1
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Xiao H, Chen H, Zhang L, Duolikun M, Zhen B, Kuerban S, Li X, Wang Y, Chen L, Lin J. Cytoskeletal gene alterations linked to sorafenib resistance in hepatocellular carcinoma. World J Surg Oncol 2024; 22:152. [PMID: 38849867 PMCID: PMC11157844 DOI: 10.1186/s12957-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Although sorafenib has been consistently used as a first-line treatment for advanced hepatocellular carcinoma (HCC), most patients will develop resistance, and the mechanism of resistance to sorafenib needs further study. METHODS Using KAS-seq technology, we obtained the ssDNA profiles within the whole genome range of SMMC-7721 cells treated with sorafenib for differential analysis. We then intersected the differential genes obtained from the analysis of hepatocellular carcinoma patients in GSE109211 who were ineffective and effective with sorafenib treatment, constructed a PPI network, and obtained hub genes. We then analyzed the relationship between the expression of these genes and the prognosis of hepatocellular carcinoma patients. RESULTS In this study, we identified 7 hub ERGs (ACTB, CFL1, ACTG1, ACTN1, WDR1, TAGLN2, HSPA8) related to drug resistance, and these genes are associated with the cytoskeleton. CONCLUSIONS The cytoskeleton is associated with sorafenib resistance in hepatocellular carcinoma. Using KAS-seq to analyze the early changes in tumor cells treated with drugs is feasible for studying the drug resistance of tumors, which provides reference significance for future research.
Collapse
Affiliation(s)
- Hong Xiao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Maimaitiyasen Duolikun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Baixin Zhen
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Subinuer Kuerban
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Xuehui Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Yuxi Wang
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Peking University, Third Hospital Cancer Center, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
| | - Jian Lin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China.
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Peking University, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Peking University, Third Hospital Cancer Center, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Wang H, Wang Y, Luo Z, Lin X, Liu M, Wu F, Shao H, Zhang W. Advances in Off-Target Detection for CRISPR-Based Genome Editing. Hum Gene Ther 2023; 34:112-128. [PMID: 36453226 DOI: 10.1089/hum.2022.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based genome editing system exhibits marked potential for both gene editing and gene therapy, and its continuous improvement contributes to its great clinical potential. However, the largest hindrance to its application in clinical practice is the presence of off-target effects (OTEs). Thus, in addition to continuous optimization of the CRISPR system to reduce and eventually eliminate OTEs, further development of unbiased genome-wide detection of OTEs is key for its successful clinical application. This article summarizes detection strategies for OTEs of different CRISPR systems, to provide detailed guidance for the detection of OTEs in CRISPR-based genome editing.
Collapse
Affiliation(s)
- Haozheng Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and.,Department of Pharmacy, Meizhou People's Hospital, Meizhou, People's Republic of China
| | - Yangmin Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Zhongtao Luo
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Xinjian Lin
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Meilin Liu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Fenglin Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| |
Collapse
|
4
|
Li F, Lee M, Esnault C, Wendover K, Guo Y, Atkins P, Zaratiegui M, Levin HL. Identification of an integrase-independent pathway of retrotransposition. SCIENCE ADVANCES 2022; 8:eabm9390. [PMID: 35767609 DOI: 10.1126/sciadv.abm9390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Retroviruses and long terminal repeat retrotransposons rely on integrase (IN) to insert their complementary DNA (cDNA) into the genome of host cells. Nevertheless, in the absence of IN, retroelements can retain notable levels of insertion activity. We have characterized the IN-independent pathway of Tf1 and found that insertion sites had homology to the primers of reverse transcription, which form single-stranded DNAs at the termini of the cDNA. In the absence of IN activity, a similar bias was observed with HIV-1. Our studies showed that the Tf1 insertions result from single-strand annealing, a noncanonical form of homologous recombination mediated by Rad52. By expanding our analysis of insertions to include repeat sequences, we found most formed tandem elements by inserting at preexisting copies of a related transposable element. Unexpectedly, we found that wild-type Tf1 uses the IN-independent pathway as an alternative mode of insertion.
