1
|
Mzizi Y, Mbambara S, Moetlhoa B, Mahapane J, Mdanda S, Sathekge M, Kgatle M. Ionising radiation exposure-induced regulation of selected biomarkers and their impact in cancer and treatment. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1469897. [PMID: 39498386 PMCID: PMC11532091 DOI: 10.3389/fnume.2024.1469897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Ionising radiation (IR) is a form of energy that travels as electromagnetic waves or particles. While it is vital in medical and occupational health settings, IR can also damage DNA, leading to mutations, chromosomal aberrations, and transcriptional changes that disrupt the functions of certain cell regulators, genes, and transcription factors. These disruptions can alter functions critical for cancer development, progression, and treatment response. Additionally, IR can affect various cellular proteins and their regulators within different cell signalling pathways, resulting in physiological changes that may promote cancer development, progression, and resistance to treatment. Understanding these impacts is crucial for developing strategies to mitigate the harmful effects of IR exposure and improve cancer treatment outcomes. This review focuses on specific genes and protein biomarkers regulated in response to chronic IR exposure, and how their regulation impacts disease onset, progression, and treatment response.
Collapse
Affiliation(s)
- Yonwaba Mzizi
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Saidon Mbambara
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Boitumelo Moetlhoa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mankgopo Kgatle
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Abdulghani M, Razavian NB, Burdick JT, Domingo E, Cheung VG, Humphrey TC. Isoform Switching Regulates the Response to Ionizing Radiation Through SRSF1. Int J Radiat Oncol Biol Phys 2024; 119:1517-1529. [PMID: 38447610 DOI: 10.1016/j.ijrobp.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE This study investigated how isoform switching affects the cellular response to ionizing radiation (IR), an understudied area despite its relevance to radiation therapy in cancer treatment. We aimed to identify changes in transcript isoform expression post-IR exposure and the proteins mediating these changes, with a focus on their potential to modulate radiosensitivity. METHODS AND MATERIALS Using RNA sequencing, we analyzed the B-cell lines derived from 10 healthy individuals at 3 timepoints, applying the mixture of isoforms algorithm to quantify alternative splicing. We examined RNA binding protein motifs within the sequences of IR-responsive isoforms and validated the serine/arginine-rich splicing factor 1 (SRSF1) as a predominant mediator through RNA immunoprecipitation. We further investigated the effects of SRSF1 on radiosensitivity by RNA interference and by analyzing publicly available data on patients with cancer. RESULTS We identified ∼1900 radiation-responsive alternatively spliced isoforms. Many isoforms were differentially expressed without changes in their overall gene expression. Over a third of these transcripts underwent exon skipping, while others used proximal last exons. These IR-responsive isoforms tended to be shorter transcripts missing vital domains for preventing apoptosis and promoting cell division but retaining those necessary for DNA repair. Our combined computational, genetic, and molecular analyses identified the proto-oncogene SRSF1 as a mediator of these radiation-induced isoform-switching events that promote apoptosis. After exposure to DNA double-strand break-inducing agents, SRSF1 expression decreased. A reduction in SRSF1 increased radiosensitivity in vitro and among patients with cancer. CONCLUSIONS We establish a pivotal role for isoform switching in the cellular response to IR and propose SRSF1 as a promising biomarker for assessing radiation therapy effectiveness.
Collapse
Affiliation(s)
- Majd Abdulghani
- Rhodes Trust and; Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Niema B Razavian
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Joshua T Burdick
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Enric Domingo
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Vivian G Cheung
- Department of Pediatrics and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.
| | - Timothy C Humphrey
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, United Kingdom.
| |
Collapse
|
3
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Bhagi S, Chandna S. A simplified protocol for gene expression-based biological dosimetry using peripheral whole blood. Int J Radiat Biol 2023; 99:1692-1701. [PMID: 37436720 DOI: 10.1080/09553002.2023.2231531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Assessing alterations in the expression of radiation-responsive genes in peripheral blood cells is considered a promising approach for high-throughput radiation biodosimetry. However, optimization of conditions for storage and transport of blood samples would be critical for obtaining reliable results. Recent studies involved the incubation of isolated peripheral blood mononuclear cells (in cell culture medium) and/or use of RNA stabilizing agents for sample storage, immediately after the ex vivo irradiation of whole blood. We used a simpler protocol by incubating undiluted peripheral whole blood without any RNA stabilizing agent, and studied the impact of storage temperature and incubation time on the expression levels of 19 known radiation responsive genes. MATERIALS & METHODS Peripheral whole blood was γ-irradiated ex vivo at room temperature at low (0.5 Gy), moderate (1 Gy, 2 Gy) and high (4 Gy) doses and immediately incubated at two different temperatures at 4 °C or 37 °C for 2h, 4h and 24 h. Using qRT-PCR, mRNA expression levels of CDKN1A, DDB2, GADD45A, FDXR, BAX, BBC3, MYC, PCNA, XPC, ZMAT3, AEN, TRIAP1, CCNG1, RPS27L, CD70, EI24, C12orf5, TNFRSF10B, ASCC3 were analyzed at respective time-points and compared with the sham-irradiated controls. RESULTS Transcriptional responses of all 19 genes did not alter significantly upon incubation of whole blood samples at 4 °C, as compared to untreated controls. However, incubation at 37 °C for 24 h resulted in significant radiation-induced overexpression in 14 out of the 19 genes analyzed (except CDKN1A, BBC3, MYC, CD 70 and EI24). Detailed patterns during incubation at 37 °C revealed time-dependent up-regulation of these genes, with DDB2 and FDXR showing significant up-regulation both at 4 and 24 h with the highest fold-change observed. CONCLUSION Overall, the undiluted whole blood incubated at 37 °C for 24 h was found to elicit most optimal transcriptional response in the genes studied, with most profound overexpression of DDB2 and FDXR. We propose that sample storage/transport/post-transit incubation at the physiological temperature for up to 24 h may enhance the sensitivity of gene expression based biodosimetry and facilitate its usage for triage application.
Collapse
Affiliation(s)
- Shuchi Bhagi
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research & Development Organization (DRDO), Brig SK Mazumdar Marg, Delhi, 110054, India
| | - Sudhir Chandna
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research & Development Organization (DRDO), Brig SK Mazumdar Marg, Delhi, 110054, India
| |
Collapse
|
5
|
López-Riego M, Płódowska M, Lis-Zajęcka M, Jeziorska K, Tetela S, Węgierek-Ciuk A, Sobota D, Braziewicz J, Lundholm L, Lisowska H, Wojcik A. The DNA damage response to radiological imaging: from ROS and γH2AX foci induction to gene expression responses in vivo. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01033-4. [PMID: 37335333 DOI: 10.1007/s00411-023-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
Candidate ionising radiation exposure biomarkers must be validated in humans exposed in vivo. Blood from patients undergoing positron emission tomography-computed tomography scan (PET-CT) and skeletal scintigraphy (scintigraphy) was drawn before (0 h) and after (2 h) the procedure for correlation analyses of the response of selected biomarkers with radiation dose and other available patient information. FDXR, CDKN1A, BBC3, GADD45A, XPC, and MDM2 expression was determined by qRT-PCR, DNA damage (γH2AX) by flow cytometry, and reactive oxygen species (ROS) levels by flow cytometry using the 2', 7'-dichlorofluorescein diacetate test in peripheral blood mononuclear cells (PBMC). For ROS experiments, 0- and 2-h samples were additionally exposed to UVA to determine whether diagnostic irradiation conditioned the response to further oxidative insult. With some exceptions, radiological imaging induced weak γH2AX foci, ROS and gene expression fold changes, the latter with good coherence across genes within a patient. Diagnostic imaging did not influence oxidative stress in PBMC successively exposed to UVA. Correlation analyses with patient characteristics led to low correlation coefficient values. γH2AX fold change, which correlated positively with gene expression, presented a weak positive correlation with injected activity, indicating a radiation-induced subtle increase in DNA damage and subsequent activation of the DNA damage response pathway. The exposure discrimination potential of these biomarkers in the absence of control samples as frequently demanded in radiological emergencies, was assessed using raw data. These results suggest that the variability of the response in heterogeneous populations might complicate identifying individuals exposed to low radiation doses.
