1
|
Back AM, Connor B, McCaughey-Chapman A. Oligodendrocytes in Huntington's Disease: A Review of Oligodendrocyte Pathology and Current Cell Reprogramming Approaches for Oligodendrocyte Modelling of Huntington's Disease. J Neurosci Res 2024; 102:e70010. [PMID: 39714111 DOI: 10.1002/jnr.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons. Myelin is a lipid-rich sheath that wraps around axons, facilitating signal conduction and neuronal viability. The degeneration of myelin hinders effective communication and leaves neurons vulnerable to external damage and subsequent degeneration. Abnormalities in oligodendrocyte maturation have been established in the HD human brain, however, investigations into the underlying dysfunction of human oligodendrocytes in HD are limited. This review will detail the involvement of oligodendrocytes and white matter damage in HD. Recent developments in modeling human-specific oligodendrocyte pathology in HD will be discussed, with a particular focus on emerging somatic cell reprogramming approaches.
Collapse
Affiliation(s)
- Amelie Marie Back
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Gao P, Kajiya M, Motoike S, Ikeya M, Yang J. Application of mesenchymal stem/stromal cells in periodontal regeneration: Opportunities and challenges. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:95-108. [PMID: 38314143 PMCID: PMC10837070 DOI: 10.1016/j.jdsr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Guided tissue regeneration (GTR) has been widely used in the periodontal treatment of intrabony and furcation defects for nearly four decades. The treatment outcomes have shown effectiveness in reducing pocket depth, improving attachment gain and bone filling in periodontal tissue. Although applying GTR could reconstruct the periodontal tissue, the surgical indications are relatively narrow, and some complications and race ethic problems bring new challenges. Therefore, it is challenging to achieve a consensus concerning the clinical benefits of GTR. With the appearance of stem cell-based regenerative medicine, mesenchymal stem/stromal cells (MSCs) have been considered a promising cell resource for periodontal regeneration. In this review, we highlight preclinical and clinical periodontal regeneration using MSCs derived from distinct origins, including non-odontogenic and odontogenic tissues and induced pluripotent stem cells, and discuss the transplantation procedures, therapeutic mechanisms, and concerns to evaluate the effectiveness of MSCs.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Souta Motoike
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Jingmei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Tharmapalan V, Wagner W. Biomarkers for aging of blood - how transferable are they between mice and humans? Exp Hematol 2024; 140:104600. [PMID: 39128692 DOI: 10.1016/j.exphem.2024.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Aging significantly impacts the hematopoietic system, reducing its regenerative capacity and ability to restore homeostasis after stress. Mouse models have been invaluable in studying this process due to their shorter lifespan and the ability to explore genetic, treatment, and environmental influences on aging. However, not all aspects of aging are mirrored between species. This review compares three key aging biomarkers in the hematopoietic systems of mice and humans: myeloid bias, telomere attrition, and epigenetic clocks. Myeloid bias, marked by an increased fraction of myeloid cells and decreased lymphoid cells, is a significant aging marker in mice but is scarcely observed in humans after childhood. Conversely, telomere length is a robust aging biomarker in humans, whereas mice exhibit significantly different telomere dynamics, making telomere length less reliable in the murine system. Epigenetic clocks, based on DNA methylation changes at specific genomic regions, provide precise estimates of chronologic age in both mice and humans. Notably, age-associated regions in mice and humans occur at homologous genomic locations. Epigenetic clocks, depending on the epigenetic signatures used, also capture aspects of biological aging, offering powerful tools to assess genetic and environmental impacts on aging. Taken together, not all blood aging biomarkers are transferable between mice and humans. When using murine models to extrapolate human aging, it may be advantageous to focus on aging phenomena observed in both species. In conclusion, although mouse models offer significant insights, selecting appropriate biomarkers is crucial for translating findings to human aging.
Collapse
Affiliation(s)
- Vithurithra Tharmapalan
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
4
|
Ma L, Yu J, Fu Y, He X, Ge S, Jia R, Zhuang A, Yang Z, Fan X. The dual role of cellular senescence in human tumor progression and therapy. MedComm (Beijing) 2024; 5:e695. [PMID: 39161800 PMCID: PMC11331035 DOI: 10.1002/mco2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yidian Fu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaoyu He
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Zhi Yang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
5
|
Zhao H, Zhao H, Ji S. A Mesenchymal stem cell Aging Framework, from Mechanisms to Strategies. Stem Cell Rev Rep 2024; 20:1420-1440. [PMID: 38727878 DOI: 10.1007/s12015-024-10732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 08/13/2024]
Abstract
Mesenchymal stem cells (MSCs) are extensively researched for therapeutic applications in tissue engineering and show significant potential for clinical use. Intrinsic or extrinsic factors causing senescence may lead to reduced proliferation, aberrant differentiation, weakened immunoregulation, and increased inflammation, ultimately limiting the potential of MSCs. It is crucial to comprehend the molecular pathways and internal processes responsible for the decline in MSC function due to senescence in order to devise innovative approaches for rejuvenating senescent MSCs and enhancing MSC treatment. We investigate the main molecular processes involved in senescence, aiming to provide a thorough understanding of senescence-related issues in MSCs. Additionally, we analyze the most recent advancements in cutting-edge approaches to combat MSC senescence based on current research. We are curious whether the aging process of stem cells results in a permanent "memory" and if cellular reprogramming may potentially revert the aging epigenome to a more youthful state.
Collapse
Affiliation(s)
- Hongqing Zhao
- Nanbu County People's Hospital, Nanchong City, 637300, Sichuan Province, China
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Houming Zhao
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China
| | - Shuaifei Ji
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China.
| |
Collapse
|
6
|
Levy D, Abadchi SN, Shababi N, Ravari MR, Pirolli NH, Bergeron C, Obiorah A, Mokhtari‐Esbuie F, Gheshlaghi S, Abraham JM, Smith IM, Powsner EH, Solomon TJ, Harmon JW, Jay SM. Induced Pluripotent Stem Cell-Derived Extracellular Vesicles Promote Wound Repair in a Diabetic Mouse Model via an Anti-Inflammatory Immunomodulatory Mechanism. Adv Healthc Mater 2023; 12:e2300879. [PMID: 37335811 PMCID: PMC10592465 DOI: 10.1002/adhm.202300879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have recently been explored in clinical trials for treatment of diseases with complex pathophysiologies. However, production of MSC EVs is currently hampered by donor-specific characteristics and limited ex vivo expansion capabilities before decreased potency, thus restricting their potential as a scalable and reproducible therapeutic. Induced pluripotent stem cells (iPSCs) represent a self-renewing source for obtaining differentiated iPSC-derived MSCs (iMSCs), circumventing both scalability and donor variability concerns for therapeutic EV production. Thus, it is initially sought to evaluate the therapeutic potential of iMSC EVs. Interestingly, while utilizing undifferentiated iPSC EVs as a control, it is found that their vascularization bioactivity is similar and their anti-inflammatory bioactivity is superior to donor-matched iMSC EVs in cell-based assays. To supplement this initial in vitro bioactivity screen, a diabetic wound healing mouse model where both the pro-vascularization and anti-inflammatory activity of these EVs would be beneficial is employed. In this in vivo model, iPSC EVs more effectively mediate inflammation resolution within the wound bed. Combined with the lack of additional differentiation steps required for iMSC generation, these results support the use of undifferentiated iPSCs as a source for therapeutic EV production with respect to both scalability and efficacy.
