1
|
Ivanov V, Lee KM, Mutanen M. ddRAD Sequencing and DNA Barcoding. Methods Mol Biol 2024; 2744:213-221. [PMID: 38683321 DOI: 10.1007/978-1-0716-3581-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Double-digest restriction site-associated DNA sequencing is a library preparation protocol that enables capturing variable sites across the genome including single-nucleotide polymorphisms (SNPs). These SNPs can be utilized to gain evolutionary insights into patterns observed in DNA barcodes, to infer population structure and phylogenies, to detect gene flow and introgression, and to perform species delimitation analyses. The protocol includes chemically shearing genomic DNA with restriction enzymes, unique tagging, size selection, and amplification of the resulting DNA fragments. Here we provide a detailed description of each step of the protocol, as well as information on essential equipment and common issues encountered during laboratory work.
Collapse
Affiliation(s)
- Vladislav Ivanov
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Kyung Min Lee
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Oliveira CS, Camargo LSA, da Silva MVGB, Saraiva NZ, Quintão CC, Machado MA. Embryo biopsies for genomic selection in tropical dairy cattle. Anim Reprod 2023; 20:e20230064. [PMID: 37547565 PMCID: PMC10399131 DOI: 10.1590/1984-3143-ar2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
Genomic selection has transformed the livestock industry, enabling early-life selection of animals. Biopsy sampling of pre-implantation embryos has been described since 1968. However, it was only after 2010, with the advancement of molecular biology techniques such as whole genomic amplification and SNP Chips, that next-generation sequencing became commercially available for bovine embryos. It is now possible to make decisions about which embryos to transfer not only based on recipients' availability or embryo morphology but also on genomic estimates. This technology can be implemented for a wide spectrum of applications in livestock. In this review, we discuss the use of embryo biopsy for genomic selection and share our experience with Gir and Girolando Brazilian breeding programs, as well as future goals for implementing it in Brazilian bovine in vitro embryo production practices.
Collapse
|
3
|
Shafique H, Ashraf NM, Rashid A, Majeed A, Afsar T, Daly AK, Almajwal A, Alruwaili NW, Khan AU, Razak S. Determination of Pleiotropic Effect of Warfarin in VKORC1 and CYP2C9 Genotypes in Patients With Heart Valve Replacement. Front Cardiovasc Med 2022; 9:895169. [PMID: 35757332 PMCID: PMC9226342 DOI: 10.3389/fcvm.2022.895169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Warfarin has been widely used as an oral anticoagulant agent. In past, efforts have been done to study the contribution of genetic variation on warfarin dose requirements. The possible therapeutic dose determination of warfarin is very challenging, i.e., extremely low dose leading to unusable antithrombotic therapy or high dose causes particularly bleeding complications. Our study aimed to investigate these observations in more detail, we determined the correlation of interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) among VKORC1 and CYP2C9 genetic variants in patients with heart valve replacement who were treated with a range of warfarin doses and compared with levels in healthy controls. A total of 107 human subjects were recruited with low < 5 mg, medium 5–10 mg/day, and high > 10 mg/day warfarin doses. The genetic study of VKORC1–1639G/A, C1173T, 3730G > A, CYP2C9*2, and CYP2C9*3 was performed using TaqMan genotyping and DNA sequencing. The gene expression of IL-6, TNF-α, and COX-2 mRNA was analyzed. IL-6, TNF-α, and COX-2 protein expressions were determined by ELISA and Western blot analysis to evaluate the pro- and anti-inflammatory effects of warfarin. A statistically significant difference was found among the haplotypes of VKORC1 rs9934438 (C1173T), rs9923231 (−1639G > A), rs7294 (3730G > A) and CYP2C9 *2 p. Arg144 Cys (rs28371674), CYP2C9 *3 p. Ile359Leu (rs1057910) genotypes with warfarin dose requirements (p = 0.001). The increased levels of COX-2, IL-6, and TNF-α proteins were observed when a high dose of warfarin (>10 mg/ml) was administered. However, a lower concentration (1.0 mg/ml) was observed with decreased warfarin dose (<5 mg/day). The present study reported that in addition to its anticoagulant action, the genetic variants of warfarin may have a pleiotropic effect by influencing IL-6 depending on the dosing regimen and inducing the expression of COX-2.
Collapse
Affiliation(s)
- Huma Shafique
- Department of Biochemistry, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
- Institute of Cellular Medicine, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Amir Rashid
- Department of Biochemistry, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Asifa Majeed
- Department of Biochemistry, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ann K. Daly
- Institute of Cellular Medicine, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Azmat Ullah Khan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Suhail Razak,
| |
Collapse
|
4
|
Cashman S, Lampe K, Sheridan R, Hoebe K. An ENU mutagenesis approach to dissect "self"-induced immune responses: Unraveling the genetic footprint of immunosurveillance. Oncoimmunology 2021; 1:856-862. [PMID: 23162753 PMCID: PMC3489741 DOI: 10.4161/onci.20580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The immune system exerts a critical function as it recognizes and eliminates transformed or neoplastic cells, a process also referred to as immunosurveillance. NK cells play a particularly important role in that they are able to recognize tumor cells via “missing-self”—i.e., the absence of major histocompatibility complex Class I on target cells. Moreover, recent studies suggest that NK cells also participate in the onset and regulation of adaptive immune responses. The exact molecular pathways by which this occurs, however, remain poorly understood. To obtain further insight into the genes that are required for self-induced immune responses via NK cell-mediated cell death, our laboratory initiated a forward genetic approach using N-ethyl-N-nitrosourea (ENU) as a mutagen. Specifically, we tested the ability of NK cells from G3 ENU germline mice to recognize missing-self target cells and induce CD8+ T-cell responses following immunization with irradiated tumor cells. Here we present two ENU germline mutants, designated Ace and Chip, that are defective in the recognition of β-2 microglobulin-deficient target cells, yet exhibit improved clearance of B16 melanoma cells in vivo. Coarse mapping and whole genome sequencing of the Chip mutation revealed a missense mutation causing a T’A amino acid substitution in the highly conserved third immuno-receptor tyrosine-based switch motif of CD244 (2B4). The forward genetic approach described here promises to reveal important insight into critical genes that are required for host responses involved in anticancer immunity.
Collapse
Affiliation(s)
- Siobhan Cashman
- Department of Molecular and Cellular Immunology; Cincinnati Children's Hospital Research Foundation; Cincinnati, OH USA
| | | | | | | |
Collapse
|
5
|
Ivanov V, Marusik Y, Pétillon J, Mutanen M. Relevance of ddRADseq method for species and population delimitation of closely related and widely distributed wolf spiders (Araneae, Lycosidae). Sci Rep 2021; 11:2177. [PMID: 33500478 PMCID: PMC7838170 DOI: 10.1038/s41598-021-81788-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Although species delimitation is often controversial, emerging DNA-based and classical morphology-based methods are rarely compared using large-scale samplings, even less in the case of widely distributed species that have distant, allopatric populations. In the current study, we examined species boundaries within two wolf spider species of the genus Pardosa (Araneae, Lycosidae), P. riparia and P. palustris. Wolf spiders constitute an excellent model for testing the relevance of traditional vs. modern methods in species and population delimitation because several closely related species are distributed over cross-continental geographic ranges. Allopatric populations of the two Pardosa species were sampled across Europe to Far East Russia (latitudinal range > 150°) and several dozen individuals were studied using morphological characters (morphometry of three measures for both sexes, plus five in males only and two in females only), DNA barcoding (COI sequencing) and double-digest restriction site associated DNA sequencing (ddRADseq). The results obtained allow for changing the taxonomic status of two Far East Russian populations to subspecies and ddRADseq proved to be a powerful tool for taxonomic research despite scarce sampling and inherent subjectivity of species delimitation in allopatry. Overall, this study pleads for both multi-criteria and more population-based studies in taxonomy.