Collapse
Affiliation(s)
- Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Milena Lis-Zajęcka
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Kamila Jeziorska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Sylwia Tetela
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Aneta Węgierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Daniel Sobota
- Department of Medical Physics, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Janusz Braziewicz
- Department of Medical Physics, Institute of Biology, Jan Kochanowski University, Kielce, Poland
- Department of Nuclear Medicine With Positron Emission Tomography (PET) Unit, Holy Cross Cancer Centre, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
6
|
Schüle S, Bristy EA, Muhtadi R, Kaletka G, Stewart S, Ostheim P, Hermann C, Asang C, Pleimes D, Port M, Abend M. Four Genes Predictive for the Severity of Hematological Damage Reveal a Similar Response after X Irradiation and Chemotherapy. Radiat Res 2023; 199:115-123. [PMID: 36480042 DOI: 10.1667/rade-22-00068.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Radiological and especially nuclear accidents and incidents pose a threat to populations. In such events, gene expression (GE) analysis of a set of 4 genes (FDXR, DDB2, POU2AF1, WNT3) is an emerging approach for early and high-throughput prediction of the later manifesting severity degrees of the hematological acute radiation syndrome (H-ARS). Validation of this gene set on radiation victims is difficult since these events are rare. However, chemotherapy (CTX) is widely used e.g., breast cancer patient treatment and pathomechanisms, as well as blood cell count changes are comparable among both exposure types. We wondered whether GE changes are similarly deregulated after CTX, which would be interpreted as a confirmation of our already identified gene set for H-ARS prediction after irradiation. We examined radiation-induced differential GE (DGE) of our gene set as a positive control using in vitro whole blood samples from ten healthy donors (6 females, 4 males, aged: 24-40 years). Blood was incubated in vitro for 8 h after X irradiation with 0 and 4 Gy (1 Gy/min). These data were compared with DGE measured in vivo in blood samples of 10 breast tumor CTX patients (10 females, aged: 39-71 years) before and 4 days after administration of cyclophosphamide and epirubicin. RNA was isolated, reverse transcribed and quantitative real-time polymerase-chain-reaction (qRT-PCR) was performed to assess DGE of FDXR, DDB2, POU2AF1 and WNT3 relative to the unexposed samples using TaqMan assays. After X irradiation, we found a significant upregulation (irrespective of sex) with mean fold changes of 21 (P < 0.001) and 7 (P < 0.001) for FDXR and DDB2 and a significant down-regulation with mean fold changes of 2.5 (P < 0.001) and 2 (P = 0.005) for POU2AF1 and WNT3, respectively. After CTX, a similar pattern was observed, although mean fold changes of up-regulated FDXR (6-fold, P < 0.001) and DDB2 (3-fold, P < 0.001) as well as down-regulated POU2AF1 (1.2-fold, P = 0.270) and WNT3 (1.3-fold, P = 0.069) appeared lower corresponding to less altered blood cell count changes observed after CTX compared to historic radiation exposure data. However, a subpopulation of CTX patients (n = 6) showed on average a significant downregulation of POU2AF1 (1.8-fold, P = 0.04) and WNT3 (2.1-fold, P = 0.008). In summary, the pattern of up-regulated GE changes observed in all CTX patients and down-regulated GE changes observed in a subgroup of CTX patients appeared comparable with an already identified gene set predictive for the radiation-induced H-ARS. This underlines the significance of in vivo GE measurements in CTX patients, employed as a surrogate model to further validate already identified radiation-induced GE changes predictive for the H-ARS.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Effat Ara Bristy
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Gwendolyn Kaletka
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
7
|
Spyratou E, Ploussi A, Alafogiannis P, Katifelis H, Apostolopoulou S, Bagenakis G, Rammos S, Papagiannis I, Gazouli M, Seimenis I, Georgakilas AG, Efstathopoulos EP. FDXR Gene Expression after in Vivo Radiation Exposure of Pediatric Patients Undergoing Interventional Cardiology Procedures. FRONT BIOSCI-LANDMRK 2022; 27:255. [PMID: 36224003 DOI: 10.31083/j.fbl2709255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 09/11/2023]
Abstract
BACKGROUND Ferredoxin reductase (FDXR) has already been reported as a promising biomarker for estimating radiation doses in radiotherapy. This study aimed to investigate the responsiveness of FDXR on pediatric population exposed to ionizing radiation (X-rays) during pediatric interventional cardiology (IC) procedures. PATIENTS AND METHODS Peripheral blood was collected by venipuncture from 24 pediatric donors before and 24 hours after the IC procedure. To estimate the effective dose, demographic data and Air Kerma-Area Product (PKA) were recorded for each patient. The relative quantification (RQ) of the FDXR gene in irradiated patient blood samples compared to the non-irradiated blood samples was determined using qPCR analysis. The relative values of FDXR were log- transformed. RESULTS The effective dose ranged from 0.002 mSv to 8.004 mSv. Over this radiation exposure range, the FDXR gene expression varied randomly with the effective dose. Up-regulation in FDXR expression was observed in 17 patients and down-regulation in 7 patients. CONCLUSIONS Further studies in a larger cohort of pediatric patients along with the record of clinical data are needed to determine whether FDXR gene expression is an effective biomarker for radiation exposure estimation in pediatric imaging.
Collapse
Affiliation(s)
- Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Agapi Ploussi
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Alafogiannis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Zografou, Athens, Greece
| | - Hector Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotiria Apostolopoulou
- Paediatric Cardiology and Adult with Congenital Heart Disease Department, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Georgios Bagenakis
- Paediatric Cardiology and Adult with Congenital Heart Disease Department, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Spyridon Rammos
- Paediatric Cardiology and Adult with Congenital Heart Disease Department, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Ioannis Papagiannis
- Paediatric Cardiology and Adult with Congenital Heart Disease Department, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Medical Physics, Medical School, National and Kapodistrian University, 11527 Athens, Greece
- Department of Sciences, Hellenic Open University, 26335 Patra, Greece
| | - Ioannis Seimenis
- Department of Medical Physics, Medical School, National and Kapodistrian University, 11527 Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| | - Efstathios P Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Sciences, Hellenic Open University, 26335 Patra, Greece
| |
Collapse
|
8
|
Aguado-Flor E, Fuentes-Raspall MJ, Gonzalo R, Alonso C, Ramón Y Cajal T, Fisas D, Seoane A, Sánchez-Pla Á, Giralt J, Díez O, Gutiérrez-Enríquez S. Cell Senescence-Related Pathways Are Enriched in Breast Cancer Patients With Late Toxicity After Radiotherapy and Low Radiation-Induced Lymphocyte Apoptosis. Front Oncol 2022; 12:825703. [PMID: 35686103 PMCID: PMC9170959 DOI: 10.3389/fonc.2022.825703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Radiation-induced late effects are a common cause of morbidity among cancer survivors. The biomarker with the best evidence as a predictive test of late reactions is the radiation-induced lymphocyte apoptosis (RILA) assay. We aimed to investigate the molecular basis underlying the distinctive RILA levels by using gene expression analysis in patients with and without late effects and in whom we had also first identified differences in RILA levels. Patients and Methods Peripheral blood mononuclear cells of 10 patients with late severe skin complications and 10 patients without symptoms, selected from those receiving radiotherapy from 1993 to 2007, were mock-irradiated or irradiated with 8 Gy. The 48-h response was analyzed in parallel by RILA assay and gene expression profiling with Affymetrix microarrays. Irradiated and non-irradiated gene expression profiles were compared between both groups. Gene set enrichment analysis was performed to identify differentially expressed biological processes. Results Although differentially expressed mRNAs did not reach a significant adjusted p-value between patients suffering and not suffering clinical toxicity, the enriched pathways indicated significant differences between the two groups, either in irradiated or non-irradiated cells. In basal conditions, the main differentially expressed pathways between the toxicity and non-toxicity groups were the transport of small molecules, interferon signaling, and transcription. After 8 Gy, the differences lay in pathways highly related to cell senescence like cell cycle/NF-κB, G-protein-coupled receptors, and interferon signaling. Conclusion Patients at risk of developing late toxicity have a distinctive pathway signature driven by deregulation of immune and cell cycle pathways related to senescence, which in turn may underlie their low RILA phenotype.
Collapse
Affiliation(s)
- Ester Aguado-Flor
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Ricardo Gonzalo
- Statistics and Bioinformatics Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carmen Alonso
- Medical Oncology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | | | - David Fisas
- Medical Oncology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Alejandro Seoane
- Medical Physics Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Álex Sánchez-Pla
- Statistics and Bioinformatics Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Giralt
- Radiation Oncology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Radiation Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Orland Díez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
9
|
Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy. Cancers (Basel) 2022; 14:cancers14112649. [PMID: 35681629 PMCID: PMC9179543 DOI: 10.3390/cancers14112649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, the transcriptional response of a panel of radiation responsive genes was monitored over time in blood samples after radiation exposure in vivo. For this aim, cancer patients treated by radiotherapy were recruited after consent forms were obtained. Following the first fraction of radiotherapy, 2 mL blood samples were collected at different time points during the first 24h hours (before the second fraction was delivered) and at mid and end of treatment. Amongst the 9 genes studied, the gene FDXR stood out as the most sensitive and responsive to the low dose of radiation received from the localised radiation treatment by the circulating white blood cells. The activation of FDXR was found to depend on the volume of the body exposed with a peak of expression around 8–9 hours after irradiation was delivered. Finally results obtained ex vivo confirmed the results obtained in vivo. Abstract External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6–8, 16–18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038–0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6–8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors’ blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes.
