1
|
Chitkara P, Singh A, Gangwar R, Bhardwaj R, Zahra S, Arora S, Hamid F, Arya A, Sahu N, Chakraborty S, Ramesh M, Kumar S. The landscape of fusion transcripts in plants: a new insight into genome complexity. BMC PLANT BIOLOGY 2024; 24:1162. [PMID: 39627690 PMCID: PMC11616359 DOI: 10.1186/s12870-024-05900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Fusion transcripts (FTs), generated by the fusion of genes at the DNA level or RNA-level splicing events significantly contribute to transcriptome diversity. FTs are usually considered unique features of neoplasia and serve as biomarkers and therapeutic targets for multiple cancers. The latest findings show the presence of FTs in normal human physiology. Several discrete reports mentioned the presence of fusion transcripts in planta, has important roles in stress responses, morphological alterations, or traits (e.g. seed size, etc.). RESULTS In this study, we identified 169,197 fusion transcripts in 2795 transcriptome datasets of Arabidopsis thaliana, Cicer arietinum, and Oryza sativa by using a combination of tools, and confirmed the translational activity of 150 fusion transcripts through proteomic datasets. Analysis of the FT junction sequences and their association with epigenetic factors, as revealed by ChIP-Seq datasets, demonstrated an organised process of fusion formation at the DNA level. We investigated the possible impact of three-dimensional chromatin conformation on intra-chromosomal fusion events by leveraging the Hi-C datasets with the incidence of fusion transcripts. We further utilised the long-read RNA-Seq datasets to validate the most reoccurring fusion transcripts in each plant species followed by further authentication through RT-PCR and Sanger sequencing. CONCLUSIONS Our findings suggest that a significant portion of fusion events may be attributed to alternative splicing during transcription, accounting for numerous fusion events without a proportional increase in the number of RNA pairs. Even non-nuclear DNA transcripts from mitochondria and chloroplasts can participate in intra- and inter-chromosomal fusion formation. Genes in close spatial proximity are more prone to undergoing fusion formation, especially in intra-chromosomal FTs. Most of the fusion transcripts may not undergo translation and serve as long non-coding RNAs. The low validation rate of FTs in plants indicated that the fusion transcripts are expressed at very low levels, like in the case of humans. FTs often originate from parental genes involved in essential biological processes, suggesting their relevance across diverse tissues and stress conditions. This study presents a comprehensive repository of fusion transcripts, offering valuable insights into their roles in vital physiological processes and stress responses.
Collapse
Affiliation(s)
- Pragya Chitkara
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajeet Singh
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Baylor College of Medicine, Houston, TX, USA
| | - Rashmi Gangwar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohan Bhardwaj
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Technical University of Munich, Freising, Germany
| | - Shafaque Zahra
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Simran Arora
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Fiza Hamid
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ajay Arya
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namrata Sahu
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srija Chakraborty
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Madhulika Ramesh
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Leprêtre F, Meneboo JP, Villenet C, Delestré L, Quesnel B, Shelley CS, Figeac M, Galiègue-Zouitina S. Full-length RNA-Seq of the RHOH gene in human B cells reveals new exons and splicing patterns. Sci Rep 2024; 14:28297. [PMID: 39550462 PMCID: PMC11569159 DOI: 10.1038/s41598-024-79307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
The RhoH protein is a member of the Ras superfamily of guanosine triphosphate-binding proteins. RhoH is an atypical Rho family member that is always GTP-bound and thus always activated. It is restrictively expressed in normal hematopoietic cells, where it is a negative regulator of cell growth and survival. We previously analyzed the RHOH gene structure and demonstrated that this gene is composed of 7 exons, one single encoding exon located at the 3' extremity of the gene, preceded by 6 noncoding exons. To further understand the transcription events associated with this gene, we performed full-length RNA-Seq on 12 B-cell lines. We identified new exons, new splice events and new splice sites, leading to the discovery of 38 RHOH mRNA molecules, 27 of which have never been described before. Here, we also describe new fusion transcripts. Moreover, our method allowed quantitative measurements of the different mRNA species relative to each other in relation to B-cell differentiation.
Collapse
Affiliation(s)
- Frédéric Leprêtre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France.
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | - Céline Villenet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | | | - Bruno Quesnel
- CHU Lille, UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Université de Lille, 59000, Lille, France
| | | | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | | |
Collapse
|
3
|
Singh S, Shi X, Haddox S, Elfman J, Ahmad SB, Lynch S, Manley T, Piczak C, Phung C, Sun Y, Sharma A, Li H. RTCpredictor: identification of read-through chimeric RNAs from RNA sequencing data. Brief Bioinform 2024; 25:bbae251. [PMID: 38796690 PMCID: PMC11128028 DOI: 10.1093/bib/bbae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024] Open
Abstract
Read-through chimeric RNAs are being recognized as a means to expand the functional transcriptome and contribute to cancer tumorigenesis when mis-regulated. However, current software tools often fail to predict them. We have developed RTCpredictor, utilizing a fast ripgrep tool to search for all possible exon-exon combinations of parental gene pairs. We also added exonic variants allowing searches containing common SNPs. To our knowledge, it is the first read-through chimeric RNA specific prediction method that also provides breakpoint coordinates. Compared with 10 other popular tools, RTCpredictor achieved high sensitivity on a simulated and three real datasets. In addition, RTCpredictor has less memory requirements and faster execution time, making it ideal for applying on large datasets.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Xinrui Shi
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Samuel Haddox
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Justin Elfman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Syed Basil Ahmad
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Sarah Lynch
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Tommy Manley
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Claire Piczak
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Christopher Phung
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Yunan Sun
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Aadi Sharma
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
4
|
Singh S, Shi X, Ahmad SB, Manley T, Piczak C, Phung C, Sun Y, Lynch S, Sharma A, Li H. RTCpredictor: Identification of Read-Through Chimeric RNAs from RNA Sequencing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526869. [PMID: 36778443 PMCID: PMC9915620 DOI: 10.1101/2023.02.02.526869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Read-through chimeric RNAs are gaining attention in cancer and other research fields, yet current tools often fail in predicting them. We have thus developed the first read-through chimeric RNA specific prediction method, RTCpredictor, utilizing a fast ripgrep algorithm to search for all possible exon-exon combinations of parental gene pairs. Compared with other ten popular tools, RTCpredictor achieved top performance on both simulated and real datasets. We randomly selected up to 30 candidate read-through chimeras predicted from each software method and experimentally validated a total of 109 read-throughs and on this set, RTCpredictor outperformed all the other methods. In addition, RTCpredictor ( https://github.com/sandybioteck/RTCpredictor ) has less memory requirements and faster execution time.
Collapse
|
5
|
Zhou Y, Zhang C, Zhang L, Ye Q, Liu N, Wang M, Long G, Fan W, Long M, Wing RA. Gene fusion as an important mechanism to generate new genes in the genus Oryza. Genome Biol 2022; 23:130. [PMID: 35706016 PMCID: PMC9199173 DOI: 10.1186/s13059-022-02696-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Events of gene fusion have been reported in several organisms. However, the general role of gene fusion as part of new gene origination remains unknown. RESULTS We conduct genome-wide interrogations of four Oryza genomes by designing and implementing novel pipelines to detect fusion genes. Based on the phylogeny of ten plant species, we detect 310 fusion genes across four Oryza species. The estimated rate of origination of fusion genes in the Oryza genus is as high as 63 fusion genes per species per million years, which is fixed at 16 fusion genes per species per million years and much higher than that in flies. By RNA sequencing analysis, we find more than 44% of the fusion genes are expressed and 90% of gene pairs show strong signals of purifying selection. Further analysis of CRISPR/Cas9 knockout lines indicates that newly formed fusion genes regulate phenotype traits including seed germination, shoot length and root length, suggesting the functional significance of these genes. CONCLUSIONS We detect new fusion genes that may drive phenotype evolution in Oryza. This study provides novel insights into the genome evolution of Oryza.
Collapse
Affiliation(s)
- Yanli Zhou
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Chengjun Zhang
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China.
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA.
| | - Li Zhang
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA
- Chinese Institute for Brain Research, (CIBR), Beijing, 102206, China
| | - Qiannan Ye
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Ningyawen Liu
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Muhua Wang
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Guangqiang Long
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wei Fan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA.
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- Center for Desert Agriculture, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Sun Y, Li H. Chimeric RNAs Discovered by RNA Sequencing and Their Roles in Cancer and Rare Genetic Diseases. Genes (Basel) 2022; 13:741. [PMID: 35627126 PMCID: PMC9140685 DOI: 10.3390/genes13050741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Chimeric RNAs are transcripts that are generated by gene fusion and intergenic splicing events, thus comprising nucleotide sequences from different parental genes. In the past, Northern blot analysis and RT-PCR were used to detect chimeric RNAs. However, they are low-throughput and can be time-consuming, labor-intensive, and cost-prohibitive. With the development of RNA-seq and transcriptome analyses over the past decade, the number of chimeric RNAs in cancer as well as in rare inherited diseases has dramatically increased. Chimeric RNAs may be potential diagnostic biomarkers when they are specifically expressed in cancerous cells and/or tissues. Some chimeric RNAs can also play a role in cell proliferation and cancer development, acting as tools for cancer prognosis, and revealing new insights into the cell origin of tumors. Due to their abilities to characterize a whole transcriptome with a high sequencing depth and intergenically identify spliced chimeric RNAs produced with the absence of chromosomal rearrangement, RNA sequencing has not only enhanced our ability to diagnose genetic diseases, but also provided us with a deeper understanding of these diseases. Here, we reviewed the mechanisms of chimeric RNA formation and the utility of RNA sequencing for discovering chimeric RNAs in several types of cancer and rare inherited diseases. We also discussed the diagnostic, prognostic, and therapeutic values of chimeric RNAs.
