1
|
Teo B, Bastide P, Ané C. Leveraging graphical model techniques to study evolution on phylogenetic networks. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230310. [PMID: 39976402 DOI: 10.1098/rstb.2023.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 02/21/2025] Open
Abstract
The evolution of molecular and phenotypic traits is commonly modelled using Markov processes along a phylogeny. This phylogeny can be a tree, or a network if it includes reticulations, representing events such as hybridization or admixture. Computing the likelihood of data observed at the leaves is costly as the size and complexity of the phylogeny grows. Efficient algorithms exist for trees, but cannot be applied to networks. We show that a vast array of models for trait evolution along phylogenetic networks can be reformulated as graphical models, for which efficient belief propagation algorithms exist. We provide a brief review of belief propagation on general graphical models, then focus on linear Gaussian models for continuous traits. We show how belief propagation techniques can be applied for exact or approximate (but more scalable) likelihood and gradient calculations, and prove novel results for efficient parameter inference of some models. We highlight the possible fruitful interactions between graphical models and phylogenetic methods. For example, approximate likelihood approaches have the potential to greatly reduce computational costs for phylogenies with reticulations.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
Collapse
Affiliation(s)
- Benjamin Teo
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul Bastide
- IMAG, Université de Montpellier, CNRS, Montpellier, France
| | - Cécile Ané
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Bakoev S, Getmantseva L, Kolosova M, Bakoev F, Kolosov A, Romanets E, Shevtsova V, Romanets T, Kolosov Y, Usatov A. Identifying Significant SNPs of the Total Number of Piglets Born and Their Relationship with Leg Bumps in Pigs. BIOLOGY 2024; 13:1034. [PMID: 39765701 PMCID: PMC11673605 DOI: 10.3390/biology13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to identify genetic variants and pathways associated with the total number of piglets born and to investigate the potential negative consequences of the intensive selection for reproductive traits, particularly the formation of bumps on the legs of pigs. We used genome-wide association analysis and methods for identifying selection signatures. As a result, 47 SNPs were identified, localized in genes that play a significant role during sow pregnancy. These genes are involved in follicle growth and development (SGC), early embryonic development (CCDC3, LRRC8C, LRFN3, TNFRSF19), endometrial receptivity and implantation (NEBL), placentation, and embryonic development (ESRRG, GHRHR, TUSC3, NBAS). Several genes are associated with disorders of the nervous system and brain development (BCL11B, CDNF, ULK4, CC2D2A, KCNK2). Additionally, six SNPs are associated with the formation of bumps on the legs of pigs. These variants include intronic variants in the CCDC3, ULK4, and MINDY4 genes, as well as intergenic variants, regulatory region variants, and variants in the exons of non-coding transcripts. The results suggest important biological pathways and genetic variants associated with sow fertility and highlight the potential negative impacts on the health and physical condition of pigs.
Collapse
Affiliation(s)
- Siroj Bakoev
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Lyubov Getmantseva
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Maria Kolosova
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Faridun Bakoev
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Anatoly Kolosov
- All Russian Research Institute of Animal Breeding, Lesnye Polyany 141212, Russia;
| | - Elena Romanets
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Varvara Shevtsova
- Southern Scientific Center Russian Academy of Sciences, Rostov-on-Don 344006, Russia;
| | - Timofey Romanets
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Yury Kolosov
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Alexander Usatov
- Academy of Biology and Biotechnology Named After D.I. Ivanovsky, Southern Federal University, Rostov-on-Don 344006, Russia;
| |
Collapse
|
3
|
Han S, de Filippo C, Parra G, Meneu JR, Laurent R, Frandsen P, Hvilsom C, Gronau I, Marques-Bonet T, Kuhlwilm M, Andrés AM. Deep genetic substructure within bonobos. Curr Biol 2024; 34:5341-5348.e3. [PMID: 39413789 DOI: 10.1016/j.cub.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/07/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Establishing the genetic and geographic structure of populations is fundamental, both to understand their evolutionary past and preserve their future. Nevertheless, the patterns of genetic population structure are unknown for most endangered species. This is the case for bonobos (Pan paniscus), which, together with chimpanzees (Pan troglodytes), are humans' closest living relatives. Chimpanzees live across equatorial Africa and are classified into four subspecies,1 with some genetic population substructure even within subspecies. Conversely, bonobos live exclusively in the Democratic Republic of Congo and are considered a homogeneous group with low genetic diversity,2 despite some population structure inferred from mtDNA. Nevertheless, mtDNA aside, their genetic structure remains unknown, hampering our understanding of the species and conservation efforts. Mapping bonobo genetic diversity in space is, however, challenging because, being endangered, only non-invasive sampling is possible for wild individuals. Here, we jointly analyze the exomes and mtDNA from 20 wild-born bonobos, the whole genomes of 10 captive bonobos, and the mtDNA of 136 wild individuals. We identify three genetically distinct bonobo groups of inferred Central, Western, and Far-Western geographic origin within the bonobo range. We estimate the split time between the central and western populations to be ∼145,000 years ago and genetic differentiation to be in the order of that of the closest chimpanzee subspecies. Furthermore, our estimated long-term Ne for Far-West (∼3,000) is among the lowest estimated for any great ape lineage. Our results highlight the need to attend to the bonobo substructure, both in terms of research and conservation.
Collapse
Affiliation(s)
- Sojung Han
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria.
| | - Cesare de Filippo
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Genís Parra
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Centre Nacional d'Anàlisi Genòmica (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Juan Ramon Meneu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Romain Laurent
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Peter Frandsen
- Conservation, Copenhagen Zoo, Roskildevej 38, 2000, Frederiksberg, Denmark
| | - Christina Hvilsom
- Conservation, Copenhagen Zoo, Roskildevej 38, 2000, Frederiksberg, Denmark
| | - Ilan Gronau
- The Efi Arazi School of Computer Science, Reichman University, 4610101 Herzliya, Israel
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, 08003 Barcelona, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, 08193 Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Martin Kuhlwilm
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Ma X, Lu Y, Xu S. Adaptive Evolution of Two Distinct Adaptive Haplotypes of Neanderthal Origin at the Immunoglobulin Heavy-chain Locus in East Asian and European Populations. Mol Biol Evol 2024; 41:msae147. [PMID: 39011558 PMCID: PMC11285051 DOI: 10.1093/molbev/msae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
Immunoglobulins (Igs) have a crucial role in humoral immunity. Two recent studies have reported a high-frequency Neanderthal-introgressed haplotype throughout Eurasia and a high-frequency Neanderthal-introgressed haplotype specific to southern East Asia at the immunoglobulin heavy-chain (IGH) gene locus on chromosome 14q32.33. Surprisingly, we found the previously reported high-frequency Neanderthal-introgressed haplotype does not exist throughout Eurasia. Instead, our study identified two distinct high-frequency haplotypes of putative Neanderthal origin in East Asia and Europe, although they shared introgressed alleles. Notably, the alleles of putative Neanderthal origin reduced the expression of IGHG1 and increased the expression of IGHG2 and IGHG3 in various tissues. These putatively introgressed alleles also affected the production of IgG1 upon antigen stimulation and increased the risk of systemic lupus erythematosus. Additionally, the greatest genetic differentiation across the whole genome between southern and northern East Asians was observed for the East Asian haplotype of putative Neanderthal origin. The frequency decreased from southern to northern East Asia and correlated positively with the genome-wide proportion of southern East Asian ancestry, indicating that this putative positive selection likely occurred in the common ancestor of southern East Asian populations before the admixture with northern East Asian populations.