Collapse
|
10
|
Mucaki EJ, Shirley BC, Rogan PK. Improved radiation expression profiling in blood by sequential application of sensitive and specific gene signatures. Int J Radiat Biol 2021; 98:924-941. [PMID: 34699300 DOI: 10.1080/09553002.2021.1998709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Combinations of expressed genes can discriminate radiation-exposed from normal control blood samples by machine learning (ML) based signatures (with 8-20% misclassification rates). These signatures can quantify therapeutically relevant as well as accidental radiation exposures. The prodromal symptoms of acute radiation syndrome (ARS) overlap those present in influenza and dengue fever infections. Surprisingly, these human radiation signatures misclassified gene expression profiles of virally infected samples as false positive exposures. The present study investigates these and other confounders, and then mitigates their impact on signature accuracy. METHODS This study investigated recall by previous and novel radiation signatures independently derived from multiple Gene Expression Omnibus datasets on common and rare non-neoplastic blood disorders and blood-borne infections (thromboembolism, S. aureus bacteremia, malaria, sickle cell disease, polycythemia vera, and aplastic anemia). Normalized expression levels of signature genes are used as input to ML-based classifiers to predict radiation exposure in other hematological conditions. RESULTS Except for aplastic anemia, these blood-borne disorders modify the normal baseline expression values of genes present in radiation signatures, leading to false-positive misclassification of radiation exposures in 8-54% of individuals. Shared changes, predominantly in DNA damage response and apoptosis-related gene transcripts in radiation and confounding hematological conditions, compromise the utility of these signatures for radiation assessment. These confounding conditions (sickle cell disease, thrombosis, S. aureus bacteremia, malaria) induce neutrophil extracellular traps, initiated by chromatin decondensation, DNA damage response and fragmentation followed by programmed cell death or extrusion of DNA fragments. Riboviral infections (e.g. influenza or dengue fever) have been proposed to bind and deplete host RNA binding proteins, inducing R-loops in chromatin. R-loops that collide with incoming replication forks can result in incompletely repaired DNA damage, inducing apoptosis and releasing mature virus. To mitigate the effects of confounders, we evaluated predicted radiation-positive samples with novel gene expression signatures derived from radiation-responsive transcripts encoding secreted blood plasma proteins whose expression levels are unperturbed by these conditions. CONCLUSIONS This approach identifies and eliminates misclassified samples with underlying hematological or infectious conditions, leaving only samples with true radiation exposures. Diagnostic accuracy is significantly improved by selecting genes that maximize both sensitivity and specificity in the appropriate tissue using combinations of the best signatures for each of these classes of signatures.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | - Peter K Rogan
- Department of Biochemistry, University of Western Ontario, London, Canada.,CytoGnomix Inc., London, Canada
| |
Collapse
|
11
|
VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduct Target Ther 2021; 6:322. [PMID: 34462423 PMCID: PMC8405816 DOI: 10.1038/s41392-021-00735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy remains the mainstay for treatment of various types of human cancer; however, the clinical efficacy is often limited by radioresistance, in which the underlying mechanism is largely unknown. Here, using esophageal squamous cell carcinoma (ESCC) as a model, we demonstrate that guanine nucleotide exchange factor 2 (VAV2), which is overexpressed in most human cancers, plays an important role in primary and secondary radioresistance. We have discovered for the first time that VAV2 is required for the Ku70/Ku80 complex formation and participates in non-homologous end joining repair of DNA damages caused by ionizing radiation. We show that VAV2 overexpression substantially upregulates signal transducer and activator of transcription 1 (STAT1) and the STAT1 inhibitor Fludarabine can significantly promote the sensitivity of radioresistant patient-derived ESCC xenografts in vivo in mice to radiotherapy. These results shed new light on the mechanism of cancer radioresistance, which may be important for improving clinical radiotherapy.
Collapse
|
12
|
Philipp J, Le Gleut R, von Toerne C, Subedi P, Azimzadeh O, Atkinson MJ, Tapio S. Radiation Response of Human Cardiac Endothelial Cells Reveals a Central Role of the cGAS-STING Pathway in the Development of Inflammation. Proteomes 2020; 8:proteomes8040030. [PMID: 33114474 PMCID: PMC7709117 DOI: 10.3390/proteomes8040030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced inflammation leading to the permeability of the endothelial barrier may increase the risk of cardiovascular disease. The aim of this study was to investigate potential mechanisms in vitro at the level of the proteome in human coronary artery endothelial cells (HCECest2) that were exposed to radiation doses of 0, 0.25, 0.5, 2.0 and 10 Gy (60Co-γ). Proteomics analysis was performed using mass spectrometry in a label-free data-independent acquisition mode. The data were validated using bioinformatics and immunoblotting. The low- and moderate-dose-irradiated samples (0.25 Gy, 0.5 Gy) showed only scarce proteome changes. In contrast, an activation of DNA-damage repair, inflammation, and oxidative stress pathways was seen after the high-dose treatments (2 and 10 Gy). The level of the DNA damage response protein DDB2 was enhanced early at the 10 Gy dose. The expression of proteins belonging to the inflammatory response or cGAS-STING pathway (STING, STAT1, ICAM1, ISG15) increased in a dose-dependent manner, showing the strongest effects at 10 Gy after one week. This study suggests a connection between the radiation-induced DNA damage and the induction of inflammation which supports the inhibition of the cGAS-STING pathway in the prevention of radiation-induced cardiovascular disease.
Collapse
Affiliation(s)
- Jos Philipp
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.P.); (P.S.); (O.A.); (M.J.A.)
| | - Ronan Le Gleut
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;
| | - Prabal Subedi
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.P.); (P.S.); (O.A.); (M.J.A.)
- Federal Office for Radiation Protection, BfS, 85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.P.); (P.S.); (O.A.); (M.J.A.)
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.P.); (P.S.); (O.A.); (M.J.A.)
- Chair of Radiation Biology, Technical University of Munich, 80333 Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (J.P.); (P.S.); (O.A.); (M.J.A.)
- Correspondence: ; Tel.: +49-89-3187-3445
| |
Collapse
|
13
|
He G, Tang A, Xie M, Xia W, Zhao P, Wei J, Lai Y, Tang X, Zou YM, Liu H. Blood Gene Expression Profile Study Revealed the Activation of Apoptosis and p53 Signaling Pathway May Be the Potential Molecular Mechanisms of Ionizing Radiation Damage and Radiation-Induced Bystander Effects. Dose Response 2020; 18:1559325820914184. [PMID: 32284698 PMCID: PMC7119240 DOI: 10.1177/1559325820914184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is an effective treatment for local solid tumors, but the mechanism of damage to human body caused by radiation therapy needs further study. In this study, gene expression profiles of human peripheral blood samples exposed to different doses and rates of ionizing radiation (IR) were used for bioinformatics analysis to investigate the mechanism of IR damage and radiation-induced bystander effect (RIBE). Differentially expressed genes analysis, weighted gene correlation network analysis, functional enrichment analysis, hypergeometric test, gene set enrichment analysis, and gene set variation analysis were applied to analyze the data. Moreover, receiver operating characteristic curve analysis was performed to identify core genes of IR damage. Weighted gene correlation network analysis identified 3 modules associated with IR damage, 2 were positively correlated and 1 was negatively correlated. The analysis showed that the positively correlated modules were significantly involved in apoptosis and p53 signaling pathway, and ESR1, ATM, and MYC were potential transcription factors regulating these modules. Thus, the study suggested that apoptosis and p53 signaling pathway may be the potential molecular mechanisms of IR damage and RIBE, which could be driven by ESR1, ATM, and MYC.
Collapse
Affiliation(s)
- Guangyao He
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Anzhou Tang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mao Xie
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Xia
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Pengcheng Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianglian Wei
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yongjing Lai
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianglong Tang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Ming Zou
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Heng Liu
- School of Information and Management, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Extensive epigenetic and transcriptomic variability between genetically identical human B-lymphoblastoid cells with implications in pharmacogenomics research. Sci Rep 2019; 9:4889. [PMID: 30894562 PMCID: PMC6426863 DOI: 10.1038/s41598-019-40897-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Genotyped human B-lymphoblastoid cell lines (LCLs) are widely used models in mapping quantitative trait loci for chromatin features, gene expression, and drug response. The extent of genotype-independent functional genomic variability of the LCL model, although largely overlooked, may inform association study design. In this study, we use flow cytometry, chromatin immunoprecipitation sequencing and mRNA sequencing to study surface marker patterns, quantify genome-wide chromatin changes (H3K27ac) and transcriptome variability, respectively, among five isogenic LCLs derived from the same individual. Most of the studied LCLs were non-monoclonal and had mature B cell phenotypes. Strikingly, nearly one-fourth of active gene regulatory regions showed significantly variable H3K27ac levels, especially enhancers, among which several were classified as clustered enhancers. Large, contiguous genomic regions showed signs of coordinated activity change. Regulatory differences were mirrored by mRNA expression changes, preferentially affecting hundreds of genes involved in specialized cellular processes including immune and drug response pathways. Differential expression of DPYD, an enzyme involved in 5-fluorouracil (5-FU) catabolism, was associated with variable LCL growth inhibition mediated by 5-FU. The extent of genotype-independent functional genomic variability might highlight the need to revisit study design strategies for LCLs in pharmacogenomics.
Collapse
|
15
|
Zhao JZ, Mucaki EJ, Rogan PK. Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning. F1000Res 2018; 7:233. [PMID: 29904591 PMCID: PMC5981198 DOI: 10.12688/f1000research.14048.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% ( DDB2, PRKDC, TPP2, PTPRE, and GADD45A) when validated over 209 samples and traditional validation accuracies of up to 92% ( DDB2, CD8A, TALDO1, PCNA, EIF4G2, LCN2, CDKN1A, PRKCH, ENO1, and PPM1D) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.