Collapse
Affiliation(s)
- Daniel Levy
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | | | - Niloufar Shababi
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | | | - Nicholas H. Pirolli
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Cade Bergeron
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Angel Obiorah
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | | | - Shayan Gheshlaghi
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - John M. Abraham
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - Ian M. Smith
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Emily H. Powsner
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Talia J. Solomon
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - John W. Harmon
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - Steven M. Jay
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkMD20742USA
| |
Collapse
|
7
|
Salz L, Seitz A, Schäfer D, Franzen J, Holzer T, Garcia-Prieto CA, Bürger I, Hardt O, Esteller M, Wagner W. Culture expansion of CAR T cells results in aberrant DNA methylation that is associated with adverse clinical outcome. Leukemia 2023; 37:1868-1878. [PMID: 37452103 PMCID: PMC10457202 DOI: 10.1038/s41375-023-01966-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Chimeric antigen receptor (CAR) T cells provide new perspectives for treatment of hematological malignancies. Manufacturing of these cellular products includes culture expansion procedures, which may affect cellular integrity and therapeutic outcome. In this study, we investigated culture-associated epigenetic changes in CAR T cells and found continuous gain of DNAm, particularly within genes that are relevant for T cell function. Hypermethylation in many genes, such as TCF7, RUNX1, and TOX, was reflected by transcriptional downregulation. 332 CG dinucleotides (CpGs) showed an almost linear gain in methylation with cell culture time, albeit neighboring CpGs were not coherently regulated on the same DNA strands. An epigenetic signature based on 14 of these culture-associated CpGs predicted cell culture time across various culture conditions. Notably, even in CAR T cell products of similar culture time higher DNAm levels at these CpGs were associated with significantly reduced long-term survival post transfusion. Our data demonstrate that cell culture expansion of CAR T cells evokes DNA hypermethylation at specific sites in the genome and the signature may also reflect loss of potential in CAR T cell products. Hence, reduced cultivation periods are beneficial to avoid dysfunctional methylation programs that seem to be associated with worse therapeutic outcome.
Collapse
Affiliation(s)
- Lucia Salz
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Alexander Seitz
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Daniel Schäfer
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Julia Franzen
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Tatjana Holzer
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Carlos A Garcia-Prieto
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Iris Bürger
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, Bergisch, Gladbach, Germany
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
8
|
Puri D, Wagner W. Epigenetic rejuvenation by partial reprogramming. Bioessays 2023; 45:e2200208. [PMID: 36871150 DOI: 10.1002/bies.202200208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 03/06/2023]
Abstract
Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age-associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age-associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de-differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti-ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed.
Collapse
Affiliation(s)
- Deepika Puri
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
9
|
Levy D, Abadchi SN, Shababi N, Ravari MR, Pirolli NH, Bergeron C, Obiorah A, Mokhtari-Esbuie F, Gheshlaghi S, Abraham JM, Smith IM, Powsner E, Solomon T, Harmon JW, Jay SM. Induced pluripotent stem cell-derived extracellular vesicles promote wound repair in a diabetic mouse model via an anti-inflammatory immunomodulatory mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533334. [PMID: 36993554 PMCID: PMC10055496 DOI: 10.1101/2023.03.19.533334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have recently been widely explored in clinical trials for treatment of diseases with complex pathophysiology. However, production of MSC EVs is currently hampered by donor-specific characteristics and limited ex vivo expansion capabilities before decreased potency, thus restricting their potential as a scalable and reproducible therapeutic. Induced pluripotent stem cells (iPSCs) represent a self-renewing source for obtaining differentiated iPSC-derived MSCs (iMSCs), circumventing both scalability and donor variability concerns for therapeutic EV production. Thus, we initially sought to evaluate the therapeutic potential of iMSC EVs. Interestingly, while utilizing undifferentiated iPSC EVs as a control, we found that their vascularization bioactivity was similar and their anti-inflammatory bioactivity was superior to donor-matched iMSC EVs in cell-based assays. To supplement this initial in vitro bioactivity screen, we employed a diabetic wound healing mouse model where both the pro-vascularization and anti-inflammatory activity of these EVs would be beneficial. In this in vivo model, iPSC EVs more effectively mediated inflammation resolution within the wound bed. Combined with the lack of additional differentiation steps required for iMSC generation, these results support the use of undifferentiated iPSCs as a source for therapeutic EV production with respect to both scalability and efficacy.
Collapse
Affiliation(s)
- Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | - Niloufar Shababi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Mohsen Rouhani Ravari
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Nicholas H. Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Cade Bergeron
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Angel Obiorah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Farzad Mokhtari-Esbuie
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Shayan Gheshlaghi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - John M. Abraham
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Ian M. Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Emily Powsner
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Talia Solomon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - John W. Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
10
|
Kwiatkowska KM, Mavrogonatou E, Papadopoulou A, Sala C, Calzari L, Gentilini D, Bacalini MG, Dall’Olio D, Castellani G, Ravaioli F, Franceschi C, Garagnani P, Pirazzini C, Kletsas D. Heterogeneity of Cellular Senescence: Cell Type-Specific and Senescence Stimulus-Dependent Epigenetic Alterations. Cells 2023; 12:cells12060927. [PMID: 36980268 PMCID: PMC10047656 DOI: 10.3390/cells12060927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The aim of the present study was to provide a comprehensive characterization of whole genome DNA methylation patterns in replicative and ionizing irradiation- or doxorubicin-induced premature senescence, exhaustively exploring epigenetic modifications in three different human cell types: in somatic diploid skin fibroblasts and in bone marrow- and adipose-derived mesenchymal stem cells. With CpG-wise differential analysis, three epigenetic signatures were identified: (a) cell type- and treatment-specific signature; (b) cell type-specific senescence-related signature; and (c) cell type-transversal replicative senescence-related signature. Cluster analysis revealed that only replicative senescent cells created a distinct group reflecting notable alterations in the DNA methylation patterns accompanying this cellular state. Replicative senescence-associated epigenetic changes seemed to be of such an extent that they surpassed interpersonal dissimilarities. Enrichment in pathways linked to the nervous system and involved in the neurological functions was shown after pathway analysis of genes involved in the cell type-transversal replicative senescence-related signature. Although DNA methylation clock analysis provided no statistically significant evidence on epigenetic age acceleration related to senescence, a persistent trend of increased biological age in replicative senescent cultures of all three cell types was observed. Overall, this work indicates the heterogeneity of senescent cells depending on the tissue of origin and the type of senescence inducer that could be putatively translated to a distinct impact on tissue homeostasis.
Collapse
Affiliation(s)
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Claudia Sala
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Milan, Italy
- Department of Brain and Behavioral Sciences, Università di Pavia, 27100 Pavia, Italy
| | | | - Daniele Dall’Olio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Gastone Castellani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Francesco Ravaioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, 603022 Nizhny Novgorod, Russia
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence: (P.G.); (C.P.); (D.K.)
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Correspondence: (P.G.); (C.P.); (D.K.)
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
- Correspondence: (P.G.); (C.P.); (D.K.)
| |
Collapse
|
11
|
Bernardo MP, Rodrigues BC, Sechi A, Mattoso LH. Grafting of maleic anhydride on poly(lactic acid)/hydroxyapatite composites augments their ability to support osteogenic differentiation of human mesenchymal stem cells. J Biomater Appl 2023; 37:1286-1299. [PMID: 36537783 DOI: 10.1177/08853282221147422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Implantation of bone substitutes is the treatment of choice for bone defects exceeding a critical size, when self-healing becomes impossible. The use of 3D printing techniques allows the construction of scaffolds with customized properties. However, there is a lack of suitable materials for bone replacement. In this study, maleic anhydride-grafted poly (lactic acid) (MAPLA) was investigated as a potential compatibilizer agent for 3D-printed polylactic acid (PLA)/hydroxyapatite (HA) composites, in order to enhance the physicochemical and biological properties of the scaffolds. The grafting process was performed by reactive processing in a torque rheometer, with the evaluation of the use of different concentrations of maleic anhydride (MA). The success of the grafting reaction was confirmed by titration of acid groups and spectroscopic analyses, indicating the presence of succinic anhydride groups on the PLA chain. Morphological analysis of the PLA/HA 3D scaffolds, using SEM, revealed that the use of the compatibilizer resulted in a structure free from voids and holes. The compatibilization also increased the degradation process. On the other hand, TGA and DSC analyses revealed that the use of a compatibilizer had little effect on the thermal properties of the composite. Most importantly, the samples with compatibilizer were demonstrated to have a minimal cytotoxic effect on human mesenchymal stem cells (MSCs), promoting the osteogenic differentiation of these cells in a medium without the addition of classical osteogenic factors. Therefore, the grafting of PLA/HA composites improved their physicochemical and biological properties, especially the induction of MSC osteogenic differentiation, demonstrating the potential of these scaffolds for bone tissue replacement.