Collapse
Affiliation(s)
- Xixian Ma
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Du H, Liu Z, Lu SY, Jiang L, Zhou L, Liu JF. Genomic evidence for human-mediated introgressive hybridization and selection in the developed breed. BMC Genomics 2024; 25:331. [PMID: 38565992 PMCID: PMC10986048 DOI: 10.1186/s12864-024-10259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The pig (Sus Scrofa) is one of the oldest domesticated livestock species that has undergone extensive improvement through modern breeding. European breeds have advantages in lean meat development and highly-productive body type, whereas Asian breeds possess extraordinary fat deposition and reproductive performance. Consequently, Eurasian breeds have been extensively used to develop modern commercial breeds for fast-growing and high prolificacy. However, limited by the sequencing technology, the genome architecture of some nascent developed breeds and the human-mediated impact on their genomes are still unknown. RESULTS Through whole-genome analysis of 178 individuals from an Asian locally developed pig breed, Beijing Black pig, and its two ancestors from two different continents, we found the pervasive inconsistent gene trees and species trees across the genome of Beijing Black pig, which suggests its introgressive hybrid origin. Interestingly, we discovered that this developed breed has more genetic relationships with European pigs and an unexpected introgression from Asian pigs to this breed, which indicated that human-mediated introgression could form the porcine genome architecture in a completely different type compared to native introgression. We identified 554 genomic regions occupied 63.30 Mb with signals of introgression from the Asian ancestry to Beijing Black pig, and the genes in these regions enriched in pathways associated with meat quality, fertility, and disease-resistant. Additionally, a proportion of 7.77% of genomic regions were recognized as regions that have been under selection. Moreover, combined with the results of a genome-wide association study for meat quality traits in the 1537 Beijing Black pig population, two important candidate genes related to meat quality traits were identified. DNAJC6 is related to intramuscular fat content and fat deposition, and RUFY4 is related to meat pH and tenderness. CONCLUSIONS Our research provides insight for analyzing the origins of nascent developed breeds and genome-wide selection remaining in the developed breeds mediated by humans during modern breeding.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Shi-Yu Lu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China.
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
6
|
Zhao H, Souilljee M, Pavlidis P, Alachiotis N. Genome-wide scans for selective sweeps using convolutional neural networks. Bioinformatics 2023; 39:i194-i203. [PMID: 37387128 DOI: 10.1093/bioinformatics/btad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Recent methods for selective sweep detection cast the problem as a classification task and use summary statistics as features to capture region characteristics that are indicative of a selective sweep, thereby being sensitive to confounding factors. Furthermore, they are not designed to perform whole-genome scans or to estimate the extent of the genomic region that was affected by positive selection; both are required for identifying candidate genes and the time and strength of selection. RESULTS We present ASDEC (https://github.com/pephco/ASDEC), a neural-network-based framework that can scan whole genomes for selective sweeps. ASDEC achieves similar classification performance to other convolutional neural network-based classifiers that rely on summary statistics, but it is trained 10× faster and classifies genomic regions 5× faster by inferring region characteristics from the raw sequence data directly. Deploying ASDEC for genomic scans achieved up to 15.2× higher sensitivity, 19.4× higher success rates, and 4× higher detection accuracy than state-of-the-art methods. We used ASDEC to scan human chromosome 1 of the Yoruba population (1000Genomes project), identifying nine known candidate genes.
Collapse
Affiliation(s)
- Hanqing Zhao
- Faculty of EEMCS, University of Twente, Enschede, The Netherlands
| | | | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | |
Collapse
|
7
|
He Q, Tang S, Zhi H, Chen J, Zhang J, Liang H, Alam O, Li H, Zhang H, Xing L, Li X, Zhang W, Wang H, Shi J, Du H, Wu H, Wang L, Yang P, Xing L, Yan H, Song Z, Liu J, Wang H, Tian X, Qiao Z, Feng G, Guo R, Zhu W, Ren Y, Hao H, Li M, Zhang A, Guo E, Yan F, Li Q, Liu Y, Tian B, Zhao X, Jia R, Feng B, Zhang J, Wei J, Lai J, Jia G, Purugganan M, Diao X. A graph-based genome and pan-genome variation of the model plant Setaria. Nat Genet 2023:10.1038/s41588-023-01423-w. [PMID: 37291196 DOI: 10.1038/s41588-023-01423-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Abstract
Setaria italica (foxtail millet), a founder crop of East Asian agriculture, is a model plant for C4 photosynthesis and developing approaches to adaptive breeding across multiple climates. Here we established the Setaria pan-genome by assembling 110 representative genomes from a worldwide collection. The pan-genome is composed of 73,528 gene families, of which 23.8%, 42.9%, 29.4% and 3.9% are core, soft core, dispensable and private genes, respectively; 202,884 nonredundant structural variants were also detected. The characterization of pan-genomic variants suggests their importance during foxtail millet domestication and improvement, as exemplified by the identification of the yield gene SiGW3, where a 366-bp presence/absence promoter variant accompanies gene expression variation. We developed a graph-based genome and performed large-scale genetic studies for 68 traits across 13 environments, identifying potential genes for millet improvement at different geographic sites. These can be used in marker-assisted breeding, genomic selection and genome editing to accelerate crop improvement under different climatic conditions.
Collapse
Affiliation(s)
- Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkai Liang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ornob Alam
- Center for Genomics and Systems Biology, New York University, New York City, NY, USA
| | - Hongbo Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Northwest A & F University, Yangling, China
| | - Lihe Xing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junpeng Shi
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Hongpo Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liwei Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Xing
- Anyang Academy of Agriculture Sciences, Anyang, China
| | - Hongshan Yan
- Anyang Academy of Agriculture Sciences, Anyang, China
| | | | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Xiang Tian
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Guojun Feng
- Research Institute of Cereal Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ruifeng Guo
- Institute of High Latitude Crops, Shanxi Agricultural University, Datong, China
| | - Wenjuan Zhu
- Institute of High Latitude Crops, Shanxi Agricultural University, Datong, China
| | - Yuemei Ren
- Institute of High Latitude Crops, Shanxi Agricultural University, Datong, China
| | - Hongbo Hao
- Institute of Dry-Land Farming, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - Mingzhe Li
- Institute of Dry-Land Farming, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - Aiying Zhang
- Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Erhu Guo
- Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Feng Yan
- Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Qingquan Li
- Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yanli Liu
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Bohong Tian
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Xiaoqin Zhao
- Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Ruiling Jia
- Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Baili Feng
- College of Agronomy, Northwest A & F University, Yangling, China
| | - Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York City, NY, USA.