Collapse
Affiliation(s)
- Jonathan Z.L. Zhao
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- Department of Computer Science, Faculty of Science, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J. Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K. Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- Department of Computer Science, Faculty of Science, Western University, London, ON, N6A 2C1, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- CytoGnomix Inc., London, ON, N5X 3X5, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
16
|
Zhao JZ, Mucaki EJ, Rogan PK. Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning. F1000Res 2018; 7:233. [PMID: 29904591 PMCID: PMC5981198 DOI: 10.12688/f1000research.14048.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 09/27/2023] Open
Abstract
Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% ( DDB2, PRKDC, TPP2, PTPRE, and GADD45A) when validated over 209 samples and traditional validation accuracies of up to 92% ( DDB2, CD8A, TALDO1, PCNA, EIF4G2, LCN2, CDKN1A, PRKCH, ENO1, and PPM1D) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.
Collapse
Affiliation(s)
- Jonathan Z.L. Zhao
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- Department of Computer Science, Faculty of Science, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J. Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K. Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- Department of Computer Science, Faculty of Science, Western University, London, ON, N6A 2C1, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
- CytoGnomix Inc., London, ON, N5X 3X5, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
17
|
O'Brien G, Cruz-Garcia L, Majewski M, Grepl J, Abend M, Port M, Tichý A, Sirak I, Malkova A, Donovan E, Gothard L, Boyle S, Somaiah N, Ainsbury E, Ponge L, Slosarek K, Miszczyk L, Widlak P, Green E, Patel N, Kudari M, Gleeson F, Vinnikov V, Starenkiy V, Artiukh S, Vasyliev L, Zaman A, Badie C. FDXR is a biomarker of radiation exposure in vivo. Sci Rep 2018; 8:684. [PMID: 29330481 PMCID: PMC5766591 DOI: 10.1038/s41598-017-19043-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022] Open
Abstract
Previous investigations in gene expression changes in blood after radiation exposure have highlighted its potential to provide biomarkers of exposure. Here, FDXR transcriptional changes in blood were investigated in humans undergoing a range of external radiation exposure procedures covering several orders of magnitude (cardiac fluoroscopy, diagnostic computed tomography (CT)) and treatments (total body and local radiotherapy). Moreover, a method was developed to assess the dose to the blood using physical exposure parameters. FDXR expression was significantly up-regulated 24 hr after radiotherapy in most patients and continuously during the fractionated treatment. Significance was reached even after diagnostic CT 2 hours post-exposure. We further showed that no significant differences in expression were found between ex vivo and in vivo samples from the same patients. Moreover, potential confounding factors such as gender, infection status and anti-oxidants only affect moderately FDXR transcription. Finally, we provided a first in vivo dose-response showing dose-dependency even for very low doses or partial body exposure showing good correlation between physically and biologically assessed doses. In conclusion, we report the remarkable responsiveness of FDXR to ionising radiation at the transcriptional level which, when measured in the right time window, provides accurate in vivo dose estimates.
Collapse
Affiliation(s)
- Gráinne O'Brien
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, United Kingdom
| | - Lourdes Cruz-Garcia
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, United Kingdom
| | | | - Jakub Grepl
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic.,Biomedical Research Centre, Hradec Králové University Hospital, Hradec Králové, Czech Republic
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Hradec Králové, Czech Republic.,Biomedical Research Centre, Hradec Králové University Hospital, Hradec Králové, Czech Republic
| | - Igor Sirak
- Department of Oncology & Radiotherapy and 4th Department of Internal Medicine - Hematology, University Hospital, Hradec Králové, Czech Republic
| | - Andrea Malkova
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ellen Donovan
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7TE, United Kingdom
| | - Lone Gothard
- Institute of Cancer Research/Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, United Kingdom
| | - Sue Boyle
- Institute of Cancer Research/Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, United Kingdom
| | - Navita Somaiah
- Institute of Cancer Research/Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, United Kingdom
| | - Elizabeth Ainsbury
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, United Kingdom
| | - Lucyna Ponge
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Slosarek
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Leszek Miszczyk
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Piotr Widlak
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Edward Green
- Department of Radiology, Churchill Hospital, Oxford, United Kingdom
| | - Neel Patel
- Department of Radiology, Churchill Hospital, Oxford, United Kingdom
| | - Mahesh Kudari
- Department of Radiology, Churchill Hospital, Oxford, United Kingdom
| | - Fergus Gleeson
- Department of Radiology, Churchill Hospital, Oxford, United Kingdom
| | - Volodymyr Vinnikov
- Grigoriev Institute for Medical Radiology, National Academy of Medical Science, Kharkiv, Ukraine
| | - Viktor Starenkiy
- Grigoriev Institute for Medical Radiology, National Academy of Medical Science, Kharkiv, Ukraine
| | - Sergii Artiukh
- Grigoriev Institute for Medical Radiology, National Academy of Medical Science, Kharkiv, Ukraine
| | - Leonid Vasyliev
- Grigoriev Institute for Medical Radiology, National Academy of Medical Science, Kharkiv, Ukraine
| | - Azfar Zaman
- Department of Cardiology, Freeman Hospital and Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, Newcastle, United Kingdom
| | - Christophe Badie
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, United Kingdom.
| |
Collapse
|
18
|
Gonzalez VJ, Saligan LN, Fridley BL, Ortiz-Zuazaga H, Aaronson LS. Gene Expression, and Fatigue in Puerto Rican Men during Radiotherapy for Prostate Cancer: an Exploratory Study. PUERTO RICO HEALTH SCIENCES JOURNAL 2017; 36:223-231. [PMID: 29220067 PMCID: PMC5804490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To examine the trajectory of fatigue experienced by 26 Puerto Rican (PR) men over the course of External Beam Radiation Therapy (EBRT) and to assess gene expression changes from baseline to midpoint of EBRT using microarray technology. Design/Research Approach- Prospective exploratory and comparative design study. Setting- RT facility located in San Juan, PR. Sample/Participants-26 PR men with non-metastatic prostate cancer. METHODS Participants completed 2 paper forms: demographics and the Spanish version of the 13-item FACT-fatigue at baseline, midpoint, and end of EBRT. Wholeblood samples were collected at baseline and at midpoint of EBRT. Descriptive data was analyzed using t-test, Wilcoxon, and Friedman test for repeated measures. Gene expression data was analyzed using the LIMMA package in R; the functional network analysis was conducted using Ingenuity Pathway analysis. Main Research Variable-Fatigue scores, gene expression. RESULTS Subjects were of ages 52-81 with fatigue scores that remained unchanged during EBRT (baseline=42.38, SD=9.34; midpoint=42.11, SD=8.93, endpoint=43.04, SD=8.62). Three hundred seventy-three genes (130-up regulated and 243-down regulated) were differentially expressed from baseline to mid-point of EBRT (FDR<0.01). The top distinct canonical pathways of the differentially expressed probesets (p<0.0001) were: "Phospholipase C Signaling," "Role of NFAT in Regulation of the Immune Response," and "Gαq Signaling." CONCLUSION While fatigue did not worsen over the course of EBRT for this sample as a group, there was variability in fatigue across the sample. It is possible that the over expression of the SESN3 gene, known to suppress oxidative damage, may have contributed to the attenuation of fatigue in this clinical population.
Collapse
Affiliation(s)
- Velda J Gonzalez
- College of Nursing, University of South Florida, Tampa, FL, United States, UPR/ MDACC Partnership for Excellence in Cancer Research U54 CA096297
| | - Leorey N Saligan
- Tenure-Track Investigator, Chief, Symptoms Biology Unit, NINR/NIH
| | - Brooke L Fridley
- Chair, Dept. Biostatistics & Bioinformatics, Moffitt Cancer Center
| | - Humberto Ortiz-Zuazaga
- Associate Professor at University of Puerto Rico, UPR/MDACC Partnership for Excellence in Cancer Research U54 CA096297
| | | |
Collapse
|
19
|
Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury. Life Sci 2017; 184:103-111. [PMID: 28711489 DOI: 10.1016/j.lfs.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 01/09/2023]
Abstract
AIMS Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. MAIN METHODS Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. KEY FINDINGS The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. SIGNIFICANCE This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development.
Collapse
|
20
|
Li S, Zhang QZ, Zhang DQ, Feng JB, Luo Q, Lu X, Wang XR, Li KP, Chen DQ, Mu XF, Gao L, Liu QJ. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation. Mol Med Rep 2017; 15:3599-3606. [PMID: 28440431 PMCID: PMC5436215 DOI: 10.3892/mmr.2017.6476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
The identification of rapid, sensitive and high‑throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH‑1 human lymphoblastoid cells, following exposure to γ‑rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF‑15 gene expression in AHH‑1 cells and human peripheral blood lymphocytes (HPBLs). GDF‑15 mRNA and protein expression levels following exposure to γ‑rays and neutron radiation were assessed by reverse transcription‑quantitative polymerase chain reaction and western blot analysis in AHH‑1 cells. In addition, alterations in GDF‑15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF‑15 mRNA and protein expression levels in AHH‑1 cells were significantly upregulated following exposure to γ‑ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose‑response relationship was identified in AHH‑1 cells at γ‑ray doses between 0.4 and 1.6 Gy. GDF‑15 mRNA levels in HPBLs were significantly upregulated following exposure to γ‑ray doses between 1 and 8 Gy, within 4‑48 h following irradiation. These results suggested that significant time‑ and dose‑dependent alterations in GDF‑15 mRNA and protein expression occur in AHH‑1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF‑15 gene expression may have potential as a biomarker to evaluate radiation exposure.