Collapse
Affiliation(s)
- Marcela P Bernardo
- National Nanotechnology Laboratory for Agribusiness, Brazilian Agricultural Research Corporation, 564899Embrapa Instrumentation, São Paulo, Brazil.,Department of Cell and Tumor Biology, Faculty of Medicine, 9165RWTH Aachen University, Aachen, Germany
| | - Bruna C Rodrigues
- National Nanotechnology Laboratory for Agribusiness, Brazilian Agricultural Research Corporation, 564899Embrapa Instrumentation, São Paulo, Brazil
| | - Antonio Sechi
- Department of Cell and Tumor Biology, Faculty of Medicine, 9165RWTH Aachen University, Aachen, Germany
| | - Luiz Hc Mattoso
- National Nanotechnology Laboratory for Agribusiness, Brazilian Agricultural Research Corporation, 564899Embrapa Instrumentation, São Paulo, Brazil
| |
Collapse
|
12
|
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Rodríguez-Fernández S, Hermida-Gómez T, Blanco-García FJ, Fuentes-Boquete I, Vaamonde-García C, Díaz-Prado S. Generation of human immortalized chondrocytes from osteoarthritic and healthy cartilage : a new tool for cartilage pathophysiology studies. Bone Joint Res 2023; 12:46-57. [PMID: 36647698 PMCID: PMC9872042 DOI: 10.1302/2046-3758.121.bjr-2022-0207.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA. METHODS Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed. RESULTS Coexpression of both transgenes (SV40 and hTERT) were observed in the nuclei of transduced chondrocytes. Generated chondrocyte cell lines showed a high proliferation capacity and less than 2% of senescent cells. These cell lines were able to form 3D aggregates analogous to those generated by primary articular chondrocytes, but were unsuccessful in synthesizing cartilage-like tissue when seeded on type I collagen sponges. However, generated chondrocyte cell lines maintained the potential to respond to IL-1β stimulation. CONCLUSION Through SV40LT and hTERT transduction, we successfully immortalized chondrocytes. These immortalized chondrocytes were able to overcome senescence in vitro, but were incapable of synthesizing cartilage-like tissue under the experimental conditions. Nonetheless, these chondrocyte cell lines could be advantageous for OA investigation since, similarly to primary articular chondrocytes, they showed capacity to upregulate inflammatory mediators in response to the IL-1β cytokine.Cite this article: Bone Joint Res 2023;12(1):46-57.
Collapse
Affiliation(s)
- María Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Clara Sanjurjo-Rodríguez
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Silvia Rodríguez-Fernández
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, Spain
| | - Tamara Hermida-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain,Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain
| | - Francisco J. Blanco-García
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain,Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, Spain,Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain
| | - Isaac Fuentes-Boquete
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain,Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, Spain
| | - Carlos Vaamonde-García
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Departamento de Biología, Facultad de Ciencias, Universidade da Coruña (UDC), A Coruña, Spain
| | - Silvia Díaz-Prado
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain,Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, Spain, Silvia Díaz-Prado. E-mail:
| |
Collapse
|
13
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Li A, Koch Z, Ideker T. Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging. J Intern Med 2022; 292:733-744. [PMID: 35726002 DOI: 10.1111/joim.13533] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Numerous studies have shown that epigenetic age-an individual's degree of aging based on patterns of DNA methylation-can be computed and is associated with an array of factors including diet, lifestyle, genetics, and disease. One can expect that still further associations will emerge with additional aging research, but to what end? Prediction of age was an important first step, but-in our view-the focus must shift from chasing increasingly accurate age computations to understanding the links between the epigenome and the mechanisms and physiological changes of aging. Here, we outline emerging areas of epigenetic aging research that prioritize biological understanding and clinical application. First, we survey recent progress in epigenetic clocks, which are beginning to predict not only chronological age but aging outcomes such as all-cause mortality and onset of disease, or which integrate aging signals across multiple biological processes. Second, we discuss research that exemplifies how investigation of the epigenome is building a mechanistic theory of aging and informing clinical practice. Such examples include identifying methylation sites and the genes most strongly predictive of aging-a subset of which have shown strong potential as biomarkers of neurodegenerative disease and cancer; relating epigenetic clock predictions to hallmarks of aging; and using longitudinal studies of DNA methylation to characterize human disease, resulting in the discovery of epigenetic indications of type 1 diabetes and the propensity for psychotic experiences.
Collapse
Affiliation(s)
- Adam Li
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Zane Koch
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9804014. [PMID: 35958108 PMCID: PMC9343081 DOI: 10.34133/2022/9804014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the past decade regarding our understanding of the gut microbiome's role in human health. Currently, however, a comprehensive and focused review marrying the two distinct fields of gut microbiome and material research is lacking. To bridge the gap, the current paper discusses critical aspects of the rapidly emerging research topic of "material engineering in the gut microbiome and human health." By engaging scientists with diverse backgrounds in biomaterials, gut-microbiome axis, neuroscience, synthetic biology, tissue engineering, and biosensing in a dialogue, our goal is to accelerate the development of research tools for gut microbiome research and the development of therapeutics that target the gut microbiome. For this purpose, state-of-the-art knowledge is presented here on biomaterial technologies that facilitate the study, analysis, and manipulation of the gut microbiome, including intestinal organoids, gut-on-chip models, hydrogels for spatial mapping of gut microbiome compositions, microbiome biosensors, and oral bacteria delivery systems. In addition, a discussion is provided regarding the microbiome-gut-brain axis and the critical roles that biomaterials can play to investigate and regulate the axis. Lastly, perspectives are provided regarding future directions on how to develop and use novel biomaterials in gut microbiome research, as well as essential regulatory rules in clinical translation. In this way, we hope to inspire research into future biomaterial technologies to advance gut microbiome research and gut microbiome-based theragnostics.
Collapse
Affiliation(s)
- Letao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. Sci Rep 2022; 12:2333. [PMID: 35149687 PMCID: PMC8837663 DOI: 10.1038/s41598-022-05207-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bone defects stand out as one of the greatest challenges of reconstructive surgery. Fused deposition modelling (FDM) allows for the printing of 3D scaffolds tailored to the morphology and size of bone damage in a patient-specific and high-precision manner. However, FDM still suffers from the lack of materials capable of efficiently supporting osteogenesis. In this study, we developed 3D-printed porous scaffolds composed of polylactic acid/hydroxyapatite (PLA/HA) composites with high ceramic contents (above 20%, w/w) by FDM. The mechanical properties of the PLA/HA scaffolds were compatible with those of trabecular bone. In vitro degradation tests revealed that HA can neutralize the acidification effect caused by PLA degradation, while simultaneously releasing calcium and phosphate ions. Importantly, 3D-printed PLA/HA did not induce the upregulation of activation markers nor the expression of inflammatory cytokines in dendritic cells thus exhibiting no immune-stimulatory properties in vitro. Evaluations using human mesenchymal stem cells (MSC) showed that pure PLA scaffolds exerted an osteoconductive effect, whereas PLA/HA scaffolds efficiently induced osteogenic differentiation of MSC even in the absence of any classical osteogenic stimuli. Our findings indicate that 3D-printed PLA scaffolds loaded with high concentrations of HA are most suitable for future applications in bone tissue engineering.
Collapse
|
17
|
Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina (B Aires) 2021; 58:medicina58010061. [PMID: 35056369 PMCID: PMC8779043 DOI: 10.3390/medicina58010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stem cells with the potential ability to differentiate into various cells and the ability to self-renew and resemble fibroblasts. These cells can adhere to plastic to facilitate the culture process. MSCs can be used in research into tissue biotechnology and rejuvenation medicine. MSCs are also beneficial in recipient tissue and differentiate as a breakthrough strategy through paracrine activity. Many databases have shown MSC-based treatment can be beneficial in the reduction of osteogenesis induced by senescence. In this article, we will discuss the potential effect of MSCs in senescence cells related to osteogenesis.
