1
|
Tafrishi A, Alva T, Chartron J, Wheeldon I. Ribo-seq guided design of enhanced protein secretion in Komagataellaphaffii. Metab Eng 2025; 91:228-241. [PMID: 40315981 DOI: 10.1016/j.ymben.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/12/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The production of recombinant proteins requires the precise coordination of various biological processes, including protein synthesis, folding, trafficking, and secretion. The overproduction of a heterologous protein can impose various bottlenecks on these networks. Identifying and alleviating these bottlenecks can guide strain engineering efforts to enhance protein production. The methylotrophic yeast Komagataella phaffii is used for its high capacity to produce recombinant proteins. Here, we use ribosome profiling to identify bottlenecks in protein secretion during heterologous expression of human serum albumin (HSA). Validation of this analysis showed that the knockout of non-essential genes whose gene products target the ER, through co- and post-translational mechanisms, and have high ribosome utilization can increase production of a heterologous protein, HSA. A triple knockout in co-translationally translocated carbohydrate and acetate transporter Gal2p, cell wall maintenance protein Ydr134cp, and the post-translationally translocated cell wall protein Aoa65896.1 increased HSA production by 35 %. This data-driven strain engineering approach uses cell-level information to identify gene targets for phenotype improvement. This specific case identifies hits and creates strains with improved HSA production, with Ribo-seq and bioinformatic analysis to identify non-essential ER targeted proteins that are high ribosome utilizers.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Troy Alva
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Justin Chartron
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Akirtava C, May G, McManus CJ. Deciphering the landscape of cis-acting sequences in natural yeast transcript leaders. Nucleic Acids Res 2025; 53:gkaf165. [PMID: 40071932 PMCID: PMC11897887 DOI: 10.1093/nar/gkaf165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-acting features that influence translation and messenger RNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts (-4 to +1 around the AUG start) and upstream AUGs (uAUGs) explained half of the variance in expression across TLs, the addition of other features explained ∼80% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- RNA Bioscience Initiative, University of Colorado – Anschutz, Aurora, CO 80045, United States
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
3
|
Spealman P, de Santana C, De T, Gresham D. Multilevel Gene Expression Changes in Lineages Containing Adaptive Copy Number Variants. Mol Biol Evol 2025; 42:msaf005. [PMID: 39847535 PMCID: PMC11789944 DOI: 10.1093/molbev/msaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025] Open
Abstract
Copy number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas, CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that gene expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- chemostats. We find CNV-amplified genes correlate with higher mRNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of gene expression by the abundance of the preceding step we were able to identify widespread differences in the efficiency of each level of gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA-binding sites for Ssd1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which genome evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública—Universidade Estadual de Feira de Santana (UEFS), Bahia, Brazil
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| |
Collapse
|
4
|
Korbel F, Eroshok E, Ohler U. Interpreting deep neural networks for the prediction of translation rates. BMC Genomics 2024; 25:1061. [PMID: 39522049 PMCID: PMC11549864 DOI: 10.1186/s12864-024-10925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The 5' untranslated region of mRNA strongly impacts the rate of translation initiation. A recent convolutional neural network (CNN) model accurately quantifies the relationship between massively parallel synthetic 5' untranslated regions (5'UTRs) and translation levels. However, the underlying biological features, which drive model predictions, remain elusive. Uncovering sequence determinants predictive of translation output may allow us to develop a more detailed understanding of translation regulation at the 5'UTR. RESULTS Applying model interpretation, we extract representations of regulatory logic from CNNs trained on synthetic and human 5'UTR reporter data. We reveal a complex interplay of regulatory sequence elements, such as initiation context and upstream open reading frames (uORFs) to influence model predictions. We show that models trained on synthetic data alone do not sufficiently explain translation regulation via the 5'UTR due to differences in the frequency of regulatory motifs compared to natural 5'UTRs. CONCLUSIONS Our study demonstrates the significance of model interpretation in understanding model behavior, properties of experimental data and ultimately mRNA translation. By combining synthetic and human 5'UTR reporter data, we develop a model (OptMRL) which better captures the characteristics of human translation regulation. This approach provides a general strategy for building more successful sequence-based models of gene regulation, as it combines global sampling of random sequences with the subspace of naturally occurring sequences. Ultimately, this will enhance our understanding of 5'UTR sequences in disease and our ability to engineer translation output.
Collapse
Affiliation(s)
- Frederick Korbel
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Hannoversche Straße 28, Berlin, 10115, Germany
| | - Ekaterina Eroshok
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Hannoversche Straße 28, Berlin, 10115, Germany
- Department of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Uwe Ohler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Hannoversche Straße 28, Berlin, 10115, Germany.
- Department of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany.
- Department of Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany.
| |
Collapse
|
5
|
Spealman P, de Santana C, De T, Gresham D. Multilevel gene expression changes in lineages containing adaptive copy number variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563336. [PMID: 37961325 PMCID: PMC10634702 DOI: 10.1101/2023.10.20.563336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Copy-number variants (CNVs) are an important class of recurrent variants that mediate adaptive evolution. While CNVs can increase the relative fitness of the organism, they can also incur a cost. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition, and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- conditions. We find CNV-amplified genes correlate with higher RNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of expression by the abundance of the preceding step we were able to identify widespread divergence in the efficiency of each step in the gene in the efficiency of each step in gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA binding sites for SSD1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which adaptive evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública - Universidade Estadual de Feira de Santana (UEFS), Bahia
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University
| |
Collapse
|
6
|
Akirtava C, May G, McManus CJ. Deciphering the cis-regulatory landscape of natural yeast Transcript Leaders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601937. [PMID: 39005336 PMCID: PMC11245039 DOI: 10.1101/2024.07.03.601937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Protein synthesis is a vital process that is highly regulated at the initiation step of translation. Eukaryotic 5' transcript leaders (TLs) contain a variety of cis-regulatory features that influence translation and mRNA stability. However, the relative influences of these features in natural TLs are poorly characterized. To address this, we used massively parallel reporter assays (MPRAs) to quantify RNA levels, ribosome loading, and protein levels from 11,027 natural yeast TLs in vivo and systematically compared the relative impacts of their sequence features on gene expression. We found that yeast TLs influence gene expression over two orders of magnitude. While a leaky scanning model using Kozak contexts and uAUGs explained half of the variance in expression across transcript leaders, the addition of other features explained ~70% of gene expression variation. Our analyses detected key cis-acting sequence features, quantified their effects in vivo, and compared their roles to motifs reported from an in vitro study of ribosome recruitment. In addition, our work quantitated the effects of alternative transcription start site usage on gene expression in yeast. Thus, our study provides new quantitative insights into the roles of TL cis-acting sequences in regulating gene expression.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- RNA Bioscience Initiative, University of Colorado - Anshutz, Aurora, CO, 80045, USA
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Wu TY, Li YR, Chang KJ, Fang JC, Urano D, Liu MJ. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved cis-regulatory codes in eukaryotes. Genome Res 2024; 34:272-285. [PMID: 38479836 PMCID: PMC10984385 DOI: 10.1101/gr.278100.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Kai-Jyun Chang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
9
|
Wang J, Liu J, Guo Z. Natural uORF variation in plants. TRENDS IN PLANT SCIENCE 2024; 29:290-302. [PMID: 37640640 DOI: 10.1016/j.tplants.2023.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Taking advantage of natural variation promotes our understanding of phenotypic diversity and trait evolution, ultimately accelerating plant breeding, in which the identification of causal variations is critical. To date, sequence variations in the coding region and transcription level polymorphisms caused by variations in the promoter have been prioritized. An upstream open reading frame (uORF) in the 5' untranslated region (5' UTR) regulates gene expression at the post-transcription or translation level. In recent years, studies have demonstrated that natural uORF variations shape phenotypic diversity. This opinion article highlights recent researches and speculates on future directions for natural uORF variation in plants.