Collapse
Affiliation(s)
- Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qing-Zhao Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - De-Qin Zhang
- Beijing Shijingshan Center for Disease Control and Prevention, Beijing 100043, P.R. China
| | - Jiang-Bin Feng
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qun Luo
- Department of Transfusion, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, Second Artillery General Hospital PLA, Beijing 100088, P.R. China
| | - Kun-Peng Li
- Department of Radiotherapy, General Hospital of Armed Police Forces, Beijing 100039, P.R. China
| | - De-Qing Chen
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xiao-Feng Mu
- Department of Radiotherapy, General Hospital of Armed Police Forces, Beijing 100039, P.R. China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| |
Collapse
|
21
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
22
|
Chen Y, Oh JH, Sandhu R, Lee S, Deasy JO, Tannenbaum A. Transcriptional Responses to Ultraviolet and Ionizing Radiation: An Approach Based on Graph Curvature. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2016; 2016:1302-1306. [PMID: 28261534 PMCID: PMC5330782 DOI: 10.1109/bibm.2016.7822706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
More than half of all cancer patients receive radiotherapy in their treatment process. However, our understanding of abnormal transcriptional responses to radiation remains poor. In this study, we employ an extended definition of Ollivier-Ricci curvature based on LI-Wasserstein distance to investigate genes and biological processes associated with ionizing radiation (IR) and ultraviolet radiation (UV) exposure using a microarray dataset. Gene expression levels were modeled on a gene interaction topology downloaded from the Human Protein Reference Database (HPRD). This was performed for IR, UV, and mock datasets, separately. The difference curvature value between IR and mock graphs (also between UV and mock) for each gene was used as a metric to estimate the extent to which the gene responds to radiation. We found that in comparison of the top 200 genes identified from IR and UV graphs, about 20~30% genes were overlapping. Through gene ontology enrichment analysis, we found that the metabolic-related biological process was highly associated with both IR and UV radiation exposure.
Collapse
Affiliation(s)
- Yongxin Chen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Romeil Sandhu
- Department of Biomedical Informatics, Stony Brook University, NY, USA
| | - Sangkyu Lee
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Allen Tannenbaum
- Department of Computer Science and Applied Mathematics & Statistics, Stony Brook University, NY, USA
| |
Collapse
|
23
|
Edmondson DA, Karski EE, Kohlgruber A, Koneru H, Matthay KK, Allen S, Hartmann CL, Peterson LE, DuBois SG, Coleman MA. Transcript Analysis for Internal Biodosimetry Using Peripheral Blood from Neuroblastoma Patients Treated with (131)I-mIBG, a Targeted Radionuclide. Radiat Res 2016; 186:235-44. [PMID: 27556353 DOI: 10.1667/rr14263.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calculating internal dose from therapeutic radionuclides currently relies on estimates made from multiple radiation exposure measurements, converted to absorbed dose in specific organs using the Medical Internal Radiation Dose (MIRD) schema. As an alternative biodosimetric approach, we utilized gene expression analysis of whole blood from patients receiving targeted radiotherapy. Collected blood from patients with relapsed or refractory neuroblastoma who received (131)I-labeled metaiodobenzylguanidine ((131)I-mIBG) at the University of California San Francisco (UCSF) was used to compare calculated internal dose with the modulation of chosen gene expression. A total of 40 patients, median age 9 years, had blood drawn at baseline, 72 and 96 h after (131)I-mIBG infusion. Whole-body absorbed dose was calculated for each patient based on the cumulated activity determined from injected mIBG activity and patient-specific time-activity curves combined with (131)I whole-body S factors. We then assessed transcripts that were the most significant for describing the mixed therapeutic treatments over time using real-time polymerase chain reaction (RT-PCR). Modulation was evaluated statistically using multiple regression analysis for data at 0, 72 and 96 h. A total of 10 genes were analyzed across 40 patients: CDKN1A; FDXR; GADD45A; BCLXL; STAT5B; BAX; BCL2; DDB2; XPC; and MDM2. Six genes were significantly modulated upon exposure to (131)I-mIBG at 72 h, as well as at 96 h. Four genes varied significantly with absorbed dose when controlling for time. A gene expression biodosimetry model was developed to predict absorbed dose based on modulation of gene transcripts within whole blood. Three transcripts explained over 98% of the variance in the modulation of gene expression over the 96 h (CDKN1A, BAX and DDB2). To our knowledge, this is a novel study, which uses whole blood collected from patients treated with a radiopharmaceutical, to characterize biomarkers that may be useful for biodosimetry. Our data indicate that transcripts, which have been previously identified as biomarkers of external exposures in ex vivo whole blood and in vivo radiotherapy patients, are also good early indicators of internal exposure. However, for internal sources of radiation, the biokinetics and physical decay of the radionuclide strongly influence the gene expression.
Collapse
Affiliation(s)
- David A Edmondson
- a School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Erin E Karski
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Ayano Kohlgruber
- c Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Harsha Koneru
- c Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Katherine K Matthay
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Shelly Allen
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | | | - Leif E Peterson
- d Center for Biostatistics, Houston Methodist Research Institute. Houston, Texas 77030; and
| | - Steven G DuBois
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Matthew A Coleman
- c Lawrence Livermore National Laboratory, Livermore, California 94550;,e Department of Radiation Oncology, University of California Davis, School of Medicine, Davis, California 95817
| |
Collapse
|
24
|
Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line. Sci Rep 2016; 6:27043. [PMID: 27245205 PMCID: PMC4887990 DOI: 10.1038/srep27043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022] Open
Abstract
Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in “DNA damage response”, “direct p53 effectors” and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols.
Collapse
|
25
|
Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR. The RNA Response to DNA Damage. J Mol Biol 2016; 428:2636-2651. [PMID: 26979557 DOI: 10.1016/j.jmb.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023]
Abstract
Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.
Collapse
Affiliation(s)
- Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Nicolás Nieto Moreno
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Gwendal Dujardin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Centre for Genomic Regulation, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel J Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
26
|
Mavragani IV, Laskaratou DA, Frey B, Candéias SM, Gaipl US, Lumniczky K, Georgakilas AG. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res (Camb) 2016; 5:12-33. [PMID: 30090323 PMCID: PMC6061884 DOI: 10.1039/c5tx00222b] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
Organisms respond to physical, chemical and biological threats by a potent inflammatory response, aimed at preserving tissue integrity and restoring tissue homeostasis and function. Systemic effects in an organism refer to an effect or phenomenon which originates at a specific point and can spread throughout the body affecting a group of organs or tissues. Ionizing radiation (IR)-induced systemic effects arise usually from a local exposure of an organ or part of the body. This stress induces a variety of responses in the irradiated cells/tissues, initiated by the DNA damage response and DNA repair (DDR/R), apoptosis or immune response, including inflammation. Activation of this IR-response (IRR) system, especially at the organism level, consists of several subsystems and exerts a variety of targeted and non-targeted effects. Based on the above, we believe that in order to understand this complex response system better one should follow a 'holistic' approach including all possible mechanisms and at all organization levels. In this review, we describe the current status of knowledge on the topic, as well as the key molecules and main mechanisms involved in the 'spreading' of the message throughout the body or cells. Last but not least, we discuss the danger-signal mediated systemic immune effects of radiotherapy for the clinical setup.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Danae A Laskaratou
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Benjamin Frey
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Serge M Candéias
- iRTSV-LCBM , CEA , Grenoble F-38000 , France
- IRTSV-LCBM , CNRS , Grenoble F-38000 , France
- iRTSV-LCBM , Univ. Grenoble Alpes , Grenoble F-38000 , France
| | - Udo S Gaipl
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Katalin Lumniczky
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Alexandros G Georgakilas
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| |
Collapse
|
27
|
Gao Y, Xu D, Zhao L, Zhang M, Sun Y. Effects of microgravity on DNA damage response in Caenorhabditis elegans during Shenzhou-8 spaceflight. Int J Radiat Biol 2015; 91:531-9. [PMID: 25965668 DOI: 10.3109/09553002.2015.1043754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Space radiations and microgravity both could cause DNA damage in cells, but the effects of microgravity on DNA damage response to space radiations are still controversial. MATERIALS AND METHODS A mRNA microarray and microRNA micro- array in dauer larvae of Caenorhabditis elegans (C. elegans) that endured spaceflight environment and space radiations environment during 16.5-day Shenzhou-8 space mission was performed. RESULTS Twice as many transcripts significantly altered in the spaceflight environment than space radiations alone. The majority of alterations were related to protein amino acid dephosphorylation and histidine metabolic and catabolic processes. From about 900 genes related to DNA damage response, 38 differentially expressed genes were extracted; most of them differentially expressed under spaceflight environment but not space radiations, although the identical directions of alteration were observed in both cases. cel-miR-81, cel- miR-82, cel-miR-124 and cel-miR-795 were predicted to regulate DNA damage response through four different anti-correlated genes. CONCLUSIONS Evidence was provided that, in the presence of space radiations, microgravity probably enhanced the DNA damage response in C. elegans by integrating the transcriptome and microRNome.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University , Dalian, Liaoning , P. R. China
| | | | | | | | | |
Collapse
|
28
|
Çalışkan M, Pritchard JK, Ober C, Gilad Y. The effect of freeze-thaw cycles on gene expression levels in lymphoblastoid cell lines. PLoS One 2014; 9:e107166. [PMID: 25192014 PMCID: PMC4156430 DOI: 10.1371/journal.pone.0107166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/06/2014] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs) are a widely used renewable resource for functional genomic studies in humans. The ability to accumulate multidimensional data pertaining to the same individual cell lines, from complete genomic sequences to detailed gene regulatory profiles, further enhances the utility of LCLs as a model system. However, the extent to which LCLs are a faithful model system is relatively unknown. We have previously shown that gene expression profiles of newly established LCLs maintain a strong individual component. Here, we extend our study to investigate the effect of freeze-thaw cycles on gene expression patterns in mature LCLs, especially in the context of inter-individual variation in gene expression. We report a profound difference in the gene expression profiles of newly established and mature LCLs. Once newly established LCLs undergo a freeze-thaw cycle, the individual specific gene expression signatures become much less pronounced as the gene expression levels in LCLs from different individuals converge to a more uniform profile, which reflects a mature transformed B cell phenotype. We found that previously identified eQTLs are enriched among the relatively few genes whose regulations in mature LCLs maintain marked individual signatures. We thus conclude that while insight drawn from gene regulatory studies in mature LCLs may generally not be affected by the artificial nature of the LCL model system, many aspects of primary B cell biology cannot be observed and studied in mature LCL cultures.