Collapse
|
18
|
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Rodríguez-Fernández S, Castro-Viñuelas R, Hermida-Gómez T, Blanco-García FJ, Fuentes-Boquete I, Díaz-Prado S. Generation of Mesenchymal Cell Lines Derived from Aged Donors. Int J Mol Sci 2021; 22:10667. [PMID: 34639008 PMCID: PMC8508916 DOI: 10.3390/ijms221910667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Mesenchymal stromal cells (MSCs) have the capacity for self-renewal and multi-differentiation, and for this reason they are considered a potential cellular source in regenerative medicine of cartilage and bone. However, research on this field is impaired by the predisposition of primary MSCs to senescence during culture expansion. Therefore, the aim of this study was to generate and characterize immortalized MSC (iMSC) lines from aged donors. Methods: Primary MSCs were immortalized by transduction of simian virus 40 large T antigen (SV40LT) and human telomerase reverse transcriptase (hTERT). Proliferation, senescence, phenotype and multi-differentiation potential of the resulting iMSC lines were analyzed. Results: MSCs proliferate faster than primary MSCs, overcome senescence and are phenotypically similar to primary MSCs. Nevertheless, their multi-differentiation potential is unbalanced towards the osteogenic lineage. There are no clear differences between osteoarthritis (OA) and non-OA iMSCs in terms of proliferation, senescence, phenotype or differentiation potential. Conclusions: Primary MSCs obtained from elderly patients can be immortalized by transduction of SV40LT and hTERT. The high osteogenic potential of iMSCs converts them into an excellent cellular source to take part in in vitro models to study bone tissue engineering.
Collapse
Affiliation(s)
- María Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
| | - Clara Sanjurjo-Rodríguez
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Silvia Rodríguez-Fernández
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
| | - Rocío Castro-Viñuelas
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
| | - Tamara Hermida-Gómez
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (UDC-CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Francisco J. Blanco-García
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (UDC-CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Isaac Fuentes-Boquete
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Silvia Díaz-Prado
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain; (M.P.-R.); (C.S.-R.); (S.R.-F.); (R.C.-V.); (I.F.-B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (T.H.-G.); (F.J.B.-G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
19
|
Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:243. [PMID: 34325734 PMCID: PMC8323321 DOI: 10.1186/s13046-021-02035-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a complex physiological state whose main feature is proliferative arrest. Cellular senescence can be considered the reverse of cell immortalization and continuous tumor growth. However, cellular senescence has many physiological functions beyond being a putative tumor suppressive trait. It remains unknown whether low levels of oxygen or hypoxia, which is a feature of every tissue in the organism, modulate cellular senescence, altering its capacity to suppress the limitation of proliferation. It has been observed that the lifespan of mammalian primary cells is increased under low oxygen conditions. Additionally, hypoxia promotes self-renewal and pluripotency maintenance in adult and embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and cancer stem cells (CSCs). In this study, we discuss the role of hypoxia facilitating senescence bypass during malignant transformation and acquisition of stemness properties, which all contribute to tumor development and cancer disease aggressiveness.
Collapse
Affiliation(s)
- Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
20
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
21
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
22
|
Endothelin-1 enhances the regenerative capability of human bone marrow-derived mesenchymal stem cells in a sciatic nerve injury mouse model. Biomaterials 2021; 275:120980. [PMID: 34198163 DOI: 10.1016/j.biomaterials.2021.120980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022]
Abstract
We expanded the application of endothelin-1 (EDN1) by treating human mesenchymal stem cell (hMSC) organotypic spinal cord slice cultures with EDN1. EDN1-treated hMSCs significantly enhanced neuronal outgrowth. The underlying mechanism of this effect was evaluated via whole-genome methylation. EDN1 increased whole-genome demethylation and euchromatin. To observe demethylation downstream of EDN1, deaminases and glycosylases were screened, and APOBEC1 was found to cause global demethylation and OCT4 gene activation. The sequence of methyl-CpG-binding domain showed similar patterns between EDN1- and APOBEC1-induced demethylation. SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 4 (SMARC A4) and SMARC subfamily D, member 2 (SMARC D2) were screened via methyl-CpG-binding domain sequencing as a modulator in response to EDN1. Chromatin immunoprecipitation of the H3K9me3, H3K27me3, and H3K4me4 binding sequences on the APOBEC1 promoter was analyzed following treatment with or without siSMARC A4 or siSMARC D2. The results suggested that SMARC A4 and SMARC D2 induced a transition from H3K9me3 to H3K4me3 in the APOBEC1 promoter region following EDN1 treatment. Correlations between EDN1 pathways and therapeutic efficacy in hBM-MSCs were determined in a sciatic nerve injury mouse model. Thus, EDN1 may be a useful novel-concept bioactive peptide and biomaterial component for improving hMSC regenerative capability.
Collapse
|
23
|
DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift. Commun Biol 2021; 4:598. [PMID: 34011964 PMCID: PMC8134454 DOI: 10.1038/s42003-021-02116-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/14/2021] [Indexed: 12/27/2022] Open
Abstract
Culture expansion of primary cells evokes highly reproducible DNA methylation (DNAm) changes. We have identified CG dinucleotides (CpGs) that become continuously hyper- or hypomethylated during long-term culture of mesenchymal stem cells (MSCs) and other cell types. Bisulfite barcoded amplicon sequencing (BBA-seq) demonstrated that DNAm patterns of neighboring CpGs become more complex without evidence of continuous pattern development and without association to oligoclonal subpopulations. Circularized chromatin conformation capture (4C) revealed reproducible changes in nuclear organization between early and late passages, while there was no enriched interaction with other genomic regions that also harbor culture-associated DNAm changes. Chromatin immunoprecipitation of CTCF did not show significant differences during long-term culture of MSCs, however culture-associated hypermethylation was enriched at CTCF binding sites and hypomethylated CpGs were devoid of CTCF. Taken together, our results support the notion that DNAm changes during culture-expansion are not directly regulated by a targeted mechanism but rather resemble epigenetic drift. Julia Franzen et al. investigate if changes in DNA methylation at specific genetic loci during cell culture expansion are due to a specific mechanism or gradual deregulation of an epigenetic state. Their results suggest that changes in CpG methylation are due to indirect epigenetic drift, rather than a consequence of targeting by DNA methyltransferases.