Collapse
Affiliation(s)
- Jiangen Wang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juhong Liu
- Fuzhou Institute for Data Technology Co., Ltd., Fuzhou 350207, China
| | - Zilong Guo
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Mao Y, Qian SB. Making sense of mRNA translational "noise". Semin Cell Dev Biol 2024; 154:114-122. [PMID: 36925447 PMCID: PMC10500040 DOI: 10.1016/j.semcdb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly believed that translation deviating from the main coding region is to be avoided at all times inside cells. However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the scope and origin of translational "noise" are just beginning to be appreciated. Although largely overlooked, those translational "noises" are associated with a wide range of cellular functions, such as producing unannotated protein products. Furthermore, the dynamic nature of translational "noise" is responsive to stress conditions, highlighting the beneficial effect of translational "noise" in stress adaptation. Mechanistic investigation of translational "noise" will provide better insight into the mechanisms of translational regulation. Ultimately, they are not "noise" at all but represent a signature of cellular activities under pathophysiological conditions. Deciphering translational "noise" holds the therapeutic and diagnostic potential in a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Gaikwad S, Ghobakhlou F, Zhang H, Hinnebusch AG. Yeast eIF2A has a minimal role in translation initiation and uORF-mediated translational control in vivo. eLife 2024; 12:RP92916. [PMID: 38266075 PMCID: PMC10945734 DOI: 10.7554/elife.92916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Initiating translation of most eukaryotic mRNAs depends on recruitment of methionyl initiator tRNA (Met-tRNAi) in a ternary complex (TC) with GTP-bound eukaryotic initiation factor 2 (eIF2) to the small (40S) ribosomal subunit, forming a 43S preinitiation complex (PIC) that attaches to the mRNA and scans the 5'-untranslated region (5' UTR) for an AUG start codon. Previous studies have implicated mammalian eIF2A in GTP-independent binding of Met-tRNAi to the 40S subunit and its recruitment to specialized mRNAs that do not require scanning, and in initiation at non-AUG start codons, when eIF2 function is attenuated by phosphorylation of its α-subunit during stress. The role of eIF2A in translation in vivo is poorly understood however, and it was unknown whether the conserved ortholog in budding yeast can functionally substitute for eIF2. We performed ribosome profiling of a yeast deletion mutant lacking eIF2A and isogenic wild-type (WT) cells in the presence or absence of eIF2α phosphorylation induced by starvation for amino acids isoleucine and valine. Whereas starvation of WT confers changes in translational efficiencies (TEs) of hundreds of mRNAs, the eIF2AΔ mutation conferred no significant TE reductions for any mRNAs in non-starved cells, and it reduced the TEs of only a small number of transcripts in starved cells containing phosphorylated eIF2α. We found no evidence that eliminating eIF2A altered the translation of mRNAs containing putative internal ribosome entry site (IRES) elements, or harboring uORFs initiated by AUG or near-cognate start codons, in non-starved or starved cells. Thus, very few mRNAs (possibly only one) appear to employ eIF2A for Met-tRNAi recruitment in yeast cells, even when eIF2 function is attenuated by stress.
Collapse
Affiliation(s)
- Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Fardin Ghobakhlou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
12
|
Gaikwad S, Ghobakhlou F, Zhang H, Hinnebusch AG. Yeast eIF2A has a minimal role in translation initiation and uORF-mediated translational control in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561292. [PMID: 37986989 PMCID: PMC10659434 DOI: 10.1101/2023.10.06.561292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Initiating translation of most eukaryotic mRNAs depends on recruitment of methionyl initiator tRNA (Met-tRNAi) in a ternary complex (TC) with GTP-bound eukaryotic initiation factor 2 (eIF2) to the small (40S) ribosomal subunit, forming a 43S preinitiation complex (PIC) that attaches to the mRNA and scans the 5'-untranslated region (5' UTR) for an AUG start codon. Previous studies have implicated mammalian eIF2A in GTP-independent binding of Met-tRNAi to the 40S subunit and its recruitment to specialized mRNAs that do not require scanning, and in initiation at non-AUG start codons, when eIF2 function is attenuated by phosphorylation of its α-subunit during stress. The role of eIF2A in translation in vivo is poorly understood however, and it was unknown whether the conserved ortholog in budding yeast can functionally substitute for eIF2. We performed ribosome profiling of a yeast deletion mutant lacking eIF2A and isogenic wild-type (WT) cells in the presence or absence of eIF2α phosphorylation induced by starvation for amino acids isoleucine and valine. Whereas starvation of WT confers changes in translational efficiencies (TEs) of hundreds of mRNAs, the eIF2AΔ mutation conferred no significant TE reductions for any mRNAs in non-starved cells, and it reduced the TEs of only a small number of transcripts in starved cells containing phosphorylated eIF2α. We found no evidence that eliminating eIF2A altered the translation of mRNAs containing putative IRES elements, or harboring uORFs initiated by AUG or near-cognate start codons, in non-starved or starved cells. Thus, very few mRNAs (possibly only one) appear to employ eIF2A for Met-tRNAi recruitment in yeast cells, even when eIF2 function is attenuated by stress.
Collapse
Affiliation(s)
- Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Fardin Ghobakhlou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
- Current affiliations: Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, University of Montreal, Canada, H3T 1J4
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Fang JC, Liu MJ. Translation initiation at AUG and non-AUG triplets in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111822. [PMID: 37574140 DOI: 10.1016/j.plantsci.2023.111822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
14
|
May GE, Akirtava C, Agar-Johnson M, Micic J, Woolford J, McManus J. Unraveling the influences of sequence and position on yeast uORF activity using massively parallel reporter systems and machine learning. eLife 2023; 12:e69611. [PMID: 37227054 PMCID: PMC10259493 DOI: 10.7554/elife.69611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/24/2023] [Indexed: 05/26/2023] Open
Abstract
Upstream open-reading frames (uORFs) are potent cis-acting regulators of mRNA translation and nonsense-mediated decay (NMD). While both AUG- and non-AUG initiated uORFs are ubiquitous in ribosome profiling studies, few uORFs have been experimentally tested. Consequently, the relative influences of sequence, structural, and positional features on uORF activity have not been determined. We quantified thousands of yeast uORFs using massively parallel reporter assays in wildtype and ∆upf1 yeast. While nearly all AUG uORFs were robust repressors, most non-AUG uORFs had relatively weak impacts on expression. Machine learning regression modeling revealed that both uORF sequences and locations within transcript leaders predict their effect on gene expression. Indeed, alternative transcription start sites highly influenced uORF activity. These results define the scope of natural uORF activity, identify features associated with translational repression and NMD, and suggest that the locations of uORFs in transcript leaders are nearly as predictive as uORF sequences.
Collapse
Affiliation(s)
- Gemma E May
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Matthew Agar-Johnson
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jelena Micic
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - John Woolford
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
- Computational Biology Department, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
15
|
Yang Y, Gatica D, Liu X, Wu R, Kang R, Tang D, Klionsky DJ. Upstream open reading frames mediate autophagy-related protein translation. Autophagy 2023; 19:457-473. [PMID: 35363116 PMCID: PMC9851245 DOI: 10.1080/15548627.2022.2059744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Macroautophagy/autophagy, a highly conserved catabolic pathway that maintains proper cellular homeostasis is stringently regulated by numerous autophagy-related (Atg) proteins. Many studies have investigated autophagy regulation at the transcriptional level; however, relatively little is known about translational control. Here, we report the upstream open reading frame (uORF)-mediated translational control of multiple Atg proteins in Saccharomyces cerevisiae and in human cells. The translation of several essential autophagy regulators in yeast, including Atg13, is suppressed by canonical uORFs under nutrient-rich conditions, and is activated during nitrogen-starvation conditions. We also found that the predicted human ATG4B and ATG12 non-canonical uORFs suppress downstream coding sequence translation. These results demonstrate that uORF-mediated translational control is a widely used mechanism among ATG genes from yeast to human and suggest a model for how some ATG genes bypass the general translational suppression that occurs under stress conditions to maintain a proper level of autophagy.Abbreviations: 5' UTR, 5' untranslated region; Atg, autophagy-related; CDS, coding sequence; Cvt, cytoplasm-to-vacuole targeting; HBSS, Hanks' balanced salt solution; PA, protein A; PE, phosphati-dylethanolamine; PIC, preinitiation complex; PtdIns3K, phosphatidylinositol 3-kinase; qRT-PCR, quantitative reverse transcription PCR; Ubl, ubiquitin-like; uORF, upstream open reading frame; WT, wild-type.