Collapse
Affiliation(s)
- Minal Çalışkan
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan K. Pritchard
- Departments of Genetics and Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Liu QJ, Zhang DQ, Zhang QZ, Feng JB, Lu X, Wang XR, Li KP, Chen DQ, Mu XF, Li S, Gao L. Dose-effect of ionizing radiation-inducedPIG3gene expression alteration in human lymphoblastoid AHH-1 cells and human peripheral blood lymphocytes. Int J Radiat Biol 2014; 91:71-80. [DOI: 10.3109/09553002.2014.938374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development. PLoS One 2014; 9:e100068. [PMID: 24950059 PMCID: PMC4064996 DOI: 10.1371/journal.pone.0100068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.
Collapse
|
31
|
Forrester HB, Sprung CN. Intragenic controls utilizing radiation-induced alternative transcript regions improves gene expression biodosimetry. Radiat Res 2014; 181:314-23. [PMID: 24625097 DOI: 10.1667/rr13501.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing-radiation exposure can be life threatening if given to the whole body. In addition, whole body radiation exposure can affect large numbers of people such as after a nuclear reactor accident, a nuclear explosion or a radiological terrorist attack. In these cases, an accurate biodosimeter is essential for triage management. One of the problems for biodosimetry in general is the interindividual variation before and after exposure, which can make it challenging to assign an accurate dose. To begin to address this challenge, lymphocyte cell lines were exposed to 0, 1, 2 and 5 Gy ionizing radiation from a ¹³⁷Cs source at a dose rate of 0.6 Gy/min. Alternative transcripts with regions showing large differential responses to ionizing radiation were determined from exon array data. Gene expression analysis was then performed on isolated mRNA using qRT-PCR with normalization to intergenic (PGK1, GAPDH) and novel intragenic regions for candidate radiation-responsive genes, PPM1D and MDM2. Our studies show that the use of a cis-associated expression reference improved the potential dose prediction approximately 2.3-8.3 fold and provided an advantage for dose prediction compared to distantly or trans-located control ionizing radiation nonresponsive genes. This approach also provides an alternative gene expression normalization method to potentially reduce interindividual variations when untreated basal gene expression levels are unavailable. Using associated noninduced regions of ionizing radiation-induced genes provides a way to estimate basal gene expression in the irradiated sample. This strategy can be utilized as a biodosimeter on its own or to enhance other gene expression candidates for biodosimetry. This normalization strategy may also be generally applicable for other quantitative PCR strategies where normalization is required for a particular response.
Collapse
Affiliation(s)
- Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research and Monash University, Victoria, Australia
| | | |
Collapse
|
32
|
Ciencewicki JM, Wang X, Marzec J, Serra ME, Bell DA, Polack FP, Kleeberger SR. A genetic model of differential susceptibility to human respiratory syncytial virus (RSV) infection. FASEB J 2014; 28:1947-56. [PMID: 24421397 DOI: 10.1096/fj.13-239855] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Respiratory syncytial virus (RSV) is the primary cause of lower respiratory tract infection during childhood and causes severe symptoms in some patients, which may cause hospitalization and death. Mechanisms for differential responses to RSV are unknown. Our objective was to develop an in vitro model of RSV infection to evaluate interindividual variation in response to RSV and identify susceptibility genes. Populations of human-derived HapMap lymphoblastoid cell lines (LCLs) were infected with RSV. Compared with controls, RSV-G mRNA expression varied from ~1- to 400-fold between LCLs. Basal expression of a number of gene transcripts, including myxovirus (influenza virus) resistance 1 (MX1), significantly correlated with RSV-G expression in HapMap LCLs. Individuals in a case-control population of RSV-infected children who were homozygous (n=94) or heterozygous (n=172) for the predicted deleterious A allele in a missense G/A SNP in MX1 had significantly greater risk for developing severe RSV disease relative to those with the major allele (n=108) (χ(2)=5.305, P=0.021; OR: 1.750, 95% CI: 1.110, 2.758, P=0.021). We conclude that genetically diverse human LCLs enable identification of susceptibility genes (e.g., MX1) for RSV disease severity in children, providing insight for disease risk.
Collapse
Affiliation(s)
- Jonathan M Ciencewicki
- 1Laboratory of Respiratory Biology National Institute of Environmental Health Sciences, 111 T. W. Alexander Dr., Bldg. 101, MD D-201, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Jack J, Rotroff D, Motsinger-Reif A. Lymphoblastoid cell lines models of drug response: successes and lessons from this pharmacogenomic model. Curr Mol Med 2014; 14:833-40. [PMID: 25109794 PMCID: PMC4323076 DOI: 10.2174/1566524014666140811113946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/26/2014] [Accepted: 04/23/2014] [Indexed: 12/20/2022]
Abstract
A new standard for medicine is emerging that aims to improve individual drug responses through studying associations with genetic variations. This field, pharmacogenomics, is undergoing a rapid expansion due to a variety of technological advancements that are enabling higher throughput with reductions in cost. Here we review the advantages, limitations, and opportunities for using lymphoblastoid cell lines (LCL) as a model system for human pharmacogenomic studies. There are a wide range of publicly available resources with genome-wide data available for LCLs from both related and unrelated populations, removing the cost of genotyping the data for drug response studies. Furthermore, in contrast to human clinical trials or in vivo model systems, with high-throughput in vitro screening technologies, pharmacogenomics studies can easily be scaled to accommodate large sample sizes. An important component to leveraging genome-wide data in LCL models is association mapping. Several methods are discussed herein, and include multivariate concentration response modeling, issues with multiple testing, and successful examples of the 'triangle model' to identify candidate variants. Once candidate gene variants have been determined, their biological roles can be elucidated using pathway analyses and functionally confirmed using siRNA knockdown experiments. The wealth of genomics data being produced using related and unrelated populations is creating many exciting opportunities leading to new insights into the genetic contribution and heritability of drug response.
Collapse
Affiliation(s)
| | | | - A Motsinger-Reif
- Bioinformatics Research Center, 1 Lampe Drive, CB 7566, Ricks Hall, Raleigh, NC 27695, USA.
| |
Collapse
|
34
|
Paul S, Smilenov LB, Amundson SA. Widespread decreased expression of immune function genes in human peripheral blood following radiation exposure. Radiat Res 2013; 180:575-83. [PMID: 24168352 DOI: 10.1667/rr13343.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We report a large-scale reduced expression of genes in pathways related to cell-type specific immunity functions that emerges from microarray analysis 48 h after ex vivo γ-ray irradiation (0, 0.5, 2, 5, 8 Gy) of human peripheral blood from five donors. This response is similar to that seen in patients at 24 h after the start of total-body irradiation and strengthens the rationale for the ex vivo model as an adjunct to human in vivo studies. The most marked response was in genes associated with natural killer (NK) cell immune functions, reflecting a relative loss of NK cells from the population. T- and B-cell mediated immunity genes were also significantly represented in the radiation response. Combined with our previous studies, a single gene expression signature was able to predict radiation dose range with 97% accuracy at times from 6-48 h after exposure. Gene expression signatures that may report on the loss or functional deactivation of blood cell subpopulations after radiation exposure may be particularly useful both for triage biodosimetry and for monitoring the effect of radiation mitigating treatments.
