients that are likely to respond to therapy. As a pilot study, we investigated the utility of ctDNA for detecting and monitoring EC recurrence and progression in 13 patients, using targeted next-generation sequencing (tNGS) and personalized ctDNA assays. Using tNGS, at least one somatic mutation at a variant allele frequency (VAF) > 20% was detected in 69% (9/13) of patient tumors. The four patients with no detectable tumor mutations at >20% VAF were whole exome sequenced, with all four harboring mutations in genes not analyzed by tNGS. Analysis of matched and longitudinal plasma DNA revealed earlier detection of EC recurrence and progression and dynamic kinetics of ctDNA levels reflecting treatment response. We also detected acquired high microsatellite instability (MSI-H) in ctDNA from one patient whose primary tumor was MSI stable. Our study suggests that ctDNA analysis could become a useful biomarker for early detection and monitoring of EC recurrence. However, further research is needed to confirm these findings and to explore their potential implications for patient management.
Collapse
Affiliation(s)
- Esther L. Moss
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK; (A.G.); (J.W.); (C.K.)
| | - Diviya N. Gorsia
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| | - Anna Collins
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| | - Pavandeep Sandhu
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| | - Nalini Foreman
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| | - Anupama Gore
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK; (A.G.); (J.W.); (C.K.)
| | - Joey Wood
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK; (A.G.); (J.W.); (C.K.)
| | - Christopher Kent
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK; (A.G.); (J.W.); (C.K.)
| | - Lee Silcock
- Nonacus Limited, Birmingham Research Park, Birmingham B15 2SQ, UK;
| | - David S. Guttery
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK; (D.N.G.); (A.C.); (P.S.); (N.F.)
| |
Collapse
|
28
|
Gooding AJ, Schiemann WP. Epithelial-Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Mol Cancer Res 2020; 18:1257-1270. [PMID: 32503922 DOI: 10.1158/1541-7786.mcr-20-0067] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs play essential functions in normal morphogenesis and organogenesis, including that occurring during mammary gland development and glandular regeneration. Historically, EMT programs were believed to reflect a loss of epithelial gene expression signatures and morphologies that give way to those associated with mesenchymal cells and their enhanced migratory and invasive behaviors. However, accumulating evidence now paints EMT programs as representing a spectrum of phenotypic behaviors that also serve to enhance cell survival, immune tolerance, and perhaps even metastatic dormancy. Equally important, the activation of EMT programs in transformed mammary epithelial cells not only enhances their acquisition of invasive and metastatic behaviors, but also expands their generation of chemoresistant breast cancer stem cells (BCSC). Importantly, the net effect of these events results in the appearance of recurrent metastatic lesions that remain refractory to the armamentarium of chemotherapies and targeted therapeutic agents deployed against advanced stage breast cancers. Here we review the molecular and cellular mechanisms that contribute to the pathophysiology of EMT programs in human breast cancers and how these events impact their "stemness" and acquisition of chemoresistant phenotypes.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
29
|
Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, Bellomi M, Jereczek-Fossa BA, Pinotti G, Cassano E. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol 2020; 37:29. [PMID: 32180032 DOI: 10.1007/s12032-020-01353-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The diagnosis of breast cancer currently relies on radiological and clinical evaluation, confirmed by histopathological examination. However, such approach has some limitations as the suboptimal sensitivity, the long turnaround time for recall tests, the invasiveness of the procedure and the risk that some features of target lesions may remain undetected, making re-biopsy a necessity. Recent technological advances in the field of artificial intelligence hold promise in addressing such medical challenges not only in cancer diagnosis, but also in treatment assessment, and monitoring of disease progression. In the perspective of a truly personalised medicine, based on the early diagnosis and individually tailored treatments, two new technologies, namely radiomics and liquid biopsy, are rising as means to obtain information from diagnosis to molecular profiling and response assessment, without the need of a biopsied tissue sample. Radiomics works through the extraction of quantitative peculiar features of cancer from radiological data, while liquid biopsy gets the whole of the malignancy's biology from something as easy as a blood sample. Both techniques hopefully will identify diagnostic and prognostic information of breast cancer potentially reducing the need for invasive (and often difficult to perform) biopsies and favouring an approach that is as personalised as possible for each patient. Nevertheless, such techniques will not substitute tissue biopsy in the near future, and even in further times they will require the aid of other parameters to be correctly interpreted and acted upon.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy.
| | | | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Olga Nigro
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Massimo Bellomi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Graziella Pinotti
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| |
Collapse
|
30
|
Zhao Y, Sheng M, Zheng L, Xiong D, Yang K, Luo Y. Application of circulating tumor DNA in breast cancer. Breast J 2020; 26:1797-1800. [PMID: 32052544 DOI: 10.1111/tbj.13775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 01/01/2023]
Abstract
Precision medicine has been well recognized since it was proposed, and the invention of liquid biopsy meets the needs of this era. Circulating tumor DNA (ctDNA), one of the most promising components of liquid biopsies, has quickly become the focus of research in recent years because of its unique advantages in clinical application. This article reviews the clinical application of ctDNA in breast cancer detection in recent years and its potential clinical value.
Collapse
Affiliation(s)
- Yuan Zhao
- Faculty of Life science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ling Zheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dun Xiong
- Department of Oncology, Puer People's Hospital, Puer, Yunnan, China
| | - Kunxian Yang
- Department of Breast and thyroid surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
31
|
Kolinsky MP, Stoecklein N, Lambros M, Gil V, Rodrigues DN, Carreira S, Zafeiriou Z, de Bono JS. Genetic Analysis of Circulating Tumour Cells. Recent Results Cancer Res 2020; 215:57-76. [PMID: 31605223 DOI: 10.1007/978-3-030-26439-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The classification of human cancers has traditionally relied on the tissue of origin, the histologic appearance and anatomical extent of disease, otherwise referred to as grade and stage. However, this system fails to explain the highly variable clinical behaviour seen for any one cancer. Molecular characterization through techniques such as next-generation sequencing (NGS) has led to an appreciation of the extreme genetic heterogeneity that underlies most human cancers. Because of the difficulties associated with fresh tissue biopsy, interest has increased in using circulating tumour material, such as circulating tumour cells (CTCs), as a non-invasive way to access tumour tissue. CTC enumeration has been demonstrated to have prognostic value in metastatic breast, colon and prostate cancers. Recent studies have also shown that CTCs are suitable material for molecular characterization, using techniques such as reverse transcription-polymerase chain reaction (RT-PCR), fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and NGS. Furthermore, genetic analysis of CTCs may be more suitable to study tumour heterogeneity and clonal evolution than fresh tissue biopsy. Whether blood-based biopsy techniques will be accepted as a replacement to fresh tissue biopsies remains to be seen, but there is reason for optimism. While significant barriers to this acceptance exist, blood-based biopsy techniques appear to be reliable and representative alternatives to fresh tissue biopsy.
Collapse
Affiliation(s)
- Michael Paul Kolinsky
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB, T61Z2, Canada
| | | | - Maryou Lambros
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Veronica Gil
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Daniel Nava Rodrigues
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Suzanne Carreira
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Zafeiris Zafeiriou
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Johann Sebastian de Bono
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
32
|
Bilani N, Elson L, Liang H, Elimimian EB, Arteta-Bulos R, Nahleh Z. Prognostic and Predictive Value of Circulating and Disseminated Tumor Cells in Breast Cancer: A National Cancer Database (NCDB) Analysis. Technol Cancer Res Treat 2020; 19:1533033820980107. [PMID: 33287661 PMCID: PMC7727087 DOI: 10.1177/1533033820980107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE Our understanding of the utility of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) as clinical biomarkers continues to evolve. OBJECTIVE This study evaluated (1) clinicopathologic factors associated with the presence of CTCs or DTCs, (2) the prognostic value of CTCs or DTCs by disease stage, 3), the value of these biomarkers in predicting the benefit of chemotherapy. DESIGN This is a retrospective analysis of patients with breast cancer (BC) diagnosed between 2004 and 2016 using the National Cancer Database (NCDB). To evaluate variables associated with the presence of CTCs or DTCs at the univariate level, we used chi-squared and Wilcoxon rank-sum tests. Multivariate logistic regression models were then constructed using significant variables. Consequently, we included CTC or DTC status (i.e. positive or negative) in multivariate, stage-by-stage Cox regression analyses for overall survival (OS). After stratifying by receptor status and staging, we used the Kaplan-Meier method to explore chemotherapy efficacy in CTC- or DTC-positive vs. CTC- or DTC-negative subsets. RESULTS Factors significantly associated with CTCs were race, progesterone receptor status, HER2 status, histology and AJCC N- and M-staging. Factors associated with DTCs were race, HER2 status, histology and AJCC N-staging. CTCs were associated with poor OS in late-stage (III and IV) but not early-stage (0-II) BC. DTCs were not significantly associated with OS in either context. In hormone receptor (HR)-positive disease, chemotherapy was associated with better OS when CTC status was positive, both in early-stage and late-stage disease. In a subset of patients without CTCs, however, chemotherapy conferred no survival benefit. DTC status was not a significant predictor of chemotherapy efficacy in early or late-stage, HR+ disease. CONCLUSIONS This study suggests that CTC-status is a significant prognostic factor at later stages of BC; yet it can also help guide management of early-stage disease as it appears predictive for chemotherapy benefit.