Collapse
Affiliation(s)
- Ying Yang
- Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI48109, USA
| | - Damián Gatica
- Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI48109, USA
| | - Xu Liu
- Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI48109, USA
| | - Runliu Wu
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
| | - Daniel J. Klionsky
- Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI48109, USA,CONTACT Daniel J. Klionsky Life Sciences Institute, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
16
|
Liu Q, Peng X, Shen M, Qian Q, Xing J, Li C, Gregory R. Ribo-uORF: a comprehensive data resource of upstream open reading frames (uORFs) based on ribosome profiling. Nucleic Acids Res 2023; 51:D248-D261. [PMID: 36440758 PMCID: PMC9825487 DOI: 10.1093/nar/gkac1094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Upstream open reading frames (uORFs) are typically defined as translation sites located within the 5' untranslated region upstream of the main protein coding sequence (CDS) of messenger RNAs (mRNAs). Although uORFs are prevalent in eukaryotic mRNAs and modulate the translation of downstream CDSs, a comprehensive resource for uORFs is currently lacking. We developed Ribo-uORF (http://rnainformatics.org.cn/RiboUORF) to serve as a comprehensive functional resource for uORF analysis based on ribosome profiling (Ribo-seq) data. Ribo-uORF currently supports six species: human, mouse, rat, zebrafish, fruit fly, and worm. Ribo-uORF includes 501 554 actively translated uORFs and 107 914 upstream translation initiation sites (uTIS), which were identified from 1495 Ribo-seq and 77 quantitative translation initiation sequencing (QTI-seq) datasets, respectively. We also developed mRNAbrowse to visualize items such as uORFs, cis-regulatory elements, genetic variations, eQTLs, GWAS-based associations, RNA modifications, and RNA editing. Ribo-uORF provides a very intuitive web interface for conveniently browsing, searching, and visualizing uORF data. Finally, uORFscan and UTR5var were developed in Ribo-uORF to precisely identify uORFs and analyze the influence of genetic mutations on uORFs using user-uploaded datasets. Ribo-uORF should greatly facilitate studies of uORFs and their roles in mRNA translation and posttranscriptional control of gene expression.
Collapse
Affiliation(s)
- Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Xin Peng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Mengyuan Shen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Qian Qian
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Junlian Xing
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou 510640, China
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Hiragori Y, Takahashi H, Karino T, Kaido A, Hayashi N, Sasaki S, Nakao K, Motomura T, Yamashita Y, Naito S, Onouchi H. Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily conserved regulatory sequences that control protein expression levels. PLANT MOLECULAR BIOLOGY 2023; 111:37-55. [PMID: 36044152 DOI: 10.1007/s11103-022-01309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This study identified four novel regulatory non-AUG-initiated upstream ORFs (uORFs) with evolutionarily conserved sequences in Arabidopsis and elucidated the mechanism by which a non-AUG-initiated uORF promotes main ORF translation. Upstream open reading frames (uORFs) are short ORFs found in the 5'-untranslated regions (5'-UTRs) of eukaryotic transcripts and can influence the translation of protein-coding main ORFs (mORFs). Recent genome-wide ribosome profiling studies have revealed that hundreds or thousands of uORFs initiate translation at non-AUG start codons. However, the physiological significance of these non-AUG uORFs has so far been demonstrated for only a few of them. In this study, to identify physiologically important regulatory non-AUG uORFs in Arabidopsis, we took an approach that combined bioinformatics and experimental analysis. Since physiologically important non-AUG uORFs are likely to be conserved across species, we first searched the Arabidopsis genome for non-AUG-initiated uORFs with evolutionarily conserved sequences. Then, we examined the effects of the conserved non-AUG uORFs on the expression of the downstream mORFs using transient expression assays. As a result, three inhibitory and one promotive non-AUG uORFs were identified. Among the inhibitory non-AUG uORFs, two exerted repressive effects on mORF expression in an amino acid sequence-dependent manner. These two non-AUG uORFs are likely to encode regulatory peptides that cause ribosome stalling, thereby enhancing their repressive effects. In contrast, one of the identified regulatory non-AUG uORFs promoted mORF expression by alleviating the inhibitory effect of a downstream AUG-initiated uORF. These findings provide insights into the mechanisms that enable non-AUG uORFs to play regulatory roles despite their low translation initiation efficiencies.
Collapse
Affiliation(s)
- Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Taihei Karino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Kaido
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kodai Nakao
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
18
|
Dang TTV, Colin J, Janbon G. Alternative Transcription Start Site Usage and Functional Implications in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1044. [PMID: 36294609 PMCID: PMC9604717 DOI: 10.3390/jof8101044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic fungi require delicate gene regulation mechanisms to adapt to diverse living environments and escape host immune systems. Recent advances in sequencing technology have exposed the complexity of the fungal genome, thus allowing the gradual disentanglement of multiple layers of gene expression control. Alternative transcription start site (aTSS) usage, previously reported to be prominent in mammals and to play important roles in physiopathology, is also present in fungi to fine-tune gene expression. Depending on the alteration in their sequences, RNA isoforms arising from aTSSs acquire different characteristics that significantly alter their stability and translational capacity as well as the properties and biologic functions of the resulting proteins. Disrupted control of aTSS usage has been reported to severely impair growth, virulence, and the infectious capacity of pathogenic fungi. Here, we discuss principle concepts, mechanisms, and the functional implication of aTSS usage in fungi.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Jessie Colin
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, F-75014 Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| |
Collapse
|
19
|
Parikh SB, Houghton C, Van Oss SB, Wacholder A, Carvunis A. Origins, evolution, and physiological implications of de novo genes in yeast. Yeast 2022; 39:471-481. [PMID: 35959631 PMCID: PMC9544372 DOI: 10.1002/yea.3810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
De novo gene birth is the process by which new genes emerge in sequences that were previously noncoding. Over the past decade, researchers have taken advantage of the power of yeast as a model and a tool to study the evolutionary mechanisms and physiological implications of de novo gene birth. We summarize the mechanisms that have been proposed to explicate how noncoding sequences can become protein-coding genes, highlighting the discovery of pervasive translation of the yeast transcriptome and its presumed impact on evolutionary innovation. We summarize current best practices for the identification and characterization of de novo genes. Crucially, we explain that the field is still in its nascency, with the physiological roles of most young yeast de novo genes identified thus far still utterly unknown. We hope this review inspires researchers to investigate the true contribution of de novo gene birth to cellular physiology and phenotypic diversity across yeast strains and species.
Collapse
Affiliation(s)
- Saurin B. Parikh
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Carly Houghton
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - S. Branden Van Oss
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anne‐Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
20
|
Fenton DA, Kiniry SJ, Yordanova MM, Baranov PV, Morrissey JP. Development of a ribosome profiling protocol to study translation in Kluyveromyces marxianus. FEMS Yeast Res 2022; 22:foac024. [PMID: 35521744 PMCID: PMC9246280 DOI: 10.1093/femsyr/foac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/17/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022] Open
Abstract
Kluyveromyces marxianus is an interesting and important yeast because of particular traits such as thermotolerance and rapid growth, and for applications in food and industrial biotechnology. For both understanding its biology and developing bioprocesses, it is important to understand how K. marxianus responds and adapts to changing environments. For this, a full suite of omics tools to measure and compare global patterns of gene expression and protein synthesis is needed. We report here the development of a ribosome profiling method for K. marxianus, which allows codon resolution of translation on a genome-wide scale by deep sequencing of ribosome locations on mRNAs. To aid in the analysis and sharing of ribosome profiling data, we added the K. marxianus genome as well as transcriptome and ribosome profiling data to the publicly accessible GWIPS-viz and Trips-Viz browsers. Users are able to upload custom ribosome profiling and RNA-Seq data to both browsers, therefore allowing easy analysis and sharing of data. We also provide a set of step-by-step protocols for the experimental and bioinformatic methods that we developed.