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Árnason E, Koskela J, Halldórsdóttir K, Eldon B. Sweepstakes reproductive success via pervasive and recurrent selective sweeps. eLife 2023; 12:80781. [PMID: 36806325 PMCID: PMC9940914 DOI: 10.7554/elife.80781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/28/2022] [Indexed: 02/22/2023] Open
Abstract
Highly fecund natural populations characterized by high early mortality abound, yet our knowledge about their recruitment dynamics is somewhat rudimentary. This knowledge gap has implications for our understanding of genetic variation, population connectivity, local adaptation, and the resilience of highly fecund populations. The concept of sweepstakes reproductive success, which posits a considerable variance and skew in individual reproductive output, is key to understanding the distribution of individual reproductive success. However, it still needs to be determined whether highly fecund organisms reproduce through sweepstakes and, if they do, the relative roles of neutral and selective sweepstakes. Here, we use coalescent-based statistical analysis of population genomic data to show that selective sweepstakes likely explain recruitment dynamics in the highly fecund Atlantic cod. We show that the Kingman coalescent (modelling no sweepstakes) and the Xi-Beta coalescent (modelling random sweepstakes), including complex demography and background selection, do not provide an adequate fit for the data. The Durrett-Schweinsberg coalescent, in which selective sweepstakes result from recurrent and pervasive selective sweeps of new mutations, offers greater explanatory power. Our results show that models of sweepstakes reproduction and multiple-merger coalescents are relevant and necessary for understanding genetic diversity in highly fecund natural populations. These findings have fundamental implications for understanding the recruitment variation of fish stocks and general evolutionary genomics of high-fecundity organisms.
Collapse
Affiliation(s)
- Einar Árnason
- Institute of Life- and environmental Sciences, University of IcelandReykjavikIceland,Department of Organismal and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jere Koskela
- Department of Statistics, University of WarwickCoventryUnited Kingdom
| | - Katrín Halldórsdóttir
- Institute of Life- and environmental Sciences, University of IcelandReykjavikIceland
| | - Bjarki Eldon
- Leibniz Institute for Evolution and Biodiversity Science, Museum für NaturkundeBerlinGermany
| |
Collapse
|
9
|
Song W, Yuan K, Liu Z, Cai W, Chen J, Yu S, Zhao M, Lin GN. Locus-level antagonistic selection shaped the polygenic architecture of human complex diseases. Hum Genet 2022; 141:1935-1947. [PMID: 35943608 DOI: 10.1007/s00439-022-02471-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND We aimed to evaluate the potential role of antagonistic selection in polygenic diseases: if one variant increases the risk of one disease and decreases the risk of another disease, the signals of genetic risk elimination by natural selection will be distorted, which leads to a higher frequency of risk alleles. METHODS We applied local genetic correlations and transcriptome-wide association studies to identify genomic loci and genes adversely associated with at least two diseases. Then, we used different population genetic metrics to measure the signals of natural selection for these loci and genes. RESULTS First, we identified 2120 cases of antagonistic pleiotropy (negative local genetic correlation) among 87 diseases in 716 genomic loci (antagonistic loci). Next, by comparing with non-antagonistic loci, we observed that antagonistic loci explained an excess proportion of disease heritability (median 6%), showed enhanced signals of balancing selection, and reduced signals of directional polygenic adaptation. Then, at the gene expression level, we identified 31,991 cases of antagonistic pleiotropy among 98 diseases at 4368 genes. However, evidence of altered signals of selection pressure and heritability distribution at the gene expression level is limited. CONCLUSION We conclude that antagonistic pleiotropy is widespread among human polygenic diseases, and it has distorted the evolutionary signal and genetic architecture of diseases at the locus level.
Collapse
Affiliation(s)
- Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Kai Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiang Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| |
Collapse
|
10
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
11
|
Mendoza-Revilla J, Chacón-Duque JC, Fuentes-Guajardo M, Ormond L, Wang K, Hurtado M, Villegas V, Granja V, Acuña-Alonzo V, Jaramillo C, Arias W, Barquera R, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Badillo Rivera KM, Nieves-Colón MA, Gignoux CR, Wojcik GL, Moreno-Estrada A, Hünemeier T, Ramallo V, Schuler-Faccini L, Gonzalez-José R, Bortolini MC, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Balding D, Fumagalli M, Adhikari K, Ruiz-Linares A, Hellenthal G. Disentangling Signatures of Selection Before and After European Colonization in Latin Americans. Mol Biol Evol 2022; 39:6565306. [PMID: 35460423 PMCID: PMC9034689 DOI: 10.1093/molbev/msac076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., admixture) between previously separated human groups. Although classical and recent work have shown that studying admixture can yield novel historical insights, the extent to which this process contributed to adaptation remains underexplored. Here, we introduce a novel statistical model, specific to admixed populations, that identifies loci under selection while determining whether the selection likely occurred post-admixture or prior to admixture in one of the ancestral source populations. Through extensive simulations, we show that this method is able to detect selection, even in recently formed admixed populations, and to accurately differentiate between selection occurring in the ancestral or admixed population. We apply this method to genome-wide SNP data of ∼4,000 individuals in five admixed Latin American cohorts from Brazil, Chile, Colombia, Mexico, and Peru. Our approach replicates previous reports of selection in the human leukocyte antigen region that are consistent with selection post-admixture. We also report novel signals of selection in genomic regions spanning 47 genes, reinforcing many of these signals with an alternative, commonly used local-ancestry-inference approach. These signals include several genes involved in immunity, which may reflect responses to endemic pathogens of the Americas and to the challenge of infectious disease brought by European contact. In addition, some of the strongest signals inferred to be under selection in the Native American ancestral groups of modern Latin Americans overlap with genes implicated in energy metabolism phenotypes, plausibly reflecting adaptations to novel dietary sources available in the Americas.
