1
|
An JU, Mun SH, Kim WH, Seong JK, Park K, Cho S. Dynamics of the canine gut microbiota of a military dog birth cohort. Front Microbiol 2025; 16:1481567. [PMID: 40196028 PMCID: PMC11973337 DOI: 10.3389/fmicb.2025.1481567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction We systematically tracked early life stages in a military dog birth cohort to investigate canine gut microbiota dynamics related to environmental exposure during growth. This study utilized 16s rRNA amplicon sequencing-based analysis with molecular epidemiology of Enterococcus faecalis within a controlled environment at a military dog training center. Methods We examined shifts in gut microbiota diversity and taxonomic composition across four growth stages (lactation, weaning, starter, puppy) in three littermate groups. Additionally, E. faecalis dynamics was analyzed to confirm strain sharing among littermate groups. Results Gut microbiota changed rapidly during early growth, stabilizing at the puppy stage. This is supported by increased similarity in taxonomic composition among littermate groups, as they experienced an increased shared external environment and consumed the identical diets. E. faecalis strain sharing among littermate groups increased as dogs aged. Nine E. faecalis cluster types were identified; three specific types (type I, II, and IX) dominated in each littermate group during lactation. With greater exposure to the shared external environment, cluster type I gradually assumed dominance across all groups. Despite the dynamic shifts in microbiota, we found five genera within the core microbiota, Bacteroides, Peptoclostridium, Fusobacterium, Lactobacillus, and Blautia. Discussion This study is the first to explore the dynamic nature of early-life canine gut microbiota, illustrating its transition to stability and its resilience to environmental perturbations within the controlled training environment of a military dog birth cohort.
Collapse
Affiliation(s)
- Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hyun Mun
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Kyoungwan Park
- Military Working Dogs Training Center, Gangwon, Republic of Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center (CDRC), Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Sanadhya S, Jain D, Saheewala H, Sharma D, Chauhan PK, Singh G, Upadhyay SK, Mohanty SR. Efficacy of molecularly diversified phosphorus-solubilizing rhizobacterial isolates in phytostimulation, antimicrobial attributes and phosphorus-transporter genes mediated plant growth performance in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109521. [PMID: 39842169 DOI: 10.1016/j.plaphy.2025.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/07/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
This study evaluated a dual management approach to enhance plant-growth by improving soil fertility, reducing pathogenic stress using PGPR that affect phosphorus-transporter (pht) genes. Among 213 maize rhizobacterial isolates, 40 demonstrated the ability to solubilize tri-calcium phosphate, potassium, zinc, and silicon, showing various PGP traits. Nine of these isolates exhibited significant antagonistic activity against the plant pathogens Colletotrichum chlorophyti and Xanthomonas axonopodis. These pathogens cause root infection, reduces plant-immunity and growth. In pot experiments, these nine strains significantly improved root length, shoot length, chlorophyll content, fresh weight, proline, APX, CAT, GR, NPK, and Zn content in maize plants after 60 days under pathogenic stress. Notably, PSB-25 increased root length by up to 66% under C. chlorophyti stress and 64% under X. axonopodis stress. PSB21 enhanced proline content by 49%, APX by 70%, and GR by 41%, while PSB-16 raised CAT activity by 55% under X. axonopodis stress. Molecular diversity analysis of the 40 PS-RB strains using ERIC, BOX, REP, and ARDRA showed two major clusters with Jaccard coefficients from 0.72 to 1.00. 16S rRNA gene sequencing identified PSB10, PSB16, and PSB25 as Serratia sp., Enterobacter cloacae, and Enterobacter sp., respectively. The effects of PSB10, PSB16, and PSB25 on growth parameters under pathogen stress were also studied. Field trials indicated that treatment T6 (100% RDF + PSB16) was most effective in promoting plant growth. Additionally, significant differences in the expression of six Pht1 transporter genes were noted between PS-RB treated and untreated maize seedlings, and these genes improving phosphorus acquisition.
