1
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
The science of puromycin: From studies of ribosome function to applications in biotechnology. Comput Struct Biotechnol J 2020; 18:1074-1083. [PMID: 32435426 PMCID: PMC7229235 DOI: 10.1016/j.csbj.2020.04.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/20/2022] Open
Abstract
Puromycin is a naturally occurring aminonucleoside antibiotic that inhibits protein synthesis by ribosome-catalyzed incorporation into the C-terminus of elongating nascent chains, blocking further extension and resulting in premature termination of translation. It is most commonly known as a selection marker for cell lines genetically engineered to express a resistance transgene, but its additional uses as a probe for protein synthesis have proven invaluable across a wide variety of model systems, ranging from purified ribosomes and cell-free translation to intact cultured cells and whole animals. Puromycin is comprised of a nucleoside covalently bound to an amino acid, mimicking the 3′ end of aminoacylated tRNAs that participate in delivery of amino acids to elongating ribosomes. Both moieties can tolerate some chemical substitutions and modifications without significant loss of activity, generating a diverse toolbox of puromycin-based reagents with added functionality, such as biotin for affinity purification or fluorophores for fluorescent microscopy detection. These reagents, as well as anti-puromycin antibodies, have played a pivotal role in advancing our understanding of the regulation and dysregulation of protein synthesis in normal and pathological processes, including immune response and neurological function. This manuscript reviews the current state of puromycin-based research, including structure and mechanism of action, relevant derivatives, use in advanced methodologies and some of the major insights generated using such techniques both in the lab and the clinic.
Collapse
|
3
|
A New Approach for the Diagnosis of Myelodysplastic Syndrome Subtypes Based on Protein Interaction Analysis. Sci Rep 2019; 9:12647. [PMID: 31477761 PMCID: PMC6718656 DOI: 10.1038/s41598-019-49084-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies with a high risk of transformation to acute myeloid leukemia (AML). MDS are associated with posttranslational modifications of proteins and variations in the protein expression levels. In this work, we present a novel interactomic diagnostic method based on both protein array and surface plasmon resonance biosensor technology, which enables monitoring of protein-protein interactions in a label-free manner. In contrast to conventional methods based on the detection of individual biomarkers, our presented method relies on measuring interactions between arrays of selected proteins and patient plasma. We apply this method to plasma samples obtained from MDS and AML patients, as well as healthy donors, and demonstrate that even a small protein array comprising six selected proteins allows the method to discriminate among different MDS subtypes and healthy donors.
Collapse
|
4
|
Rajamanickam GD, Kastelic JP, Thundathil JC. Content of testis-specific isoform of Na/K-ATPase (ATP1A4) is increased during bovine sperm capacitation through translation in mitochondrial ribosomes. Cell Tissue Res 2016; 368:187-200. [PMID: 27807702 DOI: 10.1007/s00441-016-2514-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Abstract
Capacitation comprises a series of structural and functional modifications of sperm that confer fertilizing ability. We previously reported that the testis-specific isoform of Na/K-ATPase (ATP1A4) regulated bovine sperm capacitation through signaling mechanisms involving kinases. During subsequent investigations to elucidate mechanisms by which ATP1A4 regulates sperm capacitation, we observed that ATP1A4 was localised in both raft and non-raft fractions of the sperm plasma membrane and that its total content was increased in both membrane fractions during capacitation. The objective of the present study was to investigate mechanism(s) of capacitation-associated increase in the content of ATP1A4. Despite the widely accepted dogma of transcriptional/translational quiescence, incubation of sperm with either ouabain (specific ligand for ATP1A4) or heparin increased ATP1A4 content in raft and non-raft sperm membrane fractions, total sperm protein extracts (immunoblotting) and fixed sperm (flow cytometry), with a concurrent increase in Na/K-ATPase enzyme activity. This capacitation-associated increase in ATP1A4 content was partially decreased by chloramphenicol (mitochondrial translation inhibitor) but not affected by actinomycin D (transcription inhibitor). To demonstrate de novo ATP1A4 synthesis, we evaluated incorporation of bodipy conjugated lysine in this protein during capacitation. A partial decrease in bodipy-lysine incorporation occurred in ATP1A4 from sperm capacitated in the presence of chloramphenicol. Therefore, increased ATP1A4 content during capacitation was attributed to mitochondrial translation of ATP1A4 mRNA present in ejaculated sperm, rather than gene transcription. To our knowledge, this is the first report demonstrating ATP1A4 synthesis during bovine sperm capacitation.
Collapse
Affiliation(s)
- Gayathri D Rajamanickam
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada
| | - Jacob C Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Heritage Medical Research Building RM 400, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
5
|
Label and Label-Free Detection Techniques for Protein Microarrays. MICROARRAYS 2015; 4:228-44. [PMID: 27600222 PMCID: PMC4996399 DOI: 10.3390/microarrays4020228] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/10/2015] [Accepted: 04/17/2015] [Indexed: 02/02/2023]
Abstract
Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano-biological events.
Collapse
|
6
|
Ohashi H, Miyamoto-Sato E. Towards personalized medicine mediated by in vitro virus-based interactome approaches. Int J Mol Sci 2014; 15:6717-24. [PMID: 24756093 PMCID: PMC4013657 DOI: 10.3390/ijms15046717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/24/2014] [Accepted: 04/09/2014] [Indexed: 01/31/2023] Open
Abstract
We have developed a simple in vitro virus (IVV) selection system based on cell-free co-translation, using a highly stable and efficient mRNA display method. The IVV system is applicable to the high-throughput and comprehensive analysis of proteins and protein–ligand interactions. Huge amounts of genomic sequence data have been generated over the last decade. The accumulated genetic alterations and the interactome networks identified within cells represent a universal feature of a disease, and knowledge of these aspects can help to determine the optimal therapy for the disease. The concept of the “integrome” has been developed as a means of integrating large amounts of data. We have developed an interactome analysis method aimed at providing individually-targeted health care. We also consider future prospects for this system.