Collapse
Affiliation(s)
- Javier Mendoza-Revilla
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom.,Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Louise Ormond
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom
| | - Ke Wang
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, Colombia
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,National School of Anthropology and History, Mexico City, Mexico
| | | | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Universidad Nacional Autónoma de México e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | | | - Maria A Nieves-Colón
- Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Christopher R Gignoux
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Genevieve L Wojcik
- Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, USA
| | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Tábita Hünemeier
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Patagónico de Ciencias Sociales y Humanas-Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | | | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas-Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Universidad Nacional Autónoma de México e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, Colombia
| | | | - David Balding
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom.,Schools of BioSciences and Mathematics & Statistics, University of Melbourne, Melbourne, Australia
| | - Matteo Fumagalli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom.,Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom
| |
Collapse
|
12
|
Cuadros-Espinoza S, Laval G, Quintana-Murci L, Patin E. The genomic signatures of natural selection in admixed human populations. Am J Hum Genet 2022; 109:710-726. [PMID: 35259336 DOI: 10.1016/j.ajhg.2022.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Admixture has been a pervasive phenomenon in human history, extensively shaping the patterns of population genetic diversity. There is increasing evidence to suggest that admixture can also facilitate genetic adaptation to local environments, i.e., admixed populations acquire beneficial mutations from source populations, a process that we refer to as "adaptive admixture." However, the role of adaptive admixture in human evolution and the power to detect it remain poorly characterized. Here, we use extensive computer simulations to evaluate the power of several neutrality statistics to detect natural selection in the admixed population, assuming multiple admixture scenarios. We show that statistics based on admixture proportions, Fadm and LAD, show high power to detect mutations that are beneficial in the admixed population, whereas other statistics, including iHS and FST, falsely detect neutral mutations that have been selected in the source populations only. By combining Fadm and LAD into a single, powerful statistic, we scanned the genomes of 15 worldwide, admixed populations for signatures of adaptive admixture. We confirm that lactase persistence and resistance to malaria have been under adaptive admixture in West Africans and in Malagasy, North Africans, and South Asians, respectively. Our approach also uncovers other cases of adaptive admixture, including APOL1 in Fulani nomads and PKN2 in East Indonesians, involved in resistance to infection and metabolism, respectively. Collectively, our study provides evidence that adaptive admixture has occurred in human populations whose genetic history is characterized by periods of isolation and spatial expansions resulting in increased gene flow.
Collapse
|
13
|
Gutiérrez-Reinoso MA, Aponte PM, García-Herreros M. A review of inbreeding depression in dairy cattle: current status, emerging control strategies, and future prospects. J DAIRY RES 2022; 89:1-10. [PMID: 35225176 DOI: 10.1017/s0022029922000188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dairy cattle breeding has historically focused on relatively small numbers of elite bulls as sires of sons. In recent years, even if generation intervals were reduced and more diverse sires of sons could have been selected, genomic selection has not fundamentally changed the fact that a large number of individuals are being analyzed. However, a relatively small number of elite bulls are still siring those animals. Therefore inbreeding-derived negative consequences in the gene pool have brought concern. The detrimental effects of non-additive genetic changes such as inbreeding depression and dominance have been widely disseminated while seriously affecting bioeconomically important parameters because of an antagonistic relationship between dairy production and reproductive traits. Therefore, the estimation of benefits and limitations of inbreeding and variance of the selection response deserves to be evaluated and discussed to preserve genetic variability, a significant concern in the selection of individuals for reproduction and production. Short-term strategies for genetic merit improvement through modern breeding programs have severely lowered high-producing dairy cattle fertility potential. Since the current selection programs potentially increase long-term costs, genetic diversity has decreased globally as a consequence. Therefore, a greater understanding of the potential that selection programs have for supporting long-term genetic sustainability and genetic diversity among dairy cattle populations should be prioritized in managing farm profitability. The present review provides a broad approach to current inbreeding-derived problems, identifying critical points to be solved and possible alternative strategies to control selection against homozygous haplotypes while maintaining sustained selection pressure. Moreover, this manuscript explores future perspectives, emphasizing theoretical applications and critical points, and strategies to avoid the adverse effects of inbreeding in dairy cattle. Finally, this review provides an overview of challenges that will soon require multidisciplinary approaches to managing dairy cattle populations, intending to combine increases in productive trait phenotypes with improvements in reproductive, health, welfare, linear conformation, and adaptability traits into the foreseeable future.
Collapse
Affiliation(s)
- Miguel A Gutiérrez-Reinoso
- Universidad Técnica de Cotopaxi, Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria (UTC), Latacunga, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán (UdeC), Chile
| | - Pedro M Aponte
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias Biológicas y Ambientales (COCIBA), Campus Cumbayá, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, iBioMed, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito, Ecuador
| | | |
Collapse
|
14
|
Cheng JY, Stern AJ, Racimo F, Nielsen R. Detecting Selection in Multiple Populations by Modeling Ancestral Admixture Components. Mol Biol Evol 2022; 39:msab294. [PMID: 34626111 PMCID: PMC8763095 DOI: 10.1093/molbev/msab294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One of the most powerful and commonly used approaches for detecting local adaptation in the genome is the identification of extreme allele frequency differences between populations. In this article, we present a new maximum likelihood method for finding regions under positive selection. It is based on a Gaussian approximation to allele frequency changes and it incorporates admixture between populations. The method can analyze multiple populations simultaneously and retains power to detect selection signatures specific to ancestry components that are not representative of any extant populations. Using simulated data, we compare our method to related approaches, and show that it is orders of magnitude faster than the state-of-the-art, while retaining similar or higher power for most simulation scenarios. We also apply it to human genomic data and identify loci with extreme genetic differentiation between major geographic groups. Many of the genes identified are previously known selected loci relating to hair pigmentation and morphology, skin, and eye pigmentation. We also identify new candidate regions, including various selected loci in the Native American component of admixed Mexican-Americans. These involve diverse biological functions, such as immunity, fat distribution, food intake, vision, and hair development.
Collapse
Affiliation(s)
- Jade Yu Cheng
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron J Stern
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
15
|
Laval G, Patin E, Boutillier P, Quintana-Murci L. Sporadic occurrence of recent selective sweeps from standing variation in humans as revealed by an approximate Bayesian computation approach. Genetics 2021; 219:6377789. [PMID: 34849862 DOI: 10.1093/genetics/iyab161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
During their dispersals over the last 100,000 years, modern humans have been exposed to a large variety of environments, resulting in genetic adaptation. While genome-wide scans for the footprints of positive Darwinian selection have increased knowledge of genes and functions potentially involved in human local adaptation, they have globally produced evidence of a limited contribution of selective sweeps in humans. Conversely, studies based on machine learning algorithms suggest that recent sweeps from standing variation are widespread in humans, an observation that has been recently questioned. Here, we sought to formally quantify the number of recent selective sweeps in humans, by leveraging approximate Bayesian computation and whole-genome sequence data. Our computer simulations revealed suitable ABC estimations, regardless of the frequency of the selected alleles at the onset of selection and the completion of sweeps. Under a model of recent selection from standing variation, we inferred that an average of 68 (from 56 to 79) and 140 (from 94 to 198) sweeps occurred over the last 100,000 years of human history, in African and Eurasian populations, respectively. The former estimation is compatible with human adaptation rates estimated since divergence with chimps, and reveals numbers of sweeps per generation per site in the range of values estimated in Drosophila. Our results confirm the rarity of selective sweeps in humans and show a low contribution of sweeps from standing variation to recent human adaptation.