Collapse
Affiliation(s)
- Darren A Fenton
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Martina M Yordanova
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
21
|
Jiang M, Ning W, Wu S, Wang X, Zhu K, Li A, Li Y, Cheng S, Song B. Three-nucleotide periodicity of nucleotide diversity in a population enables the identification of open reading frames. Brief Bioinform 2022; 23:6607611. [PMID: 35698834 PMCID: PMC9294425 DOI: 10.1093/bib/bbac210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
Accurate prediction of open reading frames (ORFs) is important for studying and using genome sequences. Ribosomes move along mRNA strands with a step of three nucleotides and datasets carrying this information can be used to predict ORFs. The ribosome-protected footprints (RPFs) feature a significant 3-nt periodicity on mRNAs and are powerful in predicting translating ORFs, including small ORFs (sORFs), but the application of RPFs is limited because they are too short to be accurately mapped in complex genomes. In this study, we found a significant 3-nt periodicity in the datasets of populational genomic variants in coding sequences, in which the nucleotide diversity increases every three nucleotides. We suggest that this feature can be used to predict ORFs and develop the Python package ‘OrfPP’, which recovers ~83% of the annotated ORFs in the tested genomes on average, independent of the population sizes and the complexity of the genomes. The novel ORFs, including sORFs, identified from single-nucleotide polymorphisms are supported by protein mass spectrometry evidence comparable to that of the annotated ORFs. The application of OrfPP to tetraploid cotton and hexaploid wheat genomes successfully identified 76.17% and 87.43% of the annotated ORFs in the genomes, respectively, as well as 4704 sORFs, including 1182 upstream and 2110 downstream ORFs in cotton and 5025 sORFs, including 232 upstream and 234 downstream ORFs in wheat. Overall, we propose an alternative and supplementary approach for ORF prediction that can extend the studies of sORFs to more complex genomes.
Collapse
Affiliation(s)
- Mengyun Jiang
- Chinese Academy of Agricultural Sciences and Henan University, China
| | - Weidong Ning
- Chinese Academy of Agricultural Sciences and Huazhong Agricultural University, China
| | - Shishi Wu
- Chinese Academy of Agricultural Sciences and Henan University, China
| | - Xingwei Wang
- Chinese Academy of Agricultural Sciences and Henan University, China
| | - Kun Zhu
- Chinese Academy of Agricultural Sciences and Henan University, China
| | - Aomei Li
- Chinese Academy of Agricultural Sciences, China
| | - Yongyao Li
- Chinese Academy of Agricultural Sciences, China
| | | | - Bo Song
- Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
22
|
Andreev DE, Loughran G, Fedorova AD, Mikhaylova MS, Shatsky IN, Baranov PV. Non-AUG translation initiation in mammals. Genome Biol 2022; 23:111. [PMID: 35534899 PMCID: PMC9082881 DOI: 10.1186/s13059-022-02674-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recent proteogenomic studies revealed extensive translation outside of annotated protein coding regions, such as non-coding RNAs and untranslated regions of mRNAs. This non-canonical translation is largely due to start codon plurality within the same RNA. This plurality is often due to the failure of some scanning ribosomes to recognize potential start codons leading to initiation downstream—a process termed leaky scanning. Codons other than AUG (non-AUG) are particularly leaky due to their inefficiency. Here we discuss our current understanding of non-AUG initiation. We argue for a near-ubiquitous role of non-AUG initiation in shaping the dynamic composition of mammalian proteomes.
Collapse
|
23
|
Nelde A, Flötotto L, Jürgens L, Szymik L, Hubert E, Bauer J, Schliemann C, Kessler T, Lenz G, Rammensee HG, Walz JS, Wethmar K. Upstream open reading frames regulate translation of cancer-associated transcripts and encode HLA-presented immunogenic tumor antigens. Cell Mol Life Sci 2022; 79:171. [PMID: 35239002 PMCID: PMC8894207 DOI: 10.1007/s00018-022-04145-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Upstream open reading frames (uORFs) represent translational control elements within eukaryotic transcript leader sequences. Recent data showed that uORFs can encode for biologically active proteins and human leukocyte antigen (HLA)-presented peptides in malignant and benign cells suggesting their potential role in cancer cell development and survival. However, the role of uORFs in translational regulation of cancer-associated transcripts as well as in cancer immune surveillance is still incompletely understood. METHODS We examined the translational regulatory effect of 29 uORFs in 13 cancer-associated genes by dual-luciferase assays. Cellular expression and localization of uORF-encoded peptides (uPeptides) were investigated by immunoblotting and immunofluorescence-based microscopy. Furthermore, we utilized mass spectrometry-based immunopeptidome analyses in an extensive dataset of primary malignant and benign tissue samples for the identification of naturally presented uORF-derived HLA-presented peptides screening for more than 2000 uORFs. RESULTS We provide experimental evidence for similarly effective translational regulation of cancer-associated transcripts through uORFs initiated by either canonical AUG codons or by alternative translation initiation sites (aTISs). We further demonstrate frequent cellular expression and reveal occasional specific cellular localization of uORF-derived peptides, suggesting uPeptide-specific biological implications. Immunopeptidome analyses delineated a set of 125 naturally presented uORF-derived HLA-presented peptides. Comparative immunopeptidome profiling of malignant and benign tissue-derived immunopeptidomes identified several tumor-associated uORF-derived HLA ligands capable to induce multifunctional T cell responses. CONCLUSION Our data provide direct evidence for the frequent expression of uPeptides in benign and malignant human tissues, suggesting a potentially widespread function of uPeptides in cancer biology. These findings may inspire novel approaches in direct molecular as well as immunotherapeutic targeting of cancer-associated uORFs and uPeptides.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany
| | - Lea Flötotto
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Lara Jürgens
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Laura Szymik
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Elvira Hubert
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Torsten Kessler
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Robert Bosch Center for Tumor Diseases (RBCT), 70376, Stuttgart, Germany.
| | - Klaus Wethmar
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1A, 48149, Münster, Germany.
| |
Collapse
|
24
|
Liu X, Moshiri H, He Q, Sahoo A, Walker SE. Deletion of the N-Terminal Domain of Yeast Eukaryotic Initiation Factor 4B Reprograms Translation and Reduces Growth in Urea. Front Mol Biosci 2022; 8:787781. [PMID: 35047555 PMCID: PMC8762332 DOI: 10.3389/fmolb.2021.787781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
The yeast eukaryotic initiation factor 4B binds the 40S subunit in translation preinitiation complexes (PICs), promoting mRNA recruitment. Recent evidence indicates yeast mRNAs have variable dependence on eIF4B under optimal growth conditions. Given the ability of eIF4B to promote translation as a function of nutrient conditions in mammalian cells, we wondered if eIF4B activities in translation could alter phenotypes in yeast through differential mRNA selection for translation. Here we compared the effects of disrupting yeast eIF4B RNA- and 40S-binding motifs under ∼1400 growth conditions. The RNA-Recognition Motif (RRM) was dispensable for stress responses, but the 40S-binding N-terminal Domain (NTD) promoted growth in response to stressors requiring robust cellular integrity. In particular, the NTD conferred a strong growth advantage in the presence of urea, which may be important for pathogenesis of related fungal species. Ribosome profiling indicated that similar to complete eIF4B deletion, deletion of the NTD dramatically reduced translation, particularly of those mRNAs with long and highly structured 5-prime untranslated regions. This behavior was observed both with and without urea exposure, but the specific mRNA pool associated with ribosomes in response to urea differed. Deletion of the NTD led to relative increases in ribosome association of shorter transcripts with higher dependence on eIF4G, as was noted previously for eIF4B deletion. Gene ontology analysis indicated that proteins encoded by eIF4B NTD-dependent transcripts were associated with the cellular membrane system and the cell wall, while NTD-independent transcripts encoded proteins associated with cytoplasmic proteins and protein synthesis. This analysis highlighted the difference in structure content of mRNAs encoding membrane versus cytoplasmic housekeeping proteins and the variable reliance of specific gene ontology classes on various initiation factors promoting otherwise similar functions. Together our analyses suggest that deletion of the eIF4B NTD prevents cellular stress responses by affecting the capacity to translate a diverse mRNA pool.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Houtan Moshiri
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Qian He
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Ansuman Sahoo
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| | - Sarah E Walker
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, United States
| |
Collapse
|
25
|
Klein B, Holmér L, Smith KM, Johnson MM, Swain A, Stolp L, Teufel AI, Kleppe AS. A computational exploration of resilience and evolvability of protein-protein interaction networks. Commun Biol 2021; 4:1352. [PMID: 34857859 PMCID: PMC8639913 DOI: 10.1038/s42003-021-02867-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Protein-protein interaction (PPI) networks represent complex intra-cellular protein interactions, and the presence or absence of such interactions can lead to biological changes in an organism. Recent network-based approaches have shown that a phenotype's PPI network's resilience to environmental perturbations is related to its placement in the tree of life; though we still do not know how or why certain intra-cellular factors can bring about this resilience. Here, we explore the influence of gene expression and network properties on PPI networks' resilience. We use publicly available data of PPIs for E. coli, S. cerevisiae, and H. sapiens, where we compute changes in network resilience as new nodes (proteins) are added to the networks under three node addition mechanisms-random, degree-based, and gene-expression-based attachments. By calculating the resilience of the resulting networks, we estimate the effectiveness of these node addition mechanisms. We demonstrate that adding nodes with gene-expression-based preferential attachment (as opposed to random or degree-based) preserves and can increase the original resilience of PPI network in all three species, regardless of gene expression distribution or network structure. These findings introduce a general notion of prospective resilience, which highlights the key role of network structures in understanding the evolvability of phenotypic traits.
