1
|
Kbiri N, Fernández-Jiménez N, Dziegielewski W, Sáez-Zárate E, Pelé A, Mata-Villanueva A, Dluzewska J, Santos J, Pradillo M, Ziolkowski P. Genetic dissection of MutL complexes in Arabidopsis meiosis. Nucleic Acids Res 2025; 53:gkaf187. [PMID: 40105242 PMCID: PMC11920794 DOI: 10.1093/nar/gkaf187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
During meiosis, homologous chromosomes exchange genetic material through crossing over. The main crossover pathway relies on ZMM proteins, including ZIP4 and HEI10, and is typically resolved by the MLH1/MLH3 heterodimer, MutLγ. Our analysis shows that while MUS81 may partially compensate for MutLγ loss, its role remains uncertain. However, our multiple mutant analysis shows that MUS81 is unlikely to be the sole resolvase of ZMM-protected recombination intermediates when MutLγ is absent. Comparing genome-wide crossover maps of mlh1 mutants with ZMM-deficient mutants and lines with varying HEI10 levels reveals that crossover interference persists in mlh1 but is weakened. The significant crossover reduction in mlh1 also increases aneuploidy in offspring. The loss of MutLγ can be suppressed by eliminating the FANCM helicase. Combined with the lower-than-expected chiasma frequency, this suggests that in MutLγ absence, some ZMM-protected intermediates are ultimately resolved by DNA helicases and/or their complexes with Top3α. Elevated MLH1 or MLH3 expression moderately increases crossover frequency, while their misregulation drastically reduces crossover numbers and plant fertility, highlighting the importance for tight control of MLH1/MLH3 levels. By contrast, PMS1, a component of the MutLα endonuclease, appears uninvolved in crossing over. Together, these findings demonstrate the unique role of MutLγ in ZMM-dependent crossover regulation.
Collapse
Affiliation(s)
- Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Esperanza Sáez-Zárate
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Alexandre Pelé
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ana Mata-Villanueva
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Juan L Santos
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
2
|
Zhu L, Dluzewska J, Fernández-Jiménez N, Ranjan R, Pelé A, Dziegielewski W, Szymanska-Lejman M, Hus K, Górna J, Pradillo M, Ziolkowski PA. The kinase ATR controls meiotic crossover distribution at the genome scale in Arabidopsis. THE PLANT CELL 2024; 37:koae292. [PMID: 39471331 DOI: 10.1093/plcell/koae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Meiotic crossover, i.e. the reciprocal exchange of chromosome fragments during meiosis, is a key driver of genetic diversity. Crossover is initiated by the formation of programmed DNA double-strand breaks (DSBs). While the role of ATAXIA-TELANGIECTASIA AND RAD3-RELATED (ATR) kinase in DNA damage signaling is well-known, its impact on crossover formation remains understudied. Here, using measurements of recombination at chromosomal intervals and genome-wide crossover mapping, we showed that ATR inactivation in Arabidopsis (Arabidopsis thaliana) leads to dramatic crossover redistribution, with an increase in crossover frequency in chromosome arms and a decrease in pericentromeres. These global changes in crossover placement were not caused by alterations in DSB numbers, which we demonstrated by analyzing phosphorylated H2A.X foci in zygonema. Using the seed-typing technique, we found that hotspot usage remains mainly unchanged in atr mutants compared with wild-type individuals. Moreover, atr showed no change in the number of crossovers caused by two independent pathways, which implies no effect on crossover pathway choice. Analyses of genetic interaction indicate that while the effects of atr are independent of MMS AND UV SENSITIVE81 (MUS81), ZIPPER1 (ZYP1), FANCONI ANEMIA COMPLEMENTATION GROUP M (FANCM), and D2 (FANCD2), the underlying mechanism may be similar between ATR and FANCD2. This study extends our understanding of ATR's role in meiosis, uncovering functions in regulating crossover distribution.
Collapse
Affiliation(s)
- Longfei Zhu
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rajeev Ranjan
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Alexandre Pelé
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Karolina Hus
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Julia Górna
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| |
Collapse
|
3
|
Zinner AC, Jakt LM. Multiple losses of aKRAB from PRDM9 coincide with a teleost-specific intron size distribution. BMC Biol 2024; 22:275. [PMID: 39604973 PMCID: PMC11600626 DOI: 10.1186/s12915-024-02059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Primary transcripts are largely comprised of intronic sequences that are excised and discarded shortly after synthesis. In vertebrates, the shape of the intron size distribution is largely constant; however, most teleost fish have a diverged log-bimodal 'teleost distribution' (TD) that is seen only in teleosts. How the TD evolved and to what extent this was affected by adaptative or non-adaptive mechanisms is unknown. RESULTS Here, we show that the TD has evolved independently at least six times and that its appearance is linked to the loss of the aKRAB domain from PRDM9. We determined intron size distributions and identified PRDM9 orthologues from annotated genomes in addition to scanning 1193 teleost assemblies for the aKRAB domain. We show that a diverged form of PRDM9 ( β ) is predominant in teleosts whereas the α version is absent from most species. Only a subset of PRDM9- α proteins contain aKRAB, and hence, it is present only in a small number of teleost lineages. Almost all lineages lacking aKRAB (but no species with) had TDs. CONCLUSIONS In mammals, PRDM9 defines the sites of meiotic recombination through a mechanism that increases structural variance and depends on aKRAB. The loss of aKRAB is likely to have shifted the locations of both recombination and structural variance hotspots. Our observations suggest that the TD evolved as a side-effect of these changes and link recombination to the evolution of intron size illustrating how genome architectures can evolve in the absence of selection.
Collapse
Affiliation(s)
- Ann-Christin Zinner
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, Bodø, 8026, Norway
| | - Lars Martin Jakt
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, Bodø, 8026, Norway.
| |
Collapse
|
4
|
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, Valárik M. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. J Adv Res 2023; 53:75-85. [PMID: 36632886 PMCID: PMC10658417 DOI: 10.1016/j.jare.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Collapse
Affiliation(s)
- Maciej Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, Poznań 60-479, Poland
| | - Eva Janáková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Irena Jakobson
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Kadri Järve
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Zuzana Korchanová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Adam Lampar
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Jakub Juračka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Computer Science, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic.
| |
Collapse
|
5
|
Jiang X, Li D, Du H, Wang P, Guo L, Zhu G, Zhang C. Genomic features of meiotic crossovers in diploid potato. HORTICULTURE RESEARCH 2023; 10:uhad079. [PMID: 37323232 PMCID: PMC10261879 DOI: 10.1093/hr/uhad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 06/17/2023]
Abstract
Meiotic recombination plays an important role in genome evolution and crop improvement. Potato (Solanum tuberosum L.) is the most important tuber crop in the world, but research about meiotic recombination in potato is limited. Here, we resequenced 2163 F2 clones derived from five different genetic backgrounds and identified 41 945 meiotic crossovers. Some recombination suppression in euchromatin regions was associated with large structural variants. We also detected five shared crossover hotspots. The number of crossovers in each F2 individual from the accession Upotato 1 varied from 9 to 27, with an average of 15.5, 78.25% of which were mapped within 5 kb of their presumed location. We show that 57.1% of the crossovers occurred in gene regions, with poly-A/T, poly-AG, AT-rich, and CCN repeats enriched in the crossover intervals. The recombination rate is positively related with gene density, SNP density, Class II transposon, and negatively related with GC density, repeat sequence density and Class I transposon. This study deepens our understanding of meiotic crossovers in potato and provides useful information for diploid potato breeding.
Collapse
Affiliation(s)
- Xiuhan Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hui Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangtao Zhu
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | | |
Collapse
|
6
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
7
|
Martínez-Fortún J, Phillips DW, Jones HD. Natural and artificial sources of genetic variation used in crop breeding: A baseline comparator for genome editing. Front Genome Ed 2022; 4:937853. [PMID: 36072906 PMCID: PMC9441798 DOI: 10.3389/fgeed.2022.937853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional breeding has successfully selected beneficial traits for food, feed, and fibre crops over the last several thousand years. The last century has seen significant technological advancements particularly in marker assisted selection and the generation of induced genetic variation, including over the last few decades, through mutation breeding, genetic modification, and genome editing. While regulatory frameworks for traditional varietal development and for genetic modification with transgenes are broadly established, those for genome editing are lacking or are still evolving in many regions. In particular, the lack of "foreign" recombinant DNA in genome edited plants and that the resulting SNPs or INDELs are indistinguishable from those seen in traditional breeding has challenged development of new legislation. Where products of genome editing and other novel breeding technologies possess no transgenes and could have been generated via traditional methods, we argue that it is logical and proportionate to apply equivalent legislative oversight that already exists for traditional breeding and novel foods. This review analyses the types and the scale of spontaneous and induced genetic variation that can be selected during traditional plant breeding activities. It provides a base line from which to judge whether genetic changes brought about by techniques of genome editing or other reverse genetic methods are indeed comparable to those routinely found using traditional methods of plant breeding.
Collapse
Affiliation(s)
| | | | - Huw D. Jones
- IBERS, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
8
|
Kim H, Choi K. Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis. Mol Cells 2022; 45:273-283. [PMID: 35444069 PMCID: PMC9095510 DOI: 10.14348/molcells.2022.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
9
|
Kbiri N, Dluzewska J, Henderson IR, Ziolkowski PA. Quantifying Meiotic Crossover Recombination in Arabidopsis Lines Expressing Fluorescent Reporters in Seeds Using SeedScoring Pipeline for CellProfiler. Methods Mol Biol 2022; 2484:121-134. [PMID: 35461449 DOI: 10.1007/978-1-0716-2253-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of crossovers during meiosis is relatively low, so multiple meioses need to be analyzed to accurately measure crossover frequency. In Arabidopsis, systems based on the segregation of fluorescent T-DNA reporters that are expressed in seeds (fluorescent-tagged lines, FTLs) allow for an accurate measurement of crossover frequency in specific chromosome regions. A major advantage of FTL-based experiments is the ability to analyze thousands of seeds for each biological replicate, which requires the use of automatic seed scoring. Here, we describe a protocol to computationally count the proportion of seeds that experienced a crossover event within the tested FTL interval and so measure the recombination frequency within that interval. We describe SeedScoring, a CellProfiler pipeline where the total time needed to measure crossover frequency in a single FTL line is approximately 5 min using a series of three images taken under a fluorescent stereomicroscope (3 min) and passing these images through the SeedScoring pipeline described in this protocol (2 min).
Collapse
Affiliation(s)
- Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
10
|
Bieluszewski T, Szymanska-Lejman M, Dziegielewski W, Zhu L, Ziolkowski PA. Efficient Generation of CRISPR/Cas9-Based Mutants Supported by Fluorescent Seed Selection in Different Arabidopsis Accessions. Methods Mol Biol 2022; 2484:161-182. [PMID: 35461452 DOI: 10.1007/978-1-0716-2253-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating the process of gamete formation in plants often requires the use of mutants of selected genes in various genetic backgrounds. For example, analysis of meiotic recombination based on sequencing or genotyping requires the generation of hybrids between two lines. Although T-DNA mutant collections of Arabidopsis thaliana are vast and easily accessible, they are largely confined to Col-0 background. This chapter describes how to efficiently generate knock-out mutants in different Arabidopsis accessions using CRISPR/Cas9 technology. The presented system is based on designing two single-guide RNAs (sgRNAs), which direct the Cas9 endonuclease to generate double-strand breaks at two sites, leading to genomic deletion in targeted gene. The presence of seed-expressed dsRed fluorescence cassette in the CRISPR construct facilitates preselection of genome-edited and transgene-free plants by monitoring the seed fluorescence under the epifluorescent microscope. The protocol provides the detailed information about all steps required to perform genome editing and to obtain loss-of-function mutants in different Arabidopsis accessions within merely two generations.
Collapse
Affiliation(s)
- Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Longfei Zhu
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
11
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
12
|
Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021970118. [PMID: 34385313 PMCID: PMC8379953 DOI: 10.1073/pnas.2021970118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays a fundamental role in shaping genetic diversity in eukaryotes. Extensive variation in crossover rate exists between populations and species. The identity of modifier loci and their roles in genome evolution remain incompletely understood. We explored natural variation in Arabidopsis crossover and identified SNI1 as the causal gene underlying a major modifier locus. To date, SNI1 had no known role in crossover. SNI1 is a component of the SMC5/6 complex that is closely related to cohesin and condensin. Arabidopsis sni1 and other SMC5/6 mutants show similar effects on the interference-independent crossover pathway. Hence, our findings demonstrate that the SMC5/6 complex, which is known for its role in DNA damage repair, is also important for control of meiotic crossover. The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1. The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.
Collapse
|
13
|
Boideau F, Pelé A, Tanguy C, Trotoux G, Eber F, Maillet L, Gilet M, Lodé-Taburel M, Huteau V, Morice J, Coriton O, Falentin C, Delourme R, Rousseau-Gueutin M, Chèvre AM. A Modified Meiotic Recombination in Brassica napus Largely Improves Its Breeding Efficiency. BIOLOGY 2021; 10:biology10080771. [PMID: 34440003 PMCID: PMC8389541 DOI: 10.3390/biology10080771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Simple Summary The selection of varieties more resilient to disease and climate change requires generating new genetic diversity for breeding. The main mechanism for reshuffling genetic information is through the recombination of chromosomes during meiosis. We showed in oilseed rape (Brassica napus, AACC, 2n = 4x = 38), which is a natural hybrid formed from a cross between turnip (B. rapa, AA, 2n = 2x = 20) and cabbage (B. oleracea, CC, 2n = 2x = 18), that there is significantly more crossovers occurring along the entire A chromosomes in allotriploid AAC (crossbetween B. napus and B. rapa) than in diploid AA or allotetraploid AACC hybrids. We demonstrated that these allotriploid AAC hybrids are highly efficient to introduce new variability within oilseed rape varieties, notably by enabling the introduction of small genomic regions carrying genes controlling agronomically interesting traits. Abstract Meiotic recombination is the main tool used by breeders to generate biodiversity, allowing genetic reshuffling at each generation. It enables the accumulation of favorable alleles while purging deleterious mutations. However, this mechanism is highly regulated with the formation of one to rarely more than three crossovers, which are not randomly distributed. In this study, we showed that it is possible to modify these controls in oilseed rape (Brassica napus, AACC, 2n = 4x = 38) and that it is linked to AAC allotriploidy and not to polyploidy per se. To that purpose, we compared the frequency and the distribution of crossovers along A chromosomes from hybrids carrying exactly the same A nucleotide sequence, but presenting three different ploidy levels: AA, AAC and AACC. Genetic maps established with 202 SNPs anchored on reference genomes revealed that the crossover rate is 3.6-fold higher in the AAC allotriploid hybrids compared to AA and AACC hybrids. Using a higher SNP density, we demonstrated that smaller and numerous introgressions of B. rapa were present in AAC hybrids compared to AACC allotetraploid hybrids, with 7.6 Mb vs. 16.9 Mb on average and 21 B. rapa regions per plant vs. nine regions, respectively. Therefore, this boost of recombination is highly efficient to reduce the size of QTL carried in cold regions of the oilseed rape genome, as exemplified here for a QTL conferring blackleg resistance.
Collapse
Affiliation(s)
- Franz Boideau
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Alexandre Pelé
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Coleen Tanguy
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Frédérique Eber
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Marie Gilet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Maryse Lodé-Taburel
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Régine Delourme
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Mathieu Rousseau-Gueutin
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
| | - Anne-Marie Chèvre
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France; (F.B.); (A.P.); (C.T.); (G.T.); (F.E.); (L.M.); (M.G.); (M.L.-T.); (V.H.); (J.M.); (O.C.); (C.F.); (R.D.); (M.R.-G.)