Collapse
Affiliation(s)
- Vladislav Ivanov
- grid.10858.340000 0001 0941 4873Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Yuri Marusik
- grid.493323.c0000 0004 0399 5314Institute for Biological Problems of the North, RAS, Magadan, Russia ,grid.412219.d0000 0001 2284 638XDepartment of Zoology and Entomology, University of the Free State, Bloemfontein, 9300 South Africa
| | - Julien Pétillon
- grid.410368.80000 0001 2191 9284UMR CNRS ECOBIO, Université de Rennes 1, Rennes, France
| | - Marko Mutanen
- grid.10858.340000 0001 0941 4873Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Sacks BN, Lounsberry ZT, Statham MJ. Nuclear Genetic Analysis of the Red Fox Across its Trans-Pacific Range. J Hered 2019; 109:573-584. [PMID: 29889225 DOI: 10.1093/jhered/esy028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/05/2018] [Indexed: 11/14/2022] Open
Abstract
The red fox (Vulpes vulpes) occurs on multiple continents in diverse habitats, making it an informative system for evolutionary genomic research. However, its phylogeography remains unclear. Previously, mitochondrial DNA and small numbers of nuclear loci provided discordant views. Both markers indicated deep divergence (~ 0.5 million years [MY]) between Eurasian and southern North American populations but differed in the apparent continental affinity of Alaskan red foxes, implying some degree of gene exchange during secondary contact (~0.1 MY). We assayed >173000 nuclear genomic sites in 52 red foxes, along with 2 Rueppell's foxes (Vulpes rueppellii) and a gray wolf (Canis lupus) using the Illumina CanineHD BeadChip. We obtained 5107 single nucleotide polymorphisms (SNPs) in the foxes. Consistent with the Afro-Eurasian origins of red foxes, genetic diversity was higher in Eurasian than North American samples. Phylogenetic trees indicated that Alaskan and southern North American red foxes formed a monophyletic group nested within the Eurasian clade. However, admixture models suggested Alaskan red foxes contained up to 40% Eurasian ancestry. We hypothesize that North American red foxes either hybridized with Eurasian foxes in Beringia at the start of the last glaciation or merged with a Beringian population after the last glaciation. Future work is needed to test between these scenarios and assess speciation.
Collapse
Affiliation(s)
- Benjamin N Sacks
- Mammalian Ecology and Conservation Unit of the Veterinary Genetics Laboratory, University of California, Davis, Davis, CA.,Department of Population Health and Reproduction, University of California, Davis, Davis, CA
| | - Zachary T Lounsberry
- Mammalian Ecology and Conservation Unit of the Veterinary Genetics Laboratory, University of California, Davis, Davis, CA
| | - Mark J Statham
- Mammalian Ecology and Conservation Unit of the Veterinary Genetics Laboratory, University of California, Davis, Davis, CA.,Department of Population Health and Reproduction, University of California, Davis, Davis, CA
| |
Collapse
|
7
|
Cruaud A, Groussier G, Genson G, Sauné L, Polaszek A, Rasplus JY. Pushing the limits of whole genome amplification: successful sequencing of RADseq library from a single microhymenopteran (Chalcidoidea, Trichogramma). PeerJ 2018; 6:e5640. [PMID: 30356952 PMCID: PMC6195110 DOI: 10.7717/peerj.5640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022] Open
Abstract
A major obstacle to high-throughput genotyping of microhymenoptera is their small size. As species are difficult to discriminate, and because complexes may exist, the sequencing of a pool of specimens is hazardous. Thus, one should be able to sequence pangenomic markers (e.g., RADtags) from a single specimen. To date, whole genome amplification (WGA) prior to library construction is still a necessity as at most 10 ng of DNA can be obtained from single specimens (sometimes less). However, this amount of DNA is not compatible with manufacturer's requirements for commercial kits. Here we test the accuracy of the GenomiPhi kit V2 on Trichogramma wasps by comparing RAD libraries obtained from the WGA of single specimens (F0 and F1 generation, about1 ng input DNA for the WGA (0.17-2.9 ng)) and a biological amplification of genomic material (the pool of the progeny of the F1 generation). Globally, we found that 99% of the examined loci (up to 48,189 for one of the crosses, 109 bp each) were compatible with the mode of reproduction of the studied model (haplodiploidy) and Mendelian inheritance of alleles. The remaining 1% (0.01% of the analysed nucleotides) could represent WGA bias or other experimental/analytical bias. This study shows that the multiple displacement amplification method on which the GenomiPhi kit relies, could also be of great help for the high-throughput genotyping of microhymenoptera used for biological control, or other organisms from which only a very small amount of DNA can be extracted, such as human disease vectors (e.g., sandflies, fleas, ticks etc.).
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Géraldine Groussier
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Guenaëlle Genson
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Laure Sauné
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Andrew Polaszek
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Jean-Yves Rasplus
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
8
|
El-Sayed AEKB, Aboulthana WM, El-Feky AM, Ibrahim NE, Seif MM. Bio and phyto-chemical effect of Amphora coffeaeformis extract against hepatic injury induced by paracetamol in rats. Mol Biol Rep 2018; 45:2007-2023. [DOI: 10.1007/s11033-018-4356-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
|
9
|
Abstract
Purifying DNA is the key to successful cloning. The cleaner the final preparation of DNA, the more efficient will be the enzymatic reactions that use the DNA as a template or a substrate. In the 1930s and 1940s, the scientific literature began to accumulate methods to release DNA from cells and to remove cellular constituents that inhibit or act as competitors on enzymatically catalyzed reactions. Since then, thousands of protocols for purification of DNA from a wide variety of organisms, tissues, and bodily fluids have been published. This introduction provides an overview of methods for isolation and quantification of DNA.
Collapse
|
10
|
Ivanov V, Lee KM, Mutanen M. Mitonuclear discordance in wolf spiders: Genomic evidence for species integrity and introgression. Mol Ecol 2018; 27:1681-1695. [PMID: 29575366 DOI: 10.1111/mec.14564] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022]
Abstract
Systematists and taxonomists have benefited greatly from the emergence of molecular methods. Species identification has become straightforward through DNA barcoding and the rapid build-up of massive DNA barcode reference libraries. In animals, mitonuclear discordance can significantly complicate the process of species identification and delimitation. The causes of mitonuclear discordance are either biological (e.g., introgression, incomplete lineage sorting, horizontal gene transfer androgenesis) or induced by operational factors (e.g., human error with specimen misidentification or incorrect species delimitation). Moreover, endosymbionts may play an important role in promoting fixation of mitochondrial genomes. Here, we study the mitonuclear discordance of wolf spiders species (Lycosidae) (independent cases from Alopecosa aculeata and Pardosa pullata groups) that share identical COI DNA barcodes. We approached the case utilizing double-digest restriction site-associated DNA sequencing (ddRADseq) to obtain and analyse genomic-scale data. Our results suggest that the observed cases of mitonuclear discordance are not due to operational reasons but result from biological processes. Further analysis indicated introgression and that incomplete lineage sorting is unlikely to have been responsible for the observed discrepancy. Additional survey of endosymbionts provided ideas on further research and their role in shaping mitochondrial DNA distribution patterns. Thus, ddRADseq grants an efficient way to study the taxonomy of problematic groups with insight into underlying evolutionary processes.
Collapse
Affiliation(s)
- Vladislav Ivanov
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Kyung Min Lee
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Marko Mutanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Lee KM, Kivelä SM, Ivanov V, Hausmann A, Kaila L, Wahlberg N, Mutanen M. Information Dropout Patterns in Restriction Site Associated DNA Phylogenomics and a Comparison with Multilocus Sanger Data in a Species-Rich Moth Genus. Syst Biol 2018; 67:925-939. [DOI: 10.1093/sysbio/syy029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/10/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kyung Min Lee
- Department of Ecology and Genetics, University of Oulu, Pentti Kaiteran katu 1, FI-90014, Oulu, Finland
| | - Sami M Kivelä
- Department of Ecology and Genetics, University of Oulu, Pentti Kaiteran katu 1, FI-90014, Oulu, Finland
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia
| | - Vladislav Ivanov
- Department of Ecology and Genetics, University of Oulu, Pentti Kaiteran katu 1, FI-90014, Oulu, Finland
| | - Axel Hausmann
- SNSB – Bavarian State Collection of Zoology, Münchhausenstr. 21, D-81247 Munich, Germany
| | - Lauri Kaila
- Finnish Museum of Natural History, Zoology Unit, FI-00014 University of Helsinki, P. Rautatiekatu 13, P.O. Box 17, Helsinki, Finland
| | - Niklas Wahlberg
- Department of Biology, Sölvegatan 37, Lund University, SE-223 62 Lund, Sweden
| | - Marko Mutanen
- Department of Ecology and Genetics, University of Oulu, Pentti Kaiteran katu 1, FI-90014, Oulu, Finland
| |
Collapse
|
12
|
Liu HE, Triboulet M, Zia A, Vuppalapaty M, Kidess-Sigal E, Coller J, Natu VS, Shokoohi V, Che J, Renier C, Chan NH, Hanft VR, Jeffrey SS, Sollier-Christen E. Workflow optimization of whole genome amplification and targeted panel sequencing for CTC mutation detection. NPJ Genom Med 2017; 2:34. [PMID: 29263843 PMCID: PMC5677973 DOI: 10.1038/s41525-017-0034-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 12/30/2022] Open
Abstract
Genomic characterization of circulating tumor cells (CTCs) may prove useful as a surrogate for conventional tissue biopsies. This is particularly important as studies have shown different mutational profiles between CTCs and ctDNA in some tumor subtypes. However, isolating rare CTCs from whole blood has significant hurdles. Very limited DNA quantities often can't meet NGS requirements without whole genome amplification (WGA). Moreover, white blood cells (WBC) germline contamination may confound CTC somatic mutation analyses. Thus, a good CTC enrichment platform with an efficient WGA and NGS workflow are needed. Here, Vortex label-free CTC enrichment platform was used to capture CTCs. DNA extraction was optimized, WGA evaluated and targeted NGS tested. We used metastatic colorectal cancer (CRC) as the clinical target, HCT116 as the corresponding cell line, GenomePlex® and REPLI-g as the WGA methods, GeneRead DNAseq Human CRC Panel as the 38 gene panel. The workflow was further validated on metastatic CRC patient samples, assaying both tumor and CTCs. WBCs from the same patients were included to eliminate germline contaminations. The described workflow performed well on samples with sufficient DNA, but showed bias for rare cells with limited DNA input. REPLI-g provided an unbiased amplification on fresh rare cells, enabling an accurate variant calling using the targeted NGS. Somatic variants were detected in patient CTCs and not found in age matched healthy donors. This demonstrates the feasibility of a simple workflow for clinically relevant monitoring of tumor genetics in real time and over the course of a patient's therapy using CTCs.