Collapse
|
24
|
MacDougall G, Brown LY, Kantor B, Chiba-Falek O. The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Mol Ther 2021; 29:949-972. [PMID: 33429080 PMCID: PMC7934639 DOI: 10.1016/j.ymthe.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most prevalent age-related neurodegenerative diseases, and currently no effective clinical treatments exist for either, despite decades of clinical trials. The failure to translate preclinical findings into effective treatments is indicative of a problem in the current evaluation pipeline for potential therapeutics. At present, there are no useful animal models for AD and PD research that reflect the entire biology of the diseases, specifically, the more common non-Mendelian forms. Whereas the field continues to seek suitable rodent models for investigating potential therapeutics for these diseases, rodent models have still been used primarily for preclinical studies. Here, we advocate for a paradigm shift toward the application of human-induced pluripotent stem cell (hiPSC)-derived systems for PD and AD modeling and the development of improved human-based models in a dish for drug discovery and preclinical assessment of therapeutic targets.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Logan Y Brown
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Garcia-Gomez A, Li T, de la Calle-Fabregat C, Rodríguez-Ubreva J, Ciudad L, Català-Moll F, Godoy-Tena G, Martín-Sánchez M, San-Segundo L, Muntión S, Morales X, Ortiz-de-Solórzano C, Oyarzabal J, San José-Enériz E, Esteller M, Agirre X, Prosper F, Garayoa M, Ballestar E. Targeting aberrant DNA methylation in mesenchymal stromal cells as a treatment for myeloma bone disease. Nat Commun 2021; 12:421. [PMID: 33462210 PMCID: PMC7813865 DOI: 10.1038/s41467-020-20715-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) progression and myeloma-associated bone disease (MBD) are highly dependent on bone marrow mesenchymal stromal cells (MSCs). MM-MSCs exhibit abnormal transcriptomes, suggesting the involvement of epigenetic mechanisms governing their tumor-promoting functions and prolonged osteoblast suppression. Here, we identify widespread DNA methylation alterations of bone marrow-isolated MSCs from distinct MM stages, particularly in Homeobox genes involved in osteogenic differentiation that associate with their aberrant expression. Moreover, these DNA methylation changes are recapitulated in vitro by exposing MSCs from healthy individuals to MM cells. Pharmacological targeting of DNMTs and G9a with dual inhibitor CM-272 reverts the expression of hypermethylated osteogenic regulators and promotes osteoblast differentiation of myeloma MSCs. Most importantly, CM-272 treatment prevents tumor-associated bone loss and reduces tumor burden in a murine myeloma model. Our results demonstrate that epigenetic aberrancies mediate the impairment of bone formation in MM, and its targeting by CM-272 is able to reverse MBD. Mesenchymal stromal cells (MSCs) have been shown to support multiple myeloma (MM) development. Here, MSCs isolated from the bone marrow of MM patients are shown to have altered DNA methylation patterns and a methyltransferase inhibitor reverts MM-associated bone loss and reduces tumour burden in MM murine models.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain. .,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Català-Moll
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain
| | - Montserrat Martín-Sánchez
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Laura San-Segundo
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Sandra Muntión
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Xabier Morales
- Imaging Platform, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Carlos Ortiz-de-Solórzano
- Imaging Platform, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Edurne San José-Enériz
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xabier Agirre
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Felipe Prosper
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain. .,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
26
|
Nath SC, Harper L, Rancourt DE. Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Front Bioeng Biotechnol 2020; 8:599674. [PMID: 33324625 PMCID: PMC7726241 DOI: 10.3389/fbioe.2020.599674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Cell-based therapy (CBT) is attracting much attention to treat incurable diseases. In recent years, several clinical trials have been conducted using human pluripotent stem cells (hPSCs), and other potential therapeutic cells. Various private- and government-funded organizations are investing in finding permanent cures for diseases that are difficult or expensive to treat over a lifespan, such as age-related macular degeneration, Parkinson’s disease, or diabetes, etc. Clinical-grade cell manufacturing requiring current good manufacturing practices (cGMP) has therefore become an important issue to make safe and effective CBT products. Current cell production practices are adopted from conventional antibody or protein production in the pharmaceutical industry, wherein cells are used as a vector to produce the desired products. With CBT, however, the “cells are the final products” and sensitive to physico- chemical parameters and storage conditions anywhere between isolation and patient administration. In addition, the manufacturing of cellular products involves multi-stage processing, including cell isolation, genetic modification, PSC derivation, expansion, differentiation, purification, characterization, cryopreservation, etc. Posing a high risk of product contamination, these can be time- and cost- prohibitive due to maintenance of cGMP. The growing demand of CBT needs integrated manufacturing systems that can provide a more simple and cost-effective platform. Here, we discuss the current methods and limitations of CBT, based upon experience with biologics production. We review current cell manufacturing integration, automation and provide an overview of some important considerations and best cGMP practices. Finally, we propose how multi-stage cell processing can be integrated into a single bioreactor, in order to develop streamlined cGMP-compliant cell processing systems.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lane Harper
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
McNeill RV, Ziegler GC, Radtke F, Nieberler M, Lesch KP, Kittel-Schneider S. Mental health dished up-the use of iPSC models in neuropsychiatric research. J Neural Transm (Vienna) 2020; 127:1547-1568. [PMID: 32377792 PMCID: PMC7578166 DOI: 10.1007/s00702-020-02197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy University Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
28
|
MicroRNAomic Transcriptomic Analysis Reveal Deregulation of Clustered Cellular Functions in Human Mesenchymal Stem Cells During in Vitro Passaging. Stem Cell Rev Rep 2020; 16:222-238. [PMID: 31848878 DOI: 10.1007/s12015-019-09924-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical trials using human mesenchymal stem/stromal cells (hMSCs) for cell replacement therapy showed varied outcomes, where cells' efficacy has been perceived as the limiting factor. In particular, the quality and number of the expanded cells in vitro. In this study, we aimed to determine molecular signatures of hMSCs derived from the pulp of extracted deciduous teeth (SHED) and Wharton's jelly (WJSCs) that associated with cellular ageing during in vitro passaging. We observed distinct phenotypic changes resembling proliferation reduction, cell enlargement, an increase cell population in G2/M phase, and differentially expressed of tumor suppressor p53 in passage (P) 6 as compared to P3, which indicating in vitro cell senescence. The subsequent molecular analysis showed a set of diverse differentially expressed miRNAs and mRNAs involved in maintaining cell proliferation and stemness properties. Considering the signaling pathway related to G2/M DNA damage regulation is widely recognized as part of anti-proliferation mechanism controlled by p53, we explored possible miRNA-mRNA interaction in this regulatory pathway based on genomic coordinates retrieved from miRanda. Our work reveals the potential reason for SHED underwent proliferation arrest due to the direct impinge on the expression of CKS1 by miRNAs specifically miR-22 and miR-485-5p which lead to down regulation of CDK1 and Cyclin B. It is intended that our study will contribute to the understanding of these miRNA/mRNA driving the biological process and regulating different stages of cell cycle is beneficial in developing effective rejuvenation strategies in order to obtain quality stem cells for transplantation.
Collapse
|
29
|
Cakouros D, Gronthos S. The changing epigenetic landscape of Mesenchymal Stem/Stromal Cells during aging. Bone 2020; 137:115440. [PMID: 32445894 DOI: 10.1016/j.bone.2020.115440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
There is mounting evidence in the literature that mesenchymal stromal/stem cell (MSC) like populations derived from different tissues, undergo epigenetic changes during aging, leading to compromised connective tissue integrity and function. This body of work has linked the biological aging of MSC to changes in their epigenetic signatures affecting growth, lifespan, self-renewal and multi-potential, due to deregulation of processes such as cellular senescence, oxidative stress, DNA damage, telomere shortening and DNA damage. This review addresses recent findings examining DNA methylation, histone modifications and miRNA changes in aging MSC populations. Moreover, we explore how epigenetic factors alter cellular pathways and associated biological networks, contributing to the MSC aging phenotype. Finally we discuss the crucial areas requiring a greater understanding of these processes, in order to piece together a global picture of the changing epigenetic landscape in MSC during aging.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
30
|
You J, Dong R, Ying M, He Q, Cao J, Yang B. Cellular Senescence and Anti-Cancer Therapy. Curr Drug Targets 2020; 20:705-715. [PMID: 30556499 DOI: 10.2174/1389450120666181217100833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cellular senescence is generally understood as a permanent cell cycle arrest stemming from different causes. The mechanism of cellular senescence-induced cell cycle arrest is complex, involving interactions between telomere shortening, inflammations and cellular stresses. In recent years, a growing number of studies have revealed that cellular senescence could mediate the cancer progression of neighboring cells, but this idea is controversial and contradictory evidence argues that cellular senescence also contributes to tumor suppression. OBJECTIVE Given that the complicated role of senescence in various physiological and pathological scenarios, we try to clarify the precise contribution role of cellular senescence to tumor progression. METHODS Search for the information in a large array of relevant articles to support our opinion. RESULTS We discuss the relatively widespread occurrence of cellular senescence in cancer treatment and identify the positive and negative side of senescence contributed to tumor progression. CONCLUSION We argue that the availability of pro-senescence therapy could represent as a promising regimen for managing cancer disease, particularly with regard to the poor clinical outcome obtained with other anticancer therapies.