Collapse
Affiliation(s)
- Suman Sanadhya
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Devendra Jain
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India.
| | - Heena Saheewala
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India; SKN College of Agriculture, Sri Karan Narendra Agriculture University, Jobner 303329, India
| | - Deepak Sharma
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India; School of Agriculture, Nirwan University, Jaipur, 303305, Rajasthan, India
| | - Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India; Department of Environmental Science, A.K.S. University, Satna, 485001, India
| | - Garima Singh
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Santosh Ranjan Mohanty
- All India Network Project on Soil Biodiversity-Biofertilizers, ICAR-Indian Institute of Soil Science, Bhopal, 462038, India
| |
Collapse
|
3
|
Kumar SC, Kumar M, Singh R, Saxena AK. Population and genetic diversity of rhizobia nodulating chickpea in Indo-Gangetic plains of India. Braz J Microbiol 2024; 55:4057-4075. [PMID: 39110399 PMCID: PMC11711595 DOI: 10.1007/s42770-024-01473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/21/2024] [Indexed: 01/11/2025] Open
Abstract
Chickpea is a crucial leguminous crop and India is the leading producer, with an average yield of 1.18 tons/ha. It is renowned for its specific nodulation with rhizobia. Despite its significance, studies on chickpea-nodulating rhizobia often focused on small-scale investigations within restricted geographical areas. This study delves into the population, genetic diversity, and symbiotic efficiency of chickpea-nodulating rhizobia in the Indo-Gangetic Plains (IGP) of India. The study revealed a low population of chickpea rhizobia (ranging from 11 to 565 cells/g dry soil) across the examined area. Only three samples exhibited a population exceeding 300 cells/g, emphasizing the potential need for inoculation of rhizobia with efficient and competitive strains. Correlation analysis highlighted a significant positive correlation between rhizobial population and organic carbon content, among various soil parameters like pH, electrical conductivity, available nitrogen (N), phosphorus (P), potassium (K), and organic carbon content. Among the 79 presumptive rhizobia isolated from 24 IGP locations, 61 successfully nodulated chickpea cultivar Pusa 362. 16S rRNA gene sequencing categorized 54 isolates as Mesorhizobium, four as Rhizobium, and three as Ensifer. Genetic diversity assessed by BOX-PCR revealed sixteen distinct banding patterns, underscoring substantial variability among the strains. The strains exhibited plant growth-promoting activities, salt tolerance up to 3% NaCl, and pH tolerance between 4 and 10. Six symbiotically efficient strains were identified based on their positive impact on nodulation and dry biomass. This study provides crucial insights into the diversity, genetic makeup, and symbiotic efficiency of chickpea rhizobia in the IGP, supporting the potential use of indigenous rhizobia for sustainable chickpea productivity in the region.
Collapse
Affiliation(s)
- Shiv Charan Kumar
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, India
| | - Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, India.
| |
Collapse
|
4
|
Peng Y, Cho DH, Humaira Z, Park YL, Kim KH, Kim CY, Lee J. Improving plant salt tolerance through Algoriphagus halophytocola sp. nov., isolated from the halophyte Salicornia europaea. Front Microbiol 2024; 15:1466733. [PMID: 39498140 PMCID: PMC11532033 DOI: 10.3389/fmicb.2024.1466733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Salicornia europaea, commonly known as glasswort, thrives in reclaimed land and coastal areas with high salinity, demonstrating remarkable adaptation to the arid conditions of such environments. Two aerobic, Gram-stain-negative, non-motile, rod-shaped bacterial strains, designated TR-M5T and TR-M9, were isolated from the root of Salicornia europaea plants. These bacteria exhibit plant growth-promoting and salt tolerance-enhancing abilities, which have not been reported in other species of the genus. Both strains produce indole-3-acetic acid (IAA), a plant growth hormone, and synthesize proline, which functions as an osmoprotectant. Additionally, they possess gelatinase and cellulase activities. Cells grow in temperatures from 4 to 42°C (optimum 25°C), pH levels from 6.0 to 9.0 (optimum 7.0), and NaCl concentrations from 0 to 8.0% (optimum 6.0%). The average nucleotide identity and digital DNA-DNA hybridization values of strain TR-M5T with the most closely related type strains for which whole genomes are publicly available were 74.05-77.78% and 18.6-23.1%, respectively. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strains TR-M5T and TR-M9 belong to the genus Algoriphagus. A. locisalis exhibited the highest similarity, sharing a sequence identity of 98.1%. The genomes of TR-M5T and TR-M9 exhibit a G + C content of 43 mol%. This study specifically focuses on the identification and characterization of strain TR-M5T as a novel species within the genus Algoriphagus, which we propose to name Algoriphagus halophytocola sp. nov., highlighting its potential role in enhancing plant growth and salt tolerance in saline environments. The type strain is TR-M5T (KCTC 92720T = GDMCC 1.3797T).
Collapse
Affiliation(s)
- Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Department of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Hyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Zalfa Humaira
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Biosystems and Bioengineering, KRIBB School of Biotechnology Korea National University of Science and Technology (UST), Yuseong, Republic of Korea
| | - Yu Lim Park
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Ki Hyun Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Biosystems and Bioengineering, KRIBB School of Biotechnology Korea National University of Science and Technology (UST), Yuseong, Republic of Korea
| |
Collapse
|
5
|
Valdez-Nuñez RA, Ramos-Luna LC, Meza-Catalán PP, Asencios-Sifuentes NR, Ocaña-Rodriguez AW, Chávez-Galarza JC, Sandoval-Vergara AN, Béna G. Genetic Diversity and Virulence of Phytopathogenic Burkholderia glumae Strains Isolated from Rice Cultivars in Valleys of the High Jungle of Perú. PLANT DISEASE 2024; 108:2376-2388. [PMID: 38386299 DOI: 10.1094/pdis-09-23-1823-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Burkholderia glumae causes bacterial leaf blight in rice, and its global spread has been exacerbated by climate change. To understand the genetic diversity and virulence of B. glumae strains isolated from rice cultivars in Perú, 47 isolates were obtained from infected rice fields, all belonging to B. glumae, and confirmed by recA and toxB sequences. The BOX-PCR typing group has 38 genomic profiles, and these turn into seven variable number tandem repeats (VNTR) haplotypes. There was no correlation between clustering and geographical origin. Nineteen strains were selected for phenotypic characterization and virulence, using both the maceration level of the onion bulb proxy and inoculation of seeds of two rice cultivars. Several strains produced pigments other than toxoflavin, which correlated with onion bulb maceration. In terms of virulence at the seed level, all strains produced inhibition at the root and coleoptile level, but the severity of symptoms varied significantly between strains, revealing significant differences in pathogenicity. There is no correlation between maceration and virulence scores, probably reflecting different virulence mechanisms depending on the host infection stage. This is the first study to evaluate the VNTR diversity and virulence of Peruvian strains of B. glumae in two commercial cultivars.
Collapse
Affiliation(s)
- Renzo A Valdez-Nuñez
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Lucero C Ramos-Luna
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Patricia P Meza-Catalán
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | | | - Angel W Ocaña-Rodriguez
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Julio C Chávez-Galarza
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Ana N Sandoval-Vergara
- Departamento Académico Agrosilvopastoril, Universidad Nacional de San Martín, Tarapoto, Perú
| | - Gilles Béna
- IRD, CIRAD, INRAe, Institut Agro, PHIM (Plant Health Institute of Montpellier), University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Gonçalves OS, Santana MF. Uncovering the Secrets of Slow-Growing Bacteria in Tropical Savanna Soil Through Isolation and Genomic Analysis. MICROBIAL ECOLOGY 2023; 86:2687-2702. [PMID: 37507488 DOI: 10.1007/s00248-023-02275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
One gram of soil holds ten billion bacteria of thousands of different species, but most remain unknown, and one of the serious issues is intrinsic to slow-growing bacteria. In this study, we aimed to isolate and characterize slow-growing bacteria from Brazilian Cerrado soil. Over a period of 4 weeks, we conducted an incubation process and selected a total of 92 isolates. These isolates, consisting mostly of slow-growing bacteria, have the ability to thrive in low-water conditions and possess features that promote plant growth. To identify the isolated bacteria, we performed 16S rRNA sequencing analysis and found that the slow-growing strains were genetically similar to known bacterial species but also belonged to a novel group of species. The new strains identified were Caballeronia sp., Neobacillus sp., Bradyrhizobium sp., and high GC Gram-positive species. Furthermore, we conducted growth experiments using various culture media and temperature conditions. These experiments revealed an extended lag phase for five strains, indicating their slow growth characteristics. Genomic analysis of these five slow-growing bacteria showed their potential to participate in biogeochemical cycles, metabolize various carbohydrates, encode proteins with a role in promoting plant growth and have biosynthetic potential for secondary metabolites. Taken together, our findings reveal the untapped potential of slow-growing bacteria in tropical savanna soils.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Gonçalves OS, Souza TS, Gonçalves GDC, Fernandes AS, Veloso TGR, Tupy SM, Garcia EA, Santana MF. Harnessing Novel Soil Bacteria for Beneficial Interactions with Soybean. Microorganisms 2023; 11:300. [PMID: 36838264 PMCID: PMC9964534 DOI: 10.3390/microorganisms11020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
It is claimed that one g of soil holds ten billion bacteria representing thousands of distinct species. These bacteria play key roles in the regulation of terrestrial carbon dynamics, nutrient cycles, and plant productivity. Despite the overwhelming diversity of bacteria, most bacterial species remain largely unknown. Here, we used an oligotrophic medium to isolate novel soil bacteria for positive interaction with soybean. Strictly 22 species of bacteria from the soybean rhizosphere were selected. These isolates encompass ten genera (Kosakonia, Microbacterium, Mycobacterium, Methylobacterium, Monashia, Novosphingobium, Pandoraea, Anthrobacter, Stenotrophomonas, and Rhizobium) and have potential as novel species. Furthermore, the novel bacterial species exhibited plant growth-promoting traits in vitro and enhanced soybean growth under drought stress in a greenhouse experiment. We also reported the draft genome sequences of Kosakonia sp. strain SOY2 and Agrobacterium sp. strain SOY23. Along with our analysis of 169 publicly available genomes for the genera reported here, we demonstrated that these bacteria have a repertoire of genes encoding plant growth-promoting proteins and secondary metabolite biosynthetic gene clusters that directly affect plant growth. Taken together, our findings allow the identification novel soil bacteria, paving the way for their application in crop production.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Thamires Santos Souza
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Guilherme de Castro Gonçalves
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Alexia Suellen Fernandes
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Tomás Gomes Reis Veloso
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Sumaya Martins Tupy
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Ediones Amaro Garcia
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| |
Collapse
|
8
|
Screening of lactic acid bacteria strains isolated from Iranian traditional dairy products for GABA production and optimization by response surface methodology. Sci Rep 2023; 13:440. [PMID: 36624130 PMCID: PMC9829902 DOI: 10.1038/s41598-023-27658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A total of 50 lactic acid bacteria (LAB) isolates from Iranian traditional dairy products (Motal and Lighvan cheeses, and artisanal yogurt) were screened for gamma-aminobutyric acid (GABA) production. Firstly, a rapid colorimetric test was performed to evaluate the glutamate decarboxylase (GAD) activity among the LAB isolates examined. Thin layer chromatography (TLC) was then performed on selected strains to identify isolates with high/moderate GABA producing capacity, and a GABase micro-titer plate assay was employed to quantify GABA. Finally, two Lactococcus (Lac.) lactis strains were selected for GABA production optimization via Response Surface Methodology (RSM) following Central Composite Design (CCD). Forty-one out of the 50 isolates showed GAD activity according to the colorimetric assay. Eight isolates displayed strong GAD activity, while nine showed no activity; low to moderate GAD activity was scored for all other isolates. GABA production was confirmed by TLC in all isolates with high GAD activity and in four selected among isoaltes with moderate activity. Among the Lactococcus strains tested, Lac. lactis 311 and Lac. lactis 491 were the strongest GABA producers with amounts of 3.3 and 1.26 mM, respectively. These two strains were subjected to GABA production optimization applying RSM and CCD on three key variables: Monosodium glutamate concentration (MSG) (between 25 and 150 mM), incubation temperature (between 25 and 37 °C), and pH (between 4.0 and 5.0). Optimal conditions for GABA production by Lac. lactis 311 and Lac. lactis 491 of temperature, pH and MSG concentration were, respectively, 35.4 and 30 °C, pH 4.5 and 4.6, and MSG concentration of 89 and 147.4 mM, respectively. Under the above conditions, the amount of GABA produced by Lac. lactis 311 and Lac. lactis 491 was 0.395 and 0.179 mg/mL, respectively. These strains and the optimal culture conditions determined in this study could be used for the biotechnological production of GABA or applied in food fermentations for the development of naturally GABA-enriched foods.
Collapse
|
9
|
Shin JI, Ha JH, Kim KM, Choi JG, Park SR, Park HE, Park JS, Byun JH, Jung M, Baik SC, Lee WK, Kang HL, Yoo JW, Shin MK. A novel repeat sequence-based PCR (rep-PCR) using specific repeat sequences of Mycobacterium intracellulare as a DNA fingerprinting. Front Microbiol 2023; 14:1161194. [PMID: 37089534 PMCID: PMC10117815 DOI: 10.3389/fmicb.2023.1161194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Repetitive sequence-based PCR (rep-PCR) is a potential epidemiological technique that can provide high-throughput genotype fingerprints of heterogeneous Mycobacterium strains rapidly. Previously published rep-PCR primers, which are based on nucleotide sequences of Gram-negative bacteria may have low specificity for mycobacteria. Moreover, it was difficult to ensure the continuity of the study after the commercial rep-PCR kit was discontinued. Here, we designed a novel rep-PCR for Mycobacterium intracellulare, a major cause of nontuberculous mycobacterial pulmonary disease with frequent recurrence. We screened the 7,645 repeat sequences for 200 fragments from the genome of M. intracellulare ATCC 13950 in silico, finally generating five primers with more than 90% identity for a total of 226 loci in the genome. The five primers could make different band patterns depending on the genome of three different M. intracellulare strains using an in silico test. The novel rep-PCR with the five primers was conducted using 34 bacterial samples of 7 species containing 25 M. intracellulare clinical isolates, compared with previous published rep-PCRs. This shows distinguished patterns depending on species and blotting assay for 6 species implied the sequence specificity of the five primers. The Designed rep-PCR had a 95-98% of similarity value in the reproducibility test and showed 7 groups of fingerprints in M. intracellulare strains. Designed rep-PCR had a correlation value of 0.814 with VNTR, reference epidemiological method. This study provides a promising genotype fingerprinting method for tracing the recurrence of heterogeneous M. intracellulare.
Collapse
Affiliation(s)
- Jeong-Ih Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jong-Hun Ha
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jeong-Gyu Choi
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seo-Rin Park
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun-Eui Park
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jin-Sik Park
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Hyun Byun
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Myunghwan Jung
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
- Jung-Wan Yoo,
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
- *Correspondence: Min-Kyoung Shin,
| |
Collapse
|
10
|
Ramadan AA. Bacterial typing methods from past to present: A comprehensive overview. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Genetic Diversity and Anti-Oxidative Potential of Streptomyces spp. Isolated from Unexplored Niches of Meghalaya, India. Curr Microbiol 2022; 79:379. [DOI: 10.1007/s00284-022-03088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
12
|
Genetic diversity of Brazilian Bacillus thuringiensis isolates with toxicity against Aedes aegypti (Diptera: Culicidae). Sci Rep 2022; 12:14408. [PMID: 36002607 PMCID: PMC9402949 DOI: 10.1038/s41598-022-18559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Bacillus thuringiensis (Bt) isolates native to Maranhão (BtMA) that are highly toxic to Aedes aegypti larvae and seven standard subspecies of Bt were analyzed for genetic diversity using the rep-PRC technique with BOX, ERIC, REP, MB1, and GTG5 markers. The rep-PCR technique is considered an extremely reliable, reproducible, fast and highly discriminatory technique that may be used even among populations of the same species. These five markers revealed a total of 38 polymorphic DNA fragments for 30 BtMA isolates. Eight groups were obtained with the dendrogram generated through Pearson's correlation analysis, with four groups formed only with BtMA isolates and four comprised of isolates of BtMA and the standard subspecies toxic to dipterans and lepidopterans. Despite the high genetic diversity of BtMA, a low correlation between the collection site, gene content and mortality against A. aegypti larvae was evidenced. The clustering of the standard subspecies of Bt that were toxic against dipterans with BtMA isolates confirm the mosquitocidal action of the native isolates from Maranhão, and they can be used as an alternative for A. aegypti control and other insects of medical importance and for the control of agricultural pests.
Collapse
|
13
|
Barker DF. A synergistic arrangement of two unrelated IS elements facilitates adjacent deletion in Micrococcus luteus ATCC49732. FEMS Microbiol Lett 2022; 369:6646518. [DOI: 10.1093/femsle/fnac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mutants of M. luteus strain ATCC49732 lacking the yellow pigment sarcinaxanthin were observed at an unexpectedly high frequency and the molecular basis was investigated. PCR probing revealed complete deletion of the crt biosynthetic operon in 11/14 mutants. Inverse PCR was used to identify a common breakpoint 35 kb downstream from crt precisely at the end of the right inverted repeat (IRR) of a partial ISMlu8 element that lies between two inversely oriented full-length ISMlu2. Three different breakpoints 5′ to crt were found with the sequence CTAG one bp 5′ to each novel junction. Analysis of 35 genomic sites with single ISMlu8 insertions showed that ISMlu8 transposase has high specificity for CTAG, implicating its key role in formation of the Δcrt deletions. No downstream deletion endpoints were observed at an immediately adjacent ISMlu8 with a nearly identical IRR in the same orientation and slightly closer to the crt operon, indicating that access of ISMlu8 transposase to the ISMlu2-flanked ISMlu8 IRR is greatly enhanced by the surrounding inverted repeat arrangement. The association of high frequency genomic rearrangement with this distinctive natural configuration of ISs from two different IS families offers a new insight into IS element evolutionary potential.
Collapse
Affiliation(s)
- David F Barker
- Department of Medical Laboratory Science, Bellarmine University , 2001 Newburg Road, Louisville, KY 40205 , USA
| |
Collapse
|
14
|
Rodríguez J, González-Guerra A, Vázquez L, Fernández-López R, Flórez AB, de la Cruz F, Mayo B. Isolation and phenotypic and genomic characterization of Tetragenococcus spp. from two Spanish traditional blue-veined cheeses made of raw milk. Int J Food Microbiol 2022; 371:109670. [DOI: 10.1016/j.ijfoodmicro.2022.109670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
|
15
|
Characterisation of Bacteriophage vB_SmaM_Ps15 Infective to Stenotrophomonas maltophilia Clinical Ocular Isolates. Viruses 2022; 14:v14040709. [PMID: 35458438 PMCID: PMC9025141 DOI: 10.3390/v14040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Recent acknowledgment that multidrug resistant Stenotrophomonas maltophilia strains can cause severe infections has led to increasing global interest in addressing its pathogenicity. While being primarily associated with hospital-acquired respiratory tract infections, this bacterial species is also relevant to ophthalmology, particularly to contact lens-related diseases. In the current study, the capacity of Stenotrophomonas phage vB_SmaM_Ps15 to infect ocular S. maltophilia strains was investigated to explore its future potential as a phage therapeutic. The phage proved to be lytic to a range of clinical isolates collected in Australia from eye swabs, contact lenses and contact lens cases that had previously shown to be resistant to several antibiotics and multipurpose contact lenses disinfectant solutions. Morphological analysis by transmission electron microscopy placed the phage into the Myoviridae family. Its genome size was 161,350 bp with a G + C content of 54.2%, containing 276 putative protein-encoding genes and 24 tRNAs. A detailed comparative genomic analysis positioned vB_SmaM_Ps15 as a new species of the Menderavirus genus, which currently contains six very similar globally distributed members. It was confirmed as a virulent phage, free of known lysogenic and pathogenicity determinants, which supports its potential use for the treatment of S. maltophilia eye infections.
Collapse
|
16
|
Oberpaul M, Brinkmann S, Marner M, Mihajlovic S, Leis B, Patras MA, Hartwig C, Vilcinskas A, Hammann PE, Schäberle TF, Spohn M, Glaeser J. Combination of high-throughput microfluidics and FACS technologies to leverage the numbers game in natural product discovery. Microb Biotechnol 2022; 15:415-430. [PMID: 34165868 PMCID: PMC8867984 DOI: 10.1111/1751-7915.13872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 06/06/2021] [Indexed: 12/21/2022] Open
Abstract
High-throughput platforms facilitating screening campaigns of environmental samples are needed to discover new products of natural origin counteracting the spreading of antimicrobial resistances constantly threatening human and agricultural health. We applied a combination of droplet microfluidics and fluorescence-activated cell sorting (FACS)-based technologies to access and assess a microbial environmental sample. The cultivation performance of our microfluidics workflow was evaluated in respect to the utilized cultivation media by Illumina amplicon sequencing of a pool of millions of droplets, respectively. This enabled the rational selection of a growth medium supporting the isolation of microbial diversity from soil (five phyla affiliated to 57 genera) including a member of the acidobacterial subgroup 1 (genus Edaphobacter). In a second phase, the entire diversity covered by 1071 cultures was used for an arrayed bioprospecting campaign, resulting in > 6000 extracts tested against human pathogens and agricultural pests. After redundancy curation by using a combinatorial chemical and genomic fingerprinting approach, we assigned the causative agents present in the extracts. Utilizing UHPLC-QTOF-MS/MS-guided fractionation and microplate-based screening assays in combination with molecular networking the production of bioactive ionophorous macrotetrolides, phospholipids, the cyclic lipopetides massetolides E, F, H and serratamolide A and many derivatives thereof was shown.
Collapse
Affiliation(s)
- Markus Oberpaul
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
| | - Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
| | - Sanja Mihajlovic
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
| | - Benedikt Leis
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
| | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
| | - Christoph Hartwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
- Institute for Insect BiotechnologyJustus‐Liebig‐University‐GiessenGiessen35392Germany
| | | | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
- Institute for Insect BiotechnologyJustus‐Liebig‐University‐GiessenGiessen35392Germany
- German Center for Infection Research (DZIF), Partner Site Giessen‐Marburg‐LangenGiessen35392Germany
| | - Marius Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for BioresourcesGiessen35392Germany
| | | |
Collapse
|
17
|
Comparison of Whole Genome Sequencing and Repetitive Element PCR for Multidrug- Resistant Pseudomonas aeruginosa Strain Typing. J Mol Diagn 2021; 24:158-166. [PMID: 34775029 DOI: 10.1016/j.jmoldx.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Hospital-acquired infections pose significant costly global challenges to patient care. Rapid and sensitive methods to identify potential outbreaks are integral to infection control measures. Whole genome sequencing (WGS)-based bacterial strain typing provides higher discriminatory power over standard nucleotide banