1
|
Genome Comparisons of the Fission Yeasts Reveal Ancient Collinear Loci Maintained by Natural Selection. J Fungi (Basel) 2021; 7:jof7100864. [PMID: 34682285 PMCID: PMC8537764 DOI: 10.3390/jof7100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Fission yeasts have a unique life history and exhibit distinct evolutionary patterns from other yeasts. Besides, the species demonstrate stable genome structures despite the relatively fast evolution of their genomic sequences. To reveal what could be the reason for that, comparative genomic analyses were carried out. Our results provided evidence that the structural and sequence evolution of the fission yeasts were correlated. Moreover, we revealed ancestral locally collinear blocks (aLCBs), which could have been inherited from their last common ancestor. These aLCBs proved to be the most conserved regions of the genomes as the aLCBs contain almost eight genes/blocks on average in the same orientation and order across the species. Gene order of the aLCBs is mainly fission-yeast-specific but supports the idea of filamentous ancestors. Nevertheless, the sequences and gene structures within the aLCBs are as mutable as any sequences in other parts of the genomes. Although genes of certain Gene Ontology (GO) categories tend to cluster at the aLCBs, those GO enrichments are not related to biological functions or high co-expression rates, they are, rather, determined by the density of essential genes and Rec12 cleavage sites. These data and our simulations indicated that aLCBs might not only be remnants of ancestral gene order but are also maintained by natural selection.
Collapse
|
2
|
Haug-Baltzell A, Jarvis ED, McCarthy FM, Lyons E. Identification of dopamine receptors across the extant avian family tree and analysis with other clades uncovers a polyploid expansion among vertebrates. Front Neurosci 2015; 9:361. [PMID: 26500483 PMCID: PMC4595791 DOI: 10.3389/fnins.2015.00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/21/2015] [Indexed: 01/11/2023] Open
Abstract
Dopamine is an important central nervous system transmitter that functions through two classes of receptors (D1 and D2) to influence a diverse range of biological processes in vertebrates. With roles in regulating neural activity, behavior, and gene expression, there has been great interest in understanding the function and evolution dopamine and its receptors. In this study, we use a combination of sequence analyses, microsynteny analyses, and phylogenetic relationships to identify and characterize both the D1 (DRD1A, DRD1B, DRD1C, and DRD1E) and D2 (DRD2, DRD3, and DRD4) dopamine receptor gene families in 43 recently sequenced bird genomes representing the major ordinal lineages across the avian family tree. We show that the common ancestor of all birds possessed at least seven D1 and D2 receptors, followed by subsequent independent losses in some lineages of modern birds. Through comparisons with other vertebrate and invertebrate species we show that two of the D1 receptors, DRD1A and DRD1B, and two of the D2 receptors, DRD2 and DRD3, originated from a whole genome duplication event early in the vertebrate lineage, providing the first conclusive evidence of the origin of these highly conserved receptors. Our findings provide insight into the evolutionary development of an important modulatory component of the central nervous system in vertebrates, and will help further unravel the complex evolutionary and functional relationships among dopamine receptors.
Collapse
Affiliation(s)
- Asher Haug-Baltzell
- Arizona Biological/Biomedical Sciences Program, University of Arizona Tucson, AZ, USA ; Genetics GIDP, University of Arizona Tucson, AZ, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona Tucson, AZ, USA ; BIO5 Institute, University of Arizona Tucson, AZ, USA
| | - Eric Lyons
- Genetics GIDP, University of Arizona Tucson, AZ, USA ; BIO5 Institute, University of Arizona Tucson, AZ, USA ; The School of Plant Sciences, University of Arizona Tucson, AZ, USA
| |
Collapse
|
3
|
Yu J, Ke T, Tehrim S, Sun F, Liao B, Hua W. PTGBase: an integrated database to study tandem duplicated genes in plants. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav017. [PMID: 25797062 PMCID: PMC4369376 DOI: 10.1093/database/bav017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. Database URL:http://ocri-genomics.org/PTGBase/.
Collapse
Affiliation(s)
- Jingyin Yu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China and Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang 473061, China
| | - Tao Ke
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China and Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang 473061, China
| | - Sadia Tehrim
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China and Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang 473061, China
| | - Fengming Sun
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China and Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang 473061, China
| | - Boshou Liao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China and Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang 473061, China
| | - Wei Hua
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China and Department of Life Science and Technology, Nanyang Normal University, Wolong Road, Nanyang 473061, China
| |
Collapse
|
4
|
Jiao Y, Paterson AH. Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0355. [PMID: 24958928 DOI: 10.1098/rstb.2013.0355] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more 'particulate' understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.