Collapse
Affiliation(s)
- Jieqiong You
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rong Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Kader F, Ghai M, Zhou M. Ethnicity, age and disease-associated variation in body fluid-specific CpG sites in a diverse South African cohort. Forensic Sci Int 2020; 314:110372. [PMID: 32623090 DOI: 10.1016/j.forsciint.2020.110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Tissue-specific differential DNA methylation has been an attractive target for the development of markers for discrimination of body fluids found at crime scenes. Though mostly stable, DNA methylation patterns have been shown to vary between different ethnic groups, in different age groups as well as between healthy and diseased individuals. To the best of our knowledge, none of the markers for body fluid identification have been applied to different ethnic groups to ascertain if variability exists. In the present study, saliva and blood were collected to determine the effects of ethnicity (Blacks, Whites, Coloureds and Indians), age (20-30 years, 40-50years and above 60 years) and diabetes on methylation profiles of potential saliva- and blood-specific DMSs. Both DMSs were previously shown to exhibit hypermethylation in their target body fluids at single CpG sites, however in the present study, additional CpG sites flanking the reported sites were also screened. Bisulfite sequencing revealed that Coloureds showed highest methylation levels for both body fluids, and blacks displayed significant differences between other ethnic groups in the blood-specific CpG sites. A decline in methylation for both potential DMRs was observed with increasing age. Heavily methylated CpG sites in different ethnic groups and previously reported DMSs displayed hypomethylation with increasing age and disease status. Diabetic status did not show any significant difference in methylation when compared to healthy counterparts. Thus, the use of methylation markers for forensics needs thorough investigation of influence of external factors and ideally, several CpG sites should be co-analysed instead of a single DMS.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Marvellous Zhou
- South African Sugarcane Research Institute, Mount Edgecombe, Durban, South Africa; University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.
| |
Collapse
|
32
|
Immortalizing Mesenchymal Stromal Cells from Aged Donors While Keeping Their Essential Features. Stem Cells Int 2020; 2020:5726947. [PMID: 32612662 PMCID: PMC7315279 DOI: 10.1155/2020/5726947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) obtained from aged patients are prone to senesce and diminish their differentiation potential, therefore limiting their usefulness for osteochondral regenerative medicine approaches or to study age-related diseases, such as osteoarthiritis (OA). MSCs can be transduced with immortalizing genes to overcome this limitation, but transduction of primary slow-dividing cells has proven to be challenging. Methods for enhancing transduction efficiency (such as spinoculation, chemical adjuvants, or transgene expression inductors) can be used, but several parameters must be adapted for each transduction system. In order to develop a transduction method suitable for the immortalization of MSCs from aged donors, we used a spinoculation method. Incubation parameters of packaging cells, speed and time of centrifugation, and valproic acid concentration to induce transgene expression have been adjusted. In this way, four immortalized MSC lines (iMSC#6, iMSC#8, iMSC#9, and iMSC#10) were generated. These immortalized MSCs (iMSCs) were capable of bypassing senescence and proliferating at a higher rate than primary MSCs. Characterization of iMSCs showed that these cells kept the expression of mesenchymal surface markers and were able to differentiate towards osteoblasts, adipocytes, and chondrocytes. Nevertheless, alterations in the CD105 expression and a switch of cell fate-commitment towards the osteogenic lineage have been noticed. In conclusion, the developed transduction method is suitable for the immortalization of MSCs derived from aged donors. The generated iMSC lines maintain essential mesenchymal features and are expected to be useful tools for the bone and cartilage regenerative medicine research.
Collapse
|
33
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
34
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
35
|
Genetic barcoding reveals clonal dominance in iPSC-derived mesenchymal stromal cells. Stem Cell Res Ther 2020; 11:105. [PMID: 32138773 PMCID: PMC7059393 DOI: 10.1186/s13287-020-01619-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The use of mesenchymal stromal cells (MSCs) for research and clinical application is hampered by cellular heterogeneity and replicative senescence. Generation of MSC-like cells from induced pluripotent stem cells (iPSCs) may circumvent these limitations, and such iPSC-derived MSCs (iMSCs) are already tested in clinical trials. So far, a comparison of MSCs and iMSCs was particularly addressed in bulk culture. Despite the high hopes in cellular therapy, only little is known how the composition of different subclones changes in these cell preparations during culture expansion. METHODS In this study, we used multicolor lentiviral genetic barcoding for the marking of individual cells within cell preparations. Based on this, we could track the clonal composition of syngenic MSCs, iPSCs, and iMSCs during culture expansion. Furthermore, we analyzed DNA methylation patterns at senescence-associated genomic regions by barcoded bisulfite amplicon sequencing. The proliferation and differentiation capacities of individual subclones within MSCs and iMSCs were investigated with limiting dilution assays. RESULTS Overall, the clonal composition of primary MSCs and iPSCs gradually declined during expansion. In contrast, iMSCs became oligoclonal early during differentiation, indicating that they were derived from few individual iPSCs. This dominant clonal outgrowth of iMSCs was not associated with changes in chromosomal copy number variation. Furthermore, clonal dynamics were not clearly reflected by stochastically acquired DNA methylation patterns. Limiting dilution assays revealed that iMSCs are heterogeneous in colony formation and in vitro differentiation potential, while this was even more pronounced in primary MSCs. CONCLUSIONS Our results indicate that the subclonal diversity of MSCs and iPSCs declines gradually during in vitro culture, whereas derivation of iMSCs may stem from few individual iPSCs. Differentiation regimen needs to be further optimized to achieve homogeneous differentiation of iPSCs towards iMSCs.
Collapse
|
36
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|
37
|
Triana-Martínez F, Loza MI, Domínguez E. Beyond Tumor Suppression: Senescence in Cancer Stemness and Tumor Dormancy. Cells 2020; 9:cells9020346. [PMID: 32028565 PMCID: PMC7072600 DOI: 10.3390/cells9020346] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an overview of the importance of cellular fate in cancer as a group of diseases of abnormal cell growth. Tumor development and progression is a highly dynamic process, with several phases of evolution. The existing evidence about the origin and consequences of cancer cell fate specification (e.g., proliferation, senescence, stemness, dormancy, quiescence, and cell cycle re-entry) in the context of tumor formation and metastasis is discussed. The interplay between these dynamic tumor cell phenotypes, the microenvironment, and the immune system is also reviewed in relation to cancer. We focus on the role of senescence during cancer progression, with a special emphasis on its relationship with stemness and dormancy. Selective interventions on senescence and dormancy cell fates, including the specific targeting of cancer cell populations to prevent detrimental effects in aging and disease, are also reviewed. A new conceptual framework about the impact of synthetic lethal strategies by using senogenics and then senolytics is given, with the promise of future directions on innovative anticancer therapies.
Collapse
|
38
|
Fernandez-Rebollo E, Franzen J, Goetzke R, Hollmann J, Ostrowska A, Oliverio M, Sieben T, Rath B, Kornfeld JW, Wagner W. Senescence-Associated Metabolomic Phenotype in Primary and iPSC-Derived Mesenchymal Stromal Cells. Stem Cell Reports 2020; 14:201-209. [PMID: 31983656 PMCID: PMC7013233 DOI: 10.1016/j.stemcr.2019.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Long-term culture of primary cells is characterized by functional and secretory changes, which ultimately result in replicative senescence. It is largely unclear how the metabolome of cells changes during replicative senescence and if such changes are consistent across different cell types. We have directly compared culture expansion of primary mesenchymal stromal cells (MSCs) and induced pluripotent stem cell-derived MSCs (iMSCs) until they reached growth arrest. Both cell types acquired similar changes in morphology, in vitro differentiation potential, senescence-associated β-galactosidase, and DNA methylation. Furthermore, MSCs and iMSCs revealed overlapping gene expression changes, particularly in functional categories related to metabolic processes. We subsequently compared the metabolomes of MSCs and iMSCs and observed overlapping senescence-associated changes in both cell types, including downregulation of nicotinamide ribonucleotide and upregulation of orotic acid. Taken together, replicative senescence is associated with a highly reproducible senescence-associated metabolomics phenotype, which may be used to monitor the state of cellular aging.
Collapse
Affiliation(s)
- Eduardo Fernandez-Rebollo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany; University of Southern Denmark, Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, Campusvej 55, Odense 5230, Denmark.