Collapse
Affiliation(s)
- Feng Li
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Lee
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katie Wendover
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yabin Guo
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Atkins
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson Biological Laboratories A133, 604 Allison Rd., Piscataway, NJ 08854, USA
| | - Henry L Levin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Lyu R, Wu T, Zhu AC, West-Szymanski DC, Weng X, Chen M, He C. KAS-seq: genome-wide sequencing of single-stranded DNA by N 3-kethoxal-assisted labeling. Nat Protoc 2022; 17:402-420. [PMID: 35013616 PMCID: PMC8923001 DOI: 10.1038/s41596-021-00647-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023]
Abstract
Transcription and its dynamics are crucial for gene expression regulation. However, very few methods can directly read out transcriptional activity with low-input material and high temporal resolution. This protocol describes KAS-seq, a robust and sensitive approach for capturing genome-wide single-stranded DNA (ssDNA) profiles using N3-kethoxal-assisted labeling. We developed N3-kethoxal, an azido derivative of kethoxal that reacts with deoxyguanosine bases of ssDNA in live cells within 5-10 min at 37 °C, allowing the capture of dynamic changes. Downstream biotinylation of labeled DNA occurs via copper-free click chemistry. Altogether, the KAS-seq procedure involves N3-kethoxal labeling, DNA isolation, biotinylation, fragmentation, affinity pull-down, library preparation, sequencing and bioinformatics analysis. The pre-library construction labeling and enrichment can be completed in as little as 3-4 h and is applicable to both animal tissue and as few as 1,000 cultured cells. Our recent study shows that ssDNA signals measured by KAS-seq simultaneously reveal the dynamics of transcriptionally engaged RNA polymerase (Pol) II, transcribing enhancers, RNA Pol I and Pol III activities and potentially non-canonical DNA structures with high analytical sensitivity. In addition to the experimental protocol, we also introduce here KAS-pipe, a user-friendly integrative data analysis pipeline for KAS-seq.
Collapse
Affiliation(s)
- Ruitu Lyu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Allen C Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | | | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
| | - Mengjie Chen
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
7
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
8
|
Atkins A, Chung CH, Allen AG, Dampier W, Gurrola TE, Sariyer IK, Nonnemacher MR, Wigdahl B. Off-Target Analysis in Gene Editing and Applications for Clinical Translation of CRISPR/Cas9 in HIV-1 Therapy. Front Genome Ed 2021; 3:673022. [PMID: 34713260 PMCID: PMC8525399 DOI: 10.3389/fgeed.2021.673022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
As genome-editing nucleases move toward broader clinical applications, the need to define the limits of their specificity and efficiency increases. A variety of approaches for nuclease cleavage detection have been developed, allowing a full-genome survey of the targeting landscape and the detection of a variety of repair outcomes for nuclease-induced double-strand breaks. Each approach has advantages and disadvantages relating to the means of target-site capture, target enrichment mechanism, cellular environment, false discovery, and validation of bona fide off-target cleavage sites in cells. This review examines the strengths, limitations, and origins of the different classes of off-target cleavage detection systems including anchored primer enrichment (GUIDE-seq), in situ detection (BLISS), in vitro selection libraries (CIRCLE-seq), chromatin immunoprecipitation (ChIP) (DISCOVER-Seq), translocation sequencing (LAM PCR HTGTS), and in vitro genomic DNA digestion (Digenome-seq and SITE-Seq). Emphasis is placed on the specific modifications that give rise to the enhanced performance of contemporary techniques over their predecessors and the comparative performance of techniques for different applications. The clinical relevance of these techniques is discussed in the context of assessing the safety of novel CRISPR/Cas9 HIV-1 curative strategies. With the recent success of HIV-1 and SIV-1 viral suppression in humanized mice and non-human primates, respectively, using CRISPR/Cas9, rigorous exploration of potential off-target effects is of critical importance. Such analyses would benefit from the application of the techniques discussed in this review.
Collapse
Affiliation(s)
- Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Zilio N, Ulrich HD. Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing. FEBS J 2020; 288:3948-3961. [PMID: 32965079 DOI: 10.1111/febs.15568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
Mapping the genome-wide distribution of DNA lesions is key to understanding damage signalling and DNA repair in the context of genome and chromatin structure. Analytical tools based on high-throughput next-generation sequencing have revolutionized our progress with such investigations, and numerous methods are now available for various base lesions and modifications as well as for DNA double-strand breaks. Considering that single-strand breaks are by far the most common type of lesion and arise not only from exposure to exogenous DNA-damaging agents, but also as obligatory intermediates of DNA replication, recombination and repair, it is surprising that our insight into their genome-wide patterns, that is the 'SSBreakome', has remained rather obscure until recently, due to a lack of suitable mapping technology. Here we briefly review classical methods for analysing single-strand breaks and discuss and compare in detail a series of recently developed high-resolution approaches for the genome-wide mapping of these lesions, their advantages and limitations and how they have already provided valuable insight into the impact of this type of damage on the genome.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| |
Collapse
|
10
|
Li W, Sancar A. Methodologies for detecting environmentally induced DNA damage and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:664-679. [PMID: 32083352 PMCID: PMC7442611 DOI: 10.1002/em.22365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 05/07/2023]
Abstract
Environmental DNA damaging agents continuously challenge the integrity of the genome by introducing a variety of DNA lesions. The DNA damage caused by environmental factors will lead to mutagenesis and subsequent carcinogenesis if they are not removed efficiently by repair pathways. Methods for detection of DNA damage and repair can be applied to identify, visualize, and quantify the DNA damage formation and repair events, and they enable us to illustrate the molecular mechanisms of DNA damage formation, DNA repair pathways, mutagenesis, and carcinogenesis. Ever since the discovery of the double helical structure of DNA in 1953, a great number of methods have been developed to detect various types of DNA damage and repair. Rapid advances in sequencing technologies have facilitated the emergence of a variety of novel methods for detecting environmentally induced DNA damage and repair at the genome-wide scale during the last decade. In this review, we provide a historical overview of the development of various damage detection methods. We also highlight the current methodologies to detect DNA damage and repair, especially some next generation sequencing-based methods.
Collapse
Affiliation(s)
- Wentao Li
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat Methods 2020; 17:515-523. [PMID: 32251394 PMCID: PMC7205578 DOI: 10.1038/s41592-020-0797-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Transcription is a highly dynamic process that generates single-stranded DNA (ssDNA) in the genome as ‘transcription bubbles’. Here we describe a kethoxal-assisted single-stranded DNA sequencing (KAS-seq) approach, based on the fast and specific reaction between N3-kethoxal and guanines in ssDNA in live cells and mouse tissues. KAS-seq enables rapid (within 5 min), sensitive, and genome-wide capture and mapping of ssDNA produced by transcriptionally active RNA polymerases or other processes in situ by using as few as 1,000 cells. KAS-seq defines a group of enhancers that are single-stranded, which enrich unique sequence motifs and are associated with specific transcription factor binding and more enhancer-promotor interactions. Under protein condensation inhibition conditions, KAS-seq uncovers a rapid release of RNA polymerase II (Pol II) from a group of promotors. KAS-seq thus facilitates fast, comprehensive, and accurate analysis of transcription dynamics and enhancer activities simultaneously in a low input and high-throughput manner.
Collapse
|
12
|
Jiang D, Zhang X, Pang Y, Zhang J, Wang J, Huang Y. Terminal transfer amplification and sequencing for high-efficiency and low-bias copy number profiling of fragmented DNA samples. Protein Cell 2020; 10:229-233. [PMID: 29687362 PMCID: PMC6338616 DOI: 10.1007/s13238-018-0540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Dongqing Jiang
- School of Life Sciences, Biodynamic Optical Imaging Center (BIOPIC), and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Xiannian Zhang
- School of Life Sciences, Biodynamic Optical Imaging Center (BIOPIC), and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Yuhong Pang
- School of Life Sciences, Biodynamic Optical Imaging Center (BIOPIC), and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Jianyun Zhang
- Department of Oral Pathology, School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Center for Life Sciences, Beijing, 100871, China.
| | - Yanyi Huang
- School of Life Sciences, Biodynamic Optical Imaging Center (BIOPIC), and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China. .,Center for Life Sciences, Beijing, 100871, China. .,Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Shetty M, Noguchi C, Wilson S, Martinez E, Shiozaki K, Sell C, Mell JC, Noguchi E. Maf1-dependent transcriptional regulation of tRNAs prevents genomic instability and is associated with extended lifespan. Aging Cell 2020; 19:e13068. [PMID: 31833215 PMCID: PMC6996946 DOI: 10.1111/acel.13068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Maf1 is the master repressor of RNA polymerase III responsible for transcription of tRNAs and 5S rRNAs. Maf1 is negatively regulated via phosphorylation by the mTOR pathway, which governs protein synthesis, growth control, and lifespan regulation in response to nutrient availability. Inhibiting the mTOR pathway extends lifespan in various organisms. However, the downstream effectors for the regulation of cell homeostasis that are critical to lifespan extension remain elusive. Here we show that fission yeast Maf1 is required for lifespan extension. Maf1's function in tRNA repression is inhibited by mTOR-dependent phosphorylation, whereas Maf1 is activated via dephosphorylation by protein phosphatase complexes, PP4 and PP2A. Mutational analysis reveals that Maf1 phosphorylation status influences lifespan, which is correlated with elevated tRNA and protein synthesis levels in maf1∆ cells. However, mTOR downregulation, which negates protein synthesis, fails to rescue the short lifespan of maf1∆ cells, suggesting that elevated protein synthesis is not a cause of lifespan shortening in maf1∆ cells. Interestingly, maf1∆ cells accumulate DNA damage represented by formation of Rad52 DNA damage foci and Rad52 recruitment at tRNA genes. Loss of the Rad52 DNA repair protein further exacerbates the shortened lifespan of maf1∆ cells. Strikingly, PP4 deletion alleviates DNA damage and rescues the short lifespan of maf1∆ cells even though tRNA synthesis is increased in this condition, suggesting that elevated DNA damage is the major cause of lifespan shortening in maf1∆ cells. We propose that Maf1-dependent inhibition of tRNA synthesis controls fission yeast lifespan by preventing genomic instability that arises at tRNA genes.
Collapse
Affiliation(s)
- Mihir Shetty
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sydney Wilson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esteban Martinez
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Centers for Genomics Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Nobles CL, Reddy S, Salas-McKee J, Liu X, June CH, Melenhorst JJ, Davis MM, Zhao Y, Bushman FD. iGUIDE: an improved pipeline for analyzing CRISPR cleavage specificity. Genome Biol 2019; 20:14. [PMID: 30654827 PMCID: PMC6337799 DOI: 10.1186/s13059-019-1625-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Genome engineering methods have advanced greatly with the development of programmable nucleases, but methods for quantifying on- and off-target cleavage sites and associated deletions remain nascent. Here, we report an improvement of the GUIDE-seq method, iGUIDE, which allows filtering of mispriming events to clarify the true cleavage signal. Using iGUIDE, we specify the locations of Cas9-guided cleavage for four guide RNAs, characterize associated deletions, and show that naturally occurring background DNA double-strand breaks are associated with open chromatin, gene dense regions, and chromosomal fragile sites. iGUIDE is available from https://github.com/cnobles/iGUIDE .
Collapse
Affiliation(s)
- Christopher L Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - January Salas-McKee
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, USA
| | - Xiaojun Liu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, USA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
15
|
Genome-wide Map of R-Loop-Induced Damage Reveals How a Subset of R-Loops Contributes to Genomic Instability. Mol Cell 2018; 71:487-497.e3. [PMID: 30078723 DOI: 10.1016/j.molcel.2018.06.037] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023]
Abstract
DNA-RNA hybrids associated with R-loops promote DNA damage and genomic instability. The capacity of hybrids at different genomic sites to cause DNA damage was not known, and the mechanisms leading from hybrid to damage were poorly understood. Here, we adopt a new strategy to map and characterize the sites of hybrid-induced damage genome-wide in budding yeast. We show that hybrid removal is essential for life because persistent hybrids cause irreparable DNA damage and cell death. We identify that a subset of hybrids is prone to cause damage, and the chromosomal context of hybrids dramatically impacts their ability to induce damage. Furthermore, persistent hybrids affect the repair pathway, generating large regions of single-stranded DNA (ssDNA) by two distinct mechanisms, likely resection and re-replication. These damaged regions may act as potential precursors to gross chromosomal rearrangements like deletions and duplications that are associated with R-loops and cancers.