Collapse
Affiliation(s)
- Hiroyuki Ohashi
- Division of Interactome Medical Sciences, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Etsuko Miyamoto-Sato
- Division of Interactome Medical Sciences, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
7
|
Ahmed FE. Mining the oncoproteome and studying molecular interactions for biomarker development by 2DE, ChIP and SPR technologies. Expert Rev Proteomics 2014; 5:469-96. [DOI: 10.1586/14789450.5.3.469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Abstract
Fluorescence cross-correlation spectroscopy (FCCS) is a single-molecule sensitive technique to quantitatively study interactions among fluorescently tagged biomolecules. Besides the initial implementation as dual-color FCCS (DC-FCCS), FCCS has several powerful derivatives, including single-wavelength FCCS (SW-FCCS), two-photon FCCS (TP-FCCS), and pulsed interleaved excitation FCCS (PIE-FCCS). However, to apply FCCS successfully, one needs to be familiar with procedures ranging from fluorescent labeling, instrumentation setup and alignment, sample preparation, and data analysis. Here, we describe the procedures to apply FCCS in various biological samples ranging from live cells to in vivo measurements, with the focus on DC-FCCS and SW-FCCS.
Collapse
|
9
|
Ohashi H, Ishizaka M, Hirai N, Miyamoto-Sato E. Efficiency of puromycin-based technologies mediated by release factors and a ribosome recycling factor. Protein Eng Des Sel 2013; 26:533-7. [PMID: 23824411 PMCID: PMC3711395 DOI: 10.1093/protein/gzt031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two puromycin-based techniques, in vitro virus (IVV) and C-terminal labelling of proteins, were developed based on the observation that puromycin binds the C-terminus of a protein. Puromycin technology is a useful tool for the detection of proteins and analysis of protein–protein interactions (PPIs); however, problems arise due to the existence of stop codons in the native mRNAs. Release factors (RFs) that enter the A-site of the ribosome at stop codons compete with puromycin. To overcome this issue, we have used a highly controllable reconstituted cell-free system for puromycin-based techniques, and observed efficient IVV formation and C-terminal labelling using templates possessing a stop codon. The optimal conditions of IVV formation using templates possessing a stop codon was RF (−), while that of C-terminal labelling was RF (−) and the ribosome recycling factor (RRF) (+). Thus, we have overcome the experimental limitations of conventional IVV. In addition, we discovered that RRF significantly increases the efficiency of C-terminal protein labelling, but not IVV formation.
Collapse
Affiliation(s)
- Hiroyuki Ohashi
- Division of Interactome Medical Sciences, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
10
|
He W, Luo J, Bourguet F, Xing L, Yi SK, Gao T, Blanchette C, Henderson PT, Kuhn E, Malfatti M, Murphy WJ, Cheng RH, Lam KS, Coleman MA. Controlling the diameter, monodispersity, and solubility of ApoA1 nanolipoprotein particles using telodendrimer chemistry. Protein Sci 2013; 22:1078-86. [PMID: 23754445 DOI: 10.1002/pro.2292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 12/16/2022]
Abstract
Nanolipoprotein particles (NLPs) are nanometer-scale discoidal particles that feature a phospholipid bilayer confined within an apolipoprotein "scaffold," which are useful for solubilizing hydrophobic molecules such as drugs and membrane proteins. NLPs are synthesized either by mixing the purified apolipoprotein with phospholipids and other cofactors or by cell-free protein synthesis followed by self-assembly of the nanoparticles in the reaction mixture. Either method can be problematic regarding the production of homogeneous and monodispersed populations of NLPs, which also currently requires multiple synthesis and purification steps. Telodendrimers (TD) are branched polymers made up of a dendritic oligo-lysine core that is conjugated to linear polyethylene glycol (PEG) on one end, and the lysine "branches" are terminated with cholic acid moieties that enable the formation of nanomicelles in aqueous solution. We report herein that the addition of TD during cell-free synthesis of NLPs produces unique hybrid nanoparticles that have drastically reduced polydispersity as compared to NLPs made in the absence of TD. This finding was supported by dynamic light scattering, fluorescence correlation spectroscopy, and cryo transmission electron microscopy (Cryo-EM). These techniques demonstrate the ability of TDs to modulate both the NLP size (6-30 nm) and polydispersity. The telodendrimer NLPs (TD-NLPs) also showed 80% less aggregation as compared to NLPs alone. Furthermore, the versatility of these novel nanoparticles was shown through direct conjugation of small molecules such as fluorescent dyes directly to the TD as well as the insertion of a functional membrane protein.
Collapse
Affiliation(s)
- Wei He
- NSF Center for Biophotonics Science and Technology, Sacramento, California, 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gao T, Petrlova J, He W, Huser T, Kudlick W, Voss J, Coleman MA. Characterization of de novo synthesized GPCRs supported in nanolipoprotein discs. PLoS One 2012; 7:e44911. [PMID: 23028674 PMCID: PMC3460959 DOI: 10.1371/journal.pone.0044911] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/09/2012] [Indexed: 02/05/2023] Open
Abstract
The protein family known as G-protein coupled receptors (GPCRs) comprises an important class of membrane-associated proteins, which remains a difficult family of proteins to characterize because their function requires a native-like lipid membrane environment. This paper focuses on applying a single step method leading to the formation of nanolipoprotein particles (NLPs) capable of solubilizing functional GPCRs for biophysical characterization. NLPs were used to demonstrate increased solubility for multiple GPCRs such as the Neurokinin 1 Receptor (NK1R), the Adrenergic Receptor â2 (ADRB2) and the Dopamine Receptor D1 (DRD1). All three GPCRs showed affinity for their specific ligands using a simple dot blot assay. The NK1R was characterized in greater detail to demonstrate correct folding of the ligand pocket with nanomolar specificity. Electron paramagnetic resonance (EPR) spectroscopy validated the correct folding of the NK1R binding pocket for Substance P (SP). Fluorescence correlation spectroscopy (FCS) was used to identify SP-bound NK1R-containing NLPs and measure their dissociation rate in an aqueous environment. The dissociation constant was found to be 83 nM and was consistent with dot blot assays. This study represents a unique combinational approach involving the single step de novo production of a functional GPCR combined with biophysical techniques to demonstrate receptor association with the NLPs and binding affinity to specific ligands. Such a combined approach provides a novel path forward to screen and characterize GPCRs for drug discovery as well as structural studies outside of the complex cellular environment.