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Jonathan Hollmann
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Alina Ostrowska
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Matteo Oliverio
- Max Planck Institute for Metabolism Research (MPI-MR), Noncoding RNAs and Energy Homeostasis, Gleueler Strasse 50, Cologne 50931, Germany; Cologne Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Torsten Sieben
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Björn Rath
- Department for Orthopedics, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Jan-Wilhelm Kornfeld
- Max Planck Institute for Metabolism Research (MPI-MR), Noncoding RNAs and Energy Homeostasis, Gleueler Strasse 50, Cologne 50931, Germany; Cologne Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany; University of Southern Denmark, Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, Campusvej 55, Odense 5230, Denmark
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany.
| |
Collapse
|
39
|
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Castro-Viñuelas R, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco F, Díaz-Prado S. Usefulness of Mesenchymal Cell Lines for Bone and Cartilage Regeneration Research. Int J Mol Sci 2019; 20:E6286. [PMID: 31847077 PMCID: PMC6940884 DOI: 10.3390/ijms20246286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The unavailability of sufficient numbers of human primary cells is a major roadblock for in vitro repair of bone and/or cartilage, and for performing disease modelling experiments. Immortalized mesenchymal stromal cells (iMSCs) may be employed as a research tool for avoiding these problems. The purpose of this review was to revise the available literature on the characteristics of the iMSC lines, paying special attention to the maintenance of the phenotype of the primary cells from which they were derived, and whether they are effectively useful for in vitro disease modeling and cell therapy purposes. This review was performed by searching on Web of Science, Scopus, and PubMed databases from 1 January 2015 to 30 September 2019. The keywords used were ALL = (mesenchymal AND ("cell line" OR immortal*) AND (cartilage OR chondrogenesis OR bone OR osteogenesis) AND human). Only original research studies in which a human iMSC line was employed for osteogenesis or chondrogenesis experiments were included. After describing the success of the immortalization protocol, we focused on the iMSCs maintenance of the parental phenotype and multipotency. According to the literature revised, it seems that the maintenance of these characteristics is not guaranteed by immortalization, and that careful selection and validation of clones with particular characteristics is necessary for taking advantage of the full potential of iMSC to be employed in bone and cartilage-related research.
Collapse
Affiliation(s)
- M. Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - C. Sanjurjo-Rodríguez
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - R. Castro-Viñuelas
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - S. Rodríguez-Fernández
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - I.M. Fuentes-Boquete
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - F.J. Blanco
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - S.M. Díaz-Prado
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| |
Collapse
|
40
|
Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S, Ideker T, Issa JPJ, Kelsey KT, Marioni RE, Reik W, Relton CL, Schalkwyk LC, Teschendorff AE, Wagner W, Zhang K, Rakyan VK. DNA methylation aging clocks: challenges and recommendations. Genome Biol 2019; 20:249. [PMID: 31767039 PMCID: PMC6876109 DOI: 10.1186/s13059-019-1824-y] [Citation(s) in RCA: 554] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic clocks comprise a set of CpG sites whose DNA methylation levels measure subject age. These clocks are acknowledged as a highly accurate molecular correlate of chronological age in humans and other vertebrates. Also, extensive research is aimed at their potential to quantify biological aging rates and test longevity or rejuvenating interventions. Here, we discuss key challenges to understand clock mechanisms and biomarker utility. This requires dissecting the drivers and regulators of age-related changes in single-cell, tissue- and disease-specific models, as well as exploring other epigenomic marks, longitudinal and diverse population studies, and non-human models. We also highlight important ethical issues in forensic age determination and predicting the trajectory of biological aging in an individual.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Robert Lowe
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- Beatson Institute for Cancer Research and University of Glasgow, Glasgow, UK.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Stephan Beck
- Medical Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, London, UK.
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, CA, USA.
- Department of Biostatistics, School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Trey Ideker
- San Diego Center for Systems Biology, University of California-San Diego, San Diego, CA, USA.
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
- The Wellcome Trust Sanger Institute, Cambridge, UK.
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK.
| | | | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen Faculty of Medicine, Aachen, Germany.
| | - Kang Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Vardhman K Rakyan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
41
|
Wagner W. The Link Between Epigenetic Clocks for Aging and Senescence. Front Genet 2019; 10:303. [PMID: 31001330 PMCID: PMC6456648 DOI: 10.3389/fgene.2019.00303] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Replicative senescence of cells in vitro is often considered as counterpart for aging of the organism in vivo. In fact, both processes are associated with functional decay and similar molecular modifications. On epigenetic level, replicative senescence and aging evoke characteristic modifications in the DNA methylation (DNAm) pattern, but at different sites in the genome. Various epigenetic signatures, which are often referred to as epigenetic clocks, provide useful biomarkers: Senescence-associated epigenetic modifications can be used for quality control of cell preparations or to elucidate effects of culture conditions on the state of cellular aging. Age-associated epigenetic modifications hold high expectations to determine chronological age in forensics or to identify parameters that impact on biological aging. Despite these differences, there are some striking similarities between senescence- and age-associated DNAm, such as complete rejuvenation during reprogramming into induced pluripotent stem cells (iPSCs). It is yet unclear what makes epigenetic clocks tick, but there is evidence that the underlying mechanisms of both processes are related to similar modifications in the histone code or higher order chromatin. Replicative senescence therefore appears to be a suitable model system to gain better insight into how organismal aging might be governed epigenetically.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Division of Stem Cell Biology and Cellular Engineering, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
42
|
Cypris O, Frobel J, Rai S, Franzen J, Sontag S, Goetzke R, Szymanski de Toledo MA, Zenke M, Wagner W. Tracking of epigenetic changes during hematopoietic differentiation of induced pluripotent stem cells. Clin Epigenetics 2019; 11:19. [PMID: 30717806 PMCID: PMC6360658 DOI: 10.1186/s13148-019-0617-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
Background Differentiation of induced pluripotent stem cells (iPSCs) toward hematopoietic progenitor cells (HPCs) raises high hopes for disease modeling, drug screening, and cellular therapy. Various differentiation protocols have been established to generate iPSC-derived HPCs (iHPCs) that resemble their primary counterparts in morphology and immunophenotype, whereas a systematic epigenetic comparison was yet elusive. Results In this study, we compared genome-wide DNA methylation (DNAm) patterns of iHPCs with various different hematopoietic subsets. After 20 days of in vitro differentiation, cells revealed typical hematopoietic morphology, CD45 expression, and colony-forming unit (CFU) potential. DNAm changes were particularly observed in genes that are associated with hematopoietic differentiation. On the other hand, the epigenetic profiles of iHPCs remained overall distinct from natural HPCs. Furthermore, we analyzed if additional co-culture for 2 weeks with syngenic primary mesenchymal stromal cells (MSCs) or iPSC-derived MSCs (iMSCs) further supports epigenetic maturation toward the hematopoietic lineage. Proliferation of iHPCs and maintenance of CFU potential was enhanced upon co-culture. However, DNAm profiles support the notion that additional culture expansion with stromal support did not increase epigenetic maturation of iHPCs toward natural HPCs. Conclusion Differentiation of iPSCs toward the hematopoietic lineage remains epigenetically incomplete. These results substantiate the need to elaborate advanced differentiation regimen while DNAm profiles provide a suitable measure to track this process. Electronic supplementary material The online version of this article (10.1186/s13148-019-0617-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olivia Cypris
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Shivam Rai
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Stephanie Sontag
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Marcelo A Szymanski de Toledo
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
43
|
DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev 2018; 174:3-17. [DOI: 10.1016/j.mad.2017.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
|
44
|
Goetzke R, Sechi A, De Laporte L, Neuss S, Wagner W. Why the impact of mechanical stimuli on stem cells remains a challenge. Cell Mol Life Sci 2018; 75:3297-3312. [PMID: 29728714 PMCID: PMC11105618 DOI: 10.1007/s00018-018-2830-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
Abstract
Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance-and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.
Collapse
Affiliation(s)
- Roman Goetzke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Institute of Pathology, RWTH Aachen University Medical School, Aachen, Germany.