Collapse
Affiliation(s)
| | - Melanie Triboulet
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
| | - Amin Zia
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA USA
| | | | - Evelyn Kidess-Sigal
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
- Department of Medicine, Division of Hepatology and Gastroenterology, Charité University Hospital, Berlin, Germany
| | - John Coller
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA USA
| | - Vanita S. Natu
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA USA
| | - Vida Shokoohi
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA USA
| | - James Che
- Vortex Biosciences, Inc., Menlo Park, CA USA
| | | | - Natalie H. Chan
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
| | - Violet R. Hanft
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
| | - Stefanie S. Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA USA
| | | |
Collapse
|
13
|
Sho S, Court CM, Winograd P, Lee S, Hou S, Graeber TG, Tseng HR, Tomlinson JS. Precision oncology using a limited number of cells: optimization of whole genome amplification products for sequencing applications. BMC Cancer 2017; 17:457. [PMID: 28666423 PMCID: PMC5493892 DOI: 10.1186/s12885-017-3447-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background Sequencing analysis of circulating tumor cells (CTCs) enables “liquid biopsy” to guide precision oncology strategies. However, this requires low-template whole genome amplification (WGA) that is prone to errors and biases from uneven amplifications. Currently, quality control (QC) methods for WGA products, as well as the number of CTCs needed for reliable downstream sequencing, remain poorly defined. We sought to define strategies for selecting and generating optimal WGA products from low-template input as it relates to their potential applications in precision oncology strategies. Methods Single pancreatic cancer cells (HPAF-II) were isolated using laser microdissection. WGA was performed using multiple displacement amplification (MDA), multiple annealing and looping based amplification (MALBAC) and PicoPLEX. Quality of amplified DNA products were assessed using a multiplex/RT-qPCR based method that evaluates for 8-cancer related genes and QC-scores were assigned. We utilized this scoring system to assess the impact of de novo modifications to the WGA protocol. WGA products were subjected to Sanger sequencing, array comparative genomic hybridization (aCGH) and next generation sequencing (NGS) to evaluate their performances in respective downstream analyses providing validation of the QC-score. Results Single-cell WGA products exhibited a significant sample-to-sample variability in amplified DNA quality as assessed by our 8-gene QC assay. Single-cell WGA products that passed the pre-analysis QC had lower amplification bias and improved aCGH/NGS performance metrics when compared to single-cell WGA products that failed the QC. Increasing the number of cellular input resulted in improved QC-scores overall, but a resultant WGA product that consistently passed the QC step required a starting cellular input of at least 20-cells. Our modified-WGA protocol effectively reduced this number, achieving reproducible high-quality WGA products from ≥5-cells as a starting template. A starting cellular input of 5 to 10-cells amplified using the modified-WGA achieved aCGH and NGS results that closely matched that of unamplified, batch genomic DNA. Conclusion The modified-WGA protocol coupled with the 8-gene QC serve as an effective strategy to enhance the quality of low-template WGA reactions. Furthermore, a threshold number of 5–10 cells are likely needed for a reliable WGA reaction and product with high fidelity to the original starting template. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3447-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shonan Sho
- Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, California, Los Angeles, 90095, USA. .,Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, 11301 Wilshire Blvd, California, Los Angeles, 90073, USA.
| | - Colin M Court
- Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, California, Los Angeles, 90095, USA.,Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, 11301 Wilshire Blvd, California, Los Angeles, 90073, USA
| | - Paul Winograd
- Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, California, Los Angeles, 90095, USA.,Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, 11301 Wilshire Blvd, California, Los Angeles, 90073, USA
| | - Sangjun Lee
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Dr S, California, Los Angeles, 90095, USA
| | - Shuang Hou
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Dr S, California, Los Angeles, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Dr S, California, Los Angeles, 90095, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Dr S, California, Los Angeles, 90095, USA
| | - James S Tomlinson
- Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, California, Los Angeles, 90095, USA.,Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, 11301 Wilshire Blvd, California, Los Angeles, 90073, USA.,UCLA Center for Pancreatic Diseases, University of California Los Angeles, 10833 Le Conte Ave., 72-215 CHS, California, Los Angeles, 90095, USA
| |
Collapse
|
14
|
Role of methionine adenosyltransferase 2A in bovine preimplantation development and its associated genomic regions. Sci Rep 2017. [PMID: 28630431 PMCID: PMC5476596 DOI: 10.1038/s41598-017-04003-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferase (MAT) is involved in folate-mediated one-carbon metabolism, which is essential for preimplantation embryos in terms of both short-term periconceptional development and long-term phenotypic programming beyond the periconceptional period. Here, our immunofluorescence analysis of bovine oocytes and preimplantation embryos revealed the consistent expression of MAT2A (the catalytic subunit of the ubiquitously expressed-type of MAT isozyme) during this period. Addition of the MAT2A inhibitor FIDAS to the culture media of bovine preimplantation embryos reduced their blastocyst development, revealing the particular importance of MAT2A in successful blastocyst development. Exploration of MAT2A-associated genomic regions in bovine blastocysts using chromatin immunoprecipitation and sequencing (ChIP-seq) identified candidate MAT2A-associated genes implicated not only in short-term periconceptional embryo development, but also in long-term phenotypic programming during this period in terms of growth, metabolism, and immune functions. These results suggest the critical involvement of MAT2A in the periconceptional period in life-long programming of health and disease as well as successful preimplantation development.
Collapse
|
15
|
Doggett NA, Mukundan H, Lefkowitz EJ, Slezak TR, Chain PS, Morse S, Anderson K, Hodge DR, Pillai S. Culture-Independent Diagnostics for Health Security. Health Secur 2017; 14:122-42. [PMID: 27314653 DOI: 10.1089/hs.2015.0074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has seen considerable development in the diagnostic application of nonculture methods, including nucleic acid amplification-based methods and mass spectrometry, for the diagnosis of infectious diseases. The implications of these new culture-independent diagnostic tests (CIDTs) include bypassing the need to culture organisms, thus potentially affecting public health surveillance systems, which continue to use isolates as the basis of their surveillance programs and to assess phenotypic resistance to antimicrobial agents. CIDTs may also affect the way public health practitioners detect and respond to a bioterrorism event. In response to a request from the Department of Homeland Security, Los Alamos National Laboratory and the Centers for Disease Control and Prevention cosponsored a workshop to review the impact of CIDTs on the rapid detection and identification of biothreat agents. Four panel discussions were held that covered nucleic acid amplification-based diagnostics, mass spectrometry, antibody-based diagnostics, and next-generation sequencing. Exploiting the extensive expertise available at this workshop, we identified the key features, benefits, and limitations of the various CIDT methods for providing rapid pathogen identification that are critical to the response and mitigation of a bioterrorism event. After the workshop we conducted a thorough review of the literature, investigating the current state of these 4 culture-independent diagnostic methods. This article combines information from the literature review and the insights obtained at the workshop.
Collapse
|
16
|
Woodworth MB, Girskis KM, Walsh CA. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat Rev Genet 2017; 18:230-244. [PMID: 28111472 PMCID: PMC5459401 DOI: 10.1038/nrg.2016.159] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resolving lineage relationships between cells in an organism is a fundamental interest of developmental biology. Furthermore, investigating lineage can drive understanding of pathological states, including cancer, as well as understanding of developmental pathways that are amenable to manipulation by directed differentiation. Although lineage tracking through the injection of retroviral libraries has long been the state of the art, a recent explosion of methodological advances in exogenous labelling and single-cell sequencing have enabled lineage tracking at larger scales, in more detail, and in a wider range of species than was previously considered possible. In this Review, we discuss these techniques for cell lineage tracking, with attention both to those that trace lineage forwards from experimental labelling, and those that trace backwards across the life history of an organism.