Collapse
|
16
|
Gómez-Escoda B, Wu PYJ. The organization of genome duplication is a critical determinant of the landscape of genome maintenance. Genome Res 2018; 28:1179-1192. [PMID: 29934426 PMCID: PMC6071636 DOI: 10.1101/gr.224527.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
Genome duplication is essential for cell proliferation, and the mechanisms regulating its execution are highly conserved. These processes give rise to a spatiotemporal organization of replication initiation across the genome, referred to as the replication program. Despite the identification of such programs in diverse eukaryotic organisms, their biological importance for cellular physiology remains largely unexplored. We address this fundamental question in the context of genome maintenance, taking advantage of the inappropriate origin firing that occurs when fission yeast cells lacking the Rad3/ATR checkpoint kinase are subjected to replication stress. Using this model, we demonstrate that the replication program quantitatively dictates the extent of origin de-regulation and the clustered localization of these events. Furthermore, our results uncover an accumulation of abnormal levels of single-stranded DNA (ssDNA) and the Rad52 repair protein at de-regulated origins. We show that these loci constitute a defining source of the overall ssDNA and Rad52 hotspots in the genome, generating a signature pattern of instability along the chromosomes. We then induce a genome-wide reprogramming of origin usage and evaluate its consequences in our experimental system. This leads to a complete redistribution of the sites of both inappropriate initiation and associated Rad52 recruitment. We therefore conclude that the organization of genome duplication governs the checkpoint control of origin-associated hotspots of instability and plays an integral role in shaping the landscape of genome maintenance.
Collapse
Affiliation(s)
- Blanca Gómez-Escoda
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France
| | - Pei-Yun Jenny Wu
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France
| |
Collapse
|
17
|
Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently. Mol Cell Biol 2017; 37:MCB.00190-17. [PMID: 28784720 DOI: 10.1128/mcb.00190-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal.
Collapse
|
18
|
The functions of the multi-tasking Pfh1 Pif1 helicase. Curr Genet 2017; 63:621-626. [PMID: 28054200 PMCID: PMC5504263 DOI: 10.1007/s00294-016-0675-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/03/2022]
Abstract
Approximately, 1% of the genes in eukaryotic genomes encode for helicases, which make the number of helicases expressed in the cell considerably high. Helicases are motor proteins that participate in many central aspects of the nuclear and mitochondrial genomes, and based on their helicase motif conservation, they are divided into different helicase families. The Pif1 family of helicases is an evolutionarily conserved helicase family that is associated with familial breast cancer in humans. The Schizosaccharomyces pombe Pfh1 helicase belongs to the Pif1 helicase family and is a multi-tasking helicase that is important for replication fork progression through natural fork barriers, for G-quadruplex unwinding, and for Okazaki fragment maturation, and these activities are potentially shared by the human Pif1 helicase. This review discusses the known functions of the Pfh1 helicase, the study of which has led to a better understanding of nucleic acid metabolism in eukaryotes.
Collapse
|
19
|
Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat Protoc 2016; 11:853-71. [PMID: 27031497 DOI: 10.1038/nprot.2016.043] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.
Collapse
|
20
|
Persson J, Steglich B, Smialowska A, Boyd M, Bornholdt J, Andersson R, Schurra C, Arcangioli B, Sandelin A, Nielsen O, Ekwall K. Regulating retrotransposon activity through the use of alternative transcription start sites. EMBO Rep 2016; 17:753-68. [PMID: 26902262 PMCID: PMC5341516 DOI: 10.15252/embr.201541866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome.
Collapse
Affiliation(s)
- Jenna Persson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Babett Steglich
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Agata Smialowska
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mette Boyd
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jette Bornholdt
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Catherine Schurra
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Benoit Arcangioli
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Albin Sandelin
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Nielsen
- Department of Biology, Cell Cycle and Genome Stability Group, University of Copenhagen, Copenhagen, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
21
|
Abstract
Next-generation sequencing approaches have considerably advanced our understanding of genome function and regulation. However, the knowledge of gene function and complex cellular processes remains a challenge and bottleneck in biological research. Phenomics is a rapidly emerging area, which seeks to rigorously characterize all phenotypes associated with genes or gene variants. Such high-throughput phenotyping under different conditions can be a potent approach toward gene function. The fission yeast Schizosaccharomyces pombe (S. pombe) is a proven eukaryotic model organism that is increasingly used for genomewide screens and phenomic assays. In this review, we highlight current large-scale, cell-based approaches used with S. pombe, including computational colony-growth measurements, genetic interaction screens, parallel profiling using barcodes, microscopy-based cell profiling, metabolomic methods and transposon mutagenesis. These diverse methods are starting to offer rich insights into the relationship between genotypes and phenotypes.