Collapse
Affiliation(s)
- Yuannian Jiao
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| |
Collapse
|
5
|
Bhuiyan SS, Kinoshita S, Wongwarangkana C, Asaduzzaman M, Asakawa S, Watabe S. Evolution of the myosin heavy chain gene MYH14 and its intronic microRNA miR-499: muscle-specific miR-499 expression persists in the absence of the ancestral host gene. BMC Evol Biol 2013; 13:142. [PMID: 24059862 PMCID: PMC3716903 DOI: 10.1186/1471-2148-13-142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/13/2013] [Indexed: 12/17/2022] Open
Abstract
Background A novel sarcomeric myosin heavy chain gene, MYH14, was identified following the completion of the human genome project. MYH14 contains an intronic microRNA, miR-499, which is expressed in a slow/cardiac muscle specific manner along with its host gene; it plays a key role in muscle fiber-type specification in mammals. Interestingly, teleost fish genomes contain multiple MYH14 and miR-499 paralogs. However, the evolutionary history of MYH14 and miR-499 has not been studied in detail. In the present study, we identified MYH14/miR-499 loci on various teleost fish genomes and examined their evolutionary history by sequence and expression analyses. Results Synteny and phylogenetic analyses depict the evolutionary history of MYH14/miR-499 loci where teleost specific duplication and several subsequent rounds of species-specific gene loss events took place. Interestingly, miR-499 was not located in the MYH14 introns of certain teleost fish. An MYH14 paralog, lacking miR-499, exhibited an accelerated rate of evolution compared with those containing miR-499, suggesting a putative functional relationship between MYH14 and miR-499. In medaka, Oryzias latipes, miR-499 is present where MYH14 is completely absent in the genome. Furthermore, by using in situ hybridization and small RNA sequencing, miR-499 was expressed in the notochord at the medaka embryonic stage and slow/cardiac muscle at the larval and adult stages. Comparing the flanking sequences of MYH14/miR-499 loci between torafugu Takifugu rubripes, zebrafish Danio rerio, and medaka revealed some highly conserved regions, suggesting that cis-regulatory elements have been functionally conserved in medaka miR-499 despite the loss of its host gene. Conclusions This study reveals the evolutionary history of the MYH14/miRNA-499 locus in teleost fish, indicating divergent distribution and expression of MYH14 and miR-499 genes in different teleost fish lineages. We also found that medaka miR-499 was even expressed in the absence of its host gene. To our knowledge, this is the first report that shows the conversion of intronic into non-intronic miRNA during the evolution of a teleost fish lineage.
Collapse
Affiliation(s)
- Sharmin Siddique Bhuiyan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Genome duplication (GD) has permanently shaped the architecture and function of many higher eukaryotic genomes. The angiosperms (flowering plants) are outstanding models in which to elucidate consequences of GD for higher eukaryotes, owing to their propensity for chromosomal duplication or even triplication in a few cases. Duplicated genome structures often require both intra- and inter-genome alignments to unravel their evolutionary history, also providing the means to deduce both obvious and otherwise-cryptic orthology, paralogy and other relationships among genes. The burgeoning sets of angiosperm genome sequences provide the foundation for a host of investigations into the functional and evolutionary consequences of gene and GD. To provide genome alignments from a single resource based on uniform standards that have been validated by empirical studies, we built the Plant Genome Duplication Database (PGDD; freely available at http://chibba.agtec.uga.edu/duplication/), a web service providing synteny information in terms of colinearity between chromosomes. At present, PGDD contains data for 26 plants including bryophytes and chlorophyta, as well as angiosperms with draft genome sequences. In addition to the inclusion of new genomes as they become available, we are preparing new functions to enhance PGDD.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
7
|
Mank JE, Avise JC. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica 2006; 127:321-7. [PMID: 16850236 DOI: 10.1007/s10709-005-5248-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 11/16/2005] [Indexed: 10/24/2022]
Abstract
The genomes of ray-finned fishes (Actinopterygii) are well known for their evolutionary dynamism as reflected by drastic alterations in DNA content often via regional and whole-genome duplications, differential patterns of gene silencing or loss, shifts in the insertion-to-deletion ratios of genomic segments, and major re-patternings of chromosomes via non-homologous recombination. In sharp contrast, chromosome numbers in somatic karyotypes have been highly conserved over vast evolutionary timescales - a histogram of available counts is strongly leptokurtic with more than 50% of surveyed species displaying either 48 or 50 chromosomes. Here we employ comparative phylogenetic analyses to examine the evolutionary history of alterations in fish chromosome numbers. The most parsimonious ancestral state for major actinopterygiian clades is 48 chromosomes. When interpreted in a phylogenetic context, chromosome numbers evidence many recent instances of polyploidization in various lineages but there is no clear indication of a singular polyploidization event that has been hypothesized to have immediately preceded the teleost radiation. After factoring out evident polyploidizations, a correlation between chromosome numbers and genome sizes across the Actinopterygii is marginally statistically significant (p = 0.012) but exceedingly weak (R (2) = 0.0096). Overall, our phylogenetic analysis indicates a mosaic evolutionary pattern in which the forces that govern labile features of fish genomes must operate largely independently of those that operate to conserve chromosome numbers.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, University of Georgia, Life Sciences Building, Athens, GA 30602, USA.