- Correspondence: ; Tel.: +33-2-23-48-51-31
| |
Collapse
|
14
|
Huang TK, Puchta H. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Res 2021; 30:529-549. [PMID: 33646511 PMCID: PMC8316200 DOI: 10.1007/s11248-021-00238-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/13/2021] [Indexed: 12/26/2022]
Abstract
In the last years, tremendous progress has been made in the development of CRISPR/Cas-mediated genome editing tools. A number of natural CRISPR/Cas nuclease variants have been characterized. Engineered Cas proteins have been developed to minimize PAM restrictions, off-side effects and temperature sensitivity. Both kinds of enzymes have, by now, been applied widely and efficiently in many plant species to generate either single or multiple mutations at the desired loci by multiplexing. In addition to DSB-induced mutagenesis, specifically designed CRISPR/Cas systems allow more precise gene editing, resulting not only in random mutations but also in predefined changes. Applications in plants include gene targeting by homologous recombination, base editing and, more recently, prime editing. We will evaluate these different technologies for their prospects and practical applicability in plants. In addition, we will discuss a novel application of the Cas9 nuclease in plants, enabling the induction of heritable chromosomal rearrangements, such as inversions and translocations. This technique will make it possible to change genetic linkages in a programmed way and add another level of genome engineering to the toolbox of plant breeding. Also, strategies for tissue culture free genome editing were developed, which might be helpful to overcome the transformation bottlenecks in many crops. All in all, the recent advances of CRISPR/Cas technology will help agriculture to address the challenges of the twenty-first century related to global warming, pollution and the resulting food shortage.
Collapse
Affiliation(s)
- Teng-Kuei Huang
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany.
| |
Collapse
|
15
|
Rönspies M, Dorn A, Schindele P, Puchta H. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology. NATURE PLANTS 2021; 7:566-573. [PMID: 33958776 DOI: 10.1038/s41477-021-00910-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 05/20/2023]
Abstract
Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives. One way to address this issue is to create mutants with deficiencies in the meiotic recombination machinery, thereby enhancing global crossover frequencies between homologous parental chromosomes. Although this seemed to be a promising approach at first, thus far, no crossover frequencies could be enhanced in recombination-cold regions of the genome. Additionally, this approach can lead to unintended genomic instabilities due to DNA repair defects. Therefore, efforts have been undertaken to obtain predefined crossovers between homologues by inducing site-specific double-strand breaks (DSBs) in meiotic, as well as in somatic plant cells using CRISPR-Cas tools. However, this strategy has not been able to produce a substantial number of heritable homologous recombination-based crossovers. Most recently, heritable chromosomal rearrangements, such as inversions and translocations, have been obtained in a controlled way using CRISPR-Cas in plants. This approach unlocks a completely new way of manipulating genetic linkages, one in which the DSBs are induced in somatic cells, enabling the formation of chromosomal rearrangements in the megabase range, by DSB repair via non-homologous end-joining. This technology might also enable the restructuring of genomes more globally, resulting in not only the obtainment of synthetic plant chromosome, but also of novel plant species.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
16
|
Rönspies M, Schindele P, Puchta H. CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:177-183. [PMID: 33258473 DOI: 10.1093/jxb/eraa463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/03/2020] [Indexed: 05/21/2023]
Abstract
The advent of powerful site-specific nucleases, particularly the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, which enables precise genome manipulation, has revolutionized plant breeding. Until recently, the main focus of researchers has been to simply knock-in or knock-out single genes, or to induce single base changes, but constant improvements of this technology have enabled more ambitious applications that aim to improve plant productivity or other desirable traits. One long-standing aim has been the induction of targeted chromosomal rearrangements (crossovers, inversions, or translocations). The feasibility of this technique has the potential to transform plant breeding, because natural rearrangements, like inversions, for example, typically present obstacles to the breeding process. In this way, genetic linkages between traits could be altered to combine or separate favorable and deleterious genes, respectively. In this review, we discuss recent breakthroughs in the field of chromosome engineering in plants and their potential applications in the field of plant breeding. In the future, these approaches might be applicable in shaping plant chromosomes in a directed manner, based on plant breeding needs.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| |
Collapse
|
17
|
Gong W, Song X, Xie C, Zhou Y, Zhu Z, Xu C, Peng Y. Landscape of meiotic crossovers in Hericium erinaceus. Microbiol Res 2021; 245:126692. [PMID: 33453565 DOI: 10.1016/j.micres.2020.126692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Meiotic crossover shows marked interspecific and intraspecific variation, and knowledge about the molecular mechanism of crossover variation remains limited. Herein, we described the genome-wide scanning of crossover in one mushroom-forming fungus Hericium erinaceus. Utilizing the whole-genome single-nucleotide polymorphism (SNP) data-sets of a 127 F1 haploid progeny, we localized a total of 1316 crossover events and found that they were more likely to occur in the genic than intergenic regions. More than 30 % of the crossovers were concentrated in 59 crossover hotspots that were preferentially located close to chromosome ends. We then examined the genomic features around crossover hotspots. Results showed that the crossover hotspots were associated with increased gene density and guanine-cytosine (GC) content. An 8-bp GC-rich motif (GCGTCAGC) was found to be significantly enriched in these hotspots. The presence of mating-type loci affected the crossover at local scale rather than the overall crossover number. In order to dissect the genetic mechanisms shaping crossover variation, we then conducted quantitative trait locus (QTL) mapping for the total crossovers (TCO) and the crossover events that solely occurred within hotspots (HCO). Genome-wide QTL scanning identified four TCO-QTLs and two HCO-QTLs, which all located within or next to the crossover-hotspots. Crossover variations were shaped by multiple small-effect loci, with individual QTL contributing 6.9 %-11.7 % of variation. A few recombination pathway genes, including Spo11, Msh5, and Smc5 were found to be co-localized with the mapped crossover QTLs. Taken together, findings of this study offer insights into the crossover distribution and genetic factors conferring crossover variation in H. erinaceus, and advance our understandings for meiotic recombination in mushroom-forming fungi.
Collapse
Affiliation(s)
- Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiaoya Song
- Lishui Academy of Agricultural and Forestry Sciences, Lishui 323000, PR China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Yingjun Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Chao Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
18
|
Dreissig S, Maurer A, Sharma R, Milne L, Flavell AJ, Schmutzer T, Pillen K. Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. THE NEW PHYTOLOGIST 2020; 228:1852-1863. [PMID: 32659029 DOI: 10.1111/nph.16810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Meiotic recombination rates vary considerably between species, populations and individuals. The genetic exchange between homologous chromosomes plays a major role in evolution by breaking linkage between advantageous and deleterious alleles in the case of introgressions. Identifying recombination rate modifiers is thus of both fundamental and practical interest to understand and utilize variation in meiotic recombination rates. We investigated recombination rate variation in a large intraspecific hybrid population (named HEB-25) derived from a cross between domesticated barley and 25 wild barley accessions. We observed quantitative variation in total crossover number with a maximum of a 1.4-fold difference between subpopulations and increased recombination rates across pericentromeric regions. The meiosis-specific α-kleisin cohesin subunit REC8 was identified as a candidate gene influencing crossover number and patterning. Furthermore, we quantified wild barley introgression patterns and revealed how local and genome-wide recombination rate variation shapes patterns of introgression. The identification of allelic variation in REC8 in combination with the observed changes in crossover patterning suggest a difference in how chromatin loops are tethered to the chromosome axis, resulting in reduced crossover suppression across pericentromeric regions. Local and genome-wide recombination rate variation is shaping patterns of introgressions and thereby directly influences the consequences of linkage drag.
Collapse
Affiliation(s)
- Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Rajiv Sharma
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Linda Milne
- The James Hutton Institute (JHI), Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Andrew John Flavell
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| |
Collapse
|
19
|
Blackwell AR, Dluzewska J, Szymanska-Lejman M, Desjardins S, Tock AJ, Kbiri N, Lambing C, Lawrence EJ, Bieluszewski T, Rowan B, Higgins JD, Ziolkowski PA, Henderson IR. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 2020; 39:e104858. [PMID: 32935357 PMCID: PMC7604573 DOI: 10.15252/embj.2020104858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.
Collapse
Affiliation(s)
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stuart Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Schmidt C, Fransz P, Rönspies M, Dreissig S, Fuchs J, Heckmann S, Houben A, Puchta H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat Commun 2020. [PMID: 32887885 DOI: 10.10382/fs41467-020-18277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Chromosomal inversions are recurrent rearrangements that occur between different plant isolates or cultivars. Such inversions may underlie reproductive isolation in evolution and represent a major obstacle for classical breeding as no crossovers can be observed between inverted sequences on homologous chromosomes. The heterochromatic knob (hk4S) on chromosome 4 is the most well-known inversion of Arabidopsis. If a knob carrying accession such as Col-0 is crossed with a knob-less accession such as Ler-1, crossovers cannot be recovered within the inverted region. Our work shows that by egg-cell specific expression of the Cas9 nuclease from Staphylococcus aureus, a targeted reversal of the 1.1 Mb long hk4S-inversion can be achieved. By crossing Col-0 harbouring the rearranged chromosome 4 with Ler-1, meiotic crossovers can be restored into a region with previously no detectable genetic exchange. The strategy of somatic chromosome engineering for breaking genetic linkage has huge potential for application in plant breeding.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Paul Fransz
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute of Life Sciences, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, Netherlands
| | - Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06120, Halle, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany.
| |
Collapse
|
21
|
Schmidt C, Fransz P, Rönspies M, Dreissig S, Fuchs J, Heckmann S, Houben A, Puchta H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat Commun 2020; 11:4418. [PMID: 32887885 PMCID: PMC7474074 DOI: 10.1038/s41467-020-18277-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chromosomal inversions are recurrent rearrangements that occur between different plant isolates or cultivars. Such inversions may underlie reproductive isolation in evolution and represent a major obstacle for classical breeding as no crossovers can be observed between inverted sequences on homologous chromosomes. The heterochromatic knob (hk4S) on chromosome 4 is the most well-known inversion of Arabidopsis. If a knob carrying accession such as Col-0 is crossed with a knob-less accession such as Ler-1, crossovers cannot be recovered within the inverted region. Our work shows that by egg-cell specific expression of the Cas9 nuclease from Staphylococcus aureus, a targeted reversal of the 1.1 Mb long hk4S-inversion can be achieved. By crossing Col-0 harbouring the rearranged chromosome 4 with Ler-1, meiotic crossovers can be restored into a region with previously no detectable genetic exchange. The strategy of somatic chromosome engineering for breaking genetic linkage has huge potential for application in plant breeding.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Paul Fransz
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute of Life Sciences, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, Netherlands
| | - Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06120, Halle, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany.
| |
Collapse
|
22
|
Quesneville H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mob DNA 2020; 11:28. [PMID: 32742313 PMCID: PMC7385966 DOI: 10.1186/s13100-020-00223-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
Transposable elements (TEs) are mobile repetitive DNA sequences shown to be major drivers of genome evolution. As the first plant to have its genome sequenced and analyzed at the genomic scale, Arabidopsis thaliana has largely contributed to our TE knowledge. The present report describes 20 years of accumulated TE knowledge gained through the study of the Arabidopsis genome and covers the known TE families, their relative abundance, and their genomic distribution. It presents our knowledge of the different TE family activities, mobility, population and long-term evolutionary dynamics. Finally, the role of TE as substrates for new genes and their impact on gene expression is illustrated through a few selected demonstrative cases. Promising future directions for TE studies in this species conclude the review.
Collapse
|
23
|
ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:13647-13658. [PMID: 32499315 PMCID: PMC7306779 DOI: 10.1073/pnas.1921055117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During meiosis, interhomolog recombination produces crossovers and noncrossovers to create genetic diversity. Meiotic recombination frequency varies at multiple scales, with high subtelomeric recombination and suppressed centromeric recombination typical in many eukaryotes. During recombination, sister chromatids are tethered as loops to a polymerized chromosome axis, which, in plants, includes the ASY1 HORMA domain protein and REC8-cohesin complexes. Using chromatin immunoprecipitation, we show an ascending telomere-to-centromere gradient of ASY1 enrichment, which correlates strongly with REC8-cohesin ChIP-seq data. We mapped crossovers genome-wide in the absence of ASY1 and observe that telomere-led recombination becomes dominant. Surprisingly, asy1/+ heterozygotes also remodel crossovers toward subtelomeric regions at the expense of the pericentromeres. Telomeric recombination increases in asy1/+ occur in distal regions where ASY1 and REC8 ChIP enrichment are lowest in wild type. In wild type, the majority of crossovers show interference, meaning that they are more widely spaced along the chromosomes than expected by chance. To measure interference, we analyzed double crossover distances, MLH1 foci, and fluorescent pollen tetrads. Interestingly, while crossover interference is normal in asy1/+, it is undetectable in asy1 mutants, indicating that ASY1 is required to mediate crossover interference. Together, this is consistent with ASY1 antagonizing telomere-led recombination and promoting spaced crossover formation along the chromosomes via interference. These findings provide insight into the role of the meiotic axis in patterning recombination frequency within plant genomes.
Collapse
|
24
|
Levels of Heterochiasmy During Arabidopsis Development as Reported by Fluorescent Tagged Lines. G3 (BETHESDA, MD.) 2020; 10:2103-2110. [PMID: 32321838 PMCID: PMC7263686 DOI: 10.1534/g3.120.401296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Crossing over, the exchange of DNA between the chromosomes during meiosis, contributes significantly to genetic variation. The rate of crossovers (CO) varies depending upon the taxon, population, age, external conditions, and also, sometimes, between the sexes, a phenomenon called heterochiasmy. In the model plant Arabidopsis thaliana, the male rate of all crossover events (mCO) is typically nearly double the female rate (fCO). A previous, PCR-based genotyping study has reported that the disparity decreases with increasing parental age, because fCO rises while mCO remains stable. We revisited this topic using a fluorescent tagged lines approach to examine how heterochiasmy responded to parental age in eight genomic intervals distributed across the organism’s five chromosomes. We determined recombination frequency for, on average, more than 2000 seeds, for each interval, for each of four age groups, to estimate sex-specific CO rates. mCO did not change with age, as reported previously, but, here, fCO did not rise, and thus the levels of heterochiasmy were unchanged. We can see no methodological reason to doubt that our results reflect the underlying biology of the accessions we studied. The lack of response to age could perhaps be due to previously reported variation in CO rate among accessions of Arabidopsis.
Collapse
|
25
|
Mandáková T, Hloušková P, Koch MA, Lysak MA. Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning. THE PLANT CELL 2020; 32:650-665. [PMID: 31919297 PMCID: PMC7054033 DOI: 10.1105/tpc.19.00557] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 05/04/2023]
Abstract
Centromere position may change despite conserved chromosomal collinearity. Centromere repositioning and evolutionary new centromeres (ENCs) were frequently encountered during vertebrate genome evolution but only rarely observed in plants. The largest crucifer tribe, Arabideae (∼550 species; Brassicaceae, the mustard family), diversified into several well-defined subclades in the virtual absence of chromosome number variation. Bacterial artificial chromosome-based comparative chromosome painting uncovered a constancy of genome structures among 10 analyzed genomes representing seven Arabideae subclades classified as four genera: Arabis, Aubrieta, Draba, and Pseudoturritis Interestingly, the intra-tribal diversification was marked by a high frequency of ENCs on five of the eight homoeologous chromosomes in the crown-group genera, but not in the most ancestral Pseudoturritis genome. From the 32 documented ENCs, at least 26 originated independently, including 4 ENCs recurrently formed at the same position in not closely related species. While chromosomal localization of ENCs does not reflect the phylogenetic position of the Arabideae subclades, centromere seeding was usually confined to long chromosome arms, transforming acrocentric chromosomes to (sub)metacentric chromosomes. Centromere repositioning is proposed as the key mechanism differentiating overall conserved homoeologous chromosomes across the crown-group Arabideae subclades. The evolutionary significance of centromere repositioning is discussed in the context of possible adaptive effects on recombination and epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Hloušková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics/Botanical Garden and Herbarium (HEID), Heidelberg University, Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
26
|
Schmidt C, Schindele P, Puchta H. From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas. ABIOTECH 2020; 1:21-31. [PMID: 36305002 PMCID: PMC9584095 DOI: 10.1007/s42994-019-00002-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023]
Abstract
In the last years, tremendous progress has been achieved in the field of gene editing in plants. By the induction of single site-specific double-strand breaks (DSBs), the knockout of genes by non-homologous end joining has become routine in many plant species. Recently, the efficiency of inducing pre-planned mutations by homologous recombination has also been improved considerably. However, very little effort has been undertaken until now to achieve more complex changes in plant genomes by the simultaneous induction of several DSBs. Several reports have been published on the efficient induction of deletions. However, the induction of intrachromosomal inversions and interchromosomal recombination by the use of CRISPR/Cas has only recently been reported. In this review, we want to sum up these results and put them into context with regards to what is known about natural chromosome rearrangements in plants. Moreover, we review the recent progress in CRISPR/Cas-based mammalian chromosomal rearrangements, which might be inspiring for plant biologists. In the long run, the controlled restructuring of plant genomes should enable us to link or break linkage of traits at will, thus defining a new area of plant breeding.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76133 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76133 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76133 Karlsruhe, Germany
| |
Collapse
|
27
|
Luo X, Xu L, Wang Y, Dong J, Chen Y, Tang M, Fan L, Zhu Y, Liu L. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:274-286. [PMID: 31218798 PMCID: PMC6920339 DOI: 10.1111/pbi.13195] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 05/19/2023]
Abstract
High-density genetic map is a valuable tool for exploring novel genomic information, quantitative trait locus (QTL) mapping and gene discovery of economically agronomic traits in plant species. However, high-resolution genetic map applied to tag QTLs associated with important traits and to investigate genomic features underlying recombination landscape in radish (Raphanus sativus) remains largely unexplored. In this study, an ultra-high-density genetic map with 378 738 SNPs covering 1306.8 cM in nine radish linkage groups (LGs) was developed by a whole-genome sequencing-based approach. A total of 18 QTLs for 11 horticulture traits were detected. The map-based cloning data indicated that the R2R3-MYB transcription factor RsMYB90 was a crucial candidate gene determining the taproot skin colour. Comparative genomics analysis among radish, Brassica rapa and B. oleracea genome revealed several genomic rearrangements existed in the radish genome. The highly uneven distribution of recombination was observed across the nine radish chromosomes. Totally, 504 recombination hot regions (RHRs) were enriched near gene promoters and terminators. The recombination rate in RHRs was positively correlated with the density of SNPs and gene, and GC content, respectively. Functional annotation indicated that genes within RHRs were mainly involved in metabolic process and binding. Three QTLs for three traits were found in the RHRs. The results provide novel insights into the radish genome evolution and recombination landscape, and facilitate the development of effective strategies for molecular breeding by targeting and dissecting important traits in radish.
Collapse
Affiliation(s)
- Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Guizhou Institute of BiotechnologyGuizhou Academy of Agricultural SciencesGuiyangChina
| | | | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and EnvironmentThe University of Western AustraliaPerthWAAustralia
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
28
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
29
|
do Vale Martins L, Yu F, Zhao H, Dennison T, Lauter N, Wang H, Deng Z, Thompson A, Semrau K, Rouillard JM, Birchler JA, Jiang J. Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nat Commun 2019; 10:4604. [PMID: 31601818 PMCID: PMC6787048 DOI: 10.1038/s41467-019-12646-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/20/2019] [Indexed: 01/25/2023] Open
Abstract
Meiotic crossovers (COs) play a critical role in generating genetic variation and maintaining faithful segregation of homologous chromosomes during meiosis. We develop a haplotype-specific fluorescence in situ hybridization (FISH) technique that allows visualization of COs directly on metaphase chromosomes. Oligonucleotides (oligos) specific to chromosome 10 of maize inbreds B73 and Mo17, respectively, are synthesized and labeled as FISH probes. The parental and recombinant chromosome 10 in B73 x Mo17 F1 hybrids and F2 progenies can be unambiguously identified by haplotype-specific FISH. Analysis of 58 F2 plants reveals lack of COs in the entire proximal half of chromosome 10. However, we detect COs located in regions very close to the centromere in recombinant inbred lines from an intermated B73 x Mo17 population, suggesting effective accumulation of COs in recombination-suppressed chromosomal regions through intermating and the potential to generate favorable allelic combinations of genes residing in these regions. Meiotic crossovers (COs) are essential for proper chromosome segregation and generating novel combinations of alleles. Here, the authors develop haplotype-specific oligos on maize chromosome 10 for fluorescence in situ hybridization and analyze CO patterns in an intermated recombinant population derived from B73 and Mo17.
Collapse
Affiliation(s)
- Lívia do Vale Martins
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Fan Yu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.,National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Tesia Dennison
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Nick Lauter
- Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, 50011, USA.,USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA
| | - Haiyan Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Addie Thompson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.,Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| | - Kassandra Semrau
- Arbor Biosciences, Ann Arbor, MI, 48103, USA.,Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Jean-Marie Rouillard
- Arbor Biosciences, Ann Arbor, MI, 48103, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA. .,Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
30
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biol Evol 2019; 11:1573-1585. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/27/2022] Open
Abstract
Meiotic recombination is a highly conserved process that has profound effects on genome evolution. At a fine-scale, recombination rates can vary drastically across genomes, often localized into small recombination "hotspots" with highly elevated rates, surrounded by regions with little recombination. In most species studied, the location of hotspots within genomes is highly conserved across broad evolutionary timescales. The main exception to this pattern is in mammals, where hotspot location can evolve rapidly among closely related species and even among populations within a species. Hotspot position in mammals is controlled by the gene, Prdm9, whereas in species with conserved hotspots, a functional Prdm9 is typically absent. Due to a limited number of species where recombination rates have been estimated at a fine-scale, it remains unclear whether hotspot conservation is always associated with the absence of a functional Prdm9. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the evolution of recombination over short evolutionary timescales. Using a linkage disequilibrium-based approach, we found recombination rates indeed varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had highly divergent landscapes between stickleback populations, where only ∼15% of these hotspots were shared. Our results indicate that fine-scale recombination rates may be diverging between closely related populations of threespine stickleback fish. Interestingly, we found only a weak association of a PRDM9 binding motif within hotspots, which suggests that threespine stickleback fish may possess a novel mechanism for targeting recombination hotspots at a fine-scale.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
31
|
Pang W, Fu P, Li X, Zhan Z, Yu S, Piao Z. Identification and Mapping of the Clubroot Resistance Gene CRd in Chinese Cabbage ( Brassica rapa ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2018; 9:653. [PMID: 29868100 DOI: 10.3389/fpls.2015.0653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/27/2018] [Indexed: 05/26/2023]
Abstract
The rapid spread of clubroot disease, which is caused by Plasmodiophora brassicae, threatens Brassicaceae crop production worldwide. Breeding plants that have broad-spectrum disease resistance is one of the best ways to prevent clubroot. In the present study, eight Chinese cabbage germplasms were screened using published clubroot-resistant (CR) loci-/gene-linked markers. A CR gene Crr3 potential carrier "85-74" was detected which linked to marker BRSTS61; however, "85-74" shows different responses to local pathogens "LAB-19," "LNND-2," and "LAB-10" from "CR-73" which harbors Crr3. We used a next-generation sequencing-based bulked segregant analysis approach combined with genetic mapping to detect CR genes in an F2 segregant population generated from a cross between the Chinese cabbage inbred lines "85-74" (CR) and "BJN3-1" (clubroot susceptible). The "85-74" line showed resistance to a local pathogen "LAB-19" which was identified as race 4; a genetic analysis revealed that the resistance was conferred by a single dominant gene. The CR gene which we named CRd was mapped to a 60 kb (1 cM) region between markers yau389 and yau376 on chromosome A03. CRd is located upstream of Crr3 which was confirmed based on the physical positions of Crr3 linked markers. The identification of CRd linked markers can be applied to marker-assisted selection in the breeding of new CR cultivars of Chinese cabbage and other Brassica crops.
Collapse
Affiliation(s)
- Wenxing Pang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Pengyu Fu
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Sha Yu
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
32
|
Pang W, Fu P, Li X, Zhan Z, Yu S, Piao Z. Identification and Mapping of the Clubroot Resistance Gene CRd in Chinese Cabbage ( Brassica rapa ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2018; 9:653. [PMID: 29868100 PMCID: PMC5968122 DOI: 10.3389/fpls.2018.00653] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/27/2018] [Indexed: 05/23/2023]
Abstract
The rapid spread of clubroot disease, which is caused by Plasmodiophora brassicae, threatens Brassicaceae crop production worldwide. Breeding plants that have broad-spectrum disease resistance is one of the best ways to prevent clubroot. In the present study, eight Chinese cabbage germplasms were screened using published clubroot-resistant (CR) loci-/gene-linked markers. A CR gene Crr3 potential carrier "85-74" was detected which linked to marker BRSTS61; however, "85-74" shows different responses to local pathogens "LAB-19," "LNND-2," and "LAB-10" from "CR-73" which harbors Crr3. We used a next-generation sequencing-based bulked segregant analysis approach combined with genetic mapping to detect CR genes in an F2 segregant population generated from a cross between the Chinese cabbage inbred lines "85-74" (CR) and "BJN3-1" (clubroot susceptible). The "85-74" line showed resistance to a local pathogen "LAB-19" which was identified as race 4; a genetic analysis revealed that the resistance was conferred by a single dominant gene. The CR gene which we named CRd was mapped to a 60 kb (1 cM) region between markers yau389 and yau376 on chromosome A03. CRd is located upstream of Crr3 which was confirmed based on the physical positions of Crr3 linked markers. The identification of CRd linked markers can be applied to marker-assisted selection in the breeding of new CR cultivars of Chinese cabbage and other Brassica crops.
Collapse
|
33
|
Wen T, Wu M, Shen C, Gao B, Zhu D, Zhang X, You C, Lin Z. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1654-1666. [PMID: 29476651 PMCID: PMC6097129 DOI: 10.1111/pbi.12902] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/14/2023]
Abstract
Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton.
Collapse
Affiliation(s)
- Tianwang Wen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Mi Wu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Bin Gao
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - De Zhu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chunyuan You
- Cotton Research InstituteShihezi Academy of Agriculture ScienceShiheziXinjiangChina
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
34
|
Paigen K, Petkov PM. PRDM9 and Its Role in Genetic Recombination. Trends Genet 2018; 34:291-300. [PMID: 29366606 DOI: 10.1016/j.tig.2017.12.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
PRDM9 is a zinc finger protein that binds DNA at specific locations in the genome where it trimethylates histone H3 at lysines 4 and 36 at surrounding nucleosomes. During meiosis in many species, including humans and mice where PRDM9 has been most intensely studied, these actions determine the location of recombination hotspots, where genetic recombination occurs. In addition, PRDM9 facilitates the association of hotspots with the chromosome axis, the site of the programmed DNA double-strand breaks (DSBs) that give rise to genetic exchange between chromosomes. In the absence of PRDM9 DSBs are not properly repaired. Collectively, these actions determine patterns of genetic linkage and the possibilities for chromosome reorganization over successive generations.
Collapse
|
35
|
Shen C, Li X, Zhang R, Lin Z. Genome-wide recombination rate variation in a recombination map of cotton. PLoS One 2017; 12:e0188682. [PMID: 29176878 PMCID: PMC5703465 DOI: 10.1371/journal.pone.0188682] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/10/2017] [Indexed: 01/03/2023] Open
Abstract
Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species’ genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.
Collapse
Affiliation(s)
- Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ximei Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Agronomy and Plant Protection, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology, Qingdao, Shandong, China
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
36
|
Sun L, Wang J, Sang M, Jiang L, Zhao B, Cheng T, Zhang Q, Wu R. Landscaping Crossover Interference Across a Genome. TRENDS IN PLANT SCIENCE 2017; 22:894-907. [PMID: 28822625 DOI: 10.1016/j.tplants.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 05/14/2023]
Abstract
The evolutionary success of eukaryotic organisms crucially depends on the capacity to produce genetic diversity through reciprocal exchanges of each chromosome pair, or crossovers (COs), during meiosis. It has been recognized that COs arise more evenly across a given chromosome than at random. This phenomenon, termed CO interference, occurs pervasively in eukaryotes and may confer a selective advantage. We describe here a multipoint linkage analysis procedure for segregating families to quantify the strength of CO interference over the genome, and extend this procedure to illustrate the landscape of CO interference in natural populations. We further discuss the crucial role of CO interference in amplifying and maintaining genetic diversity through sex-, stress-, and age-induced differentiation.
Collapse
Affiliation(s)
- Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengmeng Sang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Libo Jiang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tangran Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Center for Statistical Genetics, Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
37
|
Cannon CH, Scher CL. Exploring the potential of gametic reconstruction of parental genotypes by F 1 hybrids as a bridge for rapid introgression. Genome 2017; 60:713-719. [PMID: 28732173 DOI: 10.1139/gen-2016-0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interspecific hybridization and genetic introgression are commonly observed in natural populations of many species, especially trees. Among oaks, gene flow between closely related species has been well documented. And yet, hybridization does not lead to a "melting pot", i.e., the homogenization of phenotypic traits. Here, we explore how the combination of several common reproductive and genomic traits could create an avenue for interspecific gene flow that partially explains this apparent paradox. During meiosis, F1 hybrids will produce approximately (½)n "reconstructed" parental gametes, where n equals the number of chromosomes. Crossing over would introduce a small amount of introgressive material. The resulting parental-type gametophytes would probably possess a similar fertilization advantage as conspecific pollen. The resulting "backcross" would actually be the genetic equivalent of a conspecific out-cross, with a small amount of heterospecific DNA captured through crossing over. Even with detailed genomic analysis, the resulting offspring would not appear to be a backcross. This avenue for rapid introgression between species through the F1 hybrid will be viable for organisms that meet certain conditions: low base chromosome number, conserved genomic structure and size, production of billions of gametes/gametophytes during each reproductive event, and conspecific fertilization advantage.
Collapse
Affiliation(s)
- Charles H Cannon
- The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA.,The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| | - C Lane Scher
- The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA.,The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| |
Collapse
|
38
|
Schiessl S, Huettel B, Kuehn D, Reinhardt R, Snowdon RJ. Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation. Sci Data 2017; 4:170013. [PMID: 28291231 PMCID: PMC5349243 DOI: 10.1038/sdata.2017.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 01/23/2023] Open
Abstract
Gene copy number variation (CNV) is increasingly implicated in control of complex trait networks, particularly in polyploid plants like rapeseed (Brassica napus L.) with an evolutionary history of genome restructuring. Here we performed sequence capture to assay nucleotide variation and CNV in a panel of central flowering time regulatory genes across a species-wide diversity set of 280 B. napus accessions. The genes were chosen based on prior knowledge from Arabidopsis thaliana and related Brassica species. Target enrichment was performed using the Agilent SureSelect technology, followed by Illumina sequencing. A bait (probe) pool was developed based on results of a preliminary experiment with representatives from different B. napus morphotypes. A very high mean target coverage of ~670x allowed reliable calling of CNV, single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel) polymorphisms. No accession exhibited no CNV, and at least one homolog of every gene we investigated showed CNV in some accessions. Some CNV appear more often in specific morphotypes, indicating a role in diversification.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bruno Huettel
- Max Planck Institute for Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Diana Kuehn
- Max Planck Institute for Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Richard Reinhardt
- Max Planck Institute for Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
39
|
Fransz P, Linc G, Lee C, Aflitos SA, Lasky JR, Toomajian C, Ali H, Peters J, van Dam P, Ji X, Kuzak M, Gerats T, Schubert I, Schneeberger K, Colot V, Martienssen R, Koornneef M, Nordborg M, Juenger TE, de Jong H, Schranz ME. Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:159-178. [PMID: 27436134 PMCID: PMC5113708 DOI: 10.1111/tpj.13262] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 05/02/2023]
Abstract
Chromosomal inversions can provide windows onto the cytogenetic, molecular, evolutionary and demographic histories of a species. Here we investigate a paracentric 1.17-Mb inversion on chromosome 4 of Arabidopsis thaliana with nucleotide precision of its borders. The inversion is created by Vandal transposon activity, splitting an F-box and relocating a pericentric heterochromatin segment in juxtaposition with euchromatin without affecting the epigenetic landscape. Examination of the RegMap panel and the 1001 Arabidopsis genomes revealed more than 170 inversion accessions in Europe and North America. The SNP patterns revealed historical recombinations from which we infer diverse haplotype patterns, ancient introgression events and phylogenetic relationships. We find a robust association between the inversion and fecundity under drought. We also find linkage disequilibrium between the inverted region and the early flowering Col-FRIGIDA allele. Finally, SNP analysis elucidates the origin of the inversion to South-Eastern Europe approximately 5000 years ago and the FRI-Col allele to North-West Europe, and reveals the spreading of a single haplotype to North America during the 17th to 19th century. The 'American haplotype' was identified from several European localities, potentially due to return migration.
Collapse
Affiliation(s)
- Paul Fransz
- Department of Plant Development and (Epi)GeneticsSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamthe Netherlands
| | - Gabriella Linc
- Department of Plant Development and (Epi)GeneticsSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamthe Netherlands
- Present address: Centre for Agricultural ResearchHungarian Academy of SciencesAgricultural InstituteMartonvásárHungary
| | - Cheng‐Ruei Lee
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 3Vienna1030Austria
| | | | - Jesse R. Lasky
- Department of BiologyPennsylvania State UniversityUniversity ParkPAUSA
| | | | - Hoda Ali
- Department of Cytogenetics and Genome AnalysisThe Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
- Present address: Department of Genetics and CytologyNational Research CenterCairoEgypt
| | - Janny Peters
- Section Plant GeneticsInstitute for Wetland and Water Research Faculty of ScienceRadboud UniversityNijmegenthe Netherlands
| | - Peter van Dam
- Section Plant GeneticsInstitute for Wetland and Water Research Faculty of ScienceRadboud UniversityNijmegenthe Netherlands
- Present address: Department of Molecular Plant PathologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Xianwen Ji
- Laboratory of GeneticsWageningen UniversityWageningenthe Netherlands
| | - Mateusz Kuzak
- MAD, Dutch Genomics Service & Support ProviderSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamthe Netherlands
- Present address: Netherlands eScience CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tom Gerats
- Section Plant GeneticsInstitute for Wetland and Water Research Faculty of ScienceRadboud UniversityNijmegenthe Netherlands
| | - Ingo Schubert
- Department of Cytogenetics and Genome AnalysisThe Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | | | - Vincent Colot
- Unité de Recherche en Génomique Végétale (URGV)INRA/CNRS/UEVE 2 Rue Gaston CrémieuxEvry Cedex91057France
- Present address: Institut de Biologie de l'Ecole Normale Supérieure (IBENS)ParisFrance
| | - Rob Martienssen
- Cold Spring Harbor LaboratoryCold Spring HarborNew YorkNY11724USA
| | - Maarten Koornneef
- Laboratory of GeneticsWageningen UniversityWageningenthe Netherlands
- Max Planck Institute for Plant Breeding ResearchKöln50829Germany
| | - Magnus Nordborg
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 3Vienna1030Austria
| | | | - Hans de Jong
- Laboratory of GeneticsWageningen UniversityWageningenthe Netherlands
| | | |
Collapse
|
40
|
Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, Gould K, Mead D, Drury E, O'Brien J, Ruano Rubio V, MacInnis B, Mwangi J, Samarakoon U, Ranford-Cartwright L, Ferdig M, Hayton K, Su XZ, Wellems T, Rayner J, McVean G, Kwiatkowski D. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res 2016; 26:1288-99. [PMID: 27531718 PMCID: PMC5052046 DOI: 10.1101/gr.203711.115] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired.
Collapse
Affiliation(s)
- Alistair Miles
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Paul Vauterin
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Richard Pearson
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Susana Campino
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Michel Theron
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Kelda Gould
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Daniel Mead
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Eleanor Drury
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | | | | | - Bronwyn MacInnis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Jonathan Mwangi
- Department of Biochemistry, Medical School, Mount Kenya University, 01000 Thika, Kenya; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Upeka Samarakoon
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Lisa Ranford-Cartwright
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-9806, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-9806, USA
| | - Thomas Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-9806, USA
| | - Julian Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom; Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Dominic Kwiatkowski
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| |
Collapse
|
41
|
Genetic Mapping of Millions of SNPs in Safflower (Carthamus tinctorius L.) via Whole-Genome Resequencing. G3-GENES GENOMES GENETICS 2016; 6:2203-11. [PMID: 27226165 PMCID: PMC4938673 DOI: 10.1534/g3.115.026690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Accurate assembly of complete genomes is facilitated by very high density genetic maps. We performed low-coverage, whole-genome shotgun sequencing on 96 F6 recombinant inbred lines (RILs) of a cross between safflower (Carthamus tinctorius L.) and its wild progenitor (C. palaestinus Eig). We also produced a draft genome assembly of C. tinctorius covering 866 million bp (∼two-thirds) of the expected 1.35 Gbp genome after sequencing a single, short insert library to ∼21 × depth. Sequence reads from the RILs were mapped to this genome assembly to facilitate SNP identification, and the resulting polymorphisms were used to construct a genetic map. The resulting map included 2,008,196 genetically located SNPs in 1178 unique positions. A total of 57,270 scaffolds, each containing five or more mapped SNPs, were anchored to the map. This resulted in the assignment of sequence covering 14% of the expected genome length to a genetic position. Comparison of this safflower map to genetic maps of sunflower and lettuce revealed numerous chromosomal rearrangements, and the resulting patterns were consistent with a whole-genome duplication event in the lineage leading to sunflower. This sequence-based genetic map provides a powerful tool for the assembly of a low-cost draft genome of safflower, and the same general approach is expected to work for other species.
Collapse
|
42
|
Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci U S A 2016; 113:E4052-60. [PMID: 27354520 DOI: 10.1073/pnas.1607532113] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Resequencing or reference-based assemblies reveal large parts of the small-scale sequence variation. However, they typically fail to separate such local variation into colinear and rearranged variation, because they usually do not recover the complement of large-scale rearrangements, including transpositions and inversions. Besides the availability of hundreds of genomes of diverse Arabidopsis thaliana accessions, there is so far only one full-length assembled genome: the reference sequence. We have assembled 117 Mb of the A. thaliana Landsberg erecta (Ler) genome into five chromosome-equivalent sequences using a combination of short Illumina reads, long PacBio reads, and linkage information. Whole-genome comparison against the reference sequence revealed 564 transpositions and 47 inversions comprising ∼3.6 Mb, in addition to 4.1 Mb of nonreference sequence, mostly originating from duplications. Although rearranged regions are not different in local divergence from colinear regions, they are drastically depleted for meiotic recombination in heterozygotes. Using a 1.2-Mb inversion as an example, we show that such rearrangement-mediated reduction of meiotic recombination can lead to genetically isolated haplotypes in the worldwide population of A. thaliana Moreover, we found 105 single-copy genes, which were only present in the reference sequence or the Ler assembly, and 334 single-copy orthologs, which showed an additional copy in only one of the genomes. To our knowledge, this work gives first insights into the degree and type of variation, which will be revealed once complete assemblies will replace resequencing or other reference-dependent methods.