Collapse
Affiliation(s)
- Tingjuan Gao
- NSF Center for Biophotonics Science and Technology, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Jitka Petrlova
- Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Wei He
- Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Thomas Huser
- NSF Center for Biophotonics Science and Technology, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Wieslaw Kudlick
- Life Technologies, Carlsbad, California, United States of America
| | - John Voss
- Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- * E-mail: (JV); (MAC)
| | - Matthew A. Coleman
- NSF Center for Biophotonics Science and Technology, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, California, United States of America
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail: (JV); (MAC)
| |
Collapse
|
12
|
Cardoso FC, Roddick JS, Groves P, Doolan DL. Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale. PLoS One 2011; 6:e27666. [PMID: 22096610 PMCID: PMC3214079 DOI: 10.1371/journal.pone.0027666] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022] Open
Abstract
Background Vaccine development against malaria and other complex diseases remains a challenge for the scientific community. The recent elucidation of the genome, proteome and transcriptome of many of these complex pathogens provides the basis for rational vaccine design by identifying, on a proteome-wide scale, novel target antigens that are recognized by T cells and antibodies from exposed individuals. However, there is currently no algorithm to effectively identify important target antigens from genome sequence data; this is especially challenging for T cell targets. Furthermore, for some of these pathogens, such as Plasmodium, protein expression using conventional platforms has been problematic but cell-free in vitro transcription translation (IVTT) strategies have recently proved successful. Herein, we report a novel approach for proteome-wide scale identification of the antigenic targets of T cell responses using IVTT products. Principal Findings We conducted a series of in vitro and in vivo experiments using IVTT proteins either unpurified, absorbed to carboxylated polybeads, or affinity purified through nickel resin or magnetic beads. In vitro studies in humans using CMV, EBV, and Influenza A virus proteins showed antigen-specific cytokine production in ELIspot and Cytometric Bead Array assays with cells stimulated with purified or unpurified IVTT antigens. In vitro and in vivo studies in mice immunized with the Plasmodium yoelii circumsporozoite DNA vaccine with or without IVTT protein boost showed antigen-specific cytokine production using purified IVTT antigens only. Overall, the nickel resin method of IVTT antigen purification proved optimal in both human and murine systems. Conclusions This work provides proof of concept for the potential of high-throughput approaches to identify T cell targets of complex parasitic, viral or bacterial pathogens from genomic sequence data, for rational vaccine development against emerging and re-emerging diseases that pose a threat to public health.
Collapse
Affiliation(s)
| | - Joanne S. Roddick
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Penny Groves
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Denise L. Doolan
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
13
|
Sasaki Y, Asayama W, Niwa T, Sawada SI, Ueda T, Taguchi H, Akiyoshi K. Amphiphilic Polysaccharide Nanogels as Artificial Chaperones in Cell-Free Protein Synthesis. Macromol Biosci 2011; 11:814-20. [DOI: 10.1002/mabi.201000457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/15/2011] [Indexed: 11/09/2022]
|
14
|
Alibés A, Nadra AD, De Masi F, Bulyk ML, Serrano L, Stricher F. Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example. Nucleic Acids Res 2010; 38:7422-31. [PMID: 20685816 PMCID: PMC2995082 DOI: 10.1093/nar/gkq683] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Quite often a single or a combination of protein mutations is linked to specific diseases. However, distinguishing from sequence information which mutations have real effects in the protein’s function is not trivial. Protein design tools are commonly used to explain mutations that affect protein stability, or protein–protein interaction, but not for mutations that could affect protein–DNA binding. Here, we used the protein design algorithm FoldX to model all known missense mutations in the paired box domain of Pax6, a highly conserved transcription factor involved in eye development and in several diseases such as aniridia. The validity of FoldX to deal with protein–DNA interactions was demonstrated by showing that high levels of accuracy can be achieved for mutations affecting these interactions. Also we showed that protein-design algorithms can accurately reproduce experimental DNA-binding logos. We conclude that 88% of the Pax6 mutations can be linked to changes in intrinsic stability (77%) and/or to its capabilities to bind DNA (30%). Our study emphasizes the importance of structure-based analysis to understand the molecular basis of diseases and shows that protein–DNA interactions can be analyzed to the same level of accuracy as protein stability, or protein–protein interactions.
Collapse
Affiliation(s)
- Andreu Alibés
- EMBL/CRG Systems Biology Research Unit, Center for Genomic Regulation, UPF, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Characterization of the control catabolite protein of gluconeogenic genes repressor by fluorescence cross-correlation spectroscopy and other biophysical approaches. Biophys J 2008; 95:4403-15. [PMID: 18658229 DOI: 10.1529/biophysj.108.135863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Determination of the physical parameters underlying protein-DNA interactions is crucial for understanding the regulation of gene expression. In particular, knowledge of the stoichiometry of the complexes is a prerequisite to determining their energetics and functional molecular mechanisms. However, the experimental determination of protein-DNA complex stoichiometries remains challenging. We used fluorescence cross-correlation spectroscopy (FCCS) to investigate the interactions of the control catabolite protein of gluconeogenic genes, a key metabolic regulator in Gram-positive bacteria, with two oligonucleotides derived from its target operator sequences, gapB and pckA. According to our FCCS experiments, the stoichiometry of binding is twofold larger for the pckA target than for gapB. Correcting the FCCS data for protein self-association indicated that control catabolite protein of gluconeogenic genes forms dimeric complexes on the gapB target and tetrameric complexes on the pckA target. Analytical ultracentrifugation coupled with fluorescence anisotropy and hydrodynamic modeling allowed unambiguous confirmation of this result. The use of multiple complementary techniques to characterize these complexes should be employed wherever possible. However, there are cases in which analytical ultracentrifugation is precluded, due to protein stability, solubility, or availability, or, more obviously, when the studies are carried out in live cells. If information concerning the self-association of the protein is available, FCCS can be used for the direct and simultaneous determination of the affinity, cooperativity, and stoichiometry of protein-DNA complexes in a concentration range and conditions relevant to the regulation of these interactions.