| | | |
Collapse
|
8
|
Lee AP, Koh EGL, Tay A, Brenner S, Venkatesh B. Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters. Proc Natl Acad Sci U S A 2006; 103:6994-9. [PMID: 16636282 PMCID: PMC1459007 DOI: 10.1073/pnas.0601492103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes in vertebrates are clustered, and the organization of the clusters has been highly conserved during evolution. The conservation of Hox clusters has been attributed to enhancers located within and outside the Hox clusters that are essential for the coordinated "temporal" and "spatial" expression patterns of Hox genes in developing embryos. To identify evolutionarily conserved regulatory elements within and outside the Hox clusters, we obtained contiguous sequences for the conserved syntenic blocks from the seven Hox loci in fugu and carried out a systematic search for conserved noncoding sequences (CNS) in the human, mouse, and fugu Hox loci. Our analysis has uncovered unusually large conserved syntenic blocks at the HoxA and HoxD loci. The conserved syntenic blocks at the human and mouse HoxA and HoxD loci span 5.4 Mb and 4 Mb and contain 21 and 19 genes, respectively. The corresponding regions in fugu are 16- and 12-fold smaller. A large number of CNS was identified within the Hox clusters and outside the Hox clusters spread over large regions. The CNS include previously characterized enhancers and overlap with the 5' global control regions of HoxA and HoxD clusters. Most of the CNS are likely to be control regions involved in the regulation of Hox and other genes in these loci. We propose that the regulatory elements spread across large regions on either side of Hox clusters are a major evolutionary constraint that has maintained the exceptionally long syntenic blocks at the HoxA and HoxD loci.
Collapse
Affiliation(s)
- Alison P. Lee
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Esther G. L. Koh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Alice Tay
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Sydney Brenner
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| |
Collapse
|
9
|
Mank JE, Avise JC. Cladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes. Proc Biol Sci 2006; 273:33-8. [PMID: 16519231 PMCID: PMC1560015 DOI: 10.1098/rspb.2005.3295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/13/2005] [Indexed: 11/12/2022] Open
Abstract
Genomic expansions via regional gene duplications and polyploidization events have been implicated as catalysts for rapid cladogenetic speciation in some fish taxa, but any general relationships between genome sizes and patterns of evolutionary radiation remain poorly characterized. Here we examine empirical correlations between genome size and species richness (number of extant species within a given clade) both across Actinopterygii (ray-finned fishes) and within several large actinopterygiian clades. We conducted the analyses both without and with correction (by independent contrasts) for phylogenetic effects. Across the full suite of 461 surveyed genera, relatively small but significant positive correlations were present between species richness and evolutionary increases in C-value. Although many variables (including ecological and behavioural factors) clearly can influence speciation rates, the current results are consistent with the notion that genomic architecture may play a role in species proliferation as well.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
10
|
Cole NJ, Hall TE, Martin CI, Chapman MA, Kobiyama A, Nihei Y, Watabe S, Johnston IA. Temperature and the expression of myogenic regulatory factors (MRFs) and myosin heavy chain isoforms during embryogenesis in the common carp Cyprinus carpio L. ACTA ACUST UNITED AC 2005; 207:4239-48. [PMID: 15531645 DOI: 10.1242/jeb.01263] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Embryos of the common carp, Cyprinus carpio L., were reared from fertilization of the eggs to inflation of the swim bladder in the larval stage at 18 and 25 degrees C. cRNA probes were used to detect transcripts of the myogenic regulatory factors MyoD, Myf-5 and myogenin, and five myosin heavy chain (MyHC) isoforms during development. The genes encoding Myf-5 and MyoD were switched on first in the unsegmented mesoderm, followed by myogenin as the somites developed. Myf-5 and MyoD transcripts were initially limited to the adaxial cells, but Myf-5 expression spread laterally into the presomitic mesoderm before somite formation. Two distinct bands of staining could be seen corresponding to the cellular fields of the forming somites, but as each furrow delineated, Myf-5 mRNA levels declined. Upon somite formation, MyoD expression spread laterally to encompass the full somite width. Expression of the myogenin gene was also switched on during somite formation, and expression of both transcripts persisted until the somites became chevron-shaped. Expression of MyoD was then downregulated shortly before myogenin. The expression patterns of the carp myogenic regulatory factor (MRF) genes most-closely resembled that seen in the zebrafish rather than the rainbow trout (where expression of MyoD remains restricted to the adaxial domain of the somite for a prolonged period) or the herring (where expression of MyoD persists longer than that of myogenin). Expression of two embryonic forms of MyHC began simultaneously at the 25-30 somite stage and continued until approximately two weeks post-hatch. However, the three adult isoforms of fast muscle MyHC were not detected in any stage examined, emphasizing a developmental gap that must be filled by other, as yet uncharacterised, MyHC isoform(s). No differences in the timing of expression of any mRNA transcripts were seen between temperature groups. A phylogenetic analysis of the MRFs was conducted using all available full-length amino acid sequences. A neighbour-joining tree indicated that all four members evolved from a common ancestral gene, which first duplicated into two lineages, each of which underwent a further duplication to produce Myf-5 and MyoD, and myogenin and MRF4. Parologous copies of MyoD from trout and Xenopus clustered closely together within clades, indicating recent duplications. By contrast, MyoD paralogues from gilthead seabream were more divergent, indicating a more-ancient duplication.
Collapse
Affiliation(s)
- Nicholas J Cole
- Division of Cell and Developmental Biology, MSI/WTB Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bird S, Zou J, Kono T, Sakai M, Dijkstra JM, Secombes C. Characterisation and expression analysis of interleukin 2 (IL-2) and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny. Immunogenetics 2004; 56:909-23. [PMID: 15592926 DOI: 10.1007/s00251-004-0741-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/19/2004] [Indexed: 05/01/2023]
Abstract
This investigation provides the first conclusive evidence for the existence of the interleukin 2 (IL-2) and IL-21 genes in bony fish. The IL-2 and IL-21 sequences have been determined in Fugu rubripes by exploiting the conservation of synteny that is found between regions of the human and Fugu genomes. The predicted 149-amino acid IL-2 homologue contains the IL-2 family signature, has a predicted secondary structure of three alpha helixes and has the two cysteines important in disulphide-bond formation. It shows low amino acid identities (24-34%) with other known IL-2 sequences. The predicted 155-amino acid IL-21 homologue has a predicted secondary structure of four alpha helixes and has the four cysteines important in disulphide-bond formation. It shows low amino acid identities (29-31%) with other known IL-21 sequences. The gene organisation of Fugu IL-2 and IL-21 and the level of synteny between the human and Fugu genomes has been well conserved during evolution, with the order and orientation of the genes matching exactly to human Chromosome 4. Phytohaemagglutinin stimulation of Fugu kidney cells resulted in a large increase in the Fugu IL-2 and IL-21 transcripts. In vivo stimulation of Fugu with LPS and poly I:C showed IL-21 expression to be localised within mucosal tissues. The discovery of IL-2 and IL-21 in fish will now allow more detailed investigations into T-helper cell responses.
Collapse
Affiliation(s)
- Steve Bird
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | | | | | | | | | | |
Collapse
|
12
|
Paulsen M, Khare T, Burgard C, Tierling S, Walter J. Evolution of the Beckwith-Wiedemann syndrome region in vertebrates. Genome Res 2004; 15:146-53. [PMID: 15590939 PMCID: PMC540281 DOI: 10.1101/gr.2689805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the animal kingdom, genomic imprinting appears to be restricted to mammals. It remains an open question how structural features for imprinting evolved in mammalian genomes. The clustering of genes around imprinting control centers (ICs) is regarded as a hallmark for the coordinated imprinted regulation. Hence imprinted clusters might be structurally distinct between mammals and nonimprinted vertebrates. To address this question we compared the organization of the Beckwith Wiedemann syndrome (BWS) gene cluster in mammals, chicken, Fugu (pufferfish), and zebrafish. Our analysis shows that gene synteny is apparently well conserved between mammals and birds, and is detectable but less pronounced in fish. Hence, clustering apparently evolved during vertebrate radiation and involved two major duplication events that took place before the separation of the fish and mammalian lineages. A cross-species analysis of imprinting center regions showed that some structural features can already be recognized in nonimprinted amniotes in one of the imprinting centers (IC2). In contrast, the imprinting center IC1 is absent in chicken. This suggests a progressive and stepwise evolution of imprinting control elements. In line with that, imprinting centers in mammals apparently exhibit a high degree of structural and sequence variation despite conserved epigenetic marking.