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University Medical School, 52074, Aachen, Germany.
| |
Collapse
|
45
|
Sogabe Y, Seno H, Yamamoto T, Yamada Y. Unveiling epigenetic regulation in cancer, aging, and rejuvenation with in vivo reprogramming technology. Cancer Sci 2018; 109:2641-2650. [PMID: 29989289 PMCID: PMC6125454 DOI: 10.1111/cas.13731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Reprogramming technology has enabled the fate conversion of terminally differentiated somatic cells into pluripotent stem cells or into another differentiated state. A dynamic reorganization of epigenetic regulation takes place during cellular reprogramming. Given that reprogramming does not require changes in the underlying genome, the technology can be used to actively modify epigenetic regulation. Although reprogramming has been investigated mostly at the cellular level in vitro, studies have reported that somatic cells are reprogrammable in multicellular organisms in vivo. In vivo reprogramming provides a potential strategy for regenerative medicine. Notably, recent studies using in vivo reprogramming technology to alter epigenetic regulation at organismal levels have revealed unappreciated epigenetic mechanisms in various biological phenomena, including cancer development, tissue regeneration, aging, and rejuvenation in mammals. Moreover, in vivo reprogramming technology can be applied to abrogate epigenetic aberrations associated with aging and cancer, which raises the possibility that the technology could provide a potential strategy to control the fate of detrimental cells such as senescent cells and cancer cells in vivo. Here, we review recent progress and future perspectives of in vivo reprogramming.
Collapse
Affiliation(s)
- Yuko Sogabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan
| | - Yasuhiro Yamada
- AMED-CREST, AMED, Tokyo, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Rühle A, Huber PE, Saffrich R, Lopez Perez R, Nicolay NH. The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. Int J Cancer 2018; 143:2628-2639. [PMID: 29931767 DOI: 10.1002/ijc.31619] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic agents are part of the standard treatment algorithms for many malignancies; however, their application and dosage are limited by their toxic effects to normal tissues. Chemotherapy-induced toxicities can be long-lasting and may be incompletely reversible; therefore, causative therapies for chemotherapy-dependent side effects are needed, especially considering the increasing survival rates of treated cancer patients. Mesenchymal stem cells (MSCs) have been shown to exhibit regenerative abilities for various forms of tissue damage. Preclinical data suggest that MSCs may also help to alleviate tissue lesions caused by chemotherapeutic agents, mainly by establishing a protective microenvironment for functional cells. Due to the systemic administration of most anticancer agents, the effects of these drugs on the MSCs themselves are of crucial importance to use stem cell-based approaches for the treatment of chemotherapy-induced tissue toxicities. Here, we present a concise review of the published data regarding the influence of various classes of chemotherapeutic agents on the survival, stem cell characteristics and physiological functions of MSCs. Molecular mechanisms underlying the effects are outlined, and resulting challenges of MSC-based treatments for chemotherapy-induced tissue injuries are discussed.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Rainer Saffrich
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Ramon Lopez Perez
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
47
|
Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells. Sci Rep 2018; 8:11676. [PMID: 30076334 PMCID: PMC6076311 DOI: 10.1038/s41598-018-30069-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Replicative senescence hampers application of mesenchymal stromal cells (MSCs) because it limits culture expansion, impairs differentiation potential, and hinders reliable standardization of cell products. MSCs can be rejuvenated by reprogramming into induced pluripotent stem cells (iPSCs), which is associated with complete erasure of age- and senescence-associated DNA methylation (DNAm) patterns. However, this process is also associated with erasure of cell-type and tissue-specific epigenetic characteristics that are not recapitulated upon re-differentiation towards MSCs. In this study, we therefore followed the hypothesis that overexpression of pluripotency factors under culture conditions that do not allow full reprogramming might reset senescence-associated changes without entering a pluripotent state. MSCs were transfected with episomal plasmids and either successfully reprogrammed into iPSCs or cultured in different media with continuous passaging every week. Overexpression of pluripotency factors without reprogramming did neither prolong culture expansion nor ameliorate molecular and epigenetic hallmarks of senescence. Notably, transfection resulted in immortalization of one cell preparation with gain of large parts of the long arm of chromosome 1. Taken together, premature termination of reprogramming does not result in rejuvenation of MSCs and harbours the risk of transformation. This approach is therefore not suitable to rejuvenate cells for cellular therapy.
Collapse
|
48
|
Slieker RC, Relton CL, Gaunt TR, Slagboom PE, Heijmans BT. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin 2018; 11:25. [PMID: 29848354 PMCID: PMC5975493 DOI: 10.1186/s13072-018-0191-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background The well-established association of chronological age with changes in DNA methylation is primarily founded on the analysis of large sets of blood samples, while conclusions regarding tissue-specificity are typically based on small number of samples, tissues and CpGs. Here, we systematically investigate the tissue-specific character of age-related DNA methylation changes at the level of the CpG, functional genomic region and nearest gene in a large dataset. Results We assembled a compendium of public data, encompassing genome-wide DNA methylation data (Illumina 450k array) on 8092 samples from 16 different tissues, including 7 tissues with moderate to high sample numbers (Dataset size range 96–1202, Ntotal = 2858). In the 7 tissues (brain, buccal, liver, kidney, subcutaneous fat, monocytes and T-helper cells), we identified 7850 differentially methylated positions that gained (gain-aDMPs; cut-offs: Pbonf ≤ 0.05, effect size ≥ 2%/10 years) and 4,287 that lost DNA methylation with age (loss-aDMPs), 92% of which had not previously been reported for whole blood. The majority of all aDMPs identified occurred in one tissue only (gain-aDMPs: 85.2%; loss-aDMPs: 97.4%), an effect independent of statistical power. This striking tissue-specificity extended to both the functional genomic regions (defined by chromatin state segmentation) and the nearest gene. However, aDMPs did accumulate in regions with the same functional annotation across tissues, namely polycomb-repressed CpG islands for gain-aDMPs and regions marked by active histone modifications for loss-aDMPs. Conclusion Our analysis shows that age-related DNA methylation changes are highly tissue-specific. These results may guide the development of improved tissue-specific markers of chronological and, perhaps, biological age. Electronic supplementary material The online version of this article (10.1186/s13072-018-0191-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roderick C Slieker
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, BS8 2BN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, BS8 2BN, UK
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
49
|
Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Front Med (Lausanne) 2018; 5:104. [PMID: 29719834 PMCID: PMC5913290 DOI: 10.3389/fmed.2018.00104] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism’s health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic “senescence” stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the “hallmarks” of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.
Collapse
Affiliation(s)
| | - Danielle Gutman
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
50
|
Xie W, Kagiampakis I, Pan L, Zhang YW, Murphy L, Tao Y, Kong X, Kang B, Xia L, Carvalho FLF, Sen S, Chiu Yen RW, Zahnow CA, Ahuja N, Baylin SB, Easwaran H. DNA Methylation Patterns Separate Senescence from Transformation Potential and Indicate Cancer Risk. Cancer Cell 2018; 33:309-321.e5. [PMID: 29438699 PMCID: PMC5813821 DOI: 10.1016/j.ccell.2018.01.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 01/08/2023]
Abstract
Overall shared DNA methylation patterns between senescence (Sen) and cancers have led to the model that tumor-promoting epigenetic patterns arise through senescence. We show that transformation-associated methylation changes arise stochastically and independently of programmatic changes during senescence. Promoter hypermethylation events in transformation involve primarily pro-survival and developmental genes, similarly modified in primary tumors. Senescence-associated hypermethylation mainly involves metabolic regulators and appears early in proliferating "near-senescent" cells, which can be immortalized but are refractory to transformation. Importantly, a subset of transformation-associated hypermethylated developmental genes exhibits highest methylation gains at all age-associated cancer risk states across tissue types. These epigenetic changes favoring cell self-renewal and survival, arising during tissue aging, are fundamentally important for stratifying cancer risk and concepts for cancer prevention.
Collapse
Affiliation(s)
- Wenbing Xie
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ioannis Kagiampakis
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lixia Pan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang W Zhang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lauren Murphy
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Tao
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiangqian Kong
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Byunghak Kang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Limin Xia
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Filipe L F Carvalho
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Subhojit Sen
- UM-DAE Center for Excellence in Basic Sciences (CBS), Mumbai University, Mumbai 400098, India
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nita Ahuja
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|