Collapse
|
16
|
Cappuccio JA, Blanchette CD, Sulchek TA, Arroyo ES, Kralj JM, Hinz AK, Kuhn EA, Chromy BA, Segelke BW, Rothschild KJ, Fletcher JE, Katzen F, Peterson TC, Kudlicki WA, Bench G, Hoeprich PD, Coleman MA. Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol Cell Proteomics 2008; 7:2246-53. [PMID: 18603642 DOI: 10.1074/mcp.m800191-mcp200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Delta1-49 apolipoprotein A-I fragment (Delta49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR --> M transition. Importantly the functional bR was solubilized in discoidal bR.NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Delta49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.
Collapse
Affiliation(s)
- Jenny A Cappuccio
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Monot J, Petit M, Lane SM, Guisle I, Léger J, Tellier C, Talham DR, Bujoli B. Towards Zirconium Phosphonate-Based Microarrays for Probing DNA−Protein Interactions: Critical Influence of the Location of the Probe Anchoring Groups. J Am Chem Soc 2008; 130:6243-51. [DOI: 10.1021/ja711427q] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Monot
- Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA, U INSERM 533, UFR de Médecine Physiologie, 1 rue Gaston Veil, BP 53508, 44035 NANTES Cedex 1, France, and Nantes Atlantique Universités, CNRS, UMR 6204, Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, 2 Rue de la
| | - Marc Petit
- Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA, U INSERM 533, UFR de Médecine Physiologie, 1 rue Gaston Veil, BP 53508, 44035 NANTES Cedex 1, France, and Nantes Atlantique Universités, CNRS, UMR 6204, Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, 2 Rue de la
| | - Sarah M. Lane
- Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA, U INSERM 533, UFR de Médecine Physiologie, 1 rue Gaston Veil, BP 53508, 44035 NANTES Cedex 1, France, and Nantes Atlantique Universités, CNRS, UMR 6204, Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, 2 Rue de la
| | - Isabelle Guisle
- Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA, U INSERM 533, UFR de Médecine Physiologie, 1 rue Gaston Veil, BP 53508, 44035 NANTES Cedex 1, France, and Nantes Atlantique Universités, CNRS, UMR 6204, Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, 2 Rue de la
| | - Jean Léger
- Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA, U INSERM 533, UFR de Médecine Physiologie, 1 rue Gaston Veil, BP 53508, 44035 NANTES Cedex 1, France, and Nantes Atlantique Universités, CNRS, UMR 6204, Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, 2 Rue de la
| | - Charles Tellier
- Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA, U INSERM 533, UFR de Médecine Physiologie, 1 rue Gaston Veil, BP 53508, 44035 NANTES Cedex 1, France, and Nantes Atlantique Universités, CNRS, UMR 6204, Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, 2 Rue de la
| | - Daniel R. Talham
- Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA, U INSERM 533, UFR de Médecine Physiologie, 1 rue Gaston Veil, BP 53508, 44035 NANTES Cedex 1, France, and Nantes Atlantique Universités, CNRS, UMR 6204, Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, 2 Rue de la
| | - Bruno Bujoli
- Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA, U INSERM 533, UFR de Médecine Physiologie, 1 rue Gaston Veil, BP 53508, 44035 NANTES Cedex 1, France, and Nantes Atlantique Universités, CNRS, UMR 6204, Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, 2 Rue de la
| |
Collapse
|
18
|
Binding of hairpin polyamides to DNA studied by fluorescence correlation spectroscopy for DNA nanoarchitectures. Anal Bioanal Chem 2008; 390:1595-603. [DOI: 10.1007/s00216-008-1852-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 12/26/2007] [Accepted: 01/08/2008] [Indexed: 11/25/2022]
|
19
|
Nandi CK, Parui PP, Brutschy B, Scheffer U, Göbel M. Fluorescence correlation spectroscopy at single molecule level on the Tat–TAR complex and its inhibitors. Biopolymers 2008; 89:17-25. [PMID: 17764074 DOI: 10.1002/bip.20835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The TAR element of HIV and the viral protein Tat form a molecular switch regulating transcriptional efficiency in HIV. We show that fluorescence correlation spectroscopy at the single molecule level is a powerful method to study the association between a Tat-derived peptide and TAR fragments. We also investigated the inhibition of the peptide-RNA complex by different ligands. Utilizing cross correlation measurements, the dissociation constants (K(D)) were determined. To demonstrate the important role of the bulge for the binding of Tat, we compared wt-TAR with three RNA mutants, mainly differing in the bulge region. For the TAR mutants studied at equimolar concentration of RNA and peptide (25 nM), the K(D) values are 15-35 times larger than that of wt-TAR. This gives evidence that the bulge region is the most crucial part of the TAR RNA for specific Tat binding. The IC(50) values for different inhibitors of the Tat/TAR complex both with wt-TAR and mutants have been determined. Neamine conjugate proved to be the best inhibitor of the complex formation. Our results are in agreement with earlier published data on this system using alternative biophysical and biochemical methods, respectively.
Collapse
Affiliation(s)
- Chayan Kanti Nandi
- Institut für Physikalische und Theoretische Chemie, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str 7, D-60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
20
|
Kobayashi T, Shiratori M, Nakano H, Eguchi C, Shirai M, Naka D, Shibui T. Short peptide tags increase the yield of C-terminally labeled protein. Biotechnol Lett 2007; 29:1065-73. [PMID: 17479226 DOI: 10.1007/s10529-007-9362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 03/05/2007] [Indexed: 12/01/2022]
Abstract
C-Terminal protein labeling allows non-radioactive detection of proteins by using fluorescent puromycin derivatives and cell-free translation systems. However, yields of some labeled proteins are low. Here, we report that the yield of labeled protein mainly depends on the C-terminal amino acid sequence. The short peptide tag sequence, RGAA, at the C-terminus increased not only the labeling efficiency (more than 80%) but also the synthesis yield of labeled proteins. To examine the relationship between the C-terminal amino acid sequence and the yield of labeled proteins, we synthesized C-terminally labeled glutathione S-transferase (GST) containing four identical amino acid residues at the C-terminus. The results demonstrated that 4 x Ala, 4 x His, 4 x Gln, and 4 x Cys produced over 200% of the yield of wild-type GST. In addition, the two Ala residues produced almost the same synthesis activity as 4 x Ala and RGAA. Similar results were obtained with various proteins and cell-free translation systems.