Collapse
Affiliation(s)
- Sunirmal Paul
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | | |
Collapse
|
35
|
Granese B, Scala I, Spatuzza C, Valentino A, Coletta M, Vacca RA, De Luca P, Andria G. Validation of microarray data in human lymphoblasts shows a role of the ubiquitin-proteasome system and NF-kB in the pathogenesis of Down syndrome. BMC Med Genomics 2013; 6:24. [PMID: 23830204 PMCID: PMC3717290 DOI: 10.1186/1755-8794-6-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/29/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is a complex disorder caused by the trisomy of either the entire, or a critical region of chromosome 21 (21q22.1-22.3). Despite representing the most common cause of mental retardation, the molecular bases of the syndrome are still largely unknown. METHODS To better understand the pathogenesis of DS, we analyzed the genome-wide transcription profiles of lymphoblastoid cell lines (LCLs) from six DS and six euploid individuals and investigated differential gene expression and pathway deregulation associated with trisomy 21. Connectivity map and PASS-assisted exploration were used to identify compounds whose molecular signatures counteracted those of DS lymphoblasts and to predict their therapeutic potential. An experimental validation in DS LCLs and fetal fibroblasts was performed for the most deregulated GO categories, i.e. the ubiquitin mediated proteolysis and the NF-kB cascade. RESULTS We show, for the first time, that the level of protein ubiquitination is reduced in human DS cell lines and that proteasome activity is increased in both basal conditions and oxidative microenvironment. We also provide the first evidence that NF-kB transcription levels, a paradigm of gene expression control by ubiquitin-mediated degradation, is impaired in DS due to reduced IkB-alfa ubiquitination, increased NF-kB inhibitor (IkB-alfa) and reduced p65 nuclear fraction. Finally, the DSCR1/DYRK1A/NFAT genes were analysed. In human DS LCLs, we confirmed the presence of increased protein levels of DSCR1 and DYRK1A, and showed that the levels of the transcription factor NFATc2 were decreased in DS along with a reduction of its nuclear translocation upon induction of calcium fluxes. CONCLUSIONS The present work offers new perspectives to better understand the pathogenesis of DS and suggests a rationale for innovative approaches to treat some pathological conditions associated to DS.
Collapse
Affiliation(s)
- Barbara Granese
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Iris Scala
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Carmen Spatuzza
- Department of Biotechnological Sciences, Federico II University, Naples 80131, Italy
| | - Anna Valentino
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Marcella Coletta
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari 70126, Italy
| | - Pasquale De Luca
- Stazione Zoologica “A. Dohrn”, c/o BioGeM, Via Camporeale, Ariano Irpino 83031, Italy
| | - Generoso Andria
- Department of Pediatrics, Federico II University, Naples 80131, Italy
| |
Collapse
|
36
|
Forrester HB, Li J, Hovan D, Ivashkevich AN, Sprung CN. DNA repair genes: alternative transcription and gene expression at the exon level in response to the DNA damaging agent, ionizing radiation. PLoS One 2012; 7:e53358. [PMID: 23285288 PMCID: PMC3532210 DOI: 10.1371/journal.pone.0053358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 11/18/2022] Open
Abstract
DNA repair is an essential cellular process required to maintain genomic stability. Every cell is subjected to thousands of DNA lesions daily under normal physiological conditions. Ionizing radiation (IR) is a major DNA damaging agent that can be produced by both natural and man-made sources. A common source of radiation exposure is through its use in medical diagnostics or treatments such as for cancer radiotherapy where relatively high doses are received by patients. To understand the detailed DNA repair gene transcription response to high dose IR, gene expression exon array studies have been performed and the response to radiation in two divergent cell types, lymphoblastoid cell lines and primary fibroblasts, has been examined. These exon arrays detect expression levels across the entire gene, and have the advantage of high sensitivity and the ability to identify alternative transcripts. We found a selection of DNA repair genes, including some not previously reported, that are modulated in response to radiation. Detailed dose and time course kinetics of DNA repair transcription was conducted and results have been validated utilizing PCR methods. Alternative transcription products in response to IR were identified in several DNA repair genes including RRM2B and XPC where alternative initiation sites were found. These investigations have advanced the knowledge about the transcriptional response of DNA repair.
Collapse
Affiliation(s)
- Helen B. Forrester
- Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
| | - Jason Li
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel Hovan
- Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
| | - Alesia N. Ivashkevich
- Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
| | - Carl N. Sprung
- Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
37
|
Finnon P, Kabacik S, MacKay A, Raffy C, A'Hern R, Owen R, Badie C, Yarnold J, Bouffler S. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer. Radiother Oncol 2012; 105:329-36. [PMID: 23157981 DOI: 10.1016/j.radonc.2012.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy. MATERIALS AND METHODS Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses. RESULTS Five hundred and thirty genes were up-regulated and 819 down-regulated by ionising radiation. Irradiated samples were identified with an overall cross-validated error rate of 3.4%. Prediction analyses to classify cases and controls using unirradiated (0Gy), irradiated (4Gy) or radiation response (4-0Gy) expression profiles correctly identified samples with, respectively, 25%, 22% or 18.5% error rates. Significant inter-sample variation was observed for all cellular endpoints but cases and controls could not be distinguished. CONCLUSIONS Variation in lymphocyte radiosensitivity does not necessarily correlate with normal tissue response to radiotherapy. Gene expression analysis can predict of radiation exposure and may in the future help prediction of normal tissue radiosensitivity.
Collapse
|
38
|
Sprung CN, Yang Y, Forrester HB, Li J, Zaitseva M, Cann L, Restall T, Anderson RL, Crosbie JC, Rogers PAW. Genome-wide transcription responses to synchrotron microbeam radiotherapy. Radiat Res 2012; 178:249-59. [PMID: 22974124 DOI: 10.1667/rr2885.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunity and Infectious Disease, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Knops K, Boldt S, Wolkenhauer O, Kriehuber R. Gene expression in low- and high-dose-irradiated human peripheral blood lymphocytes: possible applications for biodosimetry. Radiat Res 2012; 178:304-12. [PMID: 22954392 DOI: 10.1667/rr2913.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To overcome the limitations of existing biodosimetry methods, we examined dose- and time-dependent gene expression changes in human peripheral blood lymphocytes after exposure to low-, medium- and high-dose ionizing radiation and searched for genes suitable for predicting radiation doses in the low-dose range. Additionally, the experiments are intended to provide new insights into the biological effects of exposures to low-, medium- and high-dose radiation. Gene expression analysis using whole human genome DNA microarrays was performed in human blood from six healthy donors irradiated ex vivo with 0, 0.02, 0.1, 0.5, 1, 2 and 4 Gy (γ rays, (137)Cs) at 6, 24 and 48 h after high-dose exposure (0.5-4 Gy), and at 24 and 48 h after low-dose exposures of 0.02 or 0.1 Gy. DNA microarray-based alterations in gene expression were found in a wide dose range in vitro and allowed us to identify nine genes with which low radiation doses could be accurately predicted with a sensitivity of 95.6%. In the low-, medium- and high-dose range, expression alterations increased with increasing dose and time after exposure, and were assigned to different biological processes such as nucleosome assembly, apoptosis and DNA repair response. We conclude from our results that gene expression profiles are suitable for predicting low-dose radiation exposure in a rapid and reliable manner and that acute low-dose exposure, as low as 20 mGy, leads to well-defined physiological responses in human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Katja Knops
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | |
Collapse
|
40
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
41
|
Giuliano S, Iadarola P, Leva V, Montecucco A, Camerini S, Crescenzi M, Salvini R, Bardoni A. An insight into the abundant proteome of 46BR.1G1 fibroblasts deficient of DNA ligase I. Electrophoresis 2012; 33:307-15. [DOI: 10.1002/elps.201100332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Serena Giuliano
- Department of Biochemistry “A. Castellani”, University of Pavia, Pavia, Italy
| | - Paolo Iadarola
- Department of Biochemistry “A. Castellani”, University of Pavia, Pavia, Italy
| | - Valentina Leva
- Institute of Molecular Genetics, National Council of Research, Pavia, Italy
| | | | - Serena Camerini
- Department of Cell Biology and Neurosciences, National Institute of Health, Rome, Italy
| | - Marco Crescenzi
- Department of Cell Biology and Neurosciences, National Institute of Health, Rome, Italy
| | - Roberta Salvini
- Department of Biochemistry “A. Castellani”, University of Pavia, Pavia, Italy
| | - Anna Bardoni
- Department of Biochemistry “A. Castellani”, University of Pavia, Pavia, Italy
| |
Collapse
|
42
|
Alternative transcript initiation and splicing as a response to DNA damage. PLoS One 2011; 6:e25758. [PMID: 22039421 PMCID: PMC3198437 DOI: 10.1371/journal.pone.0025758] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/11/2011] [Indexed: 12/22/2022] Open
Abstract
Humans are exposed to the DNA damaging agent, ionizing radiation (IR), from background radiation, medical treatments, occupational and accidental exposures. IR causes changes in transcription, but little is known about alternative transcription in response to IR on a genome-wide basis. These investigations examine the response to IR at the exon level in human cells, using exon arrays to comprehensively characterize radiation-induced transcriptional expression products. Previously uncharacterized alternative transcripts that preferentially occur following IR exposure have been discovered. A large number of genes showed alternative transcription initiation as a response to IR. Dose-response and time course kinetics have also been characterized. Interestingly, most genes showing alternative transcript induction maintained these isoforms over the dose range and times tested. Finally, clusters of co-ordinately up- and down-regulated radiation response genes were identified at specific chromosomal loci. These data provide the first genome-wide view of the transcriptional response to ionizing radiation at the exon level. This study provides novel insights into alternative transcripts as a mechanism for response to DNA damage and cell stress responses in general.