Collapse
Affiliation(s)
- Mollie B Woodworth
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Kelly M Girskis
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
Suiformes conservation: a study case of strategies for DNA utilization. J Genet 2016. [DOI: 10.1007/s12041-013-0242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Kader T, Goode DL, Wong SQ, Connaughton J, Rowley SM, Devereux L, Byrne D, Fox SB, Mir Arnau G, Tothill RW, Campbell IG, Gorringe KL. Copy number analysis by low coverage whole genome sequencing using ultra low-input DNA from formalin-fixed paraffin embedded tumor tissue. Genome Med 2016; 8:121. [PMID: 27846907 PMCID: PMC5111221 DOI: 10.1186/s13073-016-0375-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/26/2016] [Indexed: 11/10/2022] Open
Abstract
Unlocking clinically translatable genomic information, including copy number alterations (CNA), from formalin-fixed paraffin-embedded (FFPE) tissue is challenging due to low yields and degraded DNA. We describe a robust, cost-effective low-coverage whole genome sequencing (LC WGS) method for CNA detection using 5 ng of FFPE-derived DNA. CN profiles using 100 ng or 5 ng input DNA were highly concordant and comparable with molecular inversion probe (MIP) array profiles. LC WGS improved CN profiles of samples that performed poorly using MIP arrays. Our technique enables identification of driver and prognostic CNAs in archival patient samples previously deemed unsuitable for genomic analysis due to DNA limitations.
Collapse
Affiliation(s)
- Tanjina Kader
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - David L Goode
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Stephen Q Wong
- Molecular Biomarkers and Translational Genomics Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Jacquie Connaughton
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Lisa Devereux
- LifePool, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - David Byrne
- Pathology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Gisela Mir Arnau
- Molecular Genomics Core Facility, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Richard W Tothill
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Molecular Imaging and Targeted Therapeutics Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Kylie L Gorringe
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia. .,Department of Pathology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Forst J, Brown TA. Inability of 'Whole Genome Amplification' to Improve Success Rates for the Biomolecular Detection of Tuberculosis in Archaeological Samples. PLoS One 2016; 11:e0163031. [PMID: 27654468 PMCID: PMC5031403 DOI: 10.1371/journal.pone.0163031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/01/2016] [Indexed: 11/30/2022] Open
Abstract
We assessed the ability of whole genome amplification (WGA) to improve the efficiency of downstream polymerase chain reactions (PCRs) directed at ancient DNA (aDNA) of members of the Mycobacterium tuberculosis complex (MTBC). Using extracts from a variety of bones and a tooth from human skeletons with or without lesions indicative of tuberculosis, from multiple time periods, we obtained inconsistent results. We conclude that WGA does not provide any advantage in studies of MTBC aDNA. The sporadic nature of our results are probably due to the fact that WGA is itself a PCR-based procedure which, although designed to deal with fragmented DNA, might be inefficient with the low concentration of templates in an aDNA extract. As such, WGA is subject to similar, if not the same, restrictions as PCR when applied to aDNA.
Collapse
Affiliation(s)
- Jannine Forst
- Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Terence A. Brown
- Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells. Oncotarget 2016; 8:56066-56080. [PMID: 28915574 PMCID: PMC5593545 DOI: 10.18632/oncotarget.10701] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/09/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Whole genome amplification (WGA) is required for single cell genotyping. Effectiveness of currently available WGA technologies in combination with next generation sequencing (NGS) and material preservation is still elusive. RESULTS In respect to the accuracy of SNP/mutation, indel, and copy number aberrations (CNA) calling, the HiSeq2000 platform outperformed IonProton in all aspects. Furthermore, more accurate SNP/mutation and indel calling was demonstrated using single tumor cells obtained from EDTA-collected blood in respect to CellSave-preserved blood, whereas CNA analysis in our study was not detectably affected by fixation. Although MDA-based WGA yielded the highest DNA amount, DNA quality was not adequate for downstream analysis. PCR-based WGA demonstrates superiority over MDA-PCR combining technique for SNP and indel analysis in single cells. However, SNP calling performance of MDA-PCR WGA improves with increasing amount of input DNA, whereas CNA analysis does not. The performance of PCR-based WGA did not significantly improve with increase of input material. CNA profiles of single cells, amplified with MDA-PCR technique and sequenced on both HiSeq2000 and IonProton platforms, resembled unamplified DNA the most. MATERIALS AND METHODS We analyzed the performance of PCR-based, multiple-displacement amplification (MDA)-based, and MDA-PCR combining WGA techniques (WGA kits Ampli1, REPLI-g, and PicoPlex, respectively) on single and pooled tumor cells obtained from EDTA- and CellSave-preserved blood and archival material. Amplified DNA underwent exome-Seq with the Illumina HiSeq2000 and ThermoFisher IonProton platforms. CONCLUSION We demonstrate the feasibility of single cell genotyping of differently preserved material, nevertheless, WGA and NGS approaches have to be chosen carefully depending on the study aims.
Collapse
|
21
|
Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S. Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects. Cancer Res 2016; 76:1305-12. [PMID: 26941284 DOI: 10.1158/0008-5472.can-15-1907] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
Advances in genomic technology have enabled the faithful detection and measurement of mutations and the gene expression profile of cancer cells at the single-cell level. Recently, several single-cell sequencing methods have been developed that permit the comprehensive and precise analysis of the cancer-cell genome, transcriptome, and epigenome. The use of these methods to analyze cancer cells has led to a series of unanticipated discoveries, such as the high heterogeneity and stochastic changes in cancer-cell populations, the new driver mutations and the complicated clonal evolution mechanisms, and the novel identification of biomarkers of variant tumors. These methods and the knowledge gained from their utilization could potentially improve the early detection and monitoring of rare cancer cells, such as circulating tumor cells and disseminated tumor cells, and promote the development of personalized and highly precise cancer therapy. Here, we discuss the current methods for single cancer-cell sequencing, with a strong focus on those practically used or potentially valuable in cancer research, including single-cell isolation, whole genome and transcriptome amplification, epigenome profiling, multi-dimensional sequencing, and next-generation sequencing and analysis. We also examine the current applications, challenges, and prospects of single cancer-cell sequencing.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, Zhejiang Province, P. R. China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, Connecticut
| | - Zhaoyang Hu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, Zhejiang Province, P. R. China
| | - Sherman M Weissman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Xinghua Pan
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, Zhejiang Province, P. R. China. Department of Genetics, Yale University School of Medicine, New Haven, Connecticut. Department of Biochemistry, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, P.R. China.
| | - Shixiu Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, Zhejiang Province, P. R. China.
| |
Collapse
|
22
|
Next-Generation Sequencing Workflow for NSCLC Critical Samples Using a Targeted Sequencing Approach by Ion Torrent PGM™ Platform. Int J Mol Sci 2015; 16:28765-82. [PMID: 26633390 PMCID: PMC4691076 DOI: 10.3390/ijms161226129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/11/2023] Open
Abstract
Next-generation sequencing (NGS) is a cost-effective technology capable of screening several genes simultaneously; however, its application in a clinical context requires an established workflow to acquire reliable sequencing results. Here, we report an optimized NGS workflow analyzing 22 lung cancer-related genes to sequence critical samples such as DNA from formalin-fixed paraffin-embedded (FFPE) blocks and circulating free DNA (cfDNA). Snap frozen and matched FFPE gDNA from 12 non-small cell lung cancer (NSCLC) patients, whose gDNA fragmentation status was previously evaluated using a multiplex PCR-based quality control, were successfully sequenced with Ion Torrent PGM™. The robust bioinformatic pipeline allowed us to correctly call both Single Nucleotide Variants (SNVs) and indels with a detection limit of 5%, achieving 100% specificity and 96% sensitivity. This workflow was also validated in 13 FFPE NSCLC biopsies. Furthermore, a specific protocol for low input gDNA capable of producing good sequencing data with high coverage, high uniformity, and a low error rate was also optimized. In conclusion, we demonstrate the feasibility of obtaining gDNA from FFPE samples suitable for NGS by performing appropriate quality controls. The optimized workflow, capable of screening low input gDNA, highlights NGS as a potential tool in the detection, disease monitoring, and treatment of NSCLC.
Collapse
|
23
|
Lampe K, Endale M, Cashman S, Fang H, Mattner J, Hildeman D, Hoebe K. Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets. Eur J Immunol 2015; 45:2072-2083. [PMID: 25929249 PMCID: PMC4496257 DOI: 10.1002/eji.201445352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/10/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023]
Abstract
Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M(-/-) target cell synapse revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76(ace/ace) NK cells. Overall these studies establish Slp-76 as a critical determinant of NK-cell development and NK cell mediated elimination of missing-self target cells in mice.
Collapse
Affiliation(s)
- Kristin Lampe
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Mehari Endale
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Siobhan Cashman
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Hao Fang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Kelley RK, Magbanua MJM, Butler TM, Collisson EA, Hwang J, Sidiropoulos N, Evason K, McWhirter RM, Hameed B, Wayne EM, Yao FY, Venook AP, Park JW. Circulating tumor cells in hepatocellular carcinoma: a pilot study of detection, enumeration, and next-generation sequencing in cases and controls. BMC Cancer 2015; 15:206. [PMID: 25884197 PMCID: PMC4399150 DOI: 10.1186/s12885-015-1195-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Circulating biomarkers are urgently needed in hepatocellular carcinoma (HCC). The aims of this study were to determine the feasibility of detecting and isolating circulating tumor cells (CTCs) in HCC patients using enrichment for epithelial cell adhesion molecule (EpCAM) expression, to examine their prognostic value, and to explore CTC-based DNA sequencing in metastatic HCC patients compared to a control cohort with non-malignant liver diseases (NMLD). Methods Whole blood was obtained from patients with metastatic HCC or NMLD. CTCs were enumerated by CellSearch then purified by immunomagnetic EpCAM enrichment and fluorescence-activated cell sorting. Targeted ion semiconductor sequencing was performed on whole genome-amplified DNA from CTCs, tumor specimens, and peripheral blood mononuclear cells (PBMC) when available. Results Twenty HCC and 10 NMLD patients enrolled. CTCs ≥ 2/7.5 mL were detected in 7/20 (35%, 95% confidence interval: 12%, 60%) HCC and 0/9 eligible NMLD (p = 0.04). CTCs ≥ 1/7.5 mL was associated with alpha-fetoprotein ≥ 400 ng/mL (p = 0.008) and vascular invasion (p = 0.009). Sequencing of CTC DNA identified characteristic HCC mutations. The proportion with ≥ 100x coverage depth was lower in CTCs (43%) than tumor or PBMC (87%) (p < 0.025). Low frequency variants were higher in CTCs (p < 0.001). Conclusions CTCs are detectable by EpCAM enrichment in metastatic HCC, without confounding false positive background from NMLD. CTC detection was associated with poor prognostic factors. Sequencing of CTC DNA identified known HCC mutations but more low-frequency variants and lower coverage depth than FFPE or PBMC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1195-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin K Kelley
- Helen Diller Family Comprehensive Cancer Center and The Liver Center, University of California San Francisco (UCSF), 550 16th St., Box 3211, San Francisco, CA, 94143, USA.
| | - Mark Jesus M Magbanua
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| | - Timothy M Butler
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Mail Code #L103, Portland, OR, 97239, USA.
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| | - Jimmy Hwang
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| | | | - Kimberley Evason
- Department of Pathology, UCSF, 513 Parnassus Ave., San Francisco, CA, 94143, USA.
| | - Ryan M McWhirter
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| | - Bilal Hameed
- Division of Hepatology and Liver Transplant, UCSF, 513 Parnassus Ave., S-357, San Francisco, CA, 94143, USA.
| | - Elizabeth M Wayne
- Department of Transplantation-Abdominal, UCSF, 513 Parnassus Ave., S-357, San Francisco, CA, 94143, USA.
| | - Francis Y Yao
- Division of Hepatology and Liver Transplant and The Liver Center, UCSF, 513 Parnassus Ave., S-357, San Francisco, CA, 94143, USA.
| | - Alan P Venook
- Helen Diller Family Comprehensive Cancer Center and The Liver Center, University of California San Francisco (UCSF), 550 16th St., Box 3211, San Francisco, CA, 94143, USA.
| | - John W Park
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Stranska J, Jancik S, Slavkovsky R, Holinkova V, Rabcanova M, Vojta P, Hajduch M, Drabek J. Whole genome amplification induced bias in the detection of KRAS-mutated cell populations during colorectal carcinoma tissue testing. Electrophoresis 2015; 36:937-40. [PMID: 25655305 DOI: 10.1002/elps.201400136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/05/2014] [Accepted: 12/14/2014] [Indexed: 12/18/2022]
Abstract
Whole genome amplification replicates the entire DNA content of a sample and can thus help to circumvent material limitations when insufficient DNA is available for planned genetic analyses. However, there are conflicting data in the literature whether whole genome amplification introduces bias or reflects precisely the spectrum of starting DNA. We analyzed the origins of discrepancies in KRAS (Kirsten rat sarcoma viral oncogene homolog gene) mutation detection in six of ten samples amplified using the GenomePlex® Tissue Whole Genome Amplification kit 5 (WGA5; Sigma-Aldrich, St. Louis, MO, USA) and KRAS StripAssay® (KRAS SA; ViennaLab Diagnostics, Vienna, Austria). We undertook reextraction, reamplification, retyping, authentication, reanalysis, and reinterpretation to determine whether the discrepancies originated during the preanalytical, analytical, and/or interpretative phase of genotyping. We conclude that a combination of glass slide/sample heterogeneity and biased amplification due to stochastic effects in the early phases of whole genome amplification (WGA) may have adversely affected the results obtained. Our findings are relevant for both forensic genetics testing and massively parallel sequencing using preamplification.
Collapse
Affiliation(s)
- Jana Stranska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Blair C, Campbell CR, Yoder AD. Assessing the utility of whole genome amplified DNA for next-generation molecular ecology. Mol Ecol Resour 2015; 15:1079-90. [PMID: 25619406 DOI: 10.1111/1755-0998.12376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/23/2023]
Abstract
DNA quantity can be a hindrance in ecological and evolutionary research programmes due to a range of factors including endangered status of target organisms, available tissue type, and the impact of field conditions on preservation methods. A potential solution to low-quantity DNA lies in whole genome amplification (WGA) techniques that can substantially increase DNA yield. To date, few studies have rigorously examined sequence bias that might result from WGA and next-generation sequencing of nonmodel taxa. To address this knowledge deficit, we use multiple displacement amplification (MDA) and double-digest RAD sequencing on the grey mouse lemur (Microcebus murinus) to quantify bias in genome coverage and SNP calls when compared to raw genomic DNA (gDNA). We focus our efforts in providing baseline estimates of potential bias by following manufacturer's recommendations for starting DNA quantities (>100 ng). Our results are strongly suggestive that MDA enrichment does not introduce systematic bias to genome characterization. SNP calling between samples when genotyping both de-novo and with a reference genome are highly congruent (>98%) when specifying a minimum threshold of 20X stack depth to call genotypes. Relative genome coverage is also similar between MDA and gDNA, and allelic dropout is not observed. SNP concordance varies based on coverage threshold, with 95% concordance reached at ~12X coverage genotyping de-novo and ~7X coverage genotyping with the reference genome. These results suggest that MDA may be a suitable solution for next-generation molecular ecological studies when DNA quantity would otherwise be a limiting factor.
Collapse
Affiliation(s)
- Christopher Blair
- Department of Biology, Duke University, Box 90338, BioSci 130 Science Drive, Durham, NC, 27708, USA
| | - C Ryan Campbell
- Department of Biology, Duke University, Box 90338, BioSci 130 Science Drive, Durham, NC, 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Box 90338, BioSci 130 Science Drive, Durham, NC, 27708, USA
| |
Collapse
|
27
|
Sørensen KM. Whole Genome Amplification from Blood Spot Samples. Methods Mol Biol 2015; 1347:163-178. [PMID: 26374317 DOI: 10.1007/978-1-4939-2990-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Whole genome amplification is an invaluable technique when working with DNA extracted from blood spots, as the DNA obtained from this source often is too limited for extensive genetic analysis. Two techniques that amplify the entire genome are common. Here, both are described with focus on the benefits and drawbacks of each system. However, in order to obtain the best possible WGA result the quality of input DNA extracted from the blood spot is essential, but also time consumption, flexibility in format and elution volume and price of the technology are factors influencing system choice. Here, three DNA extraction techniques are described and the above aspects are compared between the systems.
Collapse
Affiliation(s)
- Karina Meden Sørensen
- The Danish National Biobank, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Danmark.
| |
Collapse
|
28
|
Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta 2015; 853:30-45. [DOI: 10.1016/j.aca.2014.09.037] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022]
|
29
|
Truong L, Park HL, Chang SS, Ziogas A, Neuhausen SL, Wang SS, Bernstein L, Anton-Culver H. Human Nail Clippings as a Source of DNA for Genetic Studies. ACTA ACUST UNITED AC 2015; 5:41-50. [PMID: 26180661 PMCID: PMC4499506 DOI: 10.4236/ojepi.2015.51006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blood samples have traditionally been used as the main source of DNA for genetic analysis. However, this source can be difficult in terms of collection, transportation, and long-term storage. In this study, we investigated whether human nail clippings could be used as a source of DNA for SNP genotyping, null-allele detection, and whole-genome amplification. From extracted nail DNA, we achieved amplicons up to a length of ~400 bp and >96% concordance for SNP genotyping and 100% concordance for null-allele detection compared to DNA derived from matched blood samples. For whole-genome amplification, OmniPlex performed better than Multiple Displacement Amplification with a success rate of 89.3% and 76.8% for SNP genotyping and null-allele detection, respectively. Concordance was ~98% for both methods. When combined with OmniPlex whole-genome amplification, human nail clippings could potentially be used as an alternative to whole blood as a less invasive and more convenient source of DNA for genotyping studies.