Collapse
|
21
|
Shimizu M, Sasaki S, Kinjo M. Triplet fraction buildup effect of the DNA-YOYO complex studied with fluorescence correlation spectroscopy. Anal Biochem 2007; 366:87-92. [PMID: 17490596 DOI: 10.1016/j.ab.2007.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 03/30/2007] [Accepted: 03/30/2007] [Indexed: 11/20/2022]
Abstract
DNA fragments of various lengths and YOYO-1 iodide (YOYO) were mixed at various ratios, and fluorescence was measured using fluorescence correlation spectroscopy. The number of substantially emitting YOYO molecules binding to the DNA and the binding intervals between the YOYO molecules were estimated for DNA-YOYO complexes of various lengths. In the present study, we found an interesting phenomenon: triplet buildup. Because fluorophores that fall into the triplet state do not emit fluorescence, a part of the dark period can be recovered by emitting photons from other excited YOYO molecules in the same DNA strings in the confocal elements. The remaining dark period can be considered to be the total miss-emission rate. Estimates of the total miss-emission rate are important for calculation of the length and amount of DNA.
Collapse
Affiliation(s)
- Masafumi Shimizu
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | | | | |
Collapse
|
22
|
Oishi Y, Yunomura S, Kawahashi Y, Doi N, Takashima H, Baba T, Mori H, Yanagawa H. Escherichia coli proteome chips for detecting protein-protein interactions. Proteomics 2007; 6:6433-6. [PMID: 17109382 DOI: 10.1002/pmic.200600341] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yo Oishi
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bulyk ML. Protein binding microarrays for the characterization of DNA-protein interactions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 104:65-85. [PMID: 17290819 PMCID: PMC2727742 DOI: 10.1007/10_025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A number of important cellular processes, such as transcriptional regulation, recombination, replication, repair, and DNA modification, are performed by DNA binding proteins. Of particular interest are transcription factors (TFs) which, through their sequence-specific interactions with DNA binding sites, modulate gene expression in a manner required for normal cellular growth and differentiation, and also for response to environmental stimuli. Despite their importance, the DNA binding specificities of most DNA binding proteins still remain unknown, since prior technologies aimed at identifying DNA-protein interactions have been laborious, not highly scalable, or have required limiting biological reagents. Recently a new DNA microarray-based technology, termed protein binding microarrays (PBMs), has been developed that allows rapid, high-throughput characterization of the in vitro DNA binding site sequence specificities of TFs, other DNA binding proteins, or synthetic compounds. DNA binding site data from PBMs combined with gene annotation data, comparative sequence analysis, and gene expression profiling, can be used to predict what genes are regulated by a given TF, what the functions are of a given TF and its predicted target genes, and how that TF may fit into the cell's transcriptional regulatory network.
Collapse
Affiliation(s)
- Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Harvard Medical School New Research Bldg., Room 466D, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Bulyk ML. Protein binding microarrays for the characterization of DNA-protein interactions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007. [PMID: 17290819 DOI: 10.1007/10-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
A number of important cellular processes, such as transcriptional regulation, recombination, replication, repair, and DNA modification, are performed by DNA binding proteins. Of particular interest are transcription factors (TFs) which, through their sequence-specific interactions with DNA binding sites, modulate gene expression in a manner required for normal cellular growth and differentiation, and also for response to environmental stimuli. Despite their importance, the DNA binding specificities of most DNA binding proteins still remain unknown, since prior technologies aimed at identifying DNA-protein interactions have been laborious, not highly scalable, or have required limiting biological reagents. Recently a new DNA microarray-based technology, termed protein binding microarrays (PBMs), has been developed that allows rapid, high-throughput characterization of the in vitro DNA binding site sequence specificities of TFs, other DNA binding proteins, or synthetic compounds. DNA binding site data from PBMs combined with gene annotation data, comparative sequence analysis, and gene expression profiling, can be used to predict what genes are regulated by a given TF, what the functions are of a given TF and its predicted target genes, and how that TF may fit into the cell's transcriptional regulatory network.
Collapse
Affiliation(s)
- Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Harvard Medical School New Research Bldg., Room 466D, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Ahn JH, Hwang MY, Lee KH, Choi CY, Kim DM. Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts. Nucleic Acids Res 2006; 35:e21. [PMID: 17185295 PMCID: PMC1849898 DOI: 10.1093/nar/gkl917] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study developed a method to boost the expression of recombinant proteins in a cell-free protein synthesis system without leaving additional amino acid residues. It was found that the nucleotide sequences of the signal peptides serve as an efficient downstream box to stimulate protein synthesis when they were fused upstream of the target genes. The extent of stimulation was critically affected by the identity of the second codons of the signal sequences. Moreover, the yield of the synthesized protein was enhanced by as much as 10 times in the presence of an optimal second codon. The signal peptides were in situ cleaved and the target proteins were produced in their native sizes by carrying out the cell-free synthesis reactions in the presence of Triton X-100, most likely through the activation of signal peptidase in the S30 extract. The amplification of the template DNA and the addition of the signal sequences were accomplished by PCR. Hence, elevated levels of recombinant proteins were generated within several hours.