Collapse
Affiliation(s)
- Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| | - Pierre Boutillier
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France.,Human Genomics and Evolution, Collège de France, 75005 Paris, France
| |
Collapse
|
16
|
Alam O, Gutaker RM, Wu CC, Hicks KA, Bocinsky K, Castillo CC, Acabado S, Fuller D, d'Alpoim Guedes JA, Hsing YI, Purugganan MD. Genome analysis traces regional dispersal of rice in Taiwan and Southeast Asia. Mol Biol Evol 2021; 38:4832-4846. [PMID: 34240169 PMCID: PMC8557449 DOI: 10.1093/molbev/msab209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dispersal of rice (Oryza sativa) following domestication influenced massive social and cultural changes across South, East, and Southeast Asia. The history of dispersal across islands of Southeast Asia, and the role of Taiwan and the Austronesian expansion in this process remain largely unresolved. Here, we reconstructed the routes of dispersal of O. sativa ssp. japonica rice through Taiwan and the northern Philippines using whole-genome re-sequencing of indigenous rice landraces coupled with archaeological and paleoclimate data. Our results indicate that japonica rice found in the northern Philippines diverged from Indonesian landraces as early as 3500 BP. In contrast, rice cultivated by the indigenous peoples of the Taiwanese mountains has complex origins. It comprises two distinct populations, each best explained as a result of admixture between temperate japonica that presumably came from northeast Asia, and tropical japonica from the northern Philippines and mainland Southeast Asia respectively. We find that the temperate japonica component of these indigenous Taiwan populations diverged from northeast Asia subpopulations at about 2600 BP, while gene flow from the northern Philippines occurred before ∼1300 years BP. This coincides with a period of intensified trade established across the South China Sea. Finally, we find evidence for positive selection acting on distinct genomic regions in different rice subpopulations, indicating local adaptation associated with the spread of japonica rice.
Collapse
Affiliation(s)
- Ornob Alam
- Center for Genomics and Systems Biology, New York University, New York, NY 10003 USA
| | - Rafal M Gutaker
- Center for Genomics and Systems Biology, New York University, New York, NY 10003 USA.,Royal Botanic Garden, Kew, Richmond, London, TW9 3AE UK
| | - Cheng-Chieh Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan.,Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Karen A Hicks
- Department of Biology, Kenyon College, Gambier, Ohio 43022 USA
| | | | | | - Stephen Acabado
- Department of Anthropology, University of California, Los Angeles, CA USA
| | - Dorian Fuller
- Institute of Archaeology, University College London, London, United Kingdom.,School of Cultural Heritage, North-West University, Xi'an, China
| | - Jade A d'Alpoim Guedes
- Department of Anthropology and Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003 USA.,Institute for the Study of the Ancient World, New York University, New York, NY 10028 USA
| |
Collapse
|
17
|
Nunes K, Maia MHT, Dos Santos EJM, Dos Santos SEB, Guerreiro JF, Petzl-Erler ML, Bedoya G, Gallo C, Poletti G, Llop E, Tsuneto L, Bortolini MC, Rothhammer F, Single R, Ruiz-Linares A, Rocha J, Meyer D. How natural selection shapes genetic differentiation in the MHC region: A case study with Native Americans. Hum Immunol 2021; 82:523-531. [PMID: 33812704 PMCID: PMC8217218 DOI: 10.1016/j.humimm.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The Human Leukocyte Antigen (HLA) loci are extremely well documented targets of balancing selection, yet few studies have explored how selection affects population differentiation at these loci. In the present study we investigate genetic differentiation at HLA genes by comparing differentiation at microsatellites distributed genomewide to those in the MHC region. Our study uses a sample of 494 individuals from 30 human populations, 28 of which are Native Americans, all of whom were typed for genomewide and MHC region microsatellites. We find greater differentiation in the MHC than in the remainder of the genome (FST-MHC = 0.130 and FST-Genomic = 0.087), and use a permutation approach to show that this difference is statistically significant, and not accounted for by confounding factors. This finding lies in the opposite direction to the expectation that balancing selection reduces population differentiation. We interpret our findings as evidence that selection favors different sets of alleles in distinct localities, leading to increased differentiation. Thus, balancing selection at HLA genes simultaneously increases intra-population polymorphism and inter-population differentiation in Native Americans.
Collapse
Affiliation(s)
- Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | - Gabriel Bedoya
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elena Llop
- Instituto de Ciencias Biomédicas, Faculdad de Medicina, Universidade de Chile, Santiago, Chile
| | - Luiza Tsuneto
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Richard Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, USA
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; D Aix-Marseille University, CNRS, EFS, ADES, Marseille 13007, France
| | - Jorge Rocha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal.
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Bourgeois YXC, Warren BH. An overview of current population genomics methods for the analysis of whole-genome resequencing data in eukaryotes. Mol Ecol 2021; 30:6036-6071. [PMID: 34009688 DOI: 10.1111/mec.15989] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Characterizing the population history of a species and identifying loci underlying local adaptation is crucial in functional ecology, evolutionary biology, conservation and agronomy. The constant improvement of high-throughput sequencing techniques has facilitated the production of whole genome data in a wide range of species. Population genomics now provides tools to better integrate selection into a historical framework, and take into account selection when reconstructing demographic history. However, this improvement has come with a profusion of analytical tools that can confuse and discourage users. Such confusion limits the amount of information effectively retrieved from complex genomic data sets, and impairs the diffusion of the most recent analytical tools into fields such as conservation biology. It may also lead to redundancy among methods. To address these isssues, we propose an overview of more than 100 state-of-the-art methods that can deal with whole genome data. We summarize the strategies they use to infer demographic history and selection, and discuss some of their limitations. A website listing these methods is available at www.methodspopgen.com.