Collapse
Affiliation(s)
- Charalampos Rallis
- a Research Department of Genetics , Evolution and Environment and UCL Institute of Healthy Ageing, University College London , London , UK
| | - Jürg Bähler
- a Research Department of Genetics , Evolution and Environment and UCL Institute of Healthy Ageing, University College London , London , UK
| |
Collapse
|
22
|
Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 2015; 33:179-86. [PMID: 25503383 PMCID: PMC4320661 DOI: 10.1038/nbt.3101] [Citation(s) in RCA: 515] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/14/2014] [Indexed: 12/14/2022]
Abstract
Although great progress has been made in the characterization of the off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification-mediated modification of a previously published high-throughput, genome-wide, translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN nucleases revealed off-target hotspot numbers for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases more than tenfold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described previously. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide.
Collapse
Affiliation(s)
- Richard L. Frock
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Jiazhi Hu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Robin M. Meyers
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Yu-Jui Ho
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Erina Kii
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Frederick W. Alt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Anandhakumar C, Kizaki S, Bando T, Pandian GN, Sugiyama H. Advancing Small-Molecule-Based Chemical Biology with Next-Generation Sequencing Technologies. Chembiochem 2014; 16:20-38. [DOI: 10.1002/cbic.201402556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/24/2022]
|
24
|
Lorenzi LE, Bah A, Wischnewski H, Shchepachev V, Soneson C, Santagostino M, Azzalin CM. Fission yeast Cactin restricts telomere transcription and elongation by controlling Rap1 levels. EMBO J 2014; 34:115-29. [PMID: 25398909 DOI: 10.15252/embj.201489559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The telomeric transcriptome comprises multiple long non-coding RNAs generated by transcription of linear chromosome ends. In a screening performed in Schizosaccharomyces pombe, we identified factors modulating the cellular levels of the telomeric transcriptome. Among these factors, Cay1 is the fission yeast member of the conserved family of Cactins, uncharacterized proteins crucial for cell growth and survival. In cay1∆ mutants, the cellular levels of the telomeric factor Rap1 are drastically diminished due to defects in rap1+ pre-mRNA splicing and Rap1 protein stability. cay1∆ cells accumulate histone H3 acetylated at lysine 9 at telomeres, which become transcriptionally desilenced, are over-elongated by telomerase and cause chromosomal aberrations in the cold. Overexpressing Rap1 in cay1+ deleted cells significantly reverts all telomeric defects. Additionally, cay1∆ mutants accumulate unprocessed Tf2 retrotransposon RNA through Rap1-independent mechanisms. Thus, Cay1 plays crucial roles in cells by ultimately harmonizing expression of transcripts originating from seemingly unrelated genomic loci.
Collapse
Affiliation(s)
- Luca E Lorenzi
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Amadou Bah
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Harry Wischnewski
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Vadim Shchepachev
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Charlotte Soneson
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Santagostino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, Pavia, Italy
| | - Claus M Azzalin
- Institute of Biochemistry (IBC) Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| |
Collapse
|
25
|
Castel SE, Ren J, Bhattacharjee S, Chang AY, Sánchez M, Valbuena A, Antequera F, Martienssen RA. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 2014; 159:572-83. [PMID: 25417108 DOI: 10.1016/j.cell.2014.09.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/29/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
Abstract
Nuclear RNAi is an important regulator of transcription and epigenetic modification, but the underlying mechanisms remain elusive. Using a genome-wide approach in the fission yeast S. pombe, we have found that Dcr1, but not other components of the canonical RNAi pathway, promotes the release of Pol II from the 3? end of highly transcribed genes, and, surprisingly, from antisense transcription of rRNA and tRNA genes, which are normally transcribed by Pol I and Pol III. These Dcr1-terminated loci correspond to sites of replication stress and DNA damage, likely resulting from transcription-replication collisions. At the rDNA loci, release of Pol II facilitates DNA replication and prevents homologous recombination, which would otherwise lead to loss of rDNA repeats especially during meiosis. Our results reveal a novel role for Dcr1-mediated transcription termination in genome maintenance and may account for widespread regulation of genome stability by nuclear RNAi in higher eukaryotes.