Collapse
Affiliation(s)
- Jin-Ho Ahn
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National UniversitySeoul 151-742, Korea
| | - Mi-Yeon Hwang
- School of Chemical and Biological Engineering, College of Engineering, Seoul National UniversitySeoul 151-742, Korea
| | - Kyung-Ho Lee
- Department of Fine Chemical Engineering and Chemistry, Chungnam National UniversityDaejeon 305-764, Korea
| | - Cha-Yong Choi
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National UniversitySeoul 151-742, Korea
- School of Chemical and Biological Engineering, College of Engineering, Seoul National UniversitySeoul 151-742, Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Chemistry, Chungnam National UniversityDaejeon 305-764, Korea
- To whom correspondence should be addressed. Tel: +82 42 821 5899; Fax: +82 42 823 7692;
| |
Collapse
|
26
|
Fukuda I, Kojoh K, Tabata N, Doi N, Takashima H, Miyamoto-Sato E, Yanagawa H. In vitro evolution of single-chain antibodies using mRNA display. Nucleic Acids Res 2006; 34:e127. [PMID: 17012279 PMCID: PMC1636464 DOI: 10.1093/nar/gkl618] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we describe the application of the in vitro virus mRNA display method, which involves covalent linkage of an in vitro-synthesized antibody (phenotype) to its encoding mRNA (genotype) through puromycin, for in vitro evolution of single-chain Fv (scFv) antibody fragments. To establish the validity of this approach to directed antibody evolution, we used random mutagenesis by error-prone DNA shuffling and off-rate selection to improve the affinity of an anti-fluorescein scFv as a model system. After four rounds of selection of the library of mRNA-displayed scFv mutants, we obtained six different sequences encoding affinity-matured mutants with five consensus mutations. Kinetic analysis of the mutant scFvs revealed that the off-rates have been decreased by more than one order of magnitude and the dissociation constants were improved approximately 30-fold. The antigen-specificity was not improved by affinity maturation, but remained similar to that of the wild type. Although the five consensus mutations of the high-affinity mutants were scattered over the scFv sequence, analysis by site-directed mutagenesis demonstrated that the critical mutations for improving affinity were the two that lay within the complementarity determining regions (CDRs). Thus, mRNA display is expected to be useful for rapid artificial evolution of high-affinity diagnostic and therapeutic antibodies by optimizing their CDRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiroshi Yanagawa
- To whom correspondence should be addressed. Tel: +81 45 566 1775; Fax: +81 45 566 1440;
| |
Collapse
|
27
|
Oyama R, Takashima H, Yonezawa M, Doi N, Miyamoto-Sato E, Kinjo M, Yanagawa H. Protein-protein interaction analysis by C-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy. Nucleic Acids Res 2006; 34:e102. [PMID: 16914444 PMCID: PMC1904107 DOI: 10.1093/nar/gkl477] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here, we describe novel puromycin derivatives conjugated with iminobiotin and a fluorescent dye that can be linked covalently to the C-terminus of full-length proteins during cell-free translation. The iminobiotin-labeled proteins can be highly purified by affinity purification with streptavidin beads. We confirmed that the purified fluorescence-labeled proteins are useful for quantitative protein–protein interaction analysis based on fluorescence cross-correlation spectroscopy (FCCS). The apparent dissociation constants of model protein pairs such as proto-oncogenes c-Fos/c-Jun and archetypes of the family of Ca2+-modulated calmodulin/related binding proteins were in accordance with the reported values. Further, detailed analysis of the interactions of the components of polycomb group complex, Bmi1, M33, Ring1A and RYBP, was successfully conducted by means of interaction assay for all combinatorial pairs. The results indicate that FCCS analysis with puromycin-based labeling and purification of proteins is effective and convenient for in vitro protein–protein interaction assay, and the method should contribute to a better understanding of protein functions by using the resource of available nucleotide sequences.
Collapse
Affiliation(s)
| | | | | | | | | | - Masataka Kinjo
- Research Institute for Electronic Science, Hokkaido UniversitySapporo 060-0812, Japan
| | - Hiroshi Yanagawa
- To whom correspondence should be addressed. Tel: +81 45 566 1775; Fax: +81 45 566 1440;
| |
Collapse
|
28
|
Bulyk ML. DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol 2006; 17:422-30. [PMID: 16839757 PMCID: PMC2727741 DOI: 10.1016/j.copbio.2006.06.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/02/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
DNA-binding proteins have key roles in many cellular processes, including transcriptional regulation and replication. Microarray-based technologies permit the high-throughput identification of binding sites and enable the functional roles of these binding proteins to be elucidated. In particular, microarray readout either of chromatin immunoprecipitated DNA-bound proteins (ChIP-chip) or of DNA adenine methyltransferase fusion proteins (DamID) enables the identification of in vivo genomic target sites of proteins. A complementary approach to analyse the in vitro binding of proteins directly to double-stranded DNA microarrays (protein binding microarrays; PBMs), permits rapid characterization of their DNA binding site sequence specificities. Recent advances in DNA microarray synthesis technologies have facilitated the definition of DNA-binding sites at much higher resolution and coverage, and advances in these and emerging technologies will further increase the efficiencies of these exciting new approaches.
Collapse
Affiliation(s)
- Martha L Bulyk
- Division of Genetics, Department of Medicine, Harvard/MIT Division of Health Sciences and Technology (HST), Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Tateyama S, Horisawa K, Takashima H, Miyamoto-Sato E, Doi N, Yanagawa H. Affinity selection of DNA-binding protein complexes using mRNA display. Nucleic Acids Res 2006; 34:e27. [PMID: 16478713 PMCID: PMC1369289 DOI: 10.1093/nar/gnj025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comprehensive analysis of DNA–protein interactions is important for mapping transcriptional regulatory networks on a genome-wide level. Here we present a new application of mRNA display for in vitro selection of DNA-binding protein heterodimeric complexes. Under improved selection conditions using a TPA-responsive element (TRE) as a bait DNA, known interactors c-fos and c-jun were simultaneously enriched about 100-fold from a model library (a 1:1:20 000 mixture of c-fos, c-jun and gst genes) after one round of selection. Furthermore, almost all kinds of the AP-1 family genes including c-jun, c-fos, junD, junB, atf2 and b-atf were successfully selected from an mRNA display library constructed from a mouse brain poly A+ RNA after six rounds of selection. These results indicate that the mRNA display selection system can identify a variety of DNA-binding protein complexes in a single experiment. Since almost all transcription factors form heterooligomeric complexes to bind with their target DNA, this method should be most useful to search for DNA-binding transcription factor complexes.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroshi Yanagawa
- To whom correspondence should be addressed. Tel: +81 45 566 1775; Fax: +81 45 566 1440;
| |
Collapse
|
30
|
Hultschig C, Kreutzberger J, Seitz H, Konthur Z, Büssow K, Lehrach H. Recent advances of protein microarrays. Curr Opin Chem Biol 2005; 10:4-10. [PMID: 16376134 PMCID: PMC7108394 DOI: 10.1016/j.cbpa.2005.12.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 12/07/2005] [Indexed: 11/28/2022]
Abstract
Technological innovations and novel applications have greatly advanced the field of protein microarrays. Over the past two years, different types of protein microarrays have been used for serum profiling, protein abundance determinations, and identification of proteins that bind DNA or small compounds. However, considerable development is still required to ensure common quality standards and to establish large content repertoires. Here, we summarize applications available to date and discuss recent technological achievements and efforts on standardization.