Collapse
|
43
|
Abstract
Radiation exposure through environmental, medical, and occupational settings is increasingly common. While radiation has harmful effects, it has utility in many applications such as radiotherapy for cancer. To increase the efficacy of radiation treatment and minimize its risks, a better understanding of the individual differences in radiosensitivity and the molecular basis of radiation response is needed. Here, we integrated human genetic and functional genomic approaches to study the response of human cells to radiation. We measured radiation-induced changes in gene expression and cell death in B cells from normal individuals. We found extensive individual variation in gene expression and cellular responses. To understand the genetic basis of this variation, we mapped the DNA sequence variants that influence expression response to radiation. We also identified radiation-responsive genes that regulate cell death; silencing of these genes by small interfering RNA led to an increase in radiation-induced cell death in human B cells, colorectal and prostate cancer cells. Together these results uncovered DNA variants that contribute to radiosensitivity and identified genes that can be targeted to increase the sensitivity of tumors to radiation.
Collapse
|
44
|
Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A, Amariglio N, Rechavi G, Shamir R, Shiloh Y. Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 2011; 5:336-48. [PMID: 21795128 DOI: 10.1016/j.molonc.2011.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 01/30/2023] Open
Abstract
The cellular response to DNA damage is vital for maintaining genomic stability and preventing undue cell death or cancer formation. The DNA damage response (DDR), most robustly mobilized by double-strand breaks (DSBs), rapidly activates an extensive signaling network that affects numerous cellular systems, leading to cell survival or programmed cell death. A major component of the DDR is the widespread modulation of gene expression. We analyzed together six datasets that probed transcriptional responses to ionizing radiation (IR) - our novel experimental data and 5 published datasets - to elucidate the scope of this response and identify its gene targets. According to the mRNA expression profiles we recorded from 5 cancerous and non-cancerous human cell lines after exposure to 5 Gy of IR, most of the responses were cell line-specific. Computational analysis identified significant enrichment for p53 target genes and cell cycle-related pathways among groups of up-regulated and down-regulated genes, respectively. Computational promoter analysis of the six datasets disclosed that a statistically significant number of the induced genes contained p53 binding site signatures. p53-mediated regulation had previously been documented for subsets of these gene groups, making our lists a source of novel potential p53 targets. Real-time qPCR and chromatin immunoprecipitation (ChIP) assays validated the IR-induced p53-dependent induction and p53 binding to the respective promoters of 11 selected genes. Our results demonstrate the power of a combined computational and experimental approach to identify new transcriptional targets in the DNA damage response network.
Collapse
Affiliation(s)
- Sharon Rashi-Elkeles
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Room 1022, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fukumoto R, Kiang JG. Geldanamycin analog 17-DMAG limits apoptosis in human peripheral blood cells by inhibition of p53 activation and its interaction with heat-shock protein 90 kDa after exposure to ionizing radiation. Radiat Res 2011; 176:333-45. [PMID: 21663398 DOI: 10.1667/rr2534.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC(50) = 0.93 ± 0.01 µM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1 day after irradiation and enhanced survival at 10 days. Analysis of p53-Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.
Collapse
Affiliation(s)
- Risaku Fukumoto
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|
46
|
Nam HY, Shim SM, Han BG, Jeon JP. Human lymphoblastoid cell lines: a goldmine for the biobankomics era. Pharmacogenomics 2011; 12:907-17. [DOI: 10.2217/pgs.11.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biobanking became a necessity for translating genetic discoveries into clinical practice. Approaches to personalized medicine require a new model system for functional and pharmacogenomic studies of a variety of accumulating genetic variations, as well as new research environments such as biobankomics. Human lymphoblastoid cell lines (LCLs) will provide a valuable tool to meet such new demands in the biobankomics era. The National Biobank of Korea (NBK), which is leading the Korea Biobank Project, has a large collection of LCLs derived mostly from population-based cohort samples. Using a special long-term subculture collection of NBK LCLs, biological characteristics of early passage LCLs and terminally immortalized LCLs have been investigated to promote the utilization of LCLs and provide well quality-controlled LCLs for genetic and pharmacogenomic studies. As LCLs have been successfully phenotyped for cytotoxicity in response to various stimulators, including chemotherapeutic agents, environmental chemicals and irradiation, the utility of LCLs will increase in the future. Here, we discuss current and future applications of NBK LCLs for the biobankomics era.
Collapse
Affiliation(s)
- Hye-Young Nam
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control & Prevention, Osong Health Technology Administration Complex (OHTAC), Chungbuk-do, Korea
| | - Sung-Mi Shim
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control & Prevention, Osong Health Technology Administration Complex (OHTAC), Chungbuk-do, Korea
| | - Bok-Ghee Han
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control & Prevention, Osong Health Technology Administration Complex (OHTAC), Chungbuk-do, Korea
| | | |
Collapse
|
47
|
Low dose radiation response curves, networks and pathways in human lymphoblastoid cells exposed from 1 to 10cGy of acute gamma radiation. Mutat Res 2011; 722:119-30. [PMID: 21497671 DOI: 10.1016/j.mrgentox.2011.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/05/2011] [Indexed: 01/30/2023]
Abstract
We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose-response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of ∼80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10cGy, some with suggestive evidence that transcription was modulated at doses below 1cGy. MYC, FOS and TP53 were the major network nodes of the low-dose-response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.
Collapse
|
48
|
Filiano AN, Fathallah-Shaykh HM, Fiveash J, Gage J, Cantor A, Kharbanda S, Johnson MR. Gene expression analysis in radiotherapy patients and C57BL/6 mice as a measure of exposure to ionizing radiation. Radiat Res 2011; 176:49-61. [PMID: 21361780 DOI: 10.1667/rr2419.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dose assessment after radiological disasters is imperative to decrease mortality through rationally directed medical intervention. Our goal was to identify biomarkers capable of qualitative (nonirradiated/irradiated) and/or quantitative (dose) assessment of radiation exposure. Using real-time quantitative PCR, biodosimetry genes were identified in blood samples from cancer patients undergoing total-body irradiation. Time- (5, 12, 23, 48 h) and dose- (0-8 Gy) dependent changes in gene expression were examined in C57BL/6 mice. A training set was used to derive weighted voting classification algorithms (nonirradiated/irradiated) and continuous regression (dose assessment) models that were tested in a separate validation set of mice. Of eight biodosimetry genes identified in cancer patients ( ACTA2 , BBC3 , CCNG1 , CDKN1A , GADD45A , MDK , SERPINE1 , Tnfrsf10b ), expression of BBC3 , CCNG1 , CDKN1A , SERPINE1 and Tnfrsf10b was significantly (P < 0.05) increased in irradiated mice. CCNG1 and CDKN1A expression segregated irradiated mice from controls with an accuracy, specificity and sensitivity of 96.3, 100.0 and 94.4%, respectively, at 48 h. Multiple linear regression analysis predicted doses for the 0-, 1-, 2-, 4-, 6- and 8-Gy treatment groups as 0.0 ± 0.2, 1.6 ± 1.0, 2.9 ± 1.4, 5.1 ± 2.0, 5.3 ± 0.7 and 10.5 ± 5.6 Gy, respectively. These results suggest that gene expression analysis could be incorporated into biodosimetry protocols for qualitative and quantitative assessment of radiation exposure.
Collapse
Affiliation(s)
- Ashley N Filiano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Pawlik A, Alibert O, Baulande S, Vaigot P, Tronik-Le Roux D. Transcriptome characterization uncovers the molecular response of hematopoietic cells to ionizing radiation. Radiat Res 2011; 175:66-82. [PMID: 21175349 DOI: 10.1667/rr2282.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation causes rapid and acute suppression of hematopoietic cells that manifests as the hematopoietic syndrome. However, the roles of molecules and regulatory pathways induced in vivo by irradiation of different hematopoietic cells have not been completely elaborated. Using a strategy that combined different microarray bioinformatics tools, we identified gene networks that might be involved in the early response of hematopoietic cells radiation response in vivo. The grouping of similar time-ordered gene expression profiles using quality threshold clustering enabled the successful identification of common binding sites for 56 transcription factors that may be involved in the regulation of the early radiation response. We also identified novel genes that are responsive to the transformation-related protein 53; all of these genes were biologically validated in p53-transgenic null mice. Extension of the analysis to purified bone marrow cells including highly purified long-term hematopoietic stem cells, combined with functional classification, provided evidence of gene expression modifications that were largely unknown in this primitive population. Our methodology proved particularly useful for analyzing the transcriptional regulation of the complex ionizing radiation response of hematopoietic cells. Our data may help to elucidate the molecular mechanisms involved in tissue radiosensitivity and to identify potential targets for improving treatment in radiation emergencies.
Collapse
|
50
|
Prioritizing candidate genetic modifiers of BRCA1 and BRCA2 using a combinatorial analysis of global expression and polymorphism association studies of breast cancer. Methods Mol Biol 2010. [PMID: 20721735 DOI: 10.1007/978-1-60761-759-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Epidemiological evidence from different studies has shown that genes harboring sequence variations may modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Current attempts to identify genetic modifiers of BRCA1 and BRCA2 associated risk have focused on a candidate gene-based approach or the development of large genome-wide association studies. However, both methods have notable limitations. This chapter describes a novel approach for analyzing gene expression differences to prioritize candidate modifier genes for single nucleotide polymorphism association studies. The advantage that gives this strategy an edge over other candidate gene-based studies is its potential to identify candidate genes that interact with exogenous risk factors to cause or modify cancer, without detailed a priori knowledge of the molecular pathways involved.
Collapse
|