Collapse
Affiliation(s)
- Le Truong
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California, Irvine, CA, USA
| | - Hannah Lui Park
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California, Irvine, CA, USA
| | - Seong Sil Chang
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California, Irvine, CA, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California, Irvine, CA, USA
| | - Susan L Neuhausen
- Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sophia S Wang
- Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Leslie Bernstein
- Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California, Irvine, CA, USA
| |
Collapse
|
30
|
Kim JY, Lee HS, Kang IS. Preimplantation genetic diagnosis. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2015. [DOI: 10.5124/jkma.2015.58.11.979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jin Young Kim
- Department of Obstetrics and Gynecology of Fertility Center, CHA University, Seoul, Korea
| | - Hyoung-Song Lee
- Genetics Laboratory of Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Inn Soo Kang
- Department of Obstetrics and Gynecology of Fertility Center, CHA University, Seoul, Korea
| |
Collapse
|
31
|
DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Sci Data 2014; 1:140038. [PMID: 25977793 PMCID: PMC4411011 DOI: 10.1038/sdata.2014.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/11/2014] [Indexed: 01/28/2023] Open
Abstract
The regulatory mechanisms responsible for the gene expression pattern associated with axotomy-dependent signaling affecting the neuronal phenotype, including the axonal regenerative program, remain unclear. To further this understanding, we recently performed DNA methylation temporal profiling in lumbar dorsal root ganglia (DRG) after axotomy of the central spinal (non-regenerating) and of the peripheral sciatic nerve (regenerating) axonal branches. DNA methylation microarrays for mouse gene promoters and CpG islands (Roche/NimbleGen) were employed after immunoprecipitation of 5-methylcytosine-DNA. Here we provide a detailed data descriptor of this DNA methylation dataset, which allows in depth evaluation of the experimental design, assessment of data reproducibility and a full interactive operator-based systematic data analysis. In fact, we offer a methylation ‘hit’ scoring map of the whole microarray data in a workable spreadsheet that allows data sorting by genes, conditions or hits of interests that is ready for functional gene annotation and classification. This dataset allows investigators bioinformatic comparison to other epigenetic and gene expression datasets and further experimental characterization of the role of DNA methylation in axotomy-dependent pathways.
Collapse
|
32
|
Khalil AA, Abou-Gabal AE, Abdellatef AA, Khalid AE. Protective Role of Probiotic Lactic Acid Bacteria Against Dietary Fumonisin B1-induced Toxicity and DNA-Fragmentation in Sprague-Dawley Rats. Prep Biochem Biotechnol 2014; 45:530-50. [DOI: 10.1080/10826068.2014.940969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Shojaei Saadi HA, Vigneault C, Sargolzaei M, Gagné D, Fournier É, de Montera B, Chesnais J, Blondin P, Robert C. Impact of whole-genome amplification on the reliability of pre-transfer cattle embryo breeding value estimates. BMC Genomics 2014; 15:889. [PMID: 25305778 PMCID: PMC4201692 DOI: 10.1186/1471-2164-15-889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/03/2014] [Indexed: 01/21/2023] Open
Abstract
Background Genome-wide profiling of single-nucleotide polymorphisms is receiving increasing attention as a method of pre-implantation genetic diagnosis in humans and of commercial genotyping of pre-transfer embryos in cattle. However, the very small quantity of genomic DNA in biopsy material from early embryos poses daunting technical challenges. A reliable whole-genome amplification (WGA) procedure would greatly facilitate the procedure. Results Several PCR-based and non-PCR based WGA technologies, namely multiple displacement amplification, quasi-random primed library synthesis followed by PCR, ligation-mediated PCR, and single-primer isothermal amplification were tested in combination with different DNA extractions protocols for various quantities of genomic DNA inputs. The efficiency of each method was evaluated by comparing the genotypes obtained from 15 cultured cells (representative of an embryonic biopsy) to unamplified reference gDNA. The gDNA input, gDNA extraction method and amplification technology were all found to be critical for successful genome-wide genotyping. The selected WGA platform was then tested on embryo biopsies (n = 226), comparing their results to that of biopsies collected after birth. Although WGA inevitably leads to a random loss of information and to the introduction of erroneous genotypes, following genomic imputation the resulting genetic index of both sources of DNA were highly correlated (r = 0.99, P<0.001). Conclusion It is possible to generate high-quality DNA in sufficient quantities for successful genome-wide genotyping starting from an early embryo biopsy. However, imputation from parental and population genotypes is a requirement for completing and correcting genotypic data. Judicious selection of the WGA platform, careful handling of the samples and genomic imputation together, make it possible to perform extremely reliable genomic evaluations for pre-transfer embryos. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-889) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Claude Robert
- Laboratory of Functional Genomics of Early Embryonic Development, Institut des nutraceutiques et des aliments fonctionnels, Faculté des sciences de l'agriculture et de l'alimentation, Pavillon des services, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
34
|
A novel whole genome amplification method using type IIS restriction enzymes to create overhangs with random sequences. J Biotechnol 2014; 184:1-6. [PMID: 24833422 DOI: 10.1016/j.jbiotec.2014.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/22/2022]
Abstract
Ligation-mediated polymerase chain reaction (LM-PCR) is a whole genome amplification (WGA) method, for which genomic DNA is cleaved into numerous fragments and then all of the fragments are amplified by PCR after attaching a universal end sequence. However, the self-ligation of these fragments could happen and may cause biased amplification and restriction of its application. To decrease the self-ligation probability, here we use type IIS restriction enzymes to digest genomic DNA into fragments with 4-5nt long overhangs with random sequences. After ligation to an adapter with random end sequences to above fragments, PCR is carried out and almost all present DNA sequences are amplified. In this study, whole genome of Vibrio parahaemolyticus was amplified and the amplification efficiency was evaluated by quantitative PCR. The results suggested that our approach could provide sufficient genomic DNA with good quality to meet requirements of various genetic analyses.
Collapse
|
35
|
Rykalina VN, Shadrin AA, Amstislavskiy VS, Rogaev EI, Lehrach H, Borodina TA. Exome sequencing from nanogram amounts of starting DNA: comparing three approaches. PLoS One 2014; 9:e101154. [PMID: 24992588 PMCID: PMC4081514 DOI: 10.1371/journal.pone.0101154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Hybridization-based target enrichment protocols require relatively large starting amounts of genomic DNA, which is not always available. Here, we tested three approaches to pre-capture library preparation starting from 10 ng of genomic DNA: (i and ii) whole-genome amplification of DNA samples with REPLI-g (Qiagen) and GenomePlex (Sigma) kits followed by standard library preparation, and (iii) library construction with a low input oriented ThruPLEX kit (Rubicon Genomics). Exome capture with Agilent SureSelectXT2 Human AllExon v4+UTRs capture probes, and HiSeq2000 sequencing were performed for test libraries along with the control library prepared from 1 µg of starting DNA. Tested protocols were characterized in terms of mapping efficiency, enrichment ratio, coverage of the target region, and reliability of SNP genotyping. REPLI-g- and ThruPLEX-FD-based protocols seem to be adequate solutions for exome sequencing of low input samples.
Collapse
Affiliation(s)
- Vera N. Rykalina
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
- AlacrisTheranostics GmbH, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Alexey A. Shadrin
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | | | | | - Hans Lehrach
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tatiana A. Borodina
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
- AlacrisTheranostics GmbH, Berlin, Germany
- * E-mail:
| |
Collapse
|
36
|
Josephson R. Molecular cytogenetics: making it safe for human embryonic stem cells to enter the clinic. Expert Rev Mol Diagn 2014; 7:395-406. [PMID: 17620047 DOI: 10.1586/14737159.7.4.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regenerative therapies based on transplantation of cells derived from human embryonic stem cells (hESC) are currently being prepared for clinical trials. Unfortunately, recent evidence indicates that many kinds of changes can occur to hESC during expansion in culture, and alterations to the growth control mechanisms may be required to establish hESC lines at all. Changes in the genome and epigenome can affect the validity of in vitro and animal studies, and put transplant recipients at increased risk of cancer. New molecular cytogenetic technologies enable us to examine the whole human genome with ever-finer resolution. This review describes several techniques for whole-genome analysis and the information they can provide about hESC lines. Adoption of high-resolution genotyping into routine characterization may prevent highly discouraging clinical outcomes.
Collapse
|
37
|
Rheindt FE, Fujita MK, Wilton PR, Edwards SV. Introgression and Phenotypic Assimilation in Zimmerius Flycatchers (Tyrannidae): Population Genetic and Phylogenetic Inferences from Genome-Wide SNPs. Syst Biol 2013; 63:134-52. [DOI: 10.1093/sysbio/syt070] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
38
|
Sujayanont P, Chininmanu K, Tassaneetrithep B, Tangthawornchaikul N, Malasit P, Suriyaphol P. Comparison of phi29-based whole genome amplification and whole transcriptome amplification in dengue virus. J Virol Methods 2013; 195:141-7. [PMID: 24129073 DOI: 10.1016/j.jviromet.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022]
Abstract
Dengue virus is responsible for 50-100 million new infections annually worldwide. The virus uses error-prone RNA polymerase during genome replication in a host, resulting in the formation of closely related viruses known as quasispecies. The availability of next-generation sequencing technology provides opportunities to analyze viral quasispecies. Before analysis, it is crucial to increase the amount of DNA because of the limited amounts of viral genomic material that can be isolated from a patient. However, using specific primers may overlook the occurrence of possible variations at primer binding sites. To address this problem, the performance of two sequence-independent amplification methods was compared for whole genome amplification (WGA): phi29 DNA polymerase-based WGA and whole transcriptome amplification (WTA). Both methods have the ability to provide complete coverage of the dengue genome from template amounts as low as 1 ng. However, WTA showed greater efficiency in terms of yield (WTA: ~10 μg; phi29-based WGA: ~500 ng) and lower amplification bias. In conclusion, the WTA amplification kit was shown to perform substantially better than phi29 DNA polymerase-based WGA in terms of both final concentration and amplification bias in amplifying small genomes, such as that of the dengue virus.
Collapse
Affiliation(s)
- Patcharawan Sujayanont
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Bioinformatics and Data Management for Research, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | |
Collapse
|
39
|
Betsou F, Gunter E, Clements J, DeSouza Y, Goddard KAB, Guadagni F, Yan W, Skubitz A, Somiari S, Yeadon T, Chuaqui R. Identification of evidence-based biospecimen quality-control tools: a report of the International Society for Biological and Environmental Repositories (ISBER) Biospecimen Science Working Group. J Mol Diagn 2013; 15:3-16. [PMID: 23195791 PMCID: PMC5707193 DOI: 10.1016/j.jmoldx.2012.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 01/20/2023] Open
Abstract
Control of biospecimen quality that is linked to processing is one of the goals of biospecimen science. Consensus is lacking, however, regarding optimal sample quality-control (QC) tools (ie, markers and assays). The aim of this review was to identify QC tools, both for fluid and solid-tissue samples, based on a comprehensive and critical literature review. The most readily applicable tools are those with a known threshold for the preanalytical variation and a known reference range for the QC analyte. Only a few meaningful markers were identified that meet these criteria, such as CD40L for assessing serum exposure at high temperatures and VEGF for assessing serum freeze-thawing. To fully assess biospecimen quality, multiple QC markers are needed. Here we present the most promising biospecimen QC tools that were identified.
Collapse
|
40
|
Hasmats J, Green H, Solnestam BW, Zajac P, Huss M, Orear C, Validire P, Bjursell M, Lundeberg J. Validation of whole genome amplification for analysis of the p53 tumor suppressor gene in limited amounts of tumor samples. Biochem Biophys Res Commun 2012; 425:379-83. [DOI: 10.1016/j.bbrc.2012.07.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
41
|
Han T, Chang CW, Kwekel JC, Chen Y, Ge Y, Martinez-Murillo F, Roscoe D, Težak Z, Philip R, Bijwaard K, Fuscoe JC. Characterization of whole genome amplified (WGA) DNA for use in genotyping assay development. BMC Genomics 2012; 13:217. [PMID: 22655855 PMCID: PMC3403925 DOI: 10.1186/1471-2164-13-217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/01/2012] [Indexed: 11/21/2022] Open
Abstract
Background Genotyping assays often require substantial amounts of DNA. To overcome the problem of limiting amounts of available DNA, Whole Genome Amplification (WGA) methods have been developed. The multiple displacement amplification (MDA) method using Φ29 polymerase has become the preferred choice due to its high processivity and low error rate. However, the uniformity and fidelity of the amplification process across the genome has not been extensively characterized. Results To assess amplification uniformity, we used array-based comparative genomic hybridization (aCGH) to evaluate DNA copy number variations (CNVs) in DNAs amplified by two MDA kits: GenomiPhi and REPLI-g. The Agilent Human CGH array containing nearly one million probes was used in this study together with DNAs from a normal subject and 2 cystic fibrosis (CF) patients. Each DNA sample was amplified 4 independent times and compared to its native unamplified DNA. Komogorov distances and Phi correlations showed a high consistency within each sample group. Less than 2% of the probes showed more than 2-fold CNV introduced by the amplification process. The two amplification kits, REPLI-g and GenomiPhi, generate very similar amplified DNA samples despite the differences between the unamplified and amplified DNA samples. The results from aCGH analysis indicated that there were no obvious CNVs in the CFTR gene region due to WGA when compared to unamplified DNA. This was confirmed by quantitative real-time PCR copy number assays at 10 locations within the CFTR gene. DNA sequencing analysis of a 2-kb region within the CFTR gene showed no mutations introduced by WGA. Conclusion The relatively high uniformity and consistency of the WGA process, coupled with the low replication error rate, suggests that WGA DNA may be suitable for accurate genotyping. Regions of the genome that were consistently under-amplified were found to contain higher than average GC content. Because of the consistent differences between the WGA DNA and the native unamplified DNA, characterization of the genomic region of interest, as described here, will be necessary to ensure the reliability of genotyping results from WGA DNA.
Collapse
Affiliation(s)
- Tao Han
- Division of Systems Biology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
CIITA gene variants are associated with rheumatoid arthritis in Scandinavian populations. Genes Immun 2012; 13:431-6. [DOI: 10.1038/gene.2012.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Arneson N, Moreno J, Iakovlev V, Ghazani A, Warren K, McCready D, Jurisica I, Done SJ. Comparison of whole genome amplification methods for analysis of DNA extracted from microdissected early breast lesions in formalin-fixed paraffin-embedded tissue. ISRN ONCOLOGY 2012; 2012:710692. [PMID: 22530150 PMCID: PMC3317021 DOI: 10.5402/2012/710692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/09/2011] [Indexed: 12/03/2022]
Abstract
To understand cancer progression, it is desirable to study the earliest stages of its development, which are often microscopic lesions. Array comparative genomic hybridization (aCGH) is a valuable high-throughput molecular approach for discovering DNA copy number changes; however, it requires a relatively large amount of DNA, which is difficult to obtain from microdissected lesions. Whole genome amplification (WGA) methods were developed to increase DNA quantity; however their reproducibility, fidelity, and suitability for formalin-fixed paraffin-embedded (FFPE) samples are questioned. Using aCGH analysis, we compared two widely used approaches for WGA: single cell comparative genomic hybridization protocol (SCOMP) and degenerate oligonucleotide primed PCR (DOP-PCR). Cancer cell line and microdissected FFPE breast cancer DNA samples were amplified by the two WGA methods and subjected to aCGH. The genomic profiles of amplified DNA were compared with those of non-amplified controls by four analytic methods and validated by quantitative PCR (Q-PCR). We found that SCOMP-amplified samples had close similarity to non-amplified controls with concordance rates close to those of reference tests, while DOP-amplified samples had a statistically significant amount of changes. SCOMP is able to amplify small amounts of DNA extracted from FFPE samples and provides quality of aCGH data similar to non-amplified samples.
Collapse
Affiliation(s)
- Nona Arneson
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada M5G 2M9
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Evaluation of circular DNA substrates for whole genome amplification prior to forensic analysis. Forensic Sci Int Genet 2012; 6:185-90. [DOI: 10.1016/j.fsigen.2011.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 03/03/2011] [Accepted: 04/04/2011] [Indexed: 01/05/2023]
|
45
|
Silander K, Komulainen K, Ellonen P, Jussila M, Alanne M, Levander M, Tainola P, Kuulasmaa K, Salomaa V, Perola M, Peltonen L, Saarela J. Evaluating Whole Genome Amplification via Multiply-Primed Rolling Circle Amplification for SNP Genotyping of Samples With Low DNA Yield. Twin Res Hum Genet 2012. [DOI: 10.1375/twin.8.4.368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe amount of available DNA is often a limiting factor in pursuing genetic analyses of large-scale population cohorts. An association between higher DNA yield from blood and several phenotypes associated with inflammatory states has recently been demonstrated, suggesting that exclusion of samples with very low DNA yield may lead to biased results in statistical analyses. Whole genome amplification (WGA) could present a solution to the DNA concentration-dependent sample selection. The aim was to thoroughly assess WGA for samples with low DNA yield, using the multiply-primed rolling circle amplification method. Fifty-nine samples were selected with the lowest DNA yield (less than 7.5µg) among 799 samples obtained for one population cohort. The genotypes obtained from two replicate WGA samples and the original genomic DNA were compared by typing 24 single nucleotide polymorphisms (SNPs). Multiple genotype discrepancies were identified for 13 of the 59 samples. The largest portion of discrepancies was due to allele dropout in heterozygous genotypes in WGA samples. Pooling the WGA DNA replicates prior to genotyping markedly improved genotyping reproducibility for the samples, with only 7 discrepancies identified in 4 samples. The nature of discrepancies was mostly homozygote genotypes in the genomic DNA and heterozygote genotypes in the WGA sample, suggesting possible allele dropout in the genomic DNA sample due to very low amounts of DNA template. Thus, WGA is applicable for low DNA yield samples, especially if using pooled WGA samples. A higher rate of genotyping errors requires that increased attention be paid to genotyping quality control, and caution when interpreting results.
Collapse
|
46
|
Morlighem JÉ, Harbers M, Traeger-Synodinos J, Lezhava A. DNA amplification techniques in pharmacogenomics. Pharmacogenomics 2011; 12:845-60. [PMID: 21692615 DOI: 10.2217/pgs.11.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The variable predisposition of patients, both to disease susceptibility and drug response, is well established. It is largely attributed to genetic, as well as epigenetic variations between individuals, which may be inherited or acquired. The most common variation in the human genome is the SNP, which occurs throughout the genome, both within coding and noncoding regions. Characterization of SNPs in the context of both inherited and acquired conditions, such as cancer, are a main focus of many genotyping procedures. The demand for identifying (diagnosing) targeted SNPs or other variations, as well as the application of genome-wide screens, is continuously directing the development of new technologies. In general, most methods require a DNA amplification step to provide the amounts of DNA needed for the SNP detection step. In addition, DNA amplification is an important step when investigating other types of genomic information, for instance when addressing repeat, deletion, copy number variation or epigenetic regulation by DNA methylation. Besides the widely used PCR technique, there are several alternative approaches for genomic DNA amplification suitable for supporting the detection of genomic variation. In this article, we describe and evaluate a number of techniques, and discuss possible future prospects of DNA amplification in the fields of pharmacogenetics and pharmacogenomics.
Collapse
Affiliation(s)
- Jean-Étienne Morlighem
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
47
|
Wang X, Morgan DM, Wang G, Mozier NM. Residual DNA analysis in biologics development: Review of measurement and quantitation technologies and future directions. Biotechnol Bioeng 2011; 109:307-17. [DOI: 10.1002/bit.23343] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/09/2011] [Accepted: 09/19/2011] [Indexed: 01/09/2023]
|
48
|
Ho DWH, Yiu WC, Yap MKH, Fung WY, Ng PW, Yip SP. Genotyping performance assessment of whole genome amplified DNA with respect to multiplexing level of assay and its period of storage. PLoS One 2011; 6:e26119. [PMID: 22022531 PMCID: PMC3191163 DOI: 10.1371/journal.pone.0026119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 09/20/2011] [Indexed: 01/24/2023] Open
Abstract
Whole genome amplification can faithfully amplify genomic DNA (gDNA) with minimal bias and substantial genome coverage. Whole genome amplified DNA (wgaDNA) has been tested to be workable for high-throughput genotyping arrays. However, issues about whether wgaDNA would decrease genotyping performance at increasing multiplexing levels and whether the storage period of wgaDNA would reduce genotyping performance have not been examined. Using the Sequenom MassARRAY iPLEX Gold assays, we investigated 174 single nucleotide polymorphisms for 3 groups of matched samples: group 1 of 20 gDNA samples, group 2 of 20 freshly prepared wgaDNA samples, and group 3 of 20 stored wgaDNA samples that had been kept frozen at −70°C for 18 months. MassARRAY is a medium-throughput genotyping platform with reaction chemistry different from those of high-throughput genotyping arrays. The results showed that genotyping performance (efficiency and accuracy) of freshly prepared wgaDNA was similar to that of gDNA at various multiplexing levels (17-plex, 21-plex, 28-plex and 36-plex) of the MassARRAY assays. However, compared with gDNA or freshly prepared wgaDNA, stored wgaDNA was found to give diminished genotyping performance (efficiency and accuracy) due to potentially inferior quality. Consequently, no matter whether gDNA or wgaDNA was used, better genotyping efficiency would tend to have better genotyping accuracy.
Collapse
Affiliation(s)
- Daniel W. H. Ho
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wai Chi Yiu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Maurice K. H. Yap
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wai Yan Fung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Po Wah Ng
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
49
|
Stokes A, Drozdov I, Guerra E, Ouzounis CA, Warnakulasuriya S, Gleeson MJ, McGurk M, Tavassoli M, Odell EW. Copy number and loss of heterozygosity detected by SNP array of formalin-fixed tissues using whole-genome amplification. PLoS One 2011; 6:e24503. [PMID: 21966361 PMCID: PMC3180289 DOI: 10.1371/journal.pone.0024503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/11/2011] [Indexed: 12/18/2022] Open
Abstract
The requirement for large amounts of good quality DNA for whole-genome applications prohibits their use for small, laser capture micro-dissected (LCM), and/or rare clinical samples, which are also often formalin-fixed and paraffin-embedded (FFPE). Whole-genome amplification of DNA from these samples could, potentially, overcome these limitations. However, little is known about the artefacts introduced by amplification of FFPE-derived DNA with regard to genotyping, and subsequent copy number and loss of heterozygosity (LOH) analyses. Using a ligation adaptor amplification method, we present data from a total of 22 Affymetrix SNP 6.0 experiments, using matched paired amplified and non-amplified DNA from 10 LCM FFPE normal and dysplastic oral epithelial tissues, and an internal method control. An average of 76.5% of SNPs were called in both matched amplified and non-amplified DNA samples, and concordance was a promising 82.4%. Paired analysis for copy number, LOH, and both combined, showed that copy number changes were reduced in amplified DNA, but were 99.5% concordant when detected, amplifications were the changes most likely to be 'missed', only 30% of non-amplified LOH changes were identified in amplified pairs, and when copy number and LOH are combined ∼50% of gene changes detected in the unamplified DNA were also detected in the amplified DNA and within these changes, 86.5% were concordant for both copy number and LOH status. However, there are also changes introduced as ∼20% of changes in the amplified DNA are not detected in the non-amplified DNA. An integrative network biology approach revealed that changes in amplified DNA of dysplastic oral epithelium localize to topologically critical regions of the human protein-protein interaction network, suggesting their functional implication in the pathobiology of this disease. Taken together, our results support the use of amplification of FFPE-derived DNA, provided sufficient samples are used to increase power and compensate for increased error rates.
Collapse
Affiliation(s)
- Angela Stokes
- Department of Oral Pathology, King's College London Dental Institute, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sheridan R, Lampe K, Shanmukhappa SK, Putnam P, Keddache M, Divanovic S, Bezerra J, Hoebe K. Lampe1: an ENU-germline mutation causing spontaneous hepatosteatosis identified through targeted exon-enrichment and next-generation sequencing. PLoS One 2011; 6:e21979. [PMID: 21760938 PMCID: PMC3131302 DOI: 10.1371/journal.pone.0021979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/14/2011] [Indexed: 01/22/2023] Open
Abstract
Using a small scale ENU mutagenesis approach we identified a recessive germline mutant, designated Lampe1 that exhibited growth retardation and spontaneous hepatosteatosis. Low resolution mapping based on 20 intercrossed Lampe1 mice revealed linkage to a ∼14 Mb interval on the distal site of chromosome 11 containing a total of 285 genes. Exons and 50 bp flanking sequences within the critical region were enriched with sequence capture microarrays and subsequently analyzed by next-generation sequencing. Using this approach 98.1 percent of the targeted DNA was covered with a depth of 10 or more reads per nucleotide and 3 homozygote mutations were identified. Two mutations represented intronic nucleotide changes whereas one mutation affected a splice donor site in intron 11–12 of Palmitoyl Acetyl-coenzyme A oxygenase-1 (Acox1), causing skipping of exon 12. Phenotyping of Acox1Lampe1 mutants revealed a progression from hepatosteatosis to steatohepatitis, and ultimately hepatocellular carcinoma. The current approach provides a highly efficient and affordable method to identify causative mutations induced by ENU mutagenesis and animal models relevant to human pathology.
Collapse
Affiliation(s)
- Rachel Sheridan
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristin Lampe
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Shiva Kumar Shanmukhappa
- Division of Comparative Medicine and Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Patrick Putnam
- Department of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Mehdi Keddache
- Department of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Senad Divanovic
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Jorge Bezerra
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Kasper Hoebe
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|