Collapse
|
31
|
Son JM, Ahn JH, Hwang MY, Park CG, Choi CY, Kim DM. Enhancing the efficiency of cell-free protein synthesis through the polymerase-chain-reaction-based addition of a translation enhancer sequence and the in situ removal of the extra amino acid residues. Anal Biochem 2005; 351:187-92. [PMID: 16430851 DOI: 10.1016/j.ab.2005.11.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
A method for the rapid generation of intact proteins in a cell-free protein synthesis system was developed. The productivity of the recombinant proteins from the polymerase-chain-reaction-amplified templates was enhanced remarkably using an optimized translation enhancer sequence. The extra amino acid residues derived from the translation enhancer sequence were effectively removed by utilizing the appropriate detergent and peptide cleavage enzyme in the reaction mixture. These results demonstrate the versatility of cell-free protein synthesis in providing optimized and customized reaction conditions for the efficient production of the desired proteins.
Collapse
Affiliation(s)
- Jeong-Mi Son
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Sasuga Y, Tani T, Hayashi M, Yamakawa H, Ohara O, Harada Y. Development of a microscopic platform for real-time monitoring of biomolecular interactions. Genome Res 2005; 16:132-9. [PMID: 16344567 PMCID: PMC1356137 DOI: 10.1101/gr.4235806] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We developed a new microscopic platform for the real-time analysis of molecular interactions by combining microbead-tagging techniques with total internal reflection fluorescent microscopy (TIRFM). The optical manipulation of probe microbeads, followed by photo immobilization on a solid surface, enabled us to generate arrays with extremely high density (>100 microbeads in a 25 microm x 25 microm area), and TIRFM made it possible to monitor the binding reactions of fluorescently labeled targets onto probe microbeads without removal of free targets. We demonstrated the high performance of this platform through analyses of interactions between antigen and antibody and between small compounds and proteins. Then, recombinant protein levels in total cellular lysates of Escherichia coli were quantified from the association kinetics using antibody-immobilized microbead arrays, which served as a model for a protein-profiling array. Furthermore, in combination with in vitro synthesis-coupled protein labeling, we could kinematically analyze the interaction of nuclear factor kappaB (p50) with DNA. These results demonstrated that this platform enabled us to: (1) monitor binding processes of fluorescently labeled targets to multiple probes in real-time without removal of free targets, (2) determine concentrations of free targets only from the association kinetics at an early phase, and (3) greatly reduce the required volume of the target solution, in principle to subnanoliter, for molecular interaction analysis. The unique features of this microbead-based microarray system open the way to explore molecular interactions with a wide range of affinities in extremely small volumes of target solutions, such as extracts from single cells.
Collapse
Affiliation(s)
- Yasuhiro Sasuga
- The Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Miyamoto-Sato E, Ishizaka M, Horisawa K, Tateyama S, Takashima H, Fuse S, Sue K, Hirai N, Masuoka K, Yanagawa H. Cell-free cotranslation and selection using in vitro virus for high-throughput analysis of protein-protein interactions and complexes. Genome Res 2005; 15:710-7. [PMID: 15867431 PMCID: PMC1088299 DOI: 10.1101/gr.3510505] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have developed a simple and totally in vitro selection procedure based on cell-free cotranslation using a highly stable and efficient in vitro virus (IVV). Cell-free cotranslation of tagged bait and prey proteins is advantageous for the formation of protein complexes and allows high-throughput analysis of protein-protein interactions (PPI) as a result of providing in vitro instead of in vivo preparation of bait proteins. The use of plural selection rounds and a two-step purification of the IVV selection, followed by in vitro post-selection, is advantageous for decreasing false positives. In a single experiment using bait Fos, more than 10 interactors, including not only direct, but also indirect interactions, were enriched. Further, previously unidentified proteins containing novel leucine zipper (L-ZIP) motifs with minimal binding sites identified by sequence alignment as functional elements were detected as a result of using a randomly primed cDNA library. Thus, we consider that this simple IVV selection system based on cell-free cotranslation could be applicable to high-throughput and comprehensive analysis of PPI and complexes in large-scale settings involving parallel bait proteins.
Collapse
Affiliation(s)
- Etsuko Miyamoto-Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Horisawa K, Tateyama S, Ishizaka M, Matsumura N, Takashima H, Miyamoto-Sato E, Doi N, Yanagawa H. In vitro selection of Jun-associated proteins using mRNA display. Nucleic Acids Res 2004; 32:e169. [PMID: 15576676 PMCID: PMC535696 DOI: 10.1093/nar/gnh167] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although yeast two-hybrid assay and biochemical methods combined with mass spectrometry have been successfully employed for the analyses of protein-protein interactions in the field of proteomics, these methods encounter various difficulties arising from the usage of living cells, including inability to analyze toxic proteins and restriction of testable interaction conditions. Totally in vitro display technologies such as ribosome display and mRNA display are expected to circumvent these difficulties. In this study, we applied an mRNA display technique to screening for interactions of a basic leucine zipper domain of Jun protein in a mouse brain cDNA library. By performing iterative affinity selection and sequence analyses, we selected 16 novel Jun-associated protein candidates in addition to four known interactors. By means of real-time PCR and pull-down assay, 10 of the 16 newly discovered candidates were confirmed to be direct interactors with Jun in vitro. Furthermore, interaction of 6 of the 10 proteins with Jun was observed in cultured cells by means of co-immunoprecipitation and observation of subcellular localization. These results demonstrate that this in vitro display technology is effective for the discovery of novel protein-protein interactions and can contribute to the comprehensive mapping of protein-protein interactions.