Collapse
Affiliation(s)
- Stephane E Castel
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jie Ren
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - An-Yun Chang
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Alberto Valbuena
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Robert A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
26
|
Peng X, Wu J, Brunmeir R, Kim SY, Zhang Q, Ding C, Han W, Xie W, Xu F. TELP, a sensitive and versatile library construction method for next-generation sequencing. Nucleic Acids Res 2014; 43:e35. [PMID: 25223787 PMCID: PMC4381050 DOI: 10.1093/nar/gku818] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/29/2014] [Indexed: 12/24/2022] Open
Abstract
Next-generation sequencing has been widely used for the genome-wide profiling of histone modifications, transcription factor binding and gene expression through chromatin immunoprecipitated DNA sequencing (ChIP-seq) and cDNA sequencing (RNA-seq). Here, we describe a versatile library construction method that can be applied to both ChIP-seq and RNA-seq on the widely used Illumina platforms. Standard methods for ChIP-seq library construction require nanograms of starting DNA, substantially limiting its application to rare cell types or limited clinical samples. By minimizing the DNA purification steps that cause major sample loss, our method achieved a high sensitivity in ChIP-seq library preparation. Using this method, we achieved the following: (i) generated high-quality epigenomic and transcription factor-binding maps using ChIP-seq for murine adipocytes; (ii) successfully prepared a ChIP-seq library from as little as 25 pg of starting DNA; (iii) achieved paired-end sequencing of the ChIP-seq libraries; (iv) systematically profiled gene expression dynamics during murine adipogenesis using RNA-seq and (v) preserved the strand specificity of the transcripts in RNA-seq. Given its sensitivity and versatility in both double-stranded and single-stranded DNA library construction, this method has wide applications in genomic, epigenomic, transcriptomic and interactomic studies.
Collapse
Affiliation(s)
- Xu Peng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
| | - Jingyi Wu
- Tsinghua University-Peking University Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Reinhard Brunmeir
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
| | - Sun-Yee Kim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
| | - Qiongyi Zhang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
| | - Chunming Ding
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore 138667, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wei Xie
- Tsinghua University-Peking University Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
27
|
Zhang JM, Liu XM, Ding YH, Xiong LY, Ren JY, Zhou ZX, Wang HT, Zhang MJ, Yu Y, Dong MQ, Du LL. Fission yeast Pxd1 promotes proper DNA repair by activating Rad16XPF and inhibiting Dna2. PLoS Biol 2014; 12:e1001946. [PMID: 25203555 PMCID: PMC4159138 DOI: 10.1371/journal.pbio.1001946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/31/2014] [Indexed: 01/31/2023] Open
Abstract
Structure-specific nucleases play crucial roles in many DNA repair pathways. They must be precisely controlled to ensure optimal repair outcomes; however, mechanisms of their regulation are not fully understood. Here, we report a fission yeast protein, Pxd1, that binds to and regulates two structure-specific nucleases: Rad16XPF-Swi10ERCC1 and Dna2-Cdc24. Strikingly, Pxd1 influences the activities of these two nucleases in opposite ways: It activates the 3' endonuclease activity of Rad16-Swi10 but inhibits the RPA-mediated activation of the 5' endonuclease activity of Dna2. Pxd1 is required for Rad16-Swi10 to function in single-strand annealing, mating-type switching, and the removal of Top1-DNA adducts. Meanwhile, Pxd1 attenuates DNA end resection mediated by the Rqh1-Dna2 pathway. Disabling the Dna2-inhibitory activity of Pxd1 results in enhanced use of a break-distal repeat sequence in single-strand annealing and a greater loss of genetic information. We propose that Pxd1 promotes proper DNA repair by differentially regulating two structure-specific nucleases.