Collapse
|
43
|
Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome. G3-GENES GENOMES GENETICS 2016; 6:1767-76. [PMID: 27172189 PMCID: PMC4889672 DOI: 10.1534/g3.116.028001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin.
Collapse
|
44
|
Termolino P, Cremona G, Consiglio MF, Conicella C. Insights into epigenetic landscape of recombination-free regions. Chromosoma 2016; 125:301-8. [PMID: 26801812 PMCID: PMC4830869 DOI: 10.1007/s00412-016-0574-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution.
Collapse
Affiliation(s)
- Pasquale Termolino
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Gaetana Cremona
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Maria Federica Consiglio
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Clara Conicella
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy.
| |
Collapse
|
45
|
He Y, Wang M, Sun Q, Pawlowski WP. Mapping Recombination Initiation Sites Using Chromatin Immunoprecipitation. Methods Mol Biol 2016; 1429:177-88. [PMID: 27511175 DOI: 10.1007/978-1-4939-3622-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome-wide maps of recombination sites provide valuable information not only on the recombination pathway itself but also facilitate the understanding of genome dynamics and evolution. Here, we describe a chromatin immunoprecipitation (ChIP) protocol to map the sites of recombination initiation in plants with maize used as an example. ChIP is a method that allows identification of chromosomal sites occupied by specific proteins. Our protocol utilizes RAD51, a protein involved in repair of double-strand breaks (DSBs) that initiate meiotic recombination, to identify DSB formation hotspots. Chromatin is extracted from meiotic flowers, sheared and enriched in fragments bound to RAD51. Genomic location of the protein is then identified by next-generation sequencing. This protocol can also be used in other species of plants, animals, and fungi.
Collapse
Affiliation(s)
- Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100083, China
| | - Minghui Wang
- Institute of Biotechnology, Biotechnology Resource Center and Section of Plant Biology in School of IntegrativePlant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Sun
- Institute of Biotechnology, Biotechnology Resource Center, Cornell University, Ithaca, NY, 14853, USA
| | - Wojciech P Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
46
|
Sundararajan A, Dukowic-Schulze S, Kwicklis M, Engstrom K, Garcia N, Oviedo OJ, Ramaraj T, Gonzales MD, He Y, Wang M, Sun Q, Pillardy J, Kianian SF, Pawlowski WP, Chen C, Mudge J. Gene Evolutionary Trajectories and GC Patterns Driven by Recombination in Zea mays. FRONTIERS IN PLANT SCIENCE 2016; 7:1433. [PMID: 27713757 PMCID: PMC5031598 DOI: 10.3389/fpls.2016.01433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/08/2016] [Indexed: 05/20/2023]
Abstract
Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another intriguing GC pattern exists. Maize genes show a bimodal GC content distribution that has been attributed to nucleotide bias in the third, or wobble, position of the codon. Recombination may be an underlying driving force given that recombination sites are often associated with high GC content. Here we explore the relationship between recombination and genomic GC patterns by comparing GC gene content at each of the three codon positions (GC1, GC2, and GC3, collectively termed GCx) to instances of a variable GC-rich motif that underlies double strand break (DSB) hotspots and to meiocyte-specific gene expression. Surprisingly, GCx bimodality in maize cannot be fully explained by the codon wobble hypothesis. High GCx genes show a strong overlap with the DSB hotspot motif, possibly providing a mechanism for the high evolutionary rates seen in these genes. On the other hand, genes that are turned on in meiosis (early prophase I) are biased against both high GCx genes and genes with the DSB hotspot motif, possibly allowing important meiotic genes to avoid DSBs. Our data suggests a strong link between the GC-rich motif underlying DSB hotspots and high GCx genes.
Collapse
Affiliation(s)
| | | | | | | | - Nathan Garcia
- National Center for Genome Resources, Santa FeNM, USA
| | | | | | | | - Yan He
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, IthacaNY, USA
| | - Minghui Wang
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, IthacaNY, USA
- Biotechnology Resource Center Bioinformatics Facility, Cornell University, IthacaNY, USA
| | - Qi Sun
- Biotechnology Resource Center Bioinformatics Facility, Cornell University, IthacaNY, USA
| | - Jaroslaw Pillardy
- Biotechnology Resource Center Bioinformatics Facility, Cornell University, IthacaNY, USA
| | - Shahryar F. Kianian
- Cereal Disease Laboratory, United States Department of Agriculture – Agricultural Research Service, St. PaulMN, USA
| | - Wojciech P. Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, IthacaNY, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. PaulMN, USA
| | - Joann Mudge
- National Center for Genome Resources, Santa FeNM, USA
- *Correspondence: Joann Mudge,
| |
Collapse
|
47
|
The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen. Genetics 2015; 201:1213-28. [PMID: 26392286 DOI: 10.1534/genetics.115.180968] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/17/2015] [Indexed: 12/30/2022] Open
Abstract
Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host.
Collapse
|
48
|
Naranjo T. Forcing the shift of the crossover site to proximal regions in wheat chromosomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1855-63. [PMID: 26066968 DOI: 10.1007/s00122-015-2552-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/30/2015] [Indexed: 05/23/2023]
Abstract
Terminal deletions obligate the first crossover to be formed in more proximal positions. This increases the recombination rate in intercalary intervals but not in the proximity of the centromere. Crossovers are not uniformly distributed along chromosomes in wheat. They take place preferentially in distal positions. The effect of the chromosomal architecture on crossover positioning has been analyzed from the chiasmate bonds at metaphase I formed by the truncated arms of 51 terminal deletion lines of eight wheat chromosomes. Chromosome 4A and the B genome chromosomes, in their standard or truncated conformation, and their arms, were identified by C-banding. Chromosomes studied show a similar chiasma distribution. Reduction of the size of the truncated arms is accompanied by a gradual decrease of the chiasma frequency in chromosome arms 1BL, 3BS, 3BL, 4BL, 5BS, 5BL, 6BL, 7BS, 7BL and 4AL. In chromosome arm 1BS, most chiasmata are concentrated in the distal half of the satellite and, in 4AS, in the distal 24 %. The arms 2BS, 2BL and 6BS do not show a simple decreasing gradient of the recombination rate, the chiasma frequency increases in subdistal intervals compared to more distal regions. Although terminal deletions usually induce an increase of chiasma frequency in intercalary regions, the level of intact chromosome arms is maintained in only a few deletion lines. Truncated arms containing only the 20 % proximal of the intact arm do not form chiasmata. The relationships of chiasma positioning with chromatin structure and genome organization is discussed.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040, Madrid, Spain,
| |
Collapse
|
49
|
de Boer E, Jasin M, Keeney S. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice. Genes Dev 2015; 29:1721-33. [PMID: 26251527 PMCID: PMC4561481 DOI: 10.1101/gad.265561.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/21/2015] [Indexed: 11/24/2022]
Abstract
In this study, de Boer et al. investigated the influence of sex and chromosomal location on mammalian recombination outcomes and showed in one example that double-strand breaks within a hot spot can adopt either crossover or noncrossover fates in males but rarely led to crossing over in females. The findings here demonstrate that the outcome of mammalian meiotic recombination can be biased and provide novel insight into recombination mechanisms. Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency.
Collapse
Affiliation(s)
- Esther de Boer
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
50
|
Wang K, Wang C, Liu Q, Liu W, Fu Y. Increasing the Genetic Recombination Frequency by Partial Loss of Function of the Synaptonemal Complex in Rice. MOLECULAR PLANT 2015; 8:1295-8. [PMID: 25936677 DOI: 10.1016/j.molp.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 05/25/2023]
Affiliation(s)
- Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Chun Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Qing Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Wenzhen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yaping Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| |
Collapse
|