Collapse
Affiliation(s)
- Yunan Sun
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Wang Y, Li C, Gong X, Chen X, Liu C, Zhang H, Li S, Luo Y. Single-Cell Transcriptomics Reveals Splicing Features of Adult Neural Stem Cells in the Subventricular Zone. Front Cell Dev Biol 2022; 10:822934. [PMID: 35300421 PMCID: PMC8921602 DOI: 10.3389/fcell.2022.822934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 11/30/2022] Open
Abstract
The central nervous system has enormously complex cellular diversity with hundreds of distinct cell types, yet alternative splicing features in single cells of important cell types at neurogenic regions are not well understood. By employing in silico analysis, we systematically identified 3,611 alternative splicing events from 1,908 genes in 28 single-cell transcriptomic data of adult mouse ependymal and subependymal regions, and found that single-cell RNA-seq has the advantage in uncovering rare splicing isoforms compared to bulk RNA-seq at the population level. We uncovered that the simultaneous presence of multiple isoforms from the same gene in a single cell is prevalent, and quiescent stem cells, activated stem cells, and neuroblast cells exhibit high heterogeneity of splicing variants. Furthermore, we also demonstrated the existence of novel bicistronic transcripts in quiescent stem cells.
Collapse
Affiliation(s)
- Yanlu Wang
- Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China
| | - Chun Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Gong
- Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China
| | - Xiao Chen
- College of Architectural Engineering, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Chenming Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailei Zhang
- Novogene Bioinformatics Technology Co., Ltd., Beijing, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Cutler CP, Murray D, Ojo T, Harmon S, MacIver B, Cramb G, Zeidel ML. Aquaporin (AQP) channels in the spiny dogfish, Squalus acanthias I: Characterization of AQP3 and AQP15 function and expression, and localization of the proteins in gill and spiral valve intestine. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110702. [PMID: 34856346 DOI: 10.1016/j.cbpb.2021.110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/27/2023]
Abstract
Complementary DNAs (cDNAs) for two aquaporin water channel genes (AQP3 and AQP15) were amplified cloned and sequenced to initiate this study. Northern blot analysis was carried out to confirm the mRNA sizes of these AQP genes with AQP3 mRNA bands exhibiting sizes of 1.2 and 1.6 k bases and AQP15 had a mRNA band of 2.1 k bases. Northern blot analysis was also performed on kidney and esophagus total RNA samples from fish acclimated to 75%, 100% or 120% seawater (SW). The level of AQP15 mRNA expression was shown to significantly decrease following salinity acclimation from 100 to 120% SW. An opposite but non-significantly different trend was observed for AQP3 mRNA levels. Full length cDNAs were then used to generate AQP3 and AQP15 mRNAs for microinjection into Xenopus oocytes. Both AQP3- and AQP15- microinjected oocytes exhibited significantly elevated apparent water permeability compared to control oocytes at neutral pH. The apparent water permeability was mercury-inhibitable, significantly so in the case of AQP3. AQP3 microinjected oocytes showed pH sensitivity in their apparent water permeability, showing a lack of permeability at acidic pH values. The Carboxyl-terminal derived amino acid sequences of AQP3 and AQP15 were used to generate rabbit affinity-purified polyclonal antibodies. Western blots with the antibodies showed a band of 31.3 kDa for AQP3 in the kidney, with minor bands at 26, 24 and 21 kDa. For AQP15 a band of 26 kDa was seen in gill and kidney. Fainter bands at 28 and 24 kDa were also seen in the kidney. There was also some higher molecular weight banding. None of the bands were seen when the antibodies were pre- blocked with their peptide antigens. Immunohistochemical localization studies were also performed in the gill and spiral valve intestine. In the gill, AQP15 antibody staining was seen sporadically in the membranes of surface epithelial cells of the secondary lamellae. Tyramide amplification of signals was employed in the spiral valve intestine. Tyramide-amplified AQP3 antibody staining was observed in the basal membrane of the invaginated epithelial cell layer of secondary intestinal folds in luminal surface of either the side wall of the spiral valve intestine or in internal valve tissue 'flaps'. For the AQP15 antibody, tyramide-amplified staining was instead found on the apical and to a lesser extent the lateral membranes of the same invaginated epithelial cell layer. The localization of AQP3 and AQP15 in the spiral valve intestine suggests that a trans-cellular water absorption pathway may exist in this tissue.
Collapse
Affiliation(s)
- Christopher P Cutler
- Department of Biology, Georgia Southern University, Statesboro, GA, USA; Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA.
| | - Debra Murray
- Department of Biology, Georgia Southern University, Statesboro, GA, USA; Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Tolulope Ojo
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Sheena Harmon
- Department of Biology, Georgia Southern University, Statesboro, GA, USA; Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Bryce MacIver
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gordon Cramb
- School of Medicine, University of St Andrews, Fife, Scotland, UK
| | - Mark L Zeidel
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Matsumoto Y, Tsukamoto T, Chinen Y, Shimura Y, Sasaki N, Nagoshi H, Sato R, Adachi H, Nakano M, Horiike S, Kuroda J, Taki T, Tashiro K, Taniwaki M. Detection of novel and recurrent conjoined genes in non-Hodgkin B-cell lymphoma. J Clin Exp Hematop 2021; 61:71-77. [PMID: 33883344 PMCID: PMC8265495 DOI: 10.3960/jslrt.20033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For this study, we investigated comprehensive expression of conjoined genes (CGs) in
non-Hodgkin B-cell lymphoma (B-NHL) cell line KPUM-UH1 by using paired-end RNA sequencing.
Furthermore, we analyzed the expression of these transcripts in an additional 21 cell lines, 37
primary samples of various malignancies and peripheral blood mononuclear cells of four normal
individuals. Seventeen CGs were detected in KPUM-UH1: CTBS-GNG5,
SRP9-EPHX1, RMND5A-ANAPC, OTX1-EHBP1,
ATF2-CHN1, PRKAA1-TTC33, LARP1-MRPL22,
LOC105379697-BAK1, TIAM2-SCAF8,
SPAG1-VPS13B, WBP1L-CNNM2, NARS2-GAB2,
CTSC-RAB38, VAMP1-CD27-AS1, LRRC37A2-NSF,
UBA2-WTIP and ZNF600-ZNF611. To our knowledge, 10 of these
genes have not been previously reported. The various characteristics of the CGs included in-
and out-of-frame fusions, chimeras involving non-coding RNA and transcript variants. A finding
of note was that LARP1-MRPL2 was characterized as in-frame fusion and was
recurrently expressed in B-NHL samples. In this study, variety of CGs was expressed both in
malignant and normal cells, some of which might be specific to lymphoma.
Collapse
Affiliation(s)
- Yosuke Matsumoto
- Department of Hematology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Hematology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nana Sasaki
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Hisao Nagoshi
- Department of Hematology and Oncology, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Sato
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Adachi
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiko Taki
- Department of Medical Technology, Kyorin University Faculty of Health Science, Tokyo, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Taniwaki
- Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Wang L, Yekula A, Muralidharan K, Small JL, Rosh ZS, Kang KM, Carter BS, Balaj L. Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma. Cancers (Basel) 2020; 12:cancers12051219. [PMID: 32414213 PMCID: PMC7281415 DOI: 10.3390/cancers12051219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
Sequencing studies have provided novel insights into the heterogeneous molecular landscape of glioblastoma (GBM), unveiling a subset of patients with gene fusions. Tissue biopsy is highly invasive, limited by sampling frequency and incompletely representative of intra-tumor heterogeneity. Extracellular vesicle-based liquid biopsy provides a minimally invasive alternative to diagnose and monitor tumor-specific molecular aberrations in patient biofluids. Here, we used targeted RNA sequencing to screen GBM tissue and the matched plasma of patients (n = 9) for RNA fusion transcripts. We identified two novel fusion transcripts in GBM tissue and five novel fusions in the matched plasma of GBM patients. The fusion transcripts FGFR3-TACC3 and VTI1A-TCF7L2 were detected in both tissue and matched plasma. A longitudinal follow-up of a GBM patient with a FGFR3-TACC3 positive glioma revealed the potential of monitoring RNA fusions in plasma. In summary, we report a sensitive RNA-seq-based liquid biopsy strategy to detect RNA level fusion status in the plasma of GBM patients.
Collapse
Affiliation(s)
- Lan Wang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Zachary S. Rosh
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
| | - Keiko M. Kang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- School of Medicine, University of California San Diego, San Diego, CA 92092, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- Correspondence: (B.S.C.); (L.B.)
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.W.); (A.Y.); (K.M.); (J.L.S.); (Z.S.R.); (K.M.K.)
- Correspondence: (B.S.C.); (L.B.)
| |
Collapse
|
12
|
McCartney AM, Hyland EM, Cormican P, Moran RJ, Webb AE, Lee KD, Hernandez-Rodriguez J, Prado-Martinez J, Creevey CJ, Aspden JL, McInerney JO, Marques-Bonet T, O'Connell MJ. Gene Fusions Derived by Transcriptional Readthrough are Driven by Segmental Duplication in Human. Genome Biol Evol 2020; 11:2678-2690. [PMID: 31400206 PMCID: PMC6764479 DOI: 10.1093/gbe/evz163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver, brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromosomal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein products.
Collapse
Affiliation(s)
- Ann M McCartney
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Edel M Hyland
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Institute for Global Food Security, Queens University Belfast, United Kingdom
| | - Paul Cormican
- Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Raymond J Moran
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland
| | - Kate D Lee
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,School of Biological Sciences, University of Auckland, New Zealand.,School of Fundamental Sciences, Massey University, New Zealand
| | | | - Javier Prado-Martinez
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queens University Belfast, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.,NAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
13
|
Vellichirammal NN, Albahrani A, Banwait JK, Mishra NK, Li Y, Roychoudhury S, Kling MJ, Mirza S, Bhakat KK, Band V, Joshi SS, Guda C. Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1379-1398. [PMID: 32160708 PMCID: PMC7044684 DOI: 10.1016/j.omtn.2020.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 01/26/2023]
Abstract
Gene fusions that contribute to oncogenicity can be explored for identifying cancer biomarkers and potential drug targets. To investigate the nature and distribution of fusion transcripts in cancer, we examined the transcriptome data of about 9,000 primary tumors from 33 different cancers in TCGA (The Cancer Genome Atlas) along with cell line data from CCLE (Cancer Cell Line Encyclopedia) using ChimeRScope, a novel fusion detection algorithm. We identified several fusions with sense (canonical, 39%) or antisense (non-canonical, 61%) transcripts recurrent across cancers. The majority of the recurrent non-canonical fusions found in our study are novel, unexplored, and exhibited highly variable profiles across cancers, with breast cancer and glioblastoma having the highest and lowest rates, respectively. Overall, 4,344 recurrent fusions were identified from TCGA in this study, of which 70% were novel. Additional analysis of 802 tumor-derived cell line transcriptome data across 20 cancers revealed significant variability in recurrent fusion profiles between primary tumors and corresponding cell lines. A subset of canonical and non-canonical fusions was validated by examining the structural variation evidence in whole-genome sequencing (WGS) data or by Sanger sequencing of fusion junctions. Several recurrent fusion genes identified in our study show promise for drug repurposing in basket trials and present opportunities for mechanistic studies.
Collapse
Affiliation(s)
| | - Abrar Albahrani
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jasjit K Banwait
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Bioinformatics and Systems Biology Core. University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - You Li
- HitGen, South Keyuan Road 88, Chengdu, China
| | - Shrabasti Roychoudhury
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mathew J Kling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Bioinformatics and Systems Biology Core. University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
14
|
Fusion transcripts in normal human cortex increase with age and show distinct genomic features for single cells and tissues. Sci Rep 2020; 10:1368. [PMID: 31992760 PMCID: PMC6987184 DOI: 10.1038/s41598-020-58165-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/24/2019] [Indexed: 01/24/2023] Open
Abstract
Fusion transcripts can contribute to diversity of molecular networks in the human cortex. In this study, we explored the occurrence of fusion transcripts in normal human cortex along with single neurons and astrocytes. We identified 1305 non-redundant fusion events from 388 transcriptomes representing 59 human cortices and 329 single cells. Our results indicate while the majority of fusion transcripts in human cortex are intra-chromosomal (85%), events found in single neurons and astrocytes were primarily inter-chromosomal (80%). The number of fusions in single neurons was significantly higher than that in single astrocytes (p < 0.05), indicating fusion as a possible contributor towards transcriptome diversity in neuronal cells. The identified fusions were largely private and 4 specific recurring events were found both in cortex and in single neurons but not in astrocytes. We found a significant increase in the number of fusion transcripts in human brain with increasing age both in single cells and whole cortex (p < 0.0005 and < 0.005, respectively). This is likely one of the many possible contributors for the inherent plasticity of the adult brain. The fusion transcripts in fetal brain were enriched for genes for long-term depression; while those in adult brain involved genes enriched for long-term potentiation pathways. Our findings demonstrate fusion transcripts are naturally occurring phenomenon spanning across the health-disease continuum, and likely contribute to the diverse molecular network of human brain.
Collapse
|
15
|
Balamurali D, Gorohovski A, Detroja R, Palande V, Raviv-Shay D, Frenkel-Morgenstern M. ChiTaRS 5.0: the comprehensive database of chimeric transcripts matched with druggable fusions and 3D chromatin maps. Nucleic Acids Res 2020; 48:D825-D834. [PMID: 31747015 PMCID: PMC7145514 DOI: 10.1093/nar/gkz1025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric RNA transcripts are formed when exons from two genes fuse together, often due to chromosomal translocations, transcriptional errors or trans-splicing effect. While these chimeric RNAs produce functional proteins only in certain cases, they play a significant role in disease phenotyping and progression. ChiTaRS 5.0 (http://chitars.md.biu.ac.il/) is the latest and most comprehensive chimeric transcript repository, with 111 582 annotated entries from eight species, including 23 167 known human cancer breakpoints. The database includes unique information correlating chimeric breakpoints with 3D chromatin contact maps, generated from public datasets of chromosome conformation capture techniques (Hi-C). In this update, we have added curated information on druggable fusion targets matched with chimeric breakpoints, which are applicable to precision medicine in cancers. The introduction of a new section that lists chimeric RNAs in various cell-lines is another salient feature. Finally, using text-mining techniques, novel chimeras in Alzheimer's disease, schizophrenia, dyslexia and other diseases were collected in ChiTaRS. Thus, this improved version is an extensive catalogue of chimeras from multiple species. It extends our understanding of the evolution of chimeric transcripts in eukaryotes and contributes to the analysis of 3D genome conformational changes and the functional role of chimeras in the etiopathogenesis of cancers and other complex diseases.
Collapse
Affiliation(s)
- Deepak Balamurali
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Alessandro Gorohovski
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rajesh Detroja
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Vikrant Palande
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Dorith Raviv-Shay
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
16
|
Frenkel-Morgenstern M. Identification of Chimeric RNAs Using RNA-Seq Reads and Protein-Protein Interactions of Translated Chimeras. Methods Mol Biol 2020; 2079:27-40. [PMID: 31728960 DOI: 10.1007/978-1-4939-9904-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chimeric RNA moieties typically consist of exons from two genes expressed from different genomic locations and produced by chromosomal translocations, trans-splicing or transcription errors. Recent advances in next-generation sequencing procedures have opened new horizons for identification of novel chimeric transcripts in various diseases in a personalized manner. Here we describe the detailed computational procedures to identify chimeric transcripts using RNA-seq reads. Moreover, we elaborate on the domain-domain co-occurrence method to detect alterations in chimeric protein-protein interaction (ChiPPI) networks produced by chimeric RNA that are translated to chimeric proteins.
Collapse
|
17
|
Abstract
Chimeric RNAs can be formed by trans-splicing from different transcripts or cis-splicing of adjacent genes (cis-SAGe). Cis-SAGe results from read-through transcription of two neighbor genes. To investigate the mechanisms underlying intergenic splicing of adjacent genes, it is important to develop an assay to detect transcriptional read-through. Here, we describe a general RT-PCR based method to confirm the process for cis-SAGe candidates. In this method, we use PCR to amplify cDNA that is reverse transcribed from the read-through precursor mRNA. The result provides a foundation for further downstream mechanistic studies.
Collapse
|
18
|
Barresi V, Cosentini I, Scuderi C, Napoli S, Di Bella V, Spampinato G, Condorelli DF. Fusion Transcripts of Adjacent Genes: New Insights into the World of Human Complex Transcripts in Cancer. Int J Mol Sci 2019; 20:ijms20215252. [PMID: 31652751 PMCID: PMC6862657 DOI: 10.3390/ijms20215252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
Abstract
The awareness of genome complexity brought a radical approach to the study of transcriptome, opening eyes to single RNAs generated from two or more adjacent genes according to the present consensus. This kind of transcript was thought to originate only from chromosomal rearrangements, but the discovery of readthrough transcription opens the doors to a new world of fusion RNAs. In the last years many possible intergenic cis-splicing mechanisms have been proposed, unveiling the origins of transcripts that contain some exons of both the upstream and downstream genes. In some cases, alternative mechanisms, such as trans-splicing and transcriptional slippage, have been proposed. Five databases, containing validated and predicted Fusion Transcripts of Adjacent Genes (FuTAGs), are available for the scientific community. A comparative analysis revealed that two of them contain the majority of the results. A complete analysis of the more widely characterized FuTAGs is provided in this review, including their expression pattern in normal tissues and in cancer. Gene structure, intergenic splicing patterns and exon junction sequences have been determined and here reported for well-characterized FuTAGs. The available functional data and the possible roles in cancer progression are discussed.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Ilaria Cosentini
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Salvatore Napoli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
19
|
Hu DG, Hulin JUA, Nair PC, Haines AZ, McKinnon RA, Mackenzie PI, Meech R. The UGTome: The expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. Pharmacol Ther 2019; 204:107414. [PMID: 31647974 DOI: 10.1016/j.pharmthera.2019.107414] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
The UDP glycosyltransferase (UGT) superfamily of enzymes is responsible for the metabolism and clearance of thousands of lipophilic chemicals including drugs, toxins and endogenous signaling molecules. They provide a protective interface between the organism and its chemical-rich environment, as well as controlling critical signaling pathways to maintain healthy tissue function. UGTs are associated with drug responses and interactions, as well as a wide range of diseases including cancer. The human genome contains 22 UGT genes; however as befitting their exceptionally diverse substrate ranges and biological activities, the output of these UGT genes is functionally diversified by multiple processes including alternative splicing, post-translational modification, homo- and hetero-oligomerization, and interactions with other proteins. All UGT genes are subject to extensive alternative splicing generating variant/truncated UGT proteins with altered functions including the capacity to dominantly modulate/inhibit cognate full-length forms. Heterotypic oligomerization of different UGTs can alter kinetic properties relative to monotypic complexes, and potentially produce novel substrate specificities. Moreover, the recently profiled interactions of UGTs with non-UGT proteins may facilitate coordination between different metabolic processes, as well as providing opportunities for UGTs to engage in novel 'moonlighting' functions. Herein we provide a detailed and comprehensive review of all known modes of UGT functional diversification and propose a UGTome model to describe the resulting expansion of metabolic capacity and its potential to modulate drug/xenobiotic responses and cell behaviours in normal and disease contexts.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - J Ulie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| |
Collapse
|
20
|
Chwalenia K, Qin F, Singh S, Li H. A cell-based splicing reporter system to identify regulators of cis-splicing between adjacent genes. Nucleic Acids Res 2019; 47:e24. [PMID: 30590765 PMCID: PMC6393300 DOI: 10.1093/nar/gky1288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chimeric RNAs generated by cis-splicing between adjacent genes (cis-SAGe) are increasingly recognized as a widespread phenomenon. These chimeric messenger RNAs are present in normal human cells, and are also detected in various cancers. The mechanisms for how this group of chimeras is formed are not yet clear, in part due to the lack of a tractable system for their experimental investigation. Here we developed a fast, easy and versatile cell-based reporter system to identify regulators of cis-SAGe. The reporter, consisting of four main cassettes, simultaneously measures the effects of a candidate regulator on cis-SAGe and canonical splicing. Using this cell-based assay, we screened 102 candidate factors involved in RNA pol II cleavage and termination, elongation, splicing, alternative splicing and R-loop formation. We discovered that two factors, SRRM1 and SF3B1, affect not only cis-SAGe chimeras, but also other types of chimeric RNAs in a genome-wide fashion. This system can be used for studying trans-acting factors and cis-acting sequence elements and factors, as well as for screening small molecule inhibitors.
Collapse
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
21
|
Identification of candidate neoantigens produced by fusion transcripts in human osteosarcomas. Sci Rep 2019; 9:358. [PMID: 30674975 PMCID: PMC6344567 DOI: 10.1038/s41598-018-36840-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022] Open
Abstract
Osteosarcomas are characterized by highly disrupted genomes. Although osteosarcomas lack common fusions, we find evidence of many tumour specific gene-gene fusion transcripts, likely due to chromosomal rearrangements and expression of transcription-induced chimeras. Most of the fusions result in out-of-frame transcripts, potentially capable of producing long novel protein sequences and a plethora of neoantigens. To identify fusions, we explored RNA-sequencing data to obtain detailed knowledge of transcribed fusions, by creating a novel program to compare fusions identified by deFuse to de novo transcripts generated by Trinity. This allowed us to confirm the deFuse results and identify unusual splicing patterns associated with fusion events. Using various existing tools combined with this custom program, we developed a pipeline for the identification of fusion transcripts applicable as targets for immunotherapy. In addition to identifying candidate neoantigens associated with fusions, we were able to use the pipeline to establish a method for measuring the frequency of fusion events, which correlated to patient outcome, as well as highlight some similarities between canine and human osteosarcomas. The results of this study of osteosarcomas underscores the numerous benefits associated with conducting a thorough analysis of fusion events within cancer samples.
Collapse
|
22
|
Hu DG, Hulin JA, Wijayakumara DD, McKinnon RA, Mackenzie PI, Meech R. Intergenic Splicing between Four Adjacent UGT Genes ( 2B15, 2B29P2, 2B17, 2B29P1) Gives Rise to Variant UGT Proteins That Inhibit Glucuronidation via Protein-Protein Interactions. Mol Pharmacol 2018; 94:938-952. [PMID: 29959221 DOI: 10.1124/mol.118.111773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/08/2018] [Indexed: 02/14/2025] Open
Abstract
Recent studies have investigated alternative splicing profiles of UDP-glucuronosyltransferase (UGT) genes and identified over 130 different alternatively spliced UGT transcripts. Although UGT genes are highly clustered, the formation of chimeric transcripts by intergenic splicing between two or more UGT genes has not yet been reported. This study identified 12 chimeric transcripts (chimeras A-L) containing exons from two or three genes of the four neighboring UGT genes (UGT2B15, UGT2B29P2, UGT2B17, and UGT2B29P1) in human liver and prostate cancer cells. These chimeras typically contain the first five exons of UGT2B15 or UGT2B17 (exons 1-5) spliced to a terminal exon (exon 6) from a downstream UGT gene. Hence they encode truncated UGTs with novel C-terminal peptides. Functional assays of representative chimeric UGT proteins (termed chimeric UGT2B15 and chimeric UGT2B17) showed that they are inactive and can repress the activity of wild-type UGTs. Coimmunoprecipitation assays demonstrated heterotypic interactions between chimeric UGT2B15 (or chimeric UGT2B17) and the UGT2B7 protein. Thus oligomerization of the chimeric UGTs with wild-type UGTs may explain their inhibitory activity. Studies in breast and prostate cancer cells showed that both wild-type and chimeric UGT2B15 and UGT2B17 transcripts are regulated in a similar way at the transcriptional level by sex hormones through their canonical promoters but are differentially regulated at the post-transcriptional level by micro-RNA 376c via their unique 3'-untranslated regions. In conclusion, the formation of chimeric transcripts by intergenic splicing among UGT genes represents a novel mechanism contributing to the diversity of the human UGT transcriptome and proteome. The differential post-transcriptional regulation of wild-type and variant transcripts by micro-RNAs may contribute to their deregulated expression in cancer.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Dhilushi D Wijayakumara
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| |
Collapse
|
23
|
Winters JL, Davila JI, McDonald AM, Nair AA, Fadra N, Wehrs RN, Thomas BC, Balcom JR, Jin L, Wu X, Voss JS, Klee EW, Oliver GR, Graham RP, Neff JL, Rumilla KM, Aypar U, Kipp BR, Jenkins RB, Jen J, Halling KC. Development and Verification of an RNA Sequencing (RNA-Seq) Assay for the Detection of Gene Fusions in Tumors. J Mol Diagn 2018; 20:495-511. [DOI: 10.1016/j.jmoldx.2018.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
|
24
|
The Contributions of ‘Diet’, ‘Genes’, and Physical Activity to the Etiology of Obesity: Contrary Evidence and Consilience. Prog Cardiovasc Dis 2018; 61:89-102. [DOI: 10.1016/j.pcad.2018.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
|
25
|
Tao Y, Gross N, Fan X, Yang J, Teng M, Li X, Li G, Zhang Y, Huang Z. Identification of novel enriched recurrent chimeric COL7A1-UCN2 in human laryngeal cancer samples using deep sequencing. BMC Cancer 2018; 18:248. [PMID: 29499655 PMCID: PMC5834868 DOI: 10.1186/s12885-018-4161-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/21/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND As hybrid RNAs, transcription-induced chimeras (TICs) may have tumor-promoting properties, and some specific chimeras have become important diagnostic markers and therapeutic targets for cancer. METHODS We examined 23 paired laryngeal cancer (LC) tissues and adjacent normal mucous membrane tissue samples (ANMMTs). Three of these pairs were used for comparative transcriptomic analysis using high-throughput sequencing. Furthermore, we used real-time polymerase chain reaction (RT-PCR) for further validation in 20 samples. The Kaplan-Meier method and Cox regression model were used for the survival analysis. RESULTS We identified 87 tumor-related TICs and found that COL7A1-UCN2 had the highest frequency in LC tissues (13/23; 56.5%), whereas none of the ANMMTs were positive (0/23; p < 0.0001). COL7A1-UCN2, generated via alternative splicing in LC tissue cancer cells, had disrupted coding regions, but it down-regulated the mRNA expression of COL7A1 and UCN2. Both COL7A1 and UCN2 were down-expressed in LC tissues as compared to their paired ANMMTs. The COL7A1:β-actin ratio in COL7A1-UCN2-positive LC samples was significantly lower than that in COL7A1-UCN2-negative samples (p = 0.019). Likewise, the UCN2:β-actin ratio was also decreased (p = 0.21). Furthermore, COL7A1-UCN2 positivity was significantly associated with the overall survival of LC patients (p = 0.032; HR, 13.2 [95%CI, 1.2-149.5]). CONCLUSION LC cells were enriched in the recurrent chimera COL7A1-UCN2, which potentially affected cancer stem cell transition, promoted epithelial-mesenchymal transition in LC, and resulted in poorer prognoses.
Collapse
Affiliation(s)
- Ye Tao
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Neil Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaojiao Fan
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Centre for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Centre for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Centre for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
26
|
Bond J, Tran Quang C, Hypolite G, Belhocine M, Bergon A, Cordonnier G, Ghysdael J, Macintyre E, Boissel N, Spicuglia S, Asnafi V. Novel Intergenically Spliced Chimera, NFATC3-PLA2G15, Is Associated with Aggressive T-ALL Biology and Outcome. Mol Cancer Res 2018; 16:470-475. [PMID: 29330284 DOI: 10.1158/1541-7786.mcr-17-0442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022]
Abstract
Leukemias are frequently characterized by the expression of oncogenic fusion chimeras that normally arise due to chromosomal rearrangements. Intergenically spliced chimeric RNAs (ISC) are transcribed in the absence of structural genomic changes, and aberrant ISC expression is now recognized as a potential driver of cancer. To better understand these potential oncogenic drivers, high-throughput RNA sequencing was performed on T-acute lymphoblastic leukemia (T-ALL) patient specimens (n = 24), and candidate T-ALL-related ISCs were identified (n = 55; a median of 4/patient). In-depth characterization of the NFATC3-PLA2G15 chimera, which was variably expressed in primary T-ALL, was performed. Functional assessment revealed that the fusion had lower activity than wild-type NFATC3 in vitro, and T-ALLs with elevated NFATC3-PLA2G15 levels had reduced transcription of canonical NFAT pathway genes in vivo Strikingly, high expression of the NFATC3-PLA2G15 chimera correlated with aggressive disease biology in murine patient-derived T-ALL xenografts, and poor prognosis in human T-ALL patients. Mol Cancer Res; 16(3); 470-5. ©2018 AACR.
Collapse
Affiliation(s)
- Jonathan Bond
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.
| | - Christine Tran Quang
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Guillaume Hypolite
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Mohamed Belhocine
- Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Aix-Marseille University UMR-S 1090, Marseille, France
| | - Aurélie Bergon
- Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Aix-Marseille University UMR-S 1090, Marseille, France
| | - Gaëlle Cordonnier
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Jacques Ghysdael
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Paris, France
| | - Salvatore Spicuglia
- Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Aix-Marseille University UMR-S 1090, Marseille, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.
| |
Collapse
|
27
|
Kitanovic S, Orr TJ, Spalink D, Cocke GB, Schramm K, Wilderman PR, Halpert JR, Dearing MD. Role of cytochrome P450 2B sequence variation and gene copy number in facilitating dietary specialization in mammalian herbivores. Mol Ecol 2018; 27:723-736. [DOI: 10.1111/mec.14480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | - Teri J. Orr
- Department of Biology University of Utah Salt Lake City UT USA
| | - Daniel Spalink
- Department of Biology University of Utah Salt Lake City UT USA
| | | | | | | | | | | |
Collapse
|
28
|
The human GCOM1 complex gene interacts with the NMDA receptor and internexin-alpha. Gene 2018; 648:42-53. [PMID: 29339073 DOI: 10.1016/j.gene.2018.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/06/2018] [Indexed: 11/23/2022]
Abstract
The known functions of the human GCOM1 complex hub gene include transcription elongation and the intercalated disk of cardiac myocytes. However, in all likelihood, the gene's most interesting, and thus far least understood, roles will be found in the central nervous system. To investigate the functions of the GCOM1 gene in the CNS, we have cloned human and rat brain cDNAs encoding novel, 105 kDa GCOM1 combined (Gcom) proteins, designated Gcom15, and identified a new group of GCOM1 interacting genes, termed Gints, from yeast two-hybrid (Y2H) screens. We showed that Gcom15 interacts with the NR1 subunit of the NMDA receptor by co-expression in heterologous cells, in which we observed bi-directional co-immunoprecipitation of human Gcom15 and murine NR1. Our Y2H screens revealed 27 novel GCOM1 interacting genes, many of which are synaptic proteins and/or play roles in neurologic diseases. Finally, we showed, using rat brain protein preparations, that the Gint internexin-alpha (INA), a known interactor of the NMDAR, co-IPs with GCOM1 proteins, suggesting a GCOM1-GRIN1-INA interaction and a novel pathway that may be relevant to neuroprotection.
Collapse
|
29
|
Pintarelli G, Dassano A, Cotroneo CE, Galvan A, Noci S, Piazza R, Pirola A, Spinelli R, Incarbone M, Palleschi A, Rosso L, Santambrogio L, Dragani TA, Colombo F. Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma. Oncotarget 2017; 7:27889-98. [PMID: 27058892 PMCID: PMC5053695 DOI: 10.18632/oncotarget.8556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1–TIMM44, FAM162B–ZUFSP, IFNAR2–IL10RB, INMT–FAM188B, KIAA1841–C2orf74, NFATC3–PLA2G15, SIRPB1–SIRPD, and SHANK3–ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue.
Collapse
Affiliation(s)
- Giulia Pintarelli
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Alice Dassano
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara E Cotroneo
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy.,Present Address: UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Antonella Galvan
- Formerly, Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Noci
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Rocco Piazza
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Alessandra Pirola
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Roberta Spinelli
- Formerly, Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Matteo Incarbone
- Department of Surgery, San Giuseppe Hospital, Multimedica, Milan, Italy
| | - Alessandro Palleschi
- Department of Surgery, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Rosso
- Department of Surgery, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Luigi Santambrogio
- Department of Surgery, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Tommaso A Dragani
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Colombo
- Department of Predictive and Prevention Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
30
|
Chwalenia K, Qin F, Singh S, Tangtrongstittikul P, Li H. Connections between Transcription Downstream of Genes and cis-SAGe Chimeric RNA. Genes (Basel) 2017; 8:genes8110338. [PMID: 29165374 PMCID: PMC5704251 DOI: 10.3390/genes8110338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 02/03/2023] Open
Abstract
cis-Splicing between adjacent genes (cis-SAGe) is being recognized as one way to produce chimeric fusion RNAs. However, its detail mechanism is not clear. Recent study revealed induction of transcriptions downstream of genes (DoGs) under osmotic stress. Here, we investigated the influence of osmotic stress on cis-SAGe chimeric RNAs and their connection to DoGs. We found, the absence of induction of at least some cis-SAGe fusions and/or their corresponding DoGs at early time point(s). In fact, these DoGs and their cis-SAGe fusions are inversely correlated. This negative correlation was changed to positive at a later time point. These results suggest a direct competition between the two categories of transcripts when total pool of readthrough transcripts is limited at an early time point. At a later time point, DoGs and corresponding cis-SAGe fusions are both induced, indicating that total readthrough transcripts become more abundant. Finally, we observed overall enhancement of cis-SAGe chimeric RNAs in KCl-treated samples by RNA-Seq analysis.
Collapse
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
31
|
The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell 2017; 68:940-954.e3. [PMID: 29174924 DOI: 10.1016/j.molcel.2017.10.034] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/31/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Many eukaryotic genes generate linear mRNAs and circular RNAs, but it is largely unknown how the ratio of linear to circular RNA is controlled or modulated. Using RNAi screening in Drosophila cells, we identify many core spliceosome and transcription termination factors that control the RNA outputs of reporter and endogenous genes. When spliceosome components were depleted or inhibited pharmacologically, the steady-state levels of circular RNAs increased while expression of their associated linear mRNAs concomitantly decreased. Upon inhibiting RNA polymerase II termination via depletion of the cleavage/polyadenylation machinery, circular RNA levels were similarly increased. This is because readthrough transcripts now extend into downstream genes and are subjected to backsplicing. In total, these results demonstrate that inhibition or slowing of canonical pre-mRNA processing events shifts the steady-state output of protein-coding genes toward circular RNAs. This is in part because nascent RNAs become directed into alternative pathways that lead to circular RNA production.
Collapse
|
32
|
Li Z, Qin F, Li H. Chimeric RNAs and their implications in cancer. Curr Opin Genet Dev 2017; 48:36-43. [PMID: 29100211 DOI: 10.1016/j.gde.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/06/2017] [Accepted: 10/02/2017] [Indexed: 11/26/2022]
Abstract
Chimeric RNAs have been believed to be solely produced by gene fusions resulting from chromosomal rearrangement, thus unique features of cancer. Detected chimeric RNAs have also been viewed as surrogates for the presence of gene fusions. However, more and more research has demonstrated that chimeric RNAs in general are not a hallmark of cancer, but rather widely present in non-cancerous cells and tissues. At the same time, they may be produced by other mechanisms other than chromosomal rearrangement. The field of non-canonical chimeric RNAs is still in its infancy, with many challenges ahead, including the lack of a unified terminology. However, we believe that these non-canonical chimeric RNAs will have significant impacts in cancer detection and treatment.
Collapse
Affiliation(s)
- Zi Li
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
33
|
Gu JL, Chukhman M, Lu Y, Liu C, Liu SY, Lu H. RNA-seq Based Transcription Characterization of Fusion Breakpoints as a Potential Estimator for Its Oncogenic Potential. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9829175. [PMID: 29181411 PMCID: PMC5664375 DOI: 10.1155/2017/9829175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Based on high-throughput sequencing technology, the detection of gene fusions is no longer a big challenge but estimating the oncogenic potential of fusion genes remains challenging. Recent studies successfully applied machine learning methods and gene structural and functional features of fusion mutation to predict their oncogenic potentials. However, the transcription characterizations features of fusion genes have not yet been studied. In this study, based on the clonal evolution theory, we hypothesized that a fusion gene is more likely to be an oncogenic genomic alteration, if the neoplastic cells harboring this fusion mutation have larger clonal size than other neoplastic cells in a tumor. We proposed a novel method, called iFCR (internal Fusion Clone Ratio), given an estimation of oncogenic potential for fusion mutations. We have evaluated the iFCR method in three public cancer transcriptome sequencing datasets; the results demonstrated that the fusion mutations occurring in tumor samples have higher internal fusion clone ratio than normal samples. And the most frequent prostate cancer fusion mutation, TMPRSS2-ERG, appears to have a remarkably higher iFCR value in all three independent patients. The preliminary results suggest that the internal fusion clone ratio might potentially advantage current fusion mutation oncogenic potential prediction methods.
Collapse
Affiliation(s)
- Jian-lei Gu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
- Department of Bioinformatics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Molecular Embryology, Ministry of Health and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Morris Chukhman
- Department of Bioengineering, Bioinformatics Program, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yao Lu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
- Department of Bioinformatics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Liu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
- Department of Bioinformatics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Bioengineering, Bioinformatics Program, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Shi-yi Liu
- Department of Bioinformatics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
- Department of Bioinformatics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Molecular Embryology, Ministry of Health and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
- Department of Bioengineering, Bioinformatics Program, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
34
|
Mittal VK, McDonald JF. De novo assembly and characterization of breast cancer transcriptomes identifies large numbers of novel fusion-gene transcripts of potential functional significance. BMC Med Genomics 2017; 10:53. [PMID: 28851357 PMCID: PMC5575902 DOI: 10.1186/s12920-017-0289-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Gene-fusion or chimeric transcripts have been implicated in the onset and progression of a variety of cancers. Massively parallel RNA sequencing (RNA-Seq) of the cellular transcriptome is a promising approach for the identification of chimeric transcripts of potential functional significance. We report here the development and use of an integrated computational pipeline for the de novo assembly and characterization of chimeric transcripts in 55 primary breast cancer and normal tissue samples. Methods An integrated computational pipeline was employed to screen the transcriptome of breast cancer and control tissues for high-quality RNA-sequencing reads. Reads were de novo assembled into contigs followed by reference genome mapping. Chimeric transcripts were detected, filtered and characterized using our R-SAP algorithm. The relative abundance of reads was used to estimate levels of gene expression. Results De novo assembly allowed for the accurate detection of 1959 chimeric transcripts to nucleotide level resolution and facilitated detailed molecular characterization and quantitative analysis. A number of the chimeric transcripts are of potential functional significance including 79 novel fusion-protein transcripts and many chimeric transcripts with alterations in their un-translated leader regions. A number of chimeric transcripts in the cancer samples mapped to genomic regions devoid of any known genes. Several ‘pro-neoplastic’ fusions comprised of genes previously implicated in cancer are expressed at low levels in normal tissues but at high levels in cancer tissues. Conclusions Collectively, our results underscore the utility of deep sequencing technologies and improved bioinformatics workflows to uncover novel and potentially significant chimeric transcripts in cancer and normal somatic tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0289-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinay K Mittal
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA
| | - John F McDonald
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA.
| |
Collapse
|
35
|
Chwalenia K, Facemire L, Li H. Chimeric RNAs in cancer and normal physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1427] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Loryn Facemire
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Hui Li
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
- Department of Biochemistry and Molecular Genetics, School of Medicine; University of Virginia; Charlottesville VA USA
| |
Collapse
|
36
|
Hoang NV, Furtado A, Mason PJ, Marquardt A, Kasirajan L, Thirugnanasambandam PP, Botha FC, Henry RJ. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing. BMC Genomics 2017; 18:395. [PMID: 28532419 PMCID: PMC5440902 DOI: 10.1186/s12864-017-3757-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the economic importance of sugarcane in sugar and bioenergy production, there is not yet a reference genome available. Most of the sugarcane transcriptomic studies have been based on Saccharum officinarum gene indices (SoGI), expressed sequence tags (ESTs) and de novo assembled transcript contigs from short-reads; hence knowledge of the sugarcane transcriptome is limited in relation to transcript length and number of transcript isoforms. RESULTS The sugarcane transcriptome was sequenced using PacBio isoform sequencing (Iso-Seq) of a pooled RNA sample derived from leaf, internode and root tissues, of different developmental stages, from 22 varieties, to explore the potential for capturing full-length transcript isoforms. A total of 107,598 unique transcript isoforms were obtained, representing about 71% of the total number of predicted sugarcane genes. The majority of this dataset (92%) matched the plant protein database, while just over 2% was novel transcripts, and over 2% was putative long non-coding RNAs. About 56% and 23% of total sequences were annotated against the gene ontology and KEGG pathway databases, respectively. Comparison with de novo contigs from Illumina RNA-Sequencing (RNA-Seq) of the internode samples from the same experiment and public databases showed that the Iso-Seq method recovered more full-length transcript isoforms, had a higher N50 and average length of largest 1,000 proteins; whereas a greater representation of the gene content and RNA diversity was captured in RNA-Seq. Only 62% of PacBio transcript isoforms matched 67% of de novo contigs, while the non-matched proportions were attributed to the inclusion of leaf/root tissues and the normalization in PacBio, and the representation of more gene content and RNA classes in the de novo assembly, respectively. About 69% of PacBio transcript isoforms and 41% of de novo contigs aligned with the sorghum genome, indicating the high conservation of orthologs in the genic regions of the two genomes. CONCLUSIONS The transcriptome dataset should contribute to improved sugarcane gene models and sugarcane protein predictions; and will serve as a reference database for analysis of transcript expression in sugarcane.
Collapse
Affiliation(s)
- Nam V Hoang
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia
| | - Patrick J Mason
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia
| | - Annelie Marquardt
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,Sugar Research Australia, Indooroopilly, QLD, 4068, Australia
| | - Lakshmi Kasirajan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,ICAR - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India
| | - Prathima P Thirugnanasambandam
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,ICAR - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India
| | - Frederik C Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.,Sugar Research Australia, Indooroopilly, QLD, 4068, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Room 2.245, Level 2, The John Hay Building, Queensland Biosciences Precinct [#80], 306 Carmody Road, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
37
|
Sorenson EC, Khanin R, Bamboat ZM, Cavnar MJ, Kim TS, Sadot E, Zeng S, Greer JB, Seifert AM, Cohen NA, Crawley MH, Green BL, Klimstra DS, DeMatteo RP. Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PLoS One 2017; 12:e0176562. [PMID: 28486549 PMCID: PMC5423588 DOI: 10.1371/journal.pone.0176562] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/12/2017] [Indexed: 01/17/2023] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare variant of HCC that most frequently affects young adults. Because of its rarity and an absence of preclinical models, our understanding of FL-HCC is limited. Our objective was to analyze chromosomal alterations and dysregulated gene expression in tumor specimens collected at a single center during two decades of experience with FL-HCC. We analyzed 38 specimens from 26 patients by array comparative genomic hybridiziation (aCGH) and 35 specimens from 15 patients by transcriptome sequencing (RNA-seq). All tumor specimens exhibited genomic instability, with a higher frequency of genomic amplifications or deletions in metastatic tumors. The regions encoding 71 microRNAs (miRs) were deleted in at least 25% of tumor specimens. Five of these recurrently deleted miRs targeted the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) gene product, and a correlating 100-fold upregulation of IGF2BP1 mRNA was seen in tumor specimens. Transcriptome analysis demonstrated intrapatient tumor similarity, independent of recurrence site or time. The p53 tumor suppressor pathway was downregulated as demonstrated by both aCGH and RNA-seq analysis. Notch, EGFR, NRAS, and RB1 pathways were also significantly dysregulated in tumors compared with normal liver tissue. The findings illuminate the genomic and transcriptomic landscape of this rare disease and provide insight into dysregulated oncogenic pathways and potential therapeutic targets in FL-HCC.
Collapse
Affiliation(s)
- Eric C. Sorenson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Raya Khanin
- Department of Computational Biology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Zubin M. Bamboat
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Michael J. Cavnar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Teresa S. Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Eran Sadot
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Shan Zeng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jonathan B. Greer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Adrian M. Seifert
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Noah A. Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Megan H. Crawley
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Benjamin L. Green
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - David S. Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ronald P. DeMatteo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
This paper presents a history of the changing meanings of the term "gene," over more than a century, and a discussion of why this word, so crucial to genetics, needs redefinition today. In this account, the first two phases of 20th century genetics are designated the "classical" and the "neoclassical" periods, and the current molecular-genetic era the "modern period." While the first two stages generated increasing clarity about the nature of the gene, the present period features complexity and confusion. Initially, the term "gene" was coined to denote an abstract "unit of inheritance," to which no specific material attributes were assigned. As the classical and neoclassical periods unfolded, the term became more concrete, first as a dimensionless point on a chromosome, then as a linear segment within a chromosome, and finally as a linear segment in the DNA molecule that encodes a polypeptide chain. This last definition, from the early 1960s, remains the one employed today, but developments since the 1970s have undermined its generality. Indeed, they raise questions about both the utility of the concept of a basic "unit of inheritance" and the long implicit belief that genes are autonomous agents. Here, we review findings that have made the classic molecular definition obsolete and propose a new one based on contemporary knowledge.
Collapse
Affiliation(s)
- Petter Portin
- Laboratory of Genetics, Department of Biology, University of Turku, 20014, Finland
| | - Adam Wilkins
- Institute of Theoretical Biology, Humboldt Universität zu Berlin, 10115, Germany
| |
Collapse
|
39
|
Reddy AS, O'Brien D, Pisat N, Weichselbaum CT, Sakers K, Lisci M, Dalal JS, Dougherty JD. A Comprehensive Analysis of Cell Type-Specific Nuclear RNA From Neurons and Glia of the Brain. Biol Psychiatry 2017; 81:252-264. [PMID: 27113499 PMCID: PMC4996761 DOI: 10.1016/j.biopsych.2016.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Studies in psychiatric genetics have identified >100 loci associated with disease risk, yet many of these loci are distant from protein coding genes. Recent characterization of the transcriptional landscape of cell lines and whole tissues has suggested widespread transcription in both coding and noncoding regions of the genome, including differential expression from loci that produce regulatory noncoding RNAs that function within the nucleus; however, the nuclear transcriptome of specific cell types in the brain has not been previously investigated. METHODS We defined the nuclear transcriptional landscape of the three major cellular divisions of the nervous system using flow sorting of genetically labeled nuclei from bacTRAP mouse lines. Next, we characterized the unique expression of coding, noncoding, and intergenic RNAs in the mature mouse brain with RNA-Seq and validation with independent methods. RESULTS We found diverse expression across the cell types of all classes of RNAs, including long noncoding RNAs, several of which were confirmed as highly enriched in the nuclei of specific cell types using anatomic methods. We also discovered several examples of cell type-specific expression of tandem gene fusions, and we report the first cell type-specific expression of circular RNAs-a neuron-specific and nuclear-enriched RNA arising from the gene Hnrnpu. CONCLUSIONS These data provide an important resource for studies evaluating the function of various noncoding RNAs in the brain, including noncoding RNAs that may play a role in psychiatric disease.
Collapse
Affiliation(s)
- Adarsh S Reddy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - David O'Brien
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.
| | - Nilambari Pisat
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Claire T Weichselbaum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Kristina Sakers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Miriam Lisci
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jasbir S Dalal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
40
|
Rodríguez-Martín B, Palumbo E, Marco-Sola S, Griebel T, Ribeca P, Alonso G, Rastrojo A, Aguado B, Guigó R, Djebali S. ChimPipe: accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data. BMC Genomics 2017; 18:7. [PMID: 28049418 PMCID: PMC5209911 DOI: 10.1186/s12864-016-3404-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/09/2016] [Indexed: 11/28/2022] Open
Abstract
Background Chimeric transcripts are commonly defined as transcripts linking two or more different genes in the genome, and can be explained by various biological mechanisms such as genomic rearrangement, read-through or trans-splicing, but also by technical or biological artefacts. Several studies have shown their importance in cancer, cell pluripotency and motility. Many programs have recently been developed to identify chimeras from Illumina RNA-seq data (mostly fusion genes in cancer). However outputs of different programs on the same dataset can be widely inconsistent, and tend to include many false positives. Other issues relate to simulated datasets restricted to fusion genes, real datasets with limited numbers of validated cases, result inconsistencies between simulated and real datasets, and gene rather than junction level assessment. Results Here we present ChimPipe, a modular and easy-to-use method to reliably identify fusion genes and transcription-induced chimeras from paired-end Illumina RNA-seq data. We have also produced realistic simulated datasets for three different read lengths, and enhanced two gold-standard cancer datasets by associating exact junction points to validated gene fusions. Benchmarking ChimPipe together with four other state-of-the-art tools on this data showed ChimPipe to be the top program at identifying exact junction coordinates for both kinds of datasets, and the one showing the best trade-off between sensitivity and precision. Applied to 106 ENCODE human RNA-seq datasets, ChimPipe identified 137 high confidence chimeras connecting the protein coding sequence of their parent genes. In subsequent experiments, three out of four predicted chimeras, two of which recurrently expressed in a large majority of the samples, could be validated. Cloning and sequencing of the three cases revealed several new chimeric transcript structures, 3 of which with the potential to encode a chimeric protein for which we hypothesized a new role. Applying ChimPipe to human and mouse ENCODE RNA-seq data led to the identification of 131 recurrent chimeras common to both species, and therefore potentially conserved. Conclusions ChimPipe combines discordant paired-end reads and split-reads to detect any kind of chimeras, including those originating from polymerase read-through, and shows an excellent trade-off between sensitivity and precision. The chimeras found by ChimPipe can be validated in-vitro with high accuracy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3404-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bernardo Rodríguez-Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Joint IRB-BSC Program in Computational Biology, Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona, 08034, Spain
| | - Emilio Palumbo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Santiago Marco-Sola
- Centro Nacional de Análisis Genómico, Baldiri Reixac, 4, Barcelona Science Park - Tower I, Barcelona, 08028, Spain
| | - Thasso Griebel
- Centro Nacional de Análisis Genómico, Baldiri Reixac, 4, Barcelona Science Park - Tower I, Barcelona, 08028, Spain
| | - Paolo Ribeca
- Centro Nacional de Análisis Genómico, Baldiri Reixac, 4, Barcelona Science Park - Tower I, Barcelona, 08028, Spain.,Integrative Biology, The Pirbright Institute, London, GU24 0NF, UK
| | - Graciela Alonso
- Centro de Biología Molecular Severo Ochoa (CSIC - UAM), Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (CSIC - UAM), Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Begoña Aguado
- Centro de Biología Molecular Severo Ochoa (CSIC - UAM), Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, 08003, Spain
| | - Sarah Djebali
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France.
| |
Collapse
|
41
|
Okonechnikov K, Imai-Matsushima A, Paul L, Seitz A, Meyer TF, Garcia-Alcalde F. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data. PLoS One 2016; 11:e0167417. [PMID: 27907167 PMCID: PMC5132003 DOI: 10.1371/journal.pone.0167417] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Analysis of fusion transcripts has become increasingly important due to their link with cancer development. Since high-throughput sequencing approaches survey fusion events exhaustively, several computational methods for the detection of gene fusions from RNA-seq data have been developed. This kind of analysis, however, is complicated by native trans-splicing events, the splicing-induced complexity of the transcriptome and biases and artefacts introduced in experiments and data analysis. There are a number of tools available for the detection of fusions from RNA-seq data; however, certain differences in specificity and sensitivity between commonly used approaches have been found. The ability to detect gene fusions of different types, including isoform fusions and fusions involving non-coding regions, has not been thoroughly studied yet. Here, we propose a novel computational toolkit called InFusion for fusion gene detection from RNA-seq data. InFusion introduces several unique features, such as discovery of fusions involving intergenic regions, and detection of anti-sense transcription in chimeric RNAs based on strand-specificity. Our approach demonstrates superior detection accuracy on simulated data and several public RNA-seq datasets. This improved performance was also evident when evaluating data from RNA deep-sequencing of two well-established prostate cancer cell lines. InFusion identified 26 novel fusion events that were validated in vitro, including alternatively spliced gene fusion isoforms and chimeric transcripts that include intergenic regions. The toolkit is freely available to download from http:/bitbucket.org/kokonech/infusion.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Lukas Paul
- Lexogen GmbH, Campus Vienna Biocenter 5, Vienna, Austria
| | | | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (FGA); (TFM)
| | - Fernando Garcia-Alcalde
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (FGA); (TFM)
| |
Collapse
|
42
|
Lai J, An J, Srinivasan S, Clements JA, Batra J. A computational analysis of the genetic and transcript diversity at the kallikrein locus. Biol Chem 2016; 397:1307-1313. [DOI: 10.1515/hsz-2016-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 11/15/2022]
Abstract
Abstract
The kallikrein related peptidase gene family (KLKs) comprises 15 genes located between 19q13.3-13.4. KLKs have chymotrypsin and/or trypsin like activity, but the tissue/organ expression profile of each KLK varies considerably. Thus, the role of KLKs in human biology is also very diverse, and the deregulation of their function results in a wide-range of diseases. Here, we have cataloged the transcript (variants and fusions) and genetic (single nucleotide polymorphisms, small insertions/deletions, copy number variations (CNVs), and short tandem repeats) diversity at the KLK locus, providing a data set for researchers to explore the mechanisms through which KLK function may be deregulated. We reveal that the KLK locus hosts 85 fusion transcripts, and 80 variant transcripts. Interestingly, some fusion transcripts comprise up to 6 KLK genes. Our analysis of genetic variations of 2504 individuals from the 1000 Genome Project indicated that the KLK locus is rich in genetic diversity, with some fusion transcripts harboring over 1000 single nucleotide variations. We also found evidence from the literature linking 2387 KLK genetic variants with many types of diseases. Finally, genotyping data from the 131 KLK genetic variants in the NCI-60 cancer cell lines is provided as a resource for the cancer and KLK field.
Collapse
|
43
|
Gorohovski A, Tagore S, Palande V, Malka A, Raviv-Shay D, Frenkel-Morgenstern M. ChiTaRS-3.1-the enhanced chimeric transcripts and RNA-seq database matched with protein-protein interactions. Nucleic Acids Res 2016; 45:D790-D795. [PMID: 27899596 PMCID: PMC5210585 DOI: 10.1093/nar/gkw1127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/17/2022] Open
Abstract
Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922 chimeric transcripts along with 11 714 cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the ‘Full Collection’. In addition, for every chimera, we have added a predicted chimeric protein–protein interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922 chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins.
Collapse
Affiliation(s)
- Alessandro Gorohovski
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Somnath Tagore
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Vikrant Palande
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Assaf Malka
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Dorith Raviv-Shay
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Milana Frenkel-Morgenstern
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel. Corresponding author:
| |
Collapse
|
44
|
Choi ES, Lee H, Lee CH, Goh SH. Overexpression of KLHL23 protein from read-through transcription of PHOSPHO2-KLHL23 in gastric cancer increases cell proliferation. FEBS Open Bio 2016; 6:1155-1164. [PMID: 27833855 PMCID: PMC5095152 DOI: 10.1002/2211-5463.12136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Gene fusion, as a prototypical pathognomonic mutation, contributes to genome complexity, and the cis‐transcription‐induced gene fusions generated by read‐through transcription of adjacent genes have been found to be important for tumor development. We screened read‐through transcription events from stomach adenocarcinoma RNA‐seq data and selected three candidates PHOSPHO2‐KLHL23, RPL17‐C18orf32, and PRR5‐ARHGAP8, to assess their biological role in gastric cancer. The expression of all three read‐through fusion transcripts was confirmed in gastric cancer cell lines and paired normal/tumor gastric cancer tissues by real‐time quantitative reverse transcription polymerase chain reaction and their expression was found to be significantly higher in the tumor (P < 0.05; n = 75). The correlation between the expression level and clinicopathological information was statistically analyzed. The level of the PHOSPHO2‐KLHL23 read‐through fusion transcript correlated with the Lauren classification and was significantly associated with the presence of perineural invasion. Overexpression of KLHL23 from PHOSPHO2‐KLHL23 read‐through transcript led to a significant increase in cell proliferation and resistance to anticancer drug treatment. Silencing of KLHL23 expression decreased cyclin D1 levels. The expression of KLHL23 from prevalent read‐through transcripts of PHOSPHO2‐KLHL23 in gastric cancer may undermine the efficacy of anticancer drug treatment.
Collapse
Affiliation(s)
- Eun-Seok Choi
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea; Department of Environmental Medical Biology Institute of Tropical Medicine Yonsei University College of Medicine Seoul Korea
| | - Hanna Lee
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| | - Sung-Ho Goh
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi-do Korea
| |
Collapse
|
45
|
Abstract
Gene fusions and their encoded products (fusion RNAs and proteins) are viewed as one of the hallmarks of cancer. Traditionally, they were thought to be generated solely by chromosomal rearrangements. However, recent discoveries of trans-splicing and cis-splicing events between neighboring genes, suggest that there are other mechanisms to generate chimeric fusion RNAs without corresponding changes in DNA. In addition, chimeric RNAs have been detected in normal physiology, complicating the use of fusions in cancer detection and therapy. On the other hand, "intergenically spliced" fusion RNAs represent a new repertoire of biomarkers and therapeutic targets. Here, we review current knowledge on chimeric RNAs and implications for cancer detection and treatment, and discuss outstanding questions for the advancement of the field.
Collapse
Affiliation(s)
- Yuemeng Jia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
46
|
McLysaght A, Hurst LD. Open questions in the study of de novo genes: what, how and why. Nat Rev Genet 2016; 17:567-78. [PMID: 27452112 DOI: 10.1038/nrg.2016.78] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study of de novo protein-coding genes is maturing from the ad hoc reporting of individual cases to the systematic analysis of extensive genomic data from several species. We identify three key challenges for this emerging field: understanding how best to identify de novo genes, how they arise and why they spread. We highlight the intellectual challenges of understanding how a de novo gene becomes integrated into pre-existing functions and becomes essential. We suggest that, as with protein sequence evolution, antagonistic co-evolution may be key to de novo gene evolution, particularly for new essential genes and new cancer-associated genes.
Collapse
Affiliation(s)
- Aoife McLysaght
- The Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, UK
| |
Collapse
|
47
|
Kozlov AP. Expression of evolutionarily novel genes in tumors. Infect Agent Cancer 2016; 11:34. [PMID: 27437030 PMCID: PMC4949931 DOI: 10.1186/s13027-016-0077-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023] Open
Abstract
The evolutionarily novel genes originated through different molecular mechanisms are expressed in tumors. Sometimes the expression of evolutionarily novel genes in tumors is highly specific. Moreover positive selection of many human tumor-related genes in primate lineage suggests their involvement in the origin of new functions beneficial to organisms. It is suggested to consider the expression of evolutionarily young or novel genes in tumors as a new biological phenomenon, a phenomenon of TSEEN (tumor specifically expressed, evolutionarily novel) genes.
Collapse
Affiliation(s)
- A. P. Kozlov
- The Biomedical Center and Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
48
|
Veeraraghavan J, Ma J, Hu Y, Wang XS. Recurrent and pathological gene fusions in breast cancer: current advances in genomic discovery and clinical implications. Breast Cancer Res Treat 2016; 158:219-32. [PMID: 27372070 DOI: 10.1007/s10549-016-3876-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/18/2016] [Indexed: 12/22/2022]
Abstract
Gene fusions have long been considered principally as the oncogenic events of hematologic malignancies, but have recently gained wide attention in solid tumors due to several milestone discoveries and the advancement of deep sequencing technologies. With the progress in deep sequencing studies of breast cancer transcriptomes and genomes, the discovery of recurrent and pathological gene fusions in breast cancer is on the focus. Recently, driven by new deep sequencing studies, several recurrent or pathological gene fusions have been identified in breast cancer, including ESR1-CCDC170, SEC16A-NOTCH1, SEC22B-NOTCH2, and ESR1-YAP1 etc. More important, most of these gene fusions are preferentially identified in the more aggressive breast cancers, such as luminal B, basal-like, or endocrine-resistant breast cancer, suggesting recurrent gene fusions as additional key driver events in these tumors other than the known drivers such as the estrogen receptor. In this paper, we have comprehensively summarized the newly identified recurrent or pathological gene fusion events in breast cancer, reviewed the contributions of new genomic and deep sequencing technologies to new fusion discovery and the integrative bioinformatics tools to analyze these data, highlighted the biological relevance and clinical implications of these fusion discoveries, and discussed future directions of gene fusion research in breast cancer.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jiacheng Ma
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yiheng Hu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Song Wang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15232, USA. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, USA. .,Hillman Cancer Center, Research Pavilion, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Room G.5a, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
49
|
Yang Y, Tang Z, Fan X, Xu K, Mu Y, Zhou R, Li K. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle. Sci Rep 2016; 6:29039. [PMID: 27352850 PMCID: PMC4926253 DOI: 10.1038/srep29039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| | - Zhonglin Tang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| | - Xinhao Fan
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Kui Xu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Yulian Mu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R.China
| |
Collapse
|
50
|
Qin F, Song Z, Chang M, Song Y, Frierson H, Li H. Recurrent cis-SAGe chimeric RNA, D2HGDH-GAL3ST2, in prostate cancer. Cancer Lett 2016; 380:39-46. [PMID: 27322736 DOI: 10.1016/j.canlet.2016.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/14/2016] [Indexed: 11/16/2022]
Abstract
Neighboring genes transcribing in the same direction can form chimeric RNAs via cis-splicing (cis-SAGe). Previously, we reported 16 novel cis-SAGe chimeras in prostate cancer cell lines, and performed in silico validation on 14 pairs of normal and tumor samples from Chinese patients. However, whether these fusions exist in different populations, as well as their clinical implications, remains unclear. To investigate, we developed a bioinformatics pipeline using modified Spliced Transcripts Alignment to a Reference (STAR) to quantify these fusion RNAs simultaneously in silico. From RNA-Seq data of 100 paired normal and prostate cancer samples from TCGA, we find that most fusions are not specific to cancer. However, D2HGDH-GAL3ST2 is more frequently seen in cancer samples, and seems to be enriched in the African American group. Further validation with our own collection as well as from commercial sources did not detect this fusion RNA in 29 normal prostate samples, but in 19 of 93 prostate cancer samples. It is more frequently detected in late stage cancer, suggesting a role in cancer progression. Consistently, silencing this fusion resulted in dramatic reduction of cell proliferation rate and cell motility.
Collapse
Affiliation(s)
- Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Zhenguo Song
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908; Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, China
| | - Maxwell Chang
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Yansu Song
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Henry Frierson
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908.
| |
Collapse
|