Collapse
Affiliation(s)
| | - Ben H Warren
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP 51, Paris, France
| |
Collapse
|
19
|
Yair S, Lee KM, Coop G. The timing of human adaptation from Neanderthal introgression. Genetics 2021; 218:iyab052. [PMID: 33787889 PMCID: PMC8128397 DOI: 10.1093/genetics/iyab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Admixture has the potential to facilitate adaptation by providing alleles that are immediately adaptive in a new environment or by simply increasing the long-term reservoir of genetic diversity for future adaptation. A growing number of cases of adaptive introgression are being identified in species across the tree of life, however the timing of selection, and therefore the importance of the different evolutionary roles of admixture, is typically unknown. Here, we investigate the spatio-temporal history of selection favoring Neanderthal-introgressed alleles in modern human populations. Using both ancient and present-day samples of modern humans, we integrate the known demographic history of populations, namely population divergence and migration, with tests for selection. We model how a sweep placed along different branches of an admixture graph acts to modify the variance and covariance in neutral allele frequencies among populations at linked loci. Using a method based on this model of allele frequencies, we study previously identified cases of adaptive Neanderthal introgression. From these, we identify cases in which Neanderthal-introgressed alleles were quickly beneficial and other cases in which they persisted at low frequency for some time. For some of the alleles that persisted at low frequency, we show that selection likely independently favored them later on in geographically separated populations. Our work highlights how admixture with ancient hominins has contributed to modern human adaptation and contextualizes observed levels of Neanderthal ancestry in present-day and ancient samples.
Collapse
Affiliation(s)
- Sivan Yair
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Kristin M Lee
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Graham Coop
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
20
|
Feng Y, McQuillan MA, Tishkoff SA. Evolutionary genetics of skin pigmentation in African populations. Hum Mol Genet 2021; 30:R88-R97. [PMID: 33438000 PMCID: PMC8117430 DOI: 10.1093/hmg/ddab007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Skin color is a highly heritable human trait, and global variation in skin pigmentation has been shaped by natural selection, migration and admixture. Ethnically diverse African populations harbor extremely high levels of genetic and phenotypic diversity, and skin pigmentation varies widely across Africa. Recent genome-wide genetic studies of skin pigmentation in African populations have advanced our understanding of pigmentation biology and human evolutionary history. For example, novel roles in skin pigmentation for loci near MFSD12 and DDB1 have recently been identified in African populations. However, due to an underrepresentation of Africans in human genetic studies, there is still much to learn about the evolutionary genetics of skin pigmentation. Here, we summarize recent progress in skin pigmentation genetics in Africans and discuss the importance of including more ethnically diverse African populations in future genetic studies. In addition, we discuss methods for functional validation of adaptive variants related to skin pigmentation.
Collapse
Affiliation(s)
- Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Olazcuaga L, Loiseau A, Parrinello H, Paris M, Fraimout A, Guedot C, Diepenbrock LM, Kenis M, Zhang J, Chen X, Borowiec N, Facon B, Vogt H, Price DK, Vogel H, Prud'homme B, Estoup A, Gautier M. A Whole-Genome Scan for Association with Invasion Success in the Fruit Fly Drosophila suzukii Using Contrasts of Allele Frequencies Corrected for Population Structure. Mol Biol Evol 2021; 37:2369-2385. [PMID: 32302396 PMCID: PMC7403613 DOI: 10.1093/molbev/msaa098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence is accumulating that evolutionary changes are not only common during biological invasions but may also contribute directly to invasion success. The genomic basis of such changes is still largely unexplored. Yet, understanding the genomic response to invasion may help to predict the conditions under which invasiveness can be enhanced or suppressed. Here, we characterized the genome response of the spotted wing drosophila Drosophila suzukii during the worldwide invasion of this pest insect species, by conducting a genome-wide association study to identify genes involved in adaptive processes during invasion. Genomic data from 22 population samples were analyzed to detect genetic variants associated with the status (invasive versus native) of the sampled populations based on a newly developed statistic, we called C2, that contrasts allele frequencies corrected for population structure. We evaluated this new statistical framework using simulated data sets and implemented it in an upgraded version of the program BayPass. We identified a relatively small set of single-nucleotide polymorphisms that show a highly significant association with the invasive status of D. suzukii populations. In particular, two genes, RhoGEF64C and cpo, contained single-nucleotide polymorphisms significantly associated with the invasive status in the two separate main invasion routes of D. suzukii. Our methodological approaches can be applied to any other invasive species, and more generally to any evolutionary model for species characterized by nonequilibrium demographic conditions for which binary covariables of interest can be defined at the population level.
Collapse
Affiliation(s)
- Laure Olazcuaga
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Anne Loiseau
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Hugues Parrinello
- MGX, Biocampus Montpellier, CNRS, INSERM, Universite de Montpellier, Montpellier, France
| | | | - Antoine Fraimout
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | | | | | | | - Jinping Zhang
- MoA-CABI Joint Laboratory for Bio-Safety, Chinese Academy of Agricultural Sciences, BeiXiaGuan, Haidian Qu, China
| | - Xiao Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Nicolas Borowiec
- UMR INRAE-CNRS-Université Côte d'Azur Sophia Agrobiotech Institute, Sophia Antipolis, France
| | - Benoit Facon
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, INRAE, Saint-Pierre, La Réunion, France
| | - Heidrun Vogt
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Dossenheim, Germany
| | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Arnaud Estoup
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Mathieu Gautier
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| |
Collapse
|
22
|
Rezende FM, Rodriguez E, Leal-Gutiérrez JD, Elzo MA, Johnson DD, Carr C, Mateescu RG. Genomic Approaches Reveal Pleiotropic Effects in Crossbred Beef Cattle. Front Genet 2021; 12:627055. [PMID: 33815465 PMCID: PMC8017557 DOI: 10.3389/fgene.2021.627055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Carcass and meat quality are two important attributes for the beef industry because they drive profitability and consumer demand. These traits are of even greater importance in crossbred cattle used in subtropical and tropical regions for their superior adaptability because they tend to underperform compared to their purebred counterparts. Many of these traits are challenging and expensive to measure and unavailable until late in life or after the animal is harvested, hence unrealistic to improve through traditional phenotypic selection, but perfect candidates for genomic selection. Before genomic selection can be implemented in crossbred populations, it is important to explore if pleiotropic effects exist between carcass and meat quality traits. Therefore, the objective of this study was to identify genomic regions with pleiotropic effects on carcass and meat quality traits in a multibreed Angus-Brahman population that included purebred and crossbred animals. Data included phenotypes for 10 carcass and meat quality traits from 2,384 steers, of which 1,038 were genotyped with the GGP Bovine F-250. Single-trait genome-wide association studies were first used to investigate the relevance of direct additive genetic effects on each carcass, sensory and visual meat quality traits. A second analysis for each trait included all other phenotypes as covariates to correct for direct causal effects from identified genomic regions with pure direct effects on the trait under analysis. Five genomic windows on chromosomes BTA5, BTA7, BTA18, and BTA29 explained more than 1% of additive genetic variance of two or more traits. Moreover, three suggestive pleiotropic regions were identified on BTA10 and BTA19. The 317 genes uncovered in pleiotropic regions included anchoring and cytoskeletal proteins, key players in cell growth, muscle development, lipid metabolism and fat deposition, and important factors in muscle proteolysis. A functional analysis of these genes revealed GO terms directly related to carcass quality, meat quality, and tenderness in beef cattle, including calcium-related processes, cell signaling, and modulation of cell-cell adhesion. These results contribute with novel information about the complex genetic architecture and pleiotropic effects of carcass and meat quality traits in crossbred beef cattle.