Collapse
Affiliation(s)
- Brennan Klein
- Network Science Institute, Northeastern University, Boston, MA, USA. .,Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA, USA.
| | - Ludvig Holmér
- grid.419684.60000 0001 1214 1861Center for Data Analytics, Stockholm School of Economics, Stockholm, Sweden
| | - Keith M. Smith
- grid.12361.370000 0001 0727 0669Department of Physics and Mathematics, Nottingham Trent University, Nottingham, UK
| | - Mackenzie M. Johnson
- grid.89336.370000 0004 1936 9924Department of Integrative Biology, University of Texas at Austin, Austin, TX USA
| | - Anshuman Swain
- grid.164295.d0000 0001 0941 7177Department of Biology, University of Maryland, College Park, MD USA
| | - Laura Stolp
- grid.7177.60000000084992262Graduate School of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ashley I. Teufel
- grid.89336.370000 0004 1936 9924Department of Integrative Biology, University of Texas at Austin, Austin, TX USA ,grid.209665.e0000 0001 1941 1940Santa Fe Institute, Santa Fe, NM USA ,grid.469272.c0000 0001 0180 5693Texas A&M University, San Antonio, San Antonio, TX USA
| | - April S. Kleppe
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Münster, Germany ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine (MOMA), Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Song B, Jiang M, Gao L. RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints. Life (Basel) 2021; 11:life11070701. [PMID: 34357073 PMCID: PMC8307163 DOI: 10.3390/life11070701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/27/2023] Open
Abstract
Ribo-seq, also known as ribosome profiling, refers to the sequencing of ribosome-protected mRNA fragments (RPFs). This technique has greatly advanced our understanding of translation and facilitated the identification of novel open reading frames (ORFs) within untranslated regions or non-coding sequences as well as the identification of non-canonical start codons. However, the widespread application of Ribo-seq has been hindered because obtaining periodic RPFs requires a highly optimized protocol, which may be difficult to achieve, particularly in non-model organisms. Furthermore, the periodic RPFs are too short (28 nt) for accurate mapping to polyploid genomes, but longer RPFs are usually produced with a compromise in periodicity. Here we present RiboNT, a noise-tolerant ORF predictor that can utilize RPFs with poor periodicity. It evaluates RPF periodicity and automatically weighs the support from RPFs and codon usage before combining their contributions to identify translated ORFs. The results demonstrate the utility of RiboNT for identifying both long and small ORFs using RPFs with either good or poor periodicity. We implemented the pipeline on a dataset of RPFs with poor periodicity derived from membrane-bound polysomes of Arabidopsis thaliana seedlings and identified several small ORFs (sORFs) evolutionarily conserved in diverse plant species. RiboNT should greatly broaden the application of Ribo-seq by minimizing the requirement of RPF quality and allowing the use of longer RPFs, which is critical for organisms with complex genomes because these RPFs can be more accurately mapped to the position from which they were derived.
Collapse
Affiliation(s)
- Bo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- Correspondence: (B.S.); (L.G.)
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Correspondence: (B.S.); (L.G.)
| |
Collapse
|
27
|
Karasik A, Jones GD, DePass AV, Guydosh NR. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Res 2021; 49:6007-6026. [PMID: 33556964 DOI: 10.1093/nar/gkab036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Ribonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5' and 3' UTRs (uORFs and dORFs). Translation of these alternative ORFs was dependent on RNase L's cleavage activity, suggesting that mRNA decay fragments are translated to produce short peptides that may be important for antiviral activity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grant D Jones
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Barragan-Iglesias P, Kunder N, Wanghzou A, Black B, Ray PR, Lou TF, de la Peña JB, Atmaramani R, Shukla T, Pancrazio JJ, Price TJ, Campbell ZT. A peptide encoded within a 5' untranslated region promotes pain sensitization in mice. Pain 2021; 162:1864-1875. [PMID: 33449506 PMCID: PMC8119312 DOI: 10.1097/j.pain.0000000000002191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
ABSTRACT Translational regulation permeates neuronal function. Nociceptors are sensory neurons responsible for the detection of harmful stimuli. Changes in their activity, termed plasticity, are intimately linked to the persistence of pain. Although inhibitors of protein synthesis robustly attenuate pain-associated behavior, the underlying targets that support plasticity are largely unknown. Here, we examine the contribution of protein synthesis in regions of RNA annotated as noncoding. Based on analyses of previously reported ribosome profiling data, we provide evidence for widespread translation in noncoding transcripts and regulatory regions of mRNAs. We identify an increase in ribosome occupancy in the 5' untranslated regions of the calcitonin gene-related peptide (CGRP/Calca). We validate the existence of an upstream open reading frame (uORF) using a series of reporter assays. Fusion of the uORF to a luciferase reporter revealed active translation in dorsal root ganglion neurons after nucleofection. Injection of the peptide corresponding to the calcitonin gene-related peptide-encoded uORF resulted in pain-associated behavioral responses in vivo and nociceptor sensitization in vitro. An inhibitor of heterotrimeric G protein signaling blocks both effects. Collectively, the data suggest pervasive translation in regions of the transcriptome annotated as noncoding in dorsal root ganglion neurons and identify a specific uORF-encoded peptide that promotes pain sensitization through GPCR signaling.
Collapse
Affiliation(s)
- Paulino Barragan-Iglesias
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
- Department of Physiology and Pharmacology, Center for Basic
Sciences, Autonomous University of Aguascalientes, Aguascalientes, 20130,
Mexico
| | - Nikesh Kunder
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Andi Wanghzou
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
| | - Bryan Black
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
| | - Pradipta R. Ray
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
| | - Tzu-Fang Lou
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - June Bryan de la Peña
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Rahul Atmaramani
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
| | - Tarjani Shukla
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Joseph J. Pancrazio
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| | - Zachary T. Campbell
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
29
|
Jürgens L, Manske F, Hubert E, Kischka T, Flötotto L, Klaas O, Shabardina V, Schliemann C, Makalowski W, Wethmar K. Somatic Functional Deletions of Upstream Open Reading Frame-Associated Initiation and Termination Codons in Human Cancer. Biomedicines 2021; 9:biomedicines9060618. [PMID: 34072580 PMCID: PMC8227997 DOI: 10.3390/biomedicines9060618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Upstream open reading frame (uORF)-mediated translational control has emerged as an important regulatory mechanism in human health and disease. However, a systematic search for cancer-associated somatic uORF mutations has not been performed. Here, we analyzed the genetic variability at canonical (uAUG) and alternative translational initiation sites (aTISs), as well as the associated upstream termination codons (uStops) in 3394 whole-exome-sequencing datasets from patient samples of breast, colon, lung, prostate, and skin cancer and of acute myeloid leukemia, provided by The Cancer Genome Atlas research network. We found that 66.5% of patient samples were affected by at least one of 5277 recurrent uORF-associated somatic single nucleotide variants altering 446 uAUG, 347 uStop, and 4733 aTIS codons. While twelve uORF variants were detected in all entities, 17 variants occurred in all five types of solid cancer analyzed here. Highest frequencies of individual somatic variants in the TLSs of NBPF20 and CHCHD2 reached 10.1% among LAML and 8.1% among skin cancer patients, respectively. Functional evaluation by dual luciferase reporter assays identified 19 uORF variants causing significant translational deregulation of the associated main coding sequence, ranging from 1.73-fold induction for an AUG.1 > UUG variant in SETD4 to 0.006-fold repression for a CUG.6 > GUG variant in HLA-DRB1. These data suggest that somatic uORF mutations are highly prevalent in human malignancies and that defective translational regulation of protein expression may contribute to the onset or progression of cancer.
Collapse
Affiliation(s)
- Lara Jürgens
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Felix Manske
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Elvira Hubert
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Tabea Kischka
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Lea Flötotto
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Oliver Klaas
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Victoria Shabardina
- Institute of Evolutionary Biology, CSIC-Unversitat Pompeu Frabra, 08002 Barcelona, Spain;
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
| | - Wojciech Makalowski
- Faculty of Medicine, Institute of Bioinformatics, University of Münster, 48149 Münster, Germany; (F.M.); (T.K.); (W.M.)
| | - Klaus Wethmar
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, 48149 Münster, Germany; (L.J.); (E.H.); (L.F.); (O.K.); (C.S.)
- Correspondence: ; Tel.: +49-251-8347587; Fax: +49-251-8347588
| |
Collapse
|
30
|
Kosinski LJ, Masel J. Readthrough Errors Purge Deleterious Cryptic Sequences, Facilitating the Birth of Coding Sequences. Mol Biol Evol 2021; 37:1761-1774. [PMID: 32101291 DOI: 10.1093/molbev/msaa046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
De novo protein-coding innovations sometimes emerge from ancestrally noncoding DNA, despite the expectation that translating random sequences is overwhelmingly likely to be deleterious. The "preadapting selection" hypothesis claims that emergence is facilitated by prior, low-level translation of noncoding sequences via molecular errors. It predicts that selection on polypeptides translated only in error is strong enough to matter and is strongest when erroneous expression is high. To test this hypothesis, we examined noncoding sequences located downstream of stop codons (i.e., those potentially translated by readthrough errors) in Saccharomyces cerevisiae genes. We identified a class of "fragile" proteins under strong selection to reduce readthrough, which are unlikely substrates for co-option. Among the remainder, sequences showing evidence of readthrough translation, as assessed by ribosome profiling, encoded C-terminal extensions with higher intrinsic structural disorder, supporting the preadapting selection hypothesis. The cryptic sequences beyond the stop codon, rather than spillover effects from the regular C-termini, are primarily responsible for the higher disorder. Results are robust to controlling for the fact that stronger selection also reduces the length of C-terminal extensions. These findings indicate that selection acts on 3' UTRs in Saccharomyces cerevisiae to purge potentially deleterious variants of cryptic polypeptides, acting more strongly in genes that experience more readthrough errors.
Collapse
Affiliation(s)
- Luke J Kosinski
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Joanna Masel
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
31
|
Xu C, Zhang J. Mammalian Alternative Translation Initiation Is Mostly Nonadaptive. Mol Biol Evol 2021; 37:2015-2028. [PMID: 32145028 DOI: 10.1093/molbev/msaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alternative translation initiation (ATLI) refers to the existence of multiple translation initiation sites per gene and is a widespread phenomenon in eukaryotes. ATLI is commonly assumed to be advantageous through creating proteome diversity or regulating protein synthesis. We here propose an alternative hypothesis that ATLI arises primarily from nonadaptive initiation errors presumably due to the limited ability of ribosomes to distinguish sequence motifs truly signaling translation initiation from similar sequences. Our hypothesis, but not the adaptive hypothesis, predicts a series of global patterns of ATLI, all of which are confirmed at the genomic scale by quantitative translation initiation sequencing in multiple human and mouse cell lines and tissues. Similarly, although many codons differing from AUG by one nucleotide can serve as start codons, our analysis suggests that using non-AUG start codons is mostly disadvantageous. These and other findings strongly suggest that ATLI predominantly results from molecular error, requiring a major revision of our understanding of the precision and regulation of translation initiation.
Collapse
Affiliation(s)
- Chuan Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
32
|
uORF-seqr: A Machine Learning-Based Approach to the Identification of Upstream Open Reading Frames in Yeast. Methods Mol Biol 2021. [PMID: 33765283 DOI: 10.1007/978-1-0716-1150-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The identification of upstream open reading frames (uORFs) using ribosome profiling data is complicated by several factors such as the noise inherent to the procedure, the substantial increase in potential translation initiation sites (and false positives) when one includes non-canonical start codons, and the paucity of molecularly validated uORFs. Here we present uORF-seqr, a novel machine learning algorithm that uses ribosome profiling data, in conjunction with RNA-seq data, as well as transcript aware genome annotation files to identify statistically significant AUG and near-cognate codon uORFs.
Collapse
|
33
|
Gaikwad S, Ghobakhlou F, Young DJ, Visweswaraiah J, Zhang H, Hinnebusch AG. Reprogramming of translation in yeast cells impaired for ribosome recycling favors short, efficiently translated mRNAs. eLife 2021; 10:e64283. [PMID: 33764298 PMCID: PMC7993997 DOI: 10.7554/elife.64283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, 43S preinitiation complex (PIC) formation is a rate-determining step of translation. Ribosome recycling following translation termination produces free 40S subunits for re-assembly of 43S PICs. Yeast mutants lacking orthologs of mammalian eIF2D (Tma64), and either MCT-1 (Tma20) or DENR (Tma22), are broadly impaired for 40S recycling; however, it was unknown whether this defect alters the translational efficiencies (TEs) of particular mRNAs. Here, we conducted ribosome profiling of a yeast tma64∆/tma20∆ double mutant and observed a marked reprogramming of translation, wherein the TEs of the most efficiently translated ('strong') mRNAs increase, while those of 'weak' mRNAs generally decline. Remarkably, similar reprogramming was seen on reducing 43S PIC assembly by inducing phosphorylation of eIF2α or by decreasing total 40S subunit levels by depleting Rps26. Our findings suggest that strong mRNAs outcompete weak mRNAs in response to 43S PIC limitation achieved in various ways, in accordance with previous mathematical modeling.
Collapse
Affiliation(s)
- Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Fardin Ghobakhlou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - David J Young
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jyothsna Visweswaraiah
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
34
|
Zhang H, Wang Y, Wu X, Tang X, Wu C, Lu J. Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nat Commun 2021; 12:1076. [PMID: 33597535 PMCID: PMC7889888 DOI: 10.1038/s41467-021-21394-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
Upstream open reading frames (uORFs) play widespread regulatory functions in modulating mRNA translation in eukaryotes, but the principles underlying the genomic distribution and evolution of uORFs remain poorly understood. Here, we analyze ~17 million putative canonical uORFs in 478 eukaryotic species that span most of the extant taxa of eukaryotes. We demonstrate how positive and purifying selection, coupled with differences in effective population size (Ne), has shaped the contents of uORFs in eukaryotes. Besides, gene expression level is important in influencing uORF occurrences across genes in a species. Our analyses suggest that most uORFs might play regulatory roles rather than encode functional peptides. We also show that the Kozak sequence context of uORFs has evolved across eukaryotic clades, and that noncanonical uORFs tend to have weaker suppressive effects than canonical uORFs in translation regulation. This study provides insights into the driving forces underlying uORF evolution in eukaryotes.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- College of Biology, Hunan University, Changsha, China
| | - Xinkai Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Changcheng Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
35
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Lu Z, Lin Z. The origin and evolution of a distinct mechanism of transcription initiation in yeasts. Genome Res 2020; 31:51-63. [PMID: 33219055 PMCID: PMC7849388 DOI: 10.1101/gr.264325.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
The molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). A distinct way of locating transcription start sites (TSSs) has been identified in a budding yeast Saccharomyces cerevisiae (“scanning model”). Herein, we applied genomic approaches to elucidate the origin of the scanning model and its underlying genetic mechanisms. We first identified TSSs at single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5′ boundaries for protein-coding genes. We then inferred the initiation mechanism of each species based on its TSS maps and genome sequences. We discovered that the scanning model likely originated after the split of Yarrowia lipolytica and the other budding yeasts. Species that use the scanning model showed an adenine-rich region immediately upstream of the TSS that might facilitate TSS selection. Both initiation mechanisms share a strong preference for pyrimidine–purine dinucleotides surrounding the TSS. Our results suggest that the purine is required to accurately recruit the first nucleotide, thereby increasing the chances of a messenger RNA of being capped during mRNA maturation, which is critical for efficient translation initiation during protein biosynthesis. Based on our findings, we propose a model for TSS selection in the scanning-model species, as well as a model for the stepwise process responsible for the origin and evolution of the scanning model.
Collapse
Affiliation(s)
- Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| |
Collapse
|
37
|
Kwon MS, Lee BT, Lee SY, Kim HU. Modeling regulatory networks using machine learning for systems metabolic engineering. Curr Opin Biotechnol 2020; 65:163-170. [DOI: 10.1016/j.copbio.2020.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
|
38
|
Li YR, Liu MJ. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 2020; 30:1418-1433. [PMID: 32973042 PMCID: PMC7605272 DOI: 10.1101/gr.261834.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Translation initiation is a key step determining protein synthesis. Studies have uncovered a number of alternative translation initiation sites (TISs) in mammalian mRNAs and showed their roles in reshaping the proteome. However, the extent to which alternative TISs affect gene expression across plants remains largely unclear. Here, by profiling initiating ribosome positions, we globally identified in vivo TISs in tomato and Arabidopsis and found thousands of genes with more than one TIS. Of the identified TISs, >19% and >20% were located at unannotated AUG and non-AUG sites, respectively. CUG and ACG were the most frequently observed codons at non-AUG TISs, a phenomenon also found in mammals. In addition, although alternative TISs were usually found in both orthologous genes, the TIS sequences were not conserved, suggesting the conservation of alternative initiation mechanisms but flexibility in using TISs. Unlike upstream AUG TISs, the presence of upstream non-AUG TISs was not correlated with the translational repression of main open reading frames, a pattern observed across plants. Also, the generation of proteins with diverse N-terminal regions through the use of alternative TISs contributes to differential subcellular localization, as mutating alternative TISs resulted in the loss of organelle localization. Our findings uncovered the hidden coding potential of plant genomes and, importantly, the constraint and flexibility of translational initiation mechanisms in the regulation of gene expression across plant species.
Collapse
Affiliation(s)
- Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
39
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
40
|
Akirtava C, McManus CJ. Control of translation by eukaryotic mRNA transcript leaders-Insights from high-throughput assays and computational modeling. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1623. [PMID: 32869519 DOI: 10.1002/wrna.1623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
Eukaryotic gene expression is tightly regulated during translation of mRNA to protein. Mis-regulation of translation can lead to aberrant proteins which accumulate in cancers and cause neurodegenerative diseases. Foundational studies on model genes established fundamental roles for mRNA 5' transcript leader (TL) sequences in controlling ribosome recruitment, scanning, and initiation. TL cis-regulatory elements and their corresponding trans-acting factors control cap-dependent initiation under unstressed conditions. Under stress, cap-dependent initiation is suppressed, and specific mRNA structures and sequences promote translation of stress-responsive transcripts to remodel the proteome. In this review, we summarize current knowledge of TL functions in translation initiation. We focus on insights from high-throughput analyses of ribosome occupancy, mRNA structure, RNA Binding Protein occupancy, and massively parallel reporter assays. These data-driven approaches, coupled with computational analyses and modeling, have paved the way for a comprehensive understanding of TL functions. Finally, we will discuss areas of future research on the roles of mRNA sequences and structures in translation. This article is categorized under: Translation > Translation Mechanisms RNA Evolution and Genomics > Computational Analyses of RNA RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Charles Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
41
|
uORFs: Important Cis-Regulatory Elements in Plants. Int J Mol Sci 2020; 21:ijms21176238. [PMID: 32872304 PMCID: PMC7503886 DOI: 10.3390/ijms21176238] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/17/2022] Open
Abstract
Gene expression is regulated at many levels, including mRNA transcription, translation, and post-translational modification. Compared with transcriptional regulation, mRNA translational control is a more critical step in gene expression and allows for more rapid changes of encoded protein concentrations in cells. Translation is highly regulated by complex interactions between cis-acting elements and trans-acting factors. Initiation is not only the first phase of translation, but also the core of translational regulation, because it limits the rate of protein synthesis. As potent cis-regulatory elements in eukaryotic mRNAs, upstream open reading frames (uORFs) generally inhibit the translation initiation of downstream major ORFs (mORFs) through ribosome stalling. During the past few years, with the development of RNA-seq and ribosome profiling, functional uORFs have been identified and characterized in many organisms. Here, we review uORF identification, uORF classification, and uORF-mediated translation initiation. More importantly, we summarize the translational regulation of uORFs in plant metabolic pathways, morphogenesis, disease resistance, and nutrient absorption, which open up an avenue for precisely modulating the plant growth and development, as well as environmental adaption. Additionally, we also discuss prospective applications of uORFs in plant breeding.
Collapse
|
42
|
Kiniry SJ, Michel AM, Baranov PV. Computational methods for ribosome profiling data analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1577. [PMID: 31760685 DOI: 10.1002/wrna.1577] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Since the introduction of the ribosome profiling technique in 2009 its popularity has greatly increased. It is widely used for the comprehensive assessment of gene expression and for studying the mechanisms of regulation at the translational level. As the number of ribosome profiling datasets being produced continues to grow, so too does the need for reliable software that can provide answers to the biological questions it can address. This review describes the computational methods and tools that have been developed to analyze ribosome profiling data at the different stages of the process. It starts with initial routine processing of raw data and follows with more specific tasks such as the identification of translated open reading frames, differential gene expression analysis, or evaluation of local or global codon decoding rates. The review pinpoints challenges associated with each step and explains the ways in which they are currently addressed. In addition it provides a comprehensive, albeit incomplete, list of publicly available software applicable to each step, which may be a beneficial starting point to those unexposed to ribosome profiling analysis. The outline of current challenges in ribosome profiling data analysis may inspire computational biologists to search for novel, potentially superior, solutions that will improve and expand the bioinformatician's toolbox for ribosome profiling data analysis. This article is characterized under: Translation > Ribosome Structure/Function RNA Evolution and Genomics > Computational Analyses of RNA Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| |
Collapse
|
43
|
Zhou F, Zhang H, Kulkarni SD, Lorsch JR, Hinnebusch AG. eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide. RNA (NEW YORK, N.Y.) 2020; 26:419-438. [PMID: 31915290 PMCID: PMC7075259 DOI: 10.1261/rna.073536.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
The translation preinitiation complex (PIC) scans the mRNA for an AUG codon in a favorable context. Previous findings suggest that the factor eIF1 discriminates against non-AUG start codons by impeding full accommodation of Met-tRNAi in the P site of the 40S ribosomal subunit, necessitating eIF1 dissociation for start codon selection. Consistent with this, yeast eIF1 substitutions that weaken its binding to the PIC increase initiation at UUG codons on a mutant his4 mRNA and particular synthetic mRNA reporters; and also at the AUG start codon of the mRNA for eIF1 itself owing to its poor Kozak context. It was not known however whether such eIF1 mutants increase initiation at suboptimal start codons genome-wide. By ribosome profiling, we show that the eIF1-L96P variant confers increased translation of numerous upstream open reading frames (uORFs) initiating with either near-cognate codons (NCCs) or AUGs in poor context. The increased uORF translation is frequently associated with the reduced translation of the downstream main coding sequences (CDS). Initiation is also elevated at certain NCCs initiating amino-terminal extensions, including those that direct mitochondrial localization of the GRS1 and ALA1 products, and at a small set of main CDS AUG codons with especially poor context, including that of eIF1 itself. Thus, eIF1 acts throughout the yeast translatome to discriminate against NCC start codons and AUGs in poor context; and impairing this function enhances the repressive effects of uORFs on CDS translation and alters the ratios of protein isoforms translated from near-cognate versus AUG start codons.
Collapse
Affiliation(s)
- Fujun Zhou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shardul D Kulkarni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jon R Lorsch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
44
|
Cao X, Slavoff SA. Non-AUG start codons: Expanding and regulating the small and alternative ORFeome. Exp Cell Res 2020; 391:111973. [PMID: 32209305 DOI: 10.1016/j.yexcr.2020.111973] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/17/2023]
Abstract
Recent ribosome profiling and proteomic studies have revealed the presence of thousands of novel coding sequences, referred to as small open reading frames (sORFs), in prokaryotic and eukaryotic genomes. These genes have defied discovery via traditional genomic tools not only because they tend to be shorter than standard gene annotation length cutoffs, but also because they are, as a class, enriched in sequence properties previously assumed to be unusual, including non-AUG start codons. In this review, we summarize what is currently known about the incidence, efficiency, and mechanism of non-AUG start codon usage in prokaryotes and eukaryotes, and provide examples of regulatory and functional sORFs that initiate at non-AUG codons. While only a handful of non-AUG-initiated novel genes have been characterized in detail to date, their participation in important biological processes suggests that an improved understanding of this class of genes is needed.
Collapse
Affiliation(s)
- Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States; Chemical Biology Institute, Yale University, West Haven, CT, 06516, United States
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States; Chemical Biology Institute, Yale University, West Haven, CT, 06516, United States; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06529, United States.
| |
Collapse
|
45
|
Orr MW, Mao Y, Storz G, Qian SB. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 2020; 48:1029-1042. [PMID: 31504789 DOI: 10.1093/nar/gkz734] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Traditional annotation of protein-encoding genes relied on assumptions, such as one open reading frame (ORF) encodes one protein and minimal lengths for translated proteins. With the serendipitous discoveries of translated ORFs encoded upstream and downstream of annotated ORFs, from alternative start sites nested within annotated ORFs and from RNAs previously considered noncoding, it is becoming clear that these initial assumptions are incorrect. The findings have led to the realization that genetic information is more densely coded and that the proteome is more complex than previously anticipated. As such, interest in the identification and characterization of the previously ignored 'dark proteome' is increasing, though we note that research in eukaryotes and bacteria has largely progressed in isolation. To bridge this gap and illustrate exciting findings emerging from studies of the dark proteome, we highlight recent advances in both eukaryotic and bacterial cells. We discuss progress in the detection of alternative ORFs as well as in the understanding of functions and the regulation of their expression and posit questions for future work.
Collapse
Affiliation(s)
- Mona Wu Orr
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
46
|
Wallace EWJ, Maufrais C, Sales-Lee J, Tuck LR, de Oliveira L, Feuerbach F, Moyrand F, Natarajan P, Madhani HD, Janbon G. Quantitative global studies reveal differential translational control by start codon context across the fungal kingdom. Nucleic Acids Res 2020; 48:2312-2331. [PMID: 32020195 PMCID: PMC7049704 DOI: 10.1093/nar/gkaa060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.
Collapse
Affiliation(s)
- Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Corinne Maufrais
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015 Paris, France
| | - Jade Sales-Lee
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Laura R Tuck
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Luciana de Oliveira
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Frank Feuerbach
- Institut Pasteur, Unité Génétique des Interactions Macromoléculaire, Département Génome et Génétique, F-75015 Paris, France
| | - Frédérique Moyrand
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Prashanthi Natarajan
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| |
Collapse
|
47
|
Alexaki A, Kames J, Hettiarachchi GK, Athey JC, Katneni UK, Hunt RC, Hamasaki-Katagiri N, Holcomb DD, DiCuccio M, Bar H, Komar AA, Kimchi-Sarfaty C. Ribosome profiling of HEK293T cells overexpressing codon optimized coagulation factor IX. F1000Res 2020; 9:174. [PMID: 33014344 PMCID: PMC7509596 DOI: 10.12688/f1000research.22400.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/30/2022] Open
Abstract
Ribosome profiling provides the opportunity to evaluate translation kinetics at codon level resolution. Here, we describe ribosome profiling data, generated from two HEK293T cell lines. The ribosome profiling data are composed of Ribo-seq (mRNA sequencing data from ribosome protected fragments) and RNA-seq data (total RNA sequencing). The two HEK293T cell lines each express a version of the
F9 gene, both of which are translated into identical proteins in terms of their amino acid sequences. However, these
F9 genes vary drastically in their codon usage and predicted mRNA structure. We also provide the pipeline that we used to analyze the data. Further analyzing this dataset holds great potential as it can be used i) to unveil insights into the composition and regulation of the transcriptome, ii) for comparison with other ribosome profiling datasets, iii) to measure the rate of protein synthesis across the proteome and identify differences in elongation rates, iv) to discover previously unidentified translation of peptides, v) to explore the effects of codon usage or codon context in translational kinetics and vi) to investigate cotranslational folding. Importantly, a unique feature of this dataset, compared to other available ribosome profiling data, is the presence of the
F9 gene in two very distinct coding sequences.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| | - Jacob Kames
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| | - Gaya K Hettiarachchi
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| | - John C Athey
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| | - Upendra K Katneni
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| | - Ryan C Hunt
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| | - David D Holcomb
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, USA, Bethesda, MD, 20892, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, 44115, USA
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA, Silver Spring, MD, 20993, USA
| |
Collapse
|
48
|
Xu L, Wang D, Liu S, Fang Z, Su S, Guo C, Zhao C, Tang Y. Comprehensive Atlas of Wheat ( Triticum aestivum L.) AUXIN RESPONSE FACTOR Expression During Male Reproductive Development and Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:586144. [PMID: 33101350 PMCID: PMC7554351 DOI: 10.3389/fpls.2020.586144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 05/13/2023]
Abstract
AUXIN RESPONSE FACTOR (ARF) proteins regulate a wide range of signaling pathways, from general plant growth to abiotic stress responses. Here, we performed a genome-wide survey in wheat (Triticum aestivum) and identified 69 TaARF members that formed 24 homoeologous groups. Phylogenetic analysis clustered TaARF genes into three clades, similar to ARF genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Structural characterization suggested that ARF gene structure and domain composition are well conserved between plant species. Expression profiling revealed diverse patterns of TaARF transcript levels across a range of developmental stages, tissues, and abiotic stresses. A number of TaARF genes shared similar expression patterns and were preferentially expressed in anthers. Moreover, our systematic analysis identified three anther-specific TaARF genes (TaARF8, TaARF9, and TaARF21) whose expression was significantly altered by low temperature in thermosensitive genic male-sterile (TGMS) wheat; these TaARF genes are candidates to participate in the cold-induced male sterility pathway, and offer potential applications in TGMS wheat breeding and hybrid seed production. Moreover, we identified putative functions for a set of TaARFs involved in responses to abscisic acid and abiotic stress. Overall, this study characterized the wheat ARF gene family and generated several hypotheses for future investigation of ARF function during anther development and abiotic stress.
Collapse
Affiliation(s)
- Lei Xu
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Dezhou Wang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shan Liu
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaofeng Fang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shichao Su
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunman Guo
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Changping Zhao
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Changping Zhao, ; Yimiao Tang,
| | - Yimiao Tang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Changping Zhao, ; Yimiao Tang,
| |
Collapse
|
49
|
De Nijs Y, De Maeseneire SL, Soetaert WK. 5' untranslated regions: the next regulatory sequence in yeast synthetic biology. Biol Rev Camb Philos Soc 2019; 95:517-529. [PMID: 31863552 DOI: 10.1111/brv.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 01/10/2023]
Abstract
When developing industrial biotechnology processes, Saccharomyces cerevisiae (baker's yeast or brewer's yeast) is a popular choice as a microbial host. Many tools have been developed in the fields of synthetic biology and metabolic engineering to introduce heterologous pathways and tune their expression in yeast. Such tools mainly focus on controlling transcription, whereas post-transcriptional regulation is often overlooked. Herein we discuss regulatory elements found in the 5' untranslated region (UTR) and their influence on protein synthesis. We provide not only an overall picture, but also a set of design rules on how to engineer a 5' UTR. The reader is also referred to currently available models that allow gene expression to be tuned predictably using different 5' UTRs.
Collapse
Affiliation(s)
- Yatti De Nijs
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim K Soetaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
50
|
Lin Y, May GE, Kready H, Nazzaro L, Mao M, Spealman P, Creeger Y, McManus CJ. Impacts of uORF codon identity and position on translation regulation. Nucleic Acids Res 2019; 47:9358-9367. [PMID: 31392980 PMCID: PMC6755093 DOI: 10.1093/nar/gkz681] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023] Open
Abstract
Translation regulation plays an important role in eukaryotic gene expression. Upstream open reading frames (uORFs) are potent regulatory elements located in 5′ mRNA transcript leaders. Translation of uORFs usually inhibit the translation of downstream main open reading frames, but some enhance expression. While a minority of uORFs encode conserved functional peptides, the coding regions of most uORFs are not conserved. Thus, the importance of uORF coding sequences on their regulatory functions remains largely unknown. We investigated the impact of an uORF coding region on gene regulation by assaying the functions of thousands of variants in the yeast YAP1 uORF. Varying uORF codons resulted in a wide range of functions, including repressing and enhancing expression of the downstream ORF. The presence of rare codons resulted in the most inhibitory YAP1 uORF variants. Inhibitory functions of such uORFs were abrogated by overexpression of complementary tRNA. Finally, regression analysis of our results indicated that both codon identity and position impact uORF function. Our results support a model in which a uORF coding sequence impacts its regulatory functions by altering the speed of uORF translation.
Collapse
Affiliation(s)
- Yizhu Lin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Gemma E May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hunter Kready
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Lauren Nazzaro
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mao Mao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Roche Sequencing Solutions, Santa Clara, CA 95050, USA
| | - Pieter Spealman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Yehuda Creeger
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|