Collapse
Affiliation(s)
- Jia-Min Zhang
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yue-He Ding
- National Institute of Biological Sciences, Beijing, China
| | | | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing, China
| | - Zhi-Xiong Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Hai-Tao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Mei-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Yang Yu
- National Institute of Biological Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Bryan DS, Ransom M, Adane B, York K, Hesselberth JR. High resolution mapping of modified DNA nucleobases using excision repair enzymes. Genome Res 2014; 24:1534-42. [PMID: 25015380 PMCID: PMC4158761 DOI: 10.1101/gr.174052.114] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
The incorporation and creation of modified nucleobases in DNA have profound effects on genome function. We describe methods for mapping positions and local content of modified DNA nucleobases in genomic DNA. We combined in vitro nucleobase excision with massively parallel DNA sequencing (Excision-seq) to determine the locations of modified nucleobases in genomic DNA. We applied the Excision-seq method to map uracil in E. coli and budding yeast and discovered significant variation in uracil content, wherein uracil is excluded from the earliest and latest replicating regions of the genome, possibly driven by changes in nucleotide pool composition. We also used Excision-seq to identify sites of pyrimidine dimer formation induced by UV light exposure, where the method could distinguish between sites of cyclobutane and 6-4 photoproduct formation. These UV mapping data enabled analysis of local sequence bias around pyrimidine dimers and suggested a preference for an adenosine downstream from 6-4 photoproducts. The Excision-seq method is broadly applicable for high precision, genome-wide mapping of modified nucleobases with cognate repair enzymes.
Collapse
Affiliation(s)
- D Suzi Bryan
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Monica Ransom
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Biniam Adane
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kerri York
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
29
|
Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res 2014; 24:1009-12. [PMID: 24980957 DOI: 10.1038/cr.2014.87] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Derks KWJ, Hoeijmakers JHJ, Pothof J. The DNA damage response: the omics era and its impact. DNA Repair (Amst) 2014; 19:214-20. [PMID: 24794401 DOI: 10.1016/j.dnarep.2014.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The emergence of high density technologies monitoring the genome, transcriptome and proteome in relation to genotoxic stress have tremendously enhanced our knowledge on global responses and dynamics in the DNA damage response, including its relation with cancer and aging. Moreover, '-omics' technologies identified many novel factors, their post-translational modifications, pathways and global responses in the cellular response to DNA damage. Based on omics, it is currently estimated that thousands of gene(product)s participate in the DNA damage response, recognizing complex networks that determine cell fate after damage to the most precious cellular molecule, DNA. The development of next generation sequencing technology and associated specialized protocols can quantitatively monitor RNA and DNA at unprecedented single nucleotide resolution. In this review we will discuss the contribution of omics technologies and in particular next generation sequencing to our understanding of the DNA damage response and the future prospective of next generation sequencing, its single cell application and omics dataset integration in unraveling intricate DNA damage signaling networks.
Collapse
Affiliation(s)
- Kasper W J Derks
- Department of Genetics, Netherlands Toxicogenomics Center, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Genetics, Netherlands Toxicogenomics Center, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Joris Pothof
- Department of Genetics, Netherlands Toxicogenomics Center, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Kouzine F, Wojtowicz D, Yamane A, Resch W, Kieffer-Kwon KR, Bandle R, Nelson S, Nakahashi H, Awasthi P, Feigenbaum L, Menoni H, Hoeijmakers J, Vermeulen W, Ge H, Przytycka TM, Levens D, Casellas R. Global regulation of promoter melting in naive lymphocytes. Cell 2013; 153:988-99. [PMID: 23706737 PMCID: PMC3684982 DOI: 10.1016/j.cell.2013.04.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/31/2013] [Accepted: 04/04/2013] [Indexed: 11/25/2022]
Abstract
Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens.
Collapse
Affiliation(s)
- Fedor Kouzine
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Damian Wojtowicz
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
- Institute of Informatics, University of Warsaw, 02-098 Warsaw, Poland
| | - Arito Yamane
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Resch
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Russell Bandle
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steevenson Nelson
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotaka Nakahashi
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parirokh Awasthi
- Science Applications International Corporation, NCI, Frederick, MD 21702, USA
| | - Lionel Feigenbaum
- Science Applications International Corporation, NCI, Frederick, MD 21702, USA
| | - Herve Menoni
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Jan Hoeijmakers
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Wim Vermeulen
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Hui Ge
- Ascentgene, Inc., Rockville, MD 20850, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Casellas
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
- Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|