Collapse
Affiliation(s)
- Fernanda M Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Eduardo Rodriguez
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Joel D Leal-Gutiérrez
- Psychiatry Department, University of California, San Diego, La Jolla, CA, United States
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Dwain D Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Bal TMP, Llanos-Garrido A, Chaturvedi A, Verdonck I, Hellemans B, Raeymaekers JAM. Adaptive Divergence under Gene Flow along an Environmental Gradient in Two Coexisting Stickleback Species. Genes (Basel) 2021; 12:435. [PMID: 33803820 PMCID: PMC8003309 DOI: 10.3390/genes12030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
There is a general and solid theoretical framework to explain how the interplay between natural selection and gene flow affects local adaptation. Yet, to what extent coexisting closely related species evolve collectively or show distinctive evolutionary responses remains a fundamental question. To address this, we studied the population genetic structure and morphological differentiation of sympatric three-spined and nine-spined stickleback. We conducted genotyping-by-sequencing and morphological trait characterisation using 24 individuals of each species from four lowland brackish water (LBW), four lowland freshwater (LFW) and three upland freshwater (UFW) sites in Belgium and the Netherlands. This combination of sites allowed us to contrast populations from isolated but environmentally similar locations (LFW vs. UFW), isolated but environmentally heterogeneous locations (LBW vs. UFW), and well-connected but environmentally heterogenous locations (LBW vs. LFW). Overall, both species showed comparable levels of genetic diversity and neutral genetic differentiation. However, for all three spatial scales, signatures of morphological and genomic adaptive divergence were substantially stronger among populations of the three-spined stickleback than among populations of the nine-spined stickleback. Furthermore, most outlier SNPs in the two species were associated with local freshwater sites. The few outlier SNPs that were associated with the split between brackish water and freshwater populations were located on one linkage group in three-spined stickleback and two linkage groups in nine-spined stickleback. We conclude that while both species show congruent evolutionary and genomic patterns of divergent selection, both species differ in the magnitude of their response to selection regardless of the geographical and environmental context.
Collapse
Affiliation(s)
- Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway;
| | | | - Anurag Chaturvedi
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland;
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | - Io Verdonck
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | | |
Collapse
|
24
|
Bhutani K, Stansifer K, Ticau S, Bojic L, Villani AC, Slisz J, Cremers CM, Roy C, Donovan J, Fiske B, Friedman RC. Widespread haploid-biased gene expression enables sperm-level natural selection. Science 2021; 371:science.abb1723. [PMID: 33446482 DOI: 10.1126/science.abb1723] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Sperm are haploid but must be functionally equivalent to distribute alleles equally among progeny. Accordingly, gene products are shared through spermatid cytoplasmic bridges that erase phenotypic differences between individual haploid sperm. Here, we show that a large class of mammalian genes are not completely shared across these bridges. We call these genes "genoinformative markers" (GIMs) and show that a subset can act as selfish genetic elements that spread alleles unevenly through murine, bovine, and human populations. We identify evolutionary pressure to avoid conflict between sperm and somatic function as GIMs are enriched for testis-specific gene expression, paralogs, and isoforms. Therefore, GIMs and sperm-level natural selection may help to explain why testis gene expression patterns are an outlier relative to all other tissues.
Collapse
Affiliation(s)
| | | | | | | | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Center for Cancer Research, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Schneider K, White TJ, Mitchell S, Adams CE, Reeve R, Elmer KR. The pitfalls and virtues of population genetic summary statistics: Detecting selective sweeps in recent divergences. J Evol Biol 2020; 34:893-909. [DOI: 10.1111/jeb.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Tom J. White
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Sonia Mitchell
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
- Scottish Centre for Ecology and the Natural Environment Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Richard Reeve
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| |
Collapse
|
26
|
Orlando L. The Evolutionary and Historical Foundation of the Modern Horse: Lessons from Ancient Genomics. Annu Rev Genet 2020; 54:563-581. [PMID: 32960653 DOI: 10.1146/annurev-genet-021920-011805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The domestication of the horse some 5,500 years ago followed those of dogs, sheep, goats, cattle, and pigs by ∼2,500-10,000 years. By providing fast transportation and transforming warfare, the horse had an impact on human history with no equivalent in the animal kingdom. Even though the equine sport industry has considerable economic value today, the evolutionary history underlying the emergence of the modern domestic horse remains contentious. In the last decade, novel sequencing technologies have revolutionized our capacity to sequence the complete genome of organisms, including from archaeological remains. Applied to horses, these technologies have provided unprecedented levels of information and have considerably changed models of horse domestication. This review illustrates how ancient DNA, especially ancient genomes, has inspired researchers to rethink the process by which horses were first domesticated and then diversified into a variety of breeds showing a range of traits that are useful to humans.
Collapse
Affiliation(s)
- Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse, Faculté de Médecine Purpan, Université Toulouse III-Paul Sabatier, 31000 Toulouse, France;
| |
Collapse
|
27
|
Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends Genet 2020; 36:415-428. [DOI: 10.1016/j.tig.2020.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
|
28
|
Dehasque M, Ávila‐Arcos MC, Díez‐del‐Molino D, Fumagalli M, Guschanski K, Lorenzen ED, Malaspinas A, Marques‐Bonet T, Martin MD, Murray GGR, Papadopulos AST, Therkildsen NO, Wegmann D, Dalén L, Foote AD. Inference of natural selection from ancient DNA. Evol Lett 2020; 4:94-108. [PMID: 32313686 PMCID: PMC7156104 DOI: 10.1002/evl3.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023] Open
Abstract
Evolutionary processes, including selection, can be indirectly inferred based on patterns of genomic variation among contemporary populations or species. However, this often requires unrealistic assumptions of ancestral demography and selective regimes. Sequencing ancient DNA from temporally spaced samples can inform about past selection processes, as time series data allow direct quantification of population parameters collected before, during, and after genetic changes driven by selection. In this Comment and Opinion, we advocate for the inclusion of temporal sampling and the generation of paleogenomic datasets in evolutionary biology, and highlight some of the recent advances that have yet to be broadly applied by evolutionary biologists. In doing so, we consider the expected signatures of balancing, purifying, and positive selection in time series data, and detail how this can advance our understanding of the chronology and tempo of genomic change driven by selection. However, we also recognize the limitations of such data, which can suffer from postmortem damage, fragmentation, low coverage, and typically low sample size. We therefore highlight the many assumptions and considerations associated with analyzing paleogenomic data and the assumptions associated with analytical methods.
Collapse
Affiliation(s)
- Marianne Dehasque
- Centre for Palaeogenetics10691StockholmSweden
- Department of Bioinformatics and GeneticsSwedish Museum of Natural History10405StockholmSweden
- Department of ZoologyStockholm University10691StockholmSweden
| | - María C. Ávila‐Arcos
- International Laboratory for Human Genome Research (LIIGH)UNAM JuriquillaQueretaro76230Mexico
| | - David Díez‐del‐Molino
- Centre for Palaeogenetics10691StockholmSweden
- Department of ZoologyStockholm University10691StockholmSweden
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park CampusImperial College LondonAscotSL5 7PYUnited Kingdom
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University75236UppsalaSweden
| | | | - Anna‐Sapfo Malaspinas
- Department of Computational BiologyUniversity of Lausanne1015LausanneSwitzerland
- SIB Swiss Institute of Bioinformatics1015LausanneSwitzerland
| | - Tomas Marques‐Bonet
- Institut de Biologia Evolutiva(CSIC‐Universitat Pompeu Fabra), Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
- National Centre for Genomic Analysis—Centre for Genomic RegulationBarcelona Institute of Science and Technology08028BarcelonaSpain
- Institucio Catalana de Recerca i Estudis Avançats08010BarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Michael D. Martin
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Gemma G. R. Murray
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB2 1TNUnited Kingdom
| | - Alexander S. T. Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological SciencesBangor UniversityBangorLL57 2UWUnited Kingdom
| | | | - Daniel Wegmann
- Department of BiologyUniversité de Fribourg1700FribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Love Dalén
- Centre for Palaeogenetics10691StockholmSweden
- Department of Bioinformatics and GeneticsSwedish Museum of Natural History10405StockholmSweden
| | - Andrew D. Foote
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological SciencesBangor UniversityBangorLL57 2UWUnited Kingdom
| |
Collapse
|
29
|
Abstract
Between the 1930s and 1950s, scientists developed key principles of population genetics to try and explain the aging process. Almost a century later, these aging theories, including antagonistic pleiotropy and mutation accumulation, have been experimentally validated in animals. Although the theories have been much harder to test in humans despite research dating back to the 1970s, recent research is closing this evidence gap. Here we examine the strength of evidence for antagonistic pleiotropy in humans, one of the leading evolutionary explanations for the retention of genetic risk variation for non-communicable diseases. We discuss the analytical tools and types of data that are used to test for patterns of antagonistic pleiotropy and provide a primer of evolutionary theory on types of selection as a guide for understanding this mechanism and how it may manifest in other diseases. We find an abundance of non-experimental evidence for antagonistic pleiotropy in many diseases. In some cases, several studies have independently found corroborating evidence for this mechanism in the same or related sets of diseases including cancer and neurodegenerative diseases. Recent studies also suggest antagonistic pleiotropy may be involved in cardiovascular disease and diabetes. There are also compelling examples of disease risk variants that confer fitness benefits ranging from resistance to other diseases or survival in extreme environments. This provides increasingly strong support for the theory that antagonistic pleiotropic variants have enabled improved fitness but have been traded for higher burden of disease later in life. Future research in this field is required to better understand how this mechanism influences contemporary disease and possible consequences for their treatment.
Collapse
|
30
|
Orlando L. Ancient Genomes Reveal Unexpected Horse Domestication and Management Dynamics. Bioessays 2019; 42:e1900164. [PMID: 31808562 DOI: 10.1002/bies.201900164] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/11/2019] [Indexed: 12/18/2022]
Abstract
The horse was essential to past human societies but became a recreational animal during the twentieth century as the world became increasingly mechanized. As the author reviews here, recent studies of ancient genomes have revisited the understanding of horse domestication, from the very early stages to the most modern developments. They have uncovered several extinct lineages roaming the far ends of Eurasia some 4000 years ago. They have shown that the domestic horse has been significantly reshaped during the last millennium and experienced a sharp decline in genetic diversity within the last two centuries. At a time when no truly wild horses exist any longer, this calls for enhanced conservation in all endangered populations. These include the Przewalski's horse native to Mongolia, and the many local breeds side-lined by the modern agenda, but yet representing the living heritage of over five millennia of horse breeding.
Collapse
Affiliation(s)
- Ludovic Orlando
- Laboratoire d'Anthropobiologie et d'Imagerie de Synthèse, CNRS UMR 5288, Faculté de Médecine de Purpan, 37 allées Jules Guesde, Bâtiment A, 31000, Toulouse, France.,The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350K, Copenhagen, Denmark
| |
Collapse
|
31
|
Anderson G, Hampton J, Smith N, Rico C. Indications of strong adaptive population genetic structure in albacore tuna ( Thunnus alalunga) in the southwest and central Pacific Ocean. Ecol Evol 2019; 9:10354-10364. [PMID: 31624554 PMCID: PMC6787800 DOI: 10.1002/ece3.5554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023] Open
Abstract
Albacore tuna (Thunnus alalunga) has a distinctly complex life history in which juveniles and adults separate geographically but at times inhabit the same spaces sequentially. The species also migrates long distances and presumably experiences varied regimes of physical stress over a lifetime. There are, therefore, many opportunities for population structure to arise based on stochastic differences or environmental factors that promote local adaptation. However, with the extent of mobility consistently demonstrated by tagged individuals, there is also a strong argument for panmixia within an ocean basin. It is important to confirm such assumptions from a population genetics standpoint for this species in particular because albacore is one of the principal market tuna species that sustains massive global fisheries and yet is also a slow-growing temperate tuna. Consequently, we used 1,837 neutral SNP loci and 89 loci under potential selection to analyze population genetic structure among five sample groups collected from the western and central South Pacific. We found no evidence to challenge panmixia at neutral loci, but strong indications of structuring at adaptive loci. One population sample, from French Polynesia in 2004, was particularly differentiated. Unfortunately, the current study cannot infer whether the divergence is geographic or temporal, or possibly caused by sample distribution. We encourage future studies to include potentially adaptive loci and to continue fine-scale observations within an ocean basin, and not to assume genome-wide panmixia.
Collapse
Affiliation(s)
- Giulia Anderson
- School of Marine StudiesMolecular Analytics Laboratory (MOANA‐LAB)Faculty of Science Technology and EnvironmentThe University of the South PacificSuvaFiji
| | - John Hampton
- Oceanic Fisheries Programme (OFP)Pacific CommunityNouméaNew Caledonia
| | - Neville Smith
- Oceanic Fisheries Programme (OFP)Pacific CommunityNouméaNew Caledonia
| | - Ciro Rico
- School of Marine StudiesMolecular Analytics Laboratory (MOANA‐LAB)Faculty of Science Technology and EnvironmentThe University of the South PacificSuvaFiji
- Instituto de Ciencias Marinas de Andalucía (ICMAN)Consejo Superior de Investigaciones CientíficasCádizSpain
| |
Collapse
|