Collapse
Affiliation(s)
- Martina Paulsen
- Universität des Saarlandes, FR 8.3 Biowissenschaften, Genetik/Epigenetik, Postfach 151150, D-66041 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|
13
|
Hoyle J, Tang YP, Wiellette EL, Wardle FC, Sive H. nlz gene family is required for hindbrain patterning in the zebrafish. Dev Dyn 2004; 229:835-46. [PMID: 15042707 DOI: 10.1002/dvdy.20001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study describes the conserved nlz gene family whose members encode unusual zinc finger proteins. In the zebrafish neurectoderm, both nlz1 and the newly isolated nlz2 are expressed in the presumptive hindbrain and midbrain/hindbrain boundary, where expression of nlz1 is dependent on pax2a. In addition, nlz2 is uniquely expressed more anteriorly, in the presumptive midbrain and diencephalon. Overexpression of Nlz proteins during gastrula stages inhibits hindbrain development. In particular, ectopically expressed Nlz1 inhibits formation of future rhombomeres 2 and 3 (r2, r3), whereas neighboring r1 and r4 are not affected. Conversely, simultaneous reduction of Nlz1 and Nlz2 protein function by expression of antisense morpholino-modified oligomers leads to expansion of future r3 and r5, with associated loss of r4. These data indicate that one function of the nlz gene family is to specify or maintain r4 identity, and to limit r3 and r5 during hindbrain formation.
Collapse
Affiliation(s)
- Jacqueline Hoyle
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
14
|
Ohtsuka M, Kikuchi N, Ozato K, Inoko H, Kimura M. Comparative analysis of a 229-kb medaka genomic region, containing the zic1 and zic4 genes, with Fugu , human, and mouse. Genomics 2004; 83:1063-71. [PMID: 15177559 DOI: 10.1016/j.ygeno.2003.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Accepted: 09/24/2003] [Indexed: 10/26/2022]
Abstract
Medaka is one of the prominent model animals, which also include other fishes such as Fugu and zebrafish. Its genome is relatively compact but has not been well characterized. Here we have sequenced a 229-kb region of medaka, containing the Double anal fin (Da) locus, and compared its structure to those in Fugu, human, and mouse. This region, representing a gene-poor region, contains no major rearrangements and can be readily compared among different species. Comparison of G+C contents and repeats suggested that medaka and Fugu are highly related as expected and that medaka is more similar to mammals than Fugu is. Sequence comparisons of developmental genes zic1 and zic4, identified within this region, revealed that zic1, but not zic4, is highly conserved among vertebrates. The 5' coding region of zic4 is, however, extremely homologous among fishes with little synonymous substitutions, implying its distinct function in fish.
Collapse
Affiliation(s)
- Masato Ohtsuka
- Department of Genetic Information, Division of Molecular Life Science, School of Medicine, Tokai University, Bohseidai, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | |
Collapse
|
15
|
Halling-Brown M, Sansom C, Moss DS, Elgar G, Edwards YJK. A Fugu-Human Genome Synteny Viewer: web software for graphical display and annotation reports of synteny between Fugu genomic sequence and human genes. Nucleic Acids Res 2004; 32:2618-22. [PMID: 15141032 PMCID: PMC419461 DOI: 10.1093/nar/gkh573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A web server has been developed to access annotation and graphical reports of synteny and gene order between the Fugu genome and human genes. In this system, the assembled Fugu genomic sequences (also known as scaffolds) are annotated. The annotations for each Fugu scaffold are computed, stored and made publicly available. The annotations describe matches to human homologous genes. For each significant human gene match on the Fugu scaffold, the corresponding human chromosome map and measures of the significance of each match are given. The web-based server provides public access to these annotations and graphical displays of the results. The user is provided with a selection of views including a chromosome-colour-coded image and a table containing the details of the matches. The Fugu-Human Genome Synteny Viewer has been tested by comparing results with examples from a paper that includes a study of transcription factors, Fos and Jun encoding regions. The Fugu-human genome synteny views are available for each Fugu scaffold through the clonesearch web page located at the Fugu Genomics website (http://fugu.rfcgr.mrc.ac.uk/).
Collapse
Affiliation(s)
- Mark Halling-Brown
- School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
16
|
Christoffels A, Koh EGL, Chia JM, Brenner S, Aparicio S, Venkatesh B. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 2004; 21:1146-51. [PMID: 15014147 DOI: 10.1093/molbev/msh114] [Citation(s) in RCA: 390] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With about 24,000 extant species, teleosts are the largest group of vertebrates. They constitute more than 99% of the ray-finned fishes (Actinopterygii) that diverged from the lobe-finned fish lineage (Sarcopterygii) about 450 MYA. Although the role of genome duplication in the evolution of vertebrates is now established, its role in structuring the teleost genomes has been controversial. At least two hypotheses have been proposed: a whole-genome duplication in an ancient ray-finned fish and independent gene duplications in different lineages. These hypotheses are, however, based on small data sets and lack adequate statistical and phylogenetic support. In this study, we have made a systematic comparison of the draft genome sequences of Fugu and humans to identify paralogous chromosomal regions ("paralogons") in the Fugu that arose in the ray-finned fish lineage ("fish-specific"). We identified duplicate genes in the Fugu by phylogenetic analyses of the Fugu, human, and invertebrate sequences. Our analyses provide evidence for 425 fish-specific duplicate genes in the Fugu and show that at least 6.6% of the genome is represented by fish-specific paralogons. We estimated the ages of Fugu duplicate genes and paralogons using the molecular clock. Remarkably, the ages of duplicate genes and paralogons are clustered, with a peak around 350 MYA. These data strongly suggest a whole-genome duplication event early during the evolution of ray-finned fishes, probably before the origin of teleosts.
Collapse
|
17
|
Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci U S A 2004; 101:1638-43. [PMID: 14757817 PMCID: PMC341801 DOI: 10.1073/pnas.0307968100] [Citation(s) in RCA: 408] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that fish have more genes than humans. Whether most of these additional genes originated through a complete (fish-specific) genome duplication or through many lineage-specific tandem gene or smaller block duplications and family expansions continues to be debated. We analyzed the complete genome of the pufferfish Takifugu rubripes (Fugu) and compared it with the paranome of humans. We show that most paralogous genes of Fugu are the result of three complete genome duplications. Both relative and absolute dating of the complete predicted set of protein-coding genes suggest that initial genome duplications, estimated to have occurred at least 600 million years ago, shaped the genome of all vertebrates. In addition, analysis of >150 block duplications in the Fugu genome clearly supports a fish-specific genome duplication (approximately equal to 320 million years ago) that coincided with the vast radiation of most modern ray-finned fishes. Unlike the human genome, Fugu contains very few recently duplicated genes; hence, many human genes are much younger than fish genes. This lack of recent gene duplication, or, alternatively, the accelerated rate of gene loss, is possibly one reason for the drastic reduction of the genome size of Fugu observed during the past 100 million years or so, subsequent to the additional genome duplication that ray-finned fishes but not land vertebrates experienced.
Collapse
Affiliation(s)
- Klaas Vandepoele
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | |
Collapse
|
18
|
Nelson DR, Zeldin DC, Hoffman SMG, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. ACTA ACUST UNITED AC 2004; 14:1-18. [PMID: 15128046 DOI: 10.1097/00008571-200401000-00001] [Citation(s) in RCA: 701] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Completion of both the mouse and human genome sequences in the private and public sectors has prompted comparison between the two species at multiple levels. This review summarizes the cytochrome P450 (CYP) gene superfamily. For the first time, we have the ability to compare complete sets of CYP genes from two mammals. Use of the mouse as a model mammal, and as a surrogate for human biology, assumes reasonable similarity between the two. It is therefore of interest to catalog the genetic similarities and differences, and to clarify the limits of extrapolation from mouse to human. METHODS Data-mining methods have been used to find all the mouse and human CYP sequences; this includes 102 putatively functional genes and 88 pseudogenes in the mouse, and 57 putatively functional genes and 58 pseudogenes in the human. Comparison is made between all these genes, especially the seven main CYP gene clusters. RESULTS AND CONCLUSIONS The seven CYP clusters are greatly expanded in the mouse with 72 functional genes versus only 27 in the human, while many pseudogenes are present; presumably this phenomenon will be seen in many other gene superfamily clusters. Complete identification of all pseudogene sequences is likely to be clinically important, because some of these highly similar exons can interfere with PCR-based genotyping assays. A naming procedure for each of four categories of CYP pseudogenes is proposed, and we encourage various gene nomenclature committees to consider seriously the adoption and application of this pseudogene nomenclature system.
Collapse
Affiliation(s)
- David R Nelson
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Cottage AJ, Edwards YJK, Elgar G. AP1 genes in Fugu indicate a divergent transcriptional control to that of mammals. Mamm Genome 2003; 14:514-25. [PMID: 12925884 DOI: 10.1007/s00335-002-3067-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 04/10/2003] [Indexed: 10/26/2022]
Abstract
The draft genomic sequence of the Japanese puffer fish, Fugu rubripes, has now been announced. This is the first complete sequence of a teleost fish and the second available vertebrate sequence, the first being that of human. For the first time, whole-genome comparisons between two vertebrates can be undertaken. Early analysis has suggested that there may be surprising differences in gene regulation between human and fish. In mammals, a gene commonly has several functions, and this may not always be the case in fish. Many gene families comprise more members in fish than they do in mammals, possibly because each fish gene has evolved an individual function. Complexities of gene regulation in mammals has hampered studies of all biological processes from cell proliferation to cell death. Determining the activities of the AP1 transcription factor proteins has been non-trivial. The AP1 complex typically comprises two proteins, a Jun (c-Jun, JunB, and JunD) and a Fos (c-Fos, FosB, Fra1, and Fra2). These proteins can form both homodimers and heterodimers among-themselves and can interact with additional proteins; thus, dissecting their individual roles has been difficult. We have determined that Fugu has more Jun and Fos genes than mammals, and if each proves to have a separate function, then addressing the roles of the individual AP1 proteins in Fugu may be simpler than in human.
Collapse
Affiliation(s)
- Amanda J Cottage
- Medical Research Council, UK Human Genome Mapping Project Resource Centre, Hinxton, Cambridge, CB 10 1SB, UK
| | | | | |
Collapse
|
20
|
Hansson CM, Ali H, Bruder CEG, Fransson I, Kluge S, Andersson B, Roe BA, Menzel U, Dumanski JP. Strong conservation of the human NF2 locus based on sequence comparison in five species. Mamm Genome 2003; 14:526-36. [PMID: 12925885 DOI: 10.1007/s00335-003-3011-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Accepted: 03/25/2003] [Indexed: 11/24/2022]
Abstract
We analyzed 137 kb covering human neurofibromatosis 2 ( NF2) tumor suppressor locus and orthologous loci from baboon, mouse, rat, and pufferfish Takifugu rubripes. A predominant feature of human-rodent conservation is a very similar distribution of conserved islands, regarding length, position, and degree of identity. By use of a threshold of 75% identity over > or =100 bp of gap-free alignment, comparisons of human-mouse sequences resulted in 3.58% for extra-exonic conservation, which can be compared to 4.5% of exonic sequence content within the human locus. We identified a duplication of neurofibromin 2 in pufferfish, which resulted in two putative proteins with 74% and 76% identity to the human protein. One distinct island (called inter 1), conserved between all analyzed species, was located between promoters of the NIPSNAP1 and NF2 genes. Inter 1 might represent a novel regulatory element, important for the function of this locus. The high level of intronic conservation in the NF2 locus suggests that a number of unknown regulatory elements might exist within this gene. These elements could be affected by disease-causing mutations in NF2 patients and NF2-associated tumors. Alternatively, this conservation might be explained by presence of not yet characterized transcriptional unit(s) within this locus.
Collapse
Affiliation(s)
- Caisa M Hansson
- Department of Genetics and Pathology, Rudbeck Laboratory, 3rd floor, Dag Hammarskjöds väg 20, Uppsala University, 751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Montpetit A, Wilson MD, Chevrette M, Koop BF, Sinnett D. Analysis of the conservation of synteny between Fugu and human chromosome 12. BMC Genomics 2003; 4:30. [PMID: 12877756 PMCID: PMC179898 DOI: 10.1186/1471-2164-4-30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/23/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pufferfish Fugu rubripes (Fugu) with its compact genome is increasingly recognized as an important vertebrate model for comparative genomic studies. In particular, large regions of conserved synteny between human and Fugu genomes indicate its utility to identify disease-causing genes. The human chromosome 12p12 is frequently deleted in various hematological malignancies and solid tumors, but the actual tumor suppressor gene remains unidentified. RESULTS We investigated approximately 200 kb of the genomic region surrounding the ETV6 locus in Fugu (fETV6) in order to find conserved functional features, such as genes or regulatory regions, that could give insight into the nature of the genes targeted by deletions in human cancer cells. Seven genes were identified near the fETV6 locus. We found that the synteny with human chromosome 12 was conserved, but extensive genomic rearrangements occurred between the Fugu and human ETV6 loci. CONCLUSION This comparative analysis led to the identification of previously uncharacterized genes in the human genome and some potentially important regulatory sequences as well. This is a good indication that the analysis of the compact Fugu genome will be valuable to identify functional features that have been conserved throughout the evolution of vertebrates.
Collapse
Affiliation(s)
- Alexandre Montpetit
- Division of Hematology-Oncology, Charles-Bruneau Cancer Center, Research Center, Sainte-Justine Hospital, 3175 Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
| | - Michael D Wilson
- Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Mario Chevrette
- The Research Institute of the McGill University Health Centre and Department of Surgery, McGill University, Montreal, QC, H3G 1A4, Canada
| | - Ben F Koop
- Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, Charles-Bruneau Cancer Center, Research Center, Sainte-Justine Hospital, 3175 Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
22
|
Edwards YJK, Carver TJ, Vavouri T, Frith M, Bishop MJ, Elgar G. Theatre: A software tool for detailed comparative analysis and visualization of genomic sequence. Nucleic Acids Res 2003; 31:3510-7. [PMID: 12824356 PMCID: PMC168908 DOI: 10.1093/nar/gkg501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 01/17/2003] [Accepted: 01/27/2003] [Indexed: 01/12/2023] Open
Abstract
Theatre is a web-based computing system designed for the comparative analysis of genomic sequences, especially with respect to motifs likely to be involved in the regulation of gene expression. Theatre is an interface to commonly used sequence analysis tools and biological sequence databases to determine or predict the positions of coding regions, repetitive sequences and transcription factor binding sites in families of DNA sequences. The information is displayed in a manner that can be easily understood and can reveal patterns that might not otherwise have been noticed. In addition to web-based output, Theatre can produce publication quality colour hardcopies showing predicted features in aligned genomic sequences. A case study using the p53 promoter region of four mammalian species and two fish species is described. Unlike the mammalian sequences the promoter regions in fish have not been previously predicted or characterized and we report the differences in the p53 promoter region of four mammals and that predicted for two fish species. Theatre can be accessed at http://www.hgmp.mrc.ac.uk/Registered/Webapp/theatre/.
Collapse
Affiliation(s)
- Yvonne J K Edwards
- Comparative Genomics Group, Research Division, MRC UK Human Genome Mapping Project Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SB, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Bowers JE, Chapman BA, Rong J, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003; 422:433-8. [PMID: 12660784 DOI: 10.1038/nature01521] [Citation(s) in RCA: 1048] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Accepted: 02/05/2003] [Indexed: 11/09/2022]
Abstract
Conservation of gene order in vertebrates is evident after hundreds of millions of years of divergence, but comparisons of the Arabidopsis thaliana sequence to partial gene orders of other angiosperms (flowering plants) sharing common ancestry approximately 170-235 million years ago yield conflicting results. This difference may be largely due to the propensity of angiosperms to undergo chromosomal duplication ('polyploidization') and subsequent gene loss ('diploidization'); these evolutionary mechanisms have profound consequences for comparative biology. Here we integrate a phylogenetic approach (relating chromosomal duplications to the tree of life) with a genomic approach (mitigating information lost to diploidization) to show that a genome-wide duplication post-dates the divergence of Arabidopsis from most dicots. We also show that an inferred ancestral gene order for Arabidopsis reveals more synteny with other dicots (exemplified by cotton), and that additional, more ancient duplication events affect more distant taxonomic comparisons. By using partial sequence data for many diverse taxa to better relate the evolutionary history of completely sequenced genomes to the tree of life, we foster comparative approaches to the study of genome organization, consequences of polyploidy, and the molecular basis of quantitative traits.
Collapse
Affiliation(s)
- John E Bowers
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
24
|
Nelson DR. Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution. Arch Biochem Biophys 2003; 409:18-24. [PMID: 12464240 DOI: 10.1016/s0003-9861(02)00553-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The fugu (pufferfish) genome has been sequenced, and a second genome assembly was released 17 May 2002. Exhaustive searches were made to identify all P450 genes and pseudogenes from the earlier release of 26 October 2001. P450 genes assembled as completely as possible from these data were used to do additional searches of the newer assembly and all P450 genes and pseudogenes in the available fugu sequence data have been identified, compared to human P450s, and assigned names. There are 54 P450 genes in fugu and 1 nearly intact pseudogene (CYP3A50P). CYP1A is missing much of its N-terminal half; however, 45 P450 genes are completely assembled. Eight others are lacking only one or two exons or less. CYP2X4 is known only from an EST. This may be a 55th P450 gene if it represents an accurate sequence. In addition to 2X4, there are 16 other pseudogene fragments or small pieces of P450 genes. At the P450 family level, 17 of 18 mammalian families are found in fugu. CYP39 is the only CYP family missing and it is not seen in any other fish sequence data either. The CYP2 family shows the largest degree of divergence. In the CYP2 family, only CYP2R1 and CYP2U1 are conserved as recognizable subfamilies across species. Intron-exon boundaries are largely preserved across 420 million years of evolution.
Collapse
Affiliation(s)
- David R Nelson
- Department of Molecular Sciences, University of Tennessee, 858 Madison Avenue, Memphis 38163, USA.
| |
Collapse
|
25
|
Locascio A, Manzanares M, Blanco MJ, Nieto MA. Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc Natl Acad Sci U S A 2002; 99:16841-6. [PMID: 12482931 PMCID: PMC139231 DOI: 10.1073/pnas.262525399] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene duplication has been a major mechanism for increasing genomic complexity and variation during evolution. The evolutionary history of duplicated genes has been poorly studied along the vertebrate lineage. Here, we attempt to study that history by analyzing the expression of two members of the Snail family, Snail and Slug, in representatives of the major vertebrate groups. We find a surprising degree of variability in a subset of the expression sites for both genes in different species. Although some of the changes can be explained by neofunctionalization or subfunctionalization, others imply reciprocal changes in the expression of the two genes and the reappearance of expression in sites lost earlier in evolution. Because these changes do not fit easily into current models, we need to invoke additional mechanisms acting on enhancer elements to distribute expression domains and functions of duplicated genes unequally during evolution.
Collapse
Affiliation(s)
- Annamaria Locascio
- Department of Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Avenida Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MDS, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJK, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002; 297:1301-10. [PMID: 12142439 DOI: 10.1126/science.1072104] [Citation(s) in RCA: 1091] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some "giant" genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match to Fugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.
Collapse
Affiliation(s)
- Samuel Aparicio
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|