Collapse
Affiliation(s)
- Kenichi Horisawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, Young RA, Bulyk ML. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet 2004; 36:1331-9. [PMID: 15543148 PMCID: PMC2692596 DOI: 10.1038/ng1473] [Citation(s) in RCA: 284] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 10/18/2004] [Indexed: 11/10/2022]
Abstract
We developed a new DNA microarray-based technology, called protein binding microarrays (PBMs), that allows rapid, high-throughput characterization of the in vitro DNA binding-site sequence specificities of transcription factors in a single day. Using PBMs, we identified the DNA binding-site sequence specificities of the yeast transcription factors Abf1, Rap1 and Mig1. Comparison of these proteins' in vitro binding sites with their in vivo binding sites indicates that PBM-derived sequence specificities can accurately reflect in vivo DNA sequence specificities. In addition to previously identified targets, Abf1, Rap1 and Mig1 bound to 107, 90 and 75 putative new target intergenic regions, respectively, many of which were upstream of previously uncharacterized open reading frames. Comparative sequence analysis indicated that many of these newly identified sites are highly conserved across five sequenced sensu stricto yeast species and, therefore, are probably functional in vivo binding sites that may be used in a condition-specific manner. Similar PBM experiments should be useful in identifying new cis regulatory elements and transcriptional regulatory networks in various genomes.
Collapse
Affiliation(s)
- Sonali Mukherjee
- Division of Genetics, Department of Medicine, Harvard Medical School; Boston; Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Elbaz Y, Steiner-Mordoch S, Danieli T, Schuldiner S. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. Proc Natl Acad Sci U S A 2004; 101:1519-24. [PMID: 14755055 PMCID: PMC341767 DOI: 10.1073/pnas.0306533101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
EmrE is a small multidrug transporter from Escherichia coli that provides a unique model for the study of polytopic membrane proteins. Here, we show its synthesis in a cell-free system in a fully functional form. The detergent-solubilized protein binds substrates with high affinity and, when reconstituted into proteoliposomes, transports substrate in a Deltamicro(H)(+)-dependent fashion. Here, we used the cell-free system to study the oligomeric properties of EmrE. EmrE functions as an oligomer, but the size of the functional oligomer has not been established unequivocally. Coexpression of two plasmids in the cell-free system allowed demonstration of functional complementation and pull-down experiments confirmed that the basic functional unit is the dimer. An additional interaction between dimers has been detected by using crosslinking between unique Cys residues. This finding implies the existence of a dimer of dimers.
Collapse
Affiliation(s)
- Yael Elbaz
- Protein Expression Facility, Wolfson Foundation Center for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
37
|
Yonezawa M, Doi N, Kawahashi Y, Higashinakagawa T, Yanagawa H. DNA display for in vitro selection of diverse peptide libraries. Nucleic Acids Res 2003; 31:e118. [PMID: 14500846 PMCID: PMC206484 DOI: 10.1093/nar/gng119] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe the use of a DNA display system for in vitro selection of peptide ligands from a large library of peptides displayed on their encoding DNAs. The method permits completely in vitro construction of a DNA-tagged peptide library by using a wheat germ in vitro transcription/translation system compartmentalized in water-in-oil emulsions. Starting with a library of 10(9)-10(10) random decapeptides, 21 different peptide ligands were isolated for monoclonal antibody anti-FLAG M2. DNA display selected more diverse peptides with a DYKXXD consensus motif than previously reported phage display systems. Binding and recovery rates of three peptides were significantly higher than those of the original FLAG peptide, implying that these peptides would be superior to the FLAG peptide for purification of tagged proteins. The simplicity of DNA display enables two selection rounds per day to be conducted. Further, DNA display can overcome the limitations of previous display technologies by avoiding the use of bacterial cells and RNA tags. Thus, DNA display is expected to be useful for rapid screening of a wide variety of peptide ligands for corresponding receptors.
Collapse
Affiliation(s)
- Masato Yonezawa
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | | | | | | | | |
Collapse
|
38
|
Miyamoto-Sato E, Takashima H, Fuse S, Sue K, Ishizaka M, Tateyama S, Horisawa K, Sawasaki T, Endo Y, Yanagawa H. Highly stable and efficient mRNA templates for mRNA-protein fusions and C-terminally labeled proteins. Nucleic Acids Res 2003; 31:e78. [PMID: 12888530 PMCID: PMC169963 DOI: 10.1093/nar/gng078] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For high-throughput in vitro protein selection using genotype (mRNA)-phenotype (protein) fusion formation and C-terminal protein labeling as a post-selection analysis, it is important to improve the stability and efficiency of mRNA templates for both technologies. Here we describe an efficient single-strand ligation (90% of the input mRNAs) using a fluorescein-conjugated polyethylene glycol puromycin (Fluor-PEG Puro) spacer. This ligation provides a stable c-jun mRNA with a flexible Fluor-PEG Puro spacer for efficient fusion formation (70% of the input mRNA with the PEG spacer) in a cell-free wheat germ translation system. When using a 5' untranslated region including SP6 promoter and Omega29 enhancer (a part of tobacco mosaic virus Omega), an A(8) sequence (eight consecutive adenylate residues) at the 3' end is suitable for fusion formation, while an XA(8) sequence (XhoI and the A(8) sequence) is suitable for C-terminal protein labeling. Further, we report that Fluor-PEG N-t-butyloxycarbonylpuromycin [Puro(Boc)] spacer enhances the stability and efficiency of c-jun mRNA template for C-terminal protein labeling. These mRNA templates should be useful for puromycin-based technologies (fusion formation and C-terminal protein labeling) to facilitate high-throughput in vitro protein selection for not only evolutionary protein engineering, but also proteome exploration.
Collapse
Affiliation(s)
- Etsuko Miyamoto-Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|