Collapse
Affiliation(s)
- Nadeem Bilani
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Leah Elson
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Hong Liang
- Office of Clinical Research, Cleveland Clinic Florida, Weston, FL, USA
| | | | - Rafael Arteta-Bulos
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Zeina Nahleh
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, USA
| |
Collapse
|
33
|
Iglesias MS, Grzelczak M. Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:263-284. [PMID: 32082965 PMCID: PMC7006498 DOI: 10.3762/bjnano.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay and its implementation into point-of-care devices for common use. Covering the last twenty years, this review gives an overview of the state-of-the-art of the research on the use of gold nanoparticles in the development of colorimetric biosensors for the detection of single-nucleotide polymorphism as cancer biomarker. We discuss the main mechanisms of the assays that either are assisted by DNA-based molecular machines or by enzymatic reactions, summarize their performance and provide an outlook towards future developments.
Collapse
Affiliation(s)
- María Sanromán Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-Sebastián, Spain
| | - Marek Grzelczak
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
34
|
Hufnagl C, Leisch M, Weiss L, Melchardt T, Moik M, Asslaber D, Roland G, Steininger P, Meissnitzer T, Neureiter D, Greil R, Egle A. Evaluation of circulating cell-free DNA as a molecular monitoring tool in patients with metastatic cancer. Oncol Lett 2019; 19:1551-1558. [PMID: 31966080 DOI: 10.3892/ol.2019.11192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
The clinical decisions made when treating patients with metastatic cancer require knowledge of the current tumor extent and response to therapy. For the majority of solid tumors, a response assessment, which is based on imaging, is used to guide these decisions. However, measuring serum protein biomarkers (i.e. tumor markers) may be of additional use. Furthermore, tumor markers exhibit variable specificity and sensitivity and cannot therefore be solely relied upon when making decisions regarding cancer treatment. Therefore, there is a clinical requirement for the identification of specific, sensitive and quantitative biomarkers. In recent years, circulating cell-free DNA (cfDNA) and mutation-specific circulating cell-free tumor DNA (cftDNA) have been identified as novel potential biomarkers. In the current study, cfDNA and cftDNA were compared using imaging-based staging and current tumor markers in 15 patients with metastatic colorectal, pancreatic or breast cancer. These patients were treated at the Third Medical Department of Paracelsus Medical University Salzburg (Austria). The results of the current study demonstrated a statistically significant correlation between the concentration changes of cfDNA and cftDNA and response to treatment, which was assessed by imaging. A correlation was not indicated with current clinically used tumor markers, including carcinoembryonic antigen, carcinoma antigen 15-3 and carcinoma antigen 19-9. The present study also indicated a correlation between cfDNA and cftDNA and the tumor volume of metastatic lesions, which was not observed with the current clinically used tumor markers. In conclusion, cfDNA and cftDNA exhibit the potential to become novel biomarkers for the response assessment following cancer treatment, and may serve as a tool for the estimation of tumor volume. The current study further supports the increasingly important role of cfDNA and cftDNA as new monitoring tools for use during cancer therapy.
Collapse
Affiliation(s)
- Clemens Hufnagl
- Institute of Pathology, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Michael Leisch
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Lukas Weiss
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Thomas Melchardt
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Martin Moik
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Daniela Asslaber
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Geisberger Roland
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Philipp Steininger
- Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Thomas Meissnitzer
- Institute of Radiology, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Richard Greil
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Alexander Egle
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
35
|
Shaib WL, Zakka K, Staley C, Roberts A, Akce M, Wu C, Alese OB, El-Rayes BF. Blood-Based Next-Generation Sequencing Analysis of Appendiceal Cancers. Oncologist 2019; 25:414-421. [PMID: 31784493 DOI: 10.1634/theoncologist.2019-0558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Appendiceal cancers (ACs) are rare. The genomic landscape of ACs has not been well studied. The aim of this study was to confirm the feasibility of next-generation sequencing (NGS) using circulating tumor DNA (ctDNA) in ACs and characterize common genomic alterations. MATERIALS AND METHODS Molecular alterations in 372 plasma samples from 303 patients with AC using clinical-grade NGS of ctDNA (Guardant360) across multiple institutions were evaluated. Test detects single nucleotide variants in 54-73 genes, copy number amplifications, fusions, and indels in selected genes. RESULTS A total of 303 patients with AC were evaluated, of which 169 (56%) were female. Median age was 56.8 (25-83) years. ctDNA NGS testing was performed on 372 plasma samples; 48 patients had testing performed twice, 9 patients had testing performed three times, and 1 patient had testing performed four times. Genomic alterations were defined in 207 (n = 207/372, 55.6%) samples, and 288 alterations were identified excluding variants of uncertain significance and synonymous mutations. Alterations were identified in at least one sample from 184 patients; TP53-associated genes (n = 71, 38.6%), KRAS (n = 33, 17.9%), APC (n = 14, 7.6%), EGFR (n = 12, 6.5%), BRAF (n = 11, 5.9%), NF1 (n = 10, 5.4%), MYC (n = 9, 4.9%), GNAS (n = 8, 4.3%), MET (n = 6, 3.3%), PIK3CA (n = 5, 2.7%), and ATM (n = 5, 2.7%). Other low-frequency but clinically relevant genomic alterations were as follows: AR (n = 4, 2.2%), TERT (n = 4, 2.2%), ERBB2 (n = 4, 2.2%), SMAD4 (n = 3, 1.6%), CDK4 (n = 2, 1.1%), NRAS (n = 2, 1.1%), FGFR1 (n = 2, 1.1%), FGFR2 (n = 2, 1.1%), PTEN (n = 2, 1.1%), RB1 (n = 2, 1.1%), and CDK6, CDKN2A, BRCA1, BRCA2, JAK2, IDH2, MAPK, NTRK1, CDH1, ARID1A, and PDGFRA (n = 1, 0.5%). CONCLUSION Evaluation of ctDNA is feasible among patients with AC. The frequency of genomic alterations is similar to that previously reported in tissue NGS. Liquid biopsies are not invasive and can provide personalized options for targeted therapies in patients with AC. IMPLICATIONS FOR PRACTICE The complexity of appendiceal cancer and its unique genomic characteristics suggest that customized combination therapy may be required for many patients. Theoretically, as more oncogenic pathways are discovered and more targeted therapies are approved, customized treatment based on the patient's unique molecular profile will lead to personalized care and improve patient outcomes. Liquid biopsies are noninvasive, cost-effective, and promising methods that provide patients with access to personalized treatment.
Collapse
Affiliation(s)
- Walid L Shaib
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Katerina Zakka
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Charles Staley
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Ali Roberts
- Guardant Health, Redwood City, California, USA
| | - Mehmet Akce
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christina Wu
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Olatunji B Alese
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Sun J, Shi X, Mamun MAA, Gao Y. The role of deubiquitinating enzymes in gastric cancer. Oncol Lett 2019; 19:30-44. [PMID: 31897112 PMCID: PMC6924028 DOI: 10.3892/ol.2019.11062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5-yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Shi
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - M A A Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
37
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
38
|
Rafieenia F, Abbaszadegan MR, Poursheikhani A, Razavi SMS, Jebelli A, Molaei F, Aghaee‐Bakhtiari SH. In silico evidence of high frequency of miRNA‐related SNPs in Esophageal Squamous Cell Carcinoma. J Cell Physiol 2019; 235:966-978. [DOI: 10.1002/jcp.29012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Rafieenia
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | | | - Amir Jebelli
- Stem Cell and Regenerative Medicine Research Department Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch Mashhad Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Hamid Aghaee‐Bakhtiari
- Bioinformatics Research Group Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
39
|
Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, Ali S, Cleator S, Kenny L, Stebbing J, Rutherford M, Sethi H, Boydell A, Swenerton R, Fernandez-Garcia D, Gleason KLT, Goddard K, Guttery DS, Assaf ZJ, Wu HT, Natarajan P, Moore DA, Primrose L, Dashner S, Tin AS, Balcioglu M, Srinivasan R, Shchegrova SV, Olson A, Hafez D, Billings P, Aleshin A, Rehman F, Toghill BJ, Hills A, Louie MC, Lin CHJ, Zimmermann BG, Shaw JA. Personalized Detection of Circulating Tumor DNA Antedates Breast Cancer Metastatic Recurrence. Clin Cancer Res 2019; 25:4255-4263. [PMID: 30992300 DOI: 10.1158/1078-0432.ccr-18-3663] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer. EXPERIMENTAL DESIGN Forty-nine primary patients with breast cancer were recruited following surgery and adjuvant therapy. Plasma samples (n = 208) were collected every 6 months for up to 4 years. Personalized assays targeting 16 variants selected from primary tumor whole-exome data were tested in serial plasma for the presence of ctDNA by ultradeep sequencing (average >100,000X). RESULTS Plasma ctDNA was detected ahead of clinical or radiologic relapse in 16 of the 18 relapsed patients (sensitivity of 89%); metastatic relapse was predicted with a lead time of up to 2 years (median, 8.9 months; range, 0.5-24.0 months). None of the 31 nonrelapsing patients were ctDNA-positive at any time point across 156 plasma samples (specificity of 100%). Of the two relapsed patients who were not detected in the study, the first had only a local recurrence, whereas the second patient had bone recurrence and had completed chemotherapy just 13 days prior to blood sampling. CONCLUSIONS This study demonstrates that patient-specific ctDNA analysis can be a sensitive and specific approach for disease surveillance for patients with breast cancer. More importantly, earlier detection of up to 2 years provides a possible window for therapeutic intervention.
Collapse
Affiliation(s)
| | - Karen Page
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Robert K Hastings
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Anne Armstrong
- The Christie Foundation NHS Trust, Manchester, United Kingdom
| | - Samreen Ahmed
- Leicester Royal Infirmary, UHL NHS Trust, Leicester, United Kingdom
| | - Simak Ali
- Imperial College London, London, United Kingdom
| | | | - Laura Kenny
- Imperial College London, London, United Kingdom
| | | | - Mark Rutherford
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | - David S Guttery
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | - David A Moore
- University College London, Bloomsbury, London, United Kingdom
| | - Lindsay Primrose
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | - Bradley J Toghill
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | - Jaqueline A Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
40
|
Wan Y, Maurer M, He HZ, Xia YQ, Hao SJ, Zhang WL, Yee NS, Zheng SY. Enrichment of extracellular vesicles with lipid nanoprobe functionalized nanostructured silica. LAB ON A CHIP 2019; 19:2346-2355. [PMID: 31232418 PMCID: PMC6669184 DOI: 10.1039/c8lc01359d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoscale extracellular vesicles (nEVs) have recently demonstrated potential value in cancer diagnostics and treatment monitoring, but translation has been limited by technical challenges in nEV isolation. Thus, we have developed a one-step nEV isolation platform that utilizes nEV size-matched silica nanostructures and a surface-conjugated lipid nanoprobe with an integrated microfluidic mixer. The reported platform has 28.8% capture efficiency from pancreatic cancer plasma and can sufficiently enrich nEVs for simpler positive identification of point mutations, particularly KRAS, in nEV DNA from the plasma of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie Maurer
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Zhang He
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Qiu Xia
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Si-Jie Hao
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wen-Long Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nelson S. Yee
- Department of Medicine, Hematology/Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, Univeristy Park, PA 16802, USA
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
41
|
Xiong Y, Xie CR, Zhang S, Chen J, Yin ZY. Detection of a novel panel of somatic mutations in plasma cell-free DNA and its diagnostic value in hepatocellular carcinoma. Cancer Manag Res 2019; 11:5745-5756. [PMID: 31303788 PMCID: PMC6605764 DOI: 10.2147/cmar.s197455] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
Background/aims: Circulating cell-free DNA (cfDNA) contains tumor-specific alterations and could potentially serve as "liquid biopsy". The study was to identify a novel panel of hepatocellular carcinoma (HCC)-specific mutations in plasma cfDNA and to assess its value in the diagnosis of HCC. Materials and methods: 33 HCC tissue, 37 blood, and 37 swab specimens were collected from HCC patients and control individuals. Genomic DNA was subjected to next-generation sequencing. The selected mutations in the plasma cfDNA in the HCC versus control groups were compared, and the diagnostic performance of cfDNA mutations was evaluated. Results: A majority of selected mutations in the HCC tissue DNA, ranging from 52% to 84%, was detected in the matched plasma cfDNA. For the selected mutations, receiver operating characteristic (ROC) analysis revealed an area under the ROC curve (AUC) of 0.92, sensitivity of 65%, and specificity of 100% for the diagnosis of HCC regardless of alpha-fetoprotein (AFP) status. Detection of the selected mutations in cfDNA in combination with AFP exhibited better diagnosis performance, with AUC of 0.96, sensitivity of 73%, and specificity of 100% for AFP-negative patients, whereas the AUC was 0.86 with sensitivity of 53% and specificity of 100% for AFP-positive patients. Furthermore, the rates of the selected mutations were significantly greater in recurrent HCC than in non-recurrent HCC (P<0.05). Conclusions: This study has identified a novel panel of somatic mutations, and detection of the mutations in plasma cfDNA shows good diagnostic performance. Therefore, this approach holds promise as a novel tool for diagnosing HCC.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| | - Cheng-Rong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| | - Jin Chen
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| |
Collapse
|
42
|
Thorat MA. Liquid biopsy for cancer diagnosis and screening - The promise and challenges. Ann Clin Biochem 2019; 56:420-423. [PMID: 30971101 DOI: 10.1177/0004563219837592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mangesh A Thorat
- 1 Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,2 King's College London, London, UK.,3 Breast Services, Guy's Hospital, London, UK
| |
Collapse
|
43
|
Anderson RL, Balasas T, Callaghan J, Coombes RC, Evans J, Hall JA, Kinrade S, Jones D, Jones PS, Jones R, Marshall JF, Panico MB, Shaw JA, Steeg PS, Sullivan M, Tong W, Westwell AD, Ritchie JWA. A framework for the development of effective anti-metastatic agents. Nat Rev Clin Oncol 2019; 16:185-204. [PMID: 30514977 PMCID: PMC7136167 DOI: 10.1038/s41571-018-0134-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most cancer-related deaths are a result of metastasis, and thus the importance of this process as a target of therapy cannot be understated. By asking 'how can we effectively treat cancer?', we do not capture the complexity of a disease encompassing >200 different cancer types - many consisting of multiple subtypes - with considerable intratumoural heterogeneity, which can result in variable responses to a specific therapy. Moreover, we have much less information on the pathophysiological characteristics of metastases than is available for the primary tumour. Most disseminated tumour cells that arrive in distant tissues, surrounded by unfamiliar cells and a foreign microenvironment, are likely to die; however, those that survive can generate metastatic tumours with a markedly different biology from that of the primary tumour. To treat metastasis effectively, we must inhibit fundamental metastatic processes and develop specific preclinical and clinical strategies that do not rely on primary tumour responses. To address this crucial issue, Cancer Research UK and Cancer Therapeutics CRC Australia formed a Metastasis Working Group with representatives from not-for-profit, academic, government, industry and regulatory bodies in order to develop recommendations on how to tackle the challenges associated with treating (micro)metastatic disease. Herein, we describe the challenges identified as well as the proposed approaches for discovering and developing anticancer agents designed specifically to prevent or delay the metastatic outgrowth of cancer.
Collapse
Affiliation(s)
- Robin L Anderson
- Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
- Cancer Therapeutics Cooperative Research Centre (CTx), Melbourne, Victoria, Australia
| | - Theo Balasas
- Commercial Partnerships, Cancer Research UK (CRUK), London, UK
| | - Juliana Callaghan
- Research and Innovation Services, University of Portsmouth, Portsmouth, Hampshire, UK
| | - R Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Jeff Evans
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Jacqueline A Hall
- Research and Development, Vivacitv Ltd, Chesham, Buckinghamshire, UK
| | - Sally Kinrade
- Cancer Therapeutics Cooperative Research Centre (CTx), Melbourne, Victoria, Australia
- Medicines Development for Global Health, Southbank, Victoria, Australia
| | - David Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | | | - Rob Jones
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - John F Marshall
- Queen Mary University of London, Barts Cancer Institute, London, UK
| | | | - Jacqui A Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, Leicestershire, UK
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Sullivan
- Cancer Therapeutics Cooperative Research Centre (CTx), Melbourne, Victoria, Australia
- Medicines Development for Global Health, Southbank, Victoria, Australia
| | - Warwick Tong
- Cancer Therapeutics Cooperative Research Centre (CTx), Melbourne, Victoria, Australia
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - James W A Ritchie
- Commercial Partnerships, Cancer Research UK (CRUK), London, UK.
- Centre for Drug Development, CRUK, London, UK.
| |
Collapse
|
44
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100087. [PMID: 30923679 PMCID: PMC6425120 DOI: 10.1016/j.bdq.2019.100087] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of studies demonstrate the potential use of cell-free DNA (cfDNA) as a surrogate marker for multiple indications in cancer, including diagnosis, prognosis, and monitoring. However, harnessing the full potential of cfDNA requires (i) the optimization and standardization of preanalytical steps, (ii) refinement of current analysis strategies, and, perhaps most importantly, (iii) significant improvements in our understanding of its origin, physical properties, and dynamics in circulation. The latter knowledge is crucial for interpreting the associations between changes in the baseline characteristics of cfDNA and the clinical manifestations of cancer. In this review we explore recent advancements and highlight the current gaps in our knowledge concerning each point of contact between cfDNA analysis and the different stages of cancer management.
Collapse
Affiliation(s)
| | | | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße. 36, D-80636, Munich, Germany
| |
Collapse
|
45
|
Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: A comprehensive review. Clin Genet 2019; 95:643-660. [PMID: 30671931 DOI: 10.1111/cge.13514] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Due to its complexity in nature, effective breast cancer treatment can encounter many challenges. Traditional methods of cancer detection such as tissue biopsy are not comprehensive enough to capture the entire genomic landscape of breast tumors. However, with the introduction of novel techniques, the application of liquid biopsy has been enhanced, enabling the improvement of various aspects of breast cancer management including early diagnosis and screening, prediction of prognosis, early detection of relapse, serial sampling and efficient longitudinal monitoring of disease progress and response to treatment. Various components of tumor cells released into the blood circulation can be analyzed in liquid biopsy sampling, some of which include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free RNA, tumor-educated platelets and exosomes. These components can be utilized for different purposes. As an example, ctDNA can be sequenced for genetic profiling of the tumors to enhance individualized treatment and longitudinal screening. CTC plasma count analysis or ctDNA detection after curative tumor resection surgery could facilitate early detection of minimal residual disease, aiding in the initiation of adjuvant therapy to prevent recurrence. Furthermore, CTC plasma count can be assessed to determine the stage and prognosis of breast cancer. In this review, we discuss the advantages and limitations of the various components of liquid biopsy used in breast cancer diagnosis and will expand on aspects that require further focus in future research.
Collapse
Affiliation(s)
- Sahar Alimirzaie
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Maryam Bagherzadeh
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Pohlmann PR, Isaacs C. Extended Adjuvant Endocrine Therapy for Postmenopausal Women: Treating Many to Benefit a Few. J Natl Cancer Inst 2019; 110:4065462. [PMID: 28922782 DOI: 10.1093/jnci/djx142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/13/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Paula R Pohlmann
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|
47
|
Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, Zheng Z, Song XM, Du RL, Zhang XD. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ 2019; 26:2300-2313. [PMID: 30778200 DOI: 10.1038/s41418-019-0303-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) is one of the master regulators that control hundreds of genes containing antioxidant response elements (AREs). The NRF2-ARE pathway plays a complex role in colorectal cancer (CRC). NRF2 activity is known to be regulated by KEAP1-CUL3 E3 ligase-mediated ubiquitination, indicating the importance of deubiquitination regulation. However, the deubiquitinase (DUB) of NRF2 remains unknown. Here, by screening a DUB library, we identified DUB3 as a DUB that remarkably stabilized NRF2. Further experiments demonstrated that DUB3 promoted NRF2 stability and transcriptional activity by decreasing the K48-linked ubiquitination of NRF2. Coimmunoprecipitation studies revealed interactions between NRF2 and DUB3, as well as between KEAP1 and DUB3, indicating that NRF2, DUB3, and KEAP1 formed a large functional complex. Importantly, ectopic expression of DUB3 caused NRF2-dependent chemotherapy resistance in colon cancer cell lines. Thus, to the best of our knowledge, our findings are the first to identify DUB3 as a NRF2 DUB and may provide a new strategy against chemotherapy resistance in CRC and other NRF2-related diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ze-Yan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Huan Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shang-Ze Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Rongfu Tu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yi-Fan Jia
- Renmin Hospital of Wuhan University, Hubei General Hospital, Wuhan, 430072, P. R. China
| | - Zhe Zheng
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, P. R. China
| | - Xue-Min Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
48
|
Profiling of Invasive Breast Carcinoma Circulating Tumour Cells-Are We Ready for the 'Liquid' Revolution? Cancers (Basel) 2019; 11:cancers11020143. [PMID: 30691008 PMCID: PMC6406427 DOI: 10.3390/cancers11020143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
As dissemination through blood and lymph is the critical step of the metastatic cascade, circulating tumour cells (CTCs) have attracted wide attention as a potential surrogate marker to monitor progression into metastatic disease and response to therapy. In patients with invasive breast carcinoma (IBC), CTCs are being considered nowadays as a valid counterpart for the assessment of known prognostic and predictive factors. Molecular characterization of CTCs using protein detection, genomic and transcriptomic panels allows to depict IBC biology. Such molecular profiling of circulating cells with increased metastatic abilities appears to be essential, especially after tumour resection, as well as in advanced disseminated disease, when information crucial for identification of therapeutic targets becomes unobtainable from the primary site. If CTCs are truly representative of primary tumours and metastases, characterization of the molecular profile of this easily accessible ‘biopsy’ might be of prime importance for clinical practice in IBC patients. This review summarizes available data on feasibility and documented benefits of monitoring of essential IBC biological features in CTCs, with special reference to multifactorial proteomic, genomic, and transcriptomic panels of known prognostic or predictive value.
Collapse
|
49
|
Delmonico L, Costa MASM, Fournier MV, Romano SDO, Nascimento CMD, Barbosa AS, Moreira ADS, Scherrer LR, Ornellas MHF, Alves G. Mutation profiling in the PIK3CA, TP53, and CDKN2A genes in circulating free DNA and impalpable breast lesions. Ann Diagn Pathol 2019; 39:30-35. [PMID: 30634138 DOI: 10.1016/j.anndiagpath.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 01/05/2023]
Abstract
Breast impalpable lesions have become a clinical dilemma because they are small, presenting a heterogeneous cellular phenotype. The aim of this study was to evaluate the mutational profile of the PIK3CA, TP53, and CDKN2A genes, comparing the mammary tissue with the respective circulating free DNA (cfDNA). The PIK3CA, TP53, and CDKN2A genes were sequenced (PCR-Sanger) in 58 women with impalpable lesions (49 malignant and 9 benign) with the respective cfDNA. The chi-square or Fisher's exact test was used to evaluate statistical significance between the clinical variables and mutational profile. A total of 51 out of 58 samples generated successful mutation profiles in both breast lesion and cfDNA. Of the 37 mutations detected, 10 (27%) and 16 (43%) mutations were detected in benign and malignant breast lesions, respectively, while 2 (5%) and 9 (24%) were found in cfDNA of women with benign and malignant lesions, respectively. The lymph node involvement with mutations in the PIK3CA in malignant lesions (P = 0.001), and the relationship between mutations in PIK3CA, comparing ductal tumors with benign lesions (P = 0.05), were statistically significant. This study detected different mutations in PIK3CA, TP53, and CDKN2A genes, which represent, in part, the heterogeneity of impalpable lesions. The results confirm that more studies should be conducted on the functional role of cfDNA in the impalpable lesions.
Collapse
Affiliation(s)
- Lucas Delmonico
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.
| | | | | | | | | | | | - Aline Dos Santos Moreira
- Laboratory of Functional Genomics and Bioinformatics, PTDIS/FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | | | - Maria Helena Faria Ornellas
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.
| |
Collapse
|
50
|
Rohanizadegan M. Analysis of circulating tumor DNA in breast cancer as a diagnostic and prognostic biomarker. Cancer Genet 2018; 228-229:159-168. [PMID: 29572011 PMCID: PMC6108954 DOI: 10.1016/j.cancergen.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 01/15/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Despite all the advances in diagnosis and treatment of breast cancer, a large number of patients suffer from late diagnosis or recurrence of their disease. Current available imaging modalities do not reveal micrometastasis and tumor biopsy is an invasive method to detect early stage or recurrent cancer, signifying the need for an inexpensive, non-invasive diagnostic modality. Cell-free tumor DNA (ctDNA) has been tried for early detection and targeted therapy of breast cancer, but its diagnostic and prognostic utility is still under investigation. This review summarizes the existing evidence on the use of ctDNA specifically in breast cancer, including detection methods, diagnostic accuracy, role in genetics and epigenetics evaluation of the tumor, and comparison with other biomarkers. Current evidence suggests that increasing levels of ctDNA in breast cancer can be of significant diagnostic value for early detection of breast cancer although the sensitivity and specificity of the methods is still suboptimal. Additionally, ctDNA allows for characterizing the tumor in a non-invasive way and monitor the response to therapy, although discordance of ctDNA results with direct biopsy (i.e. due to tumor heterogeneity) is still considered a notable limitation.
Collapse
Affiliation(s)
- Mersedeh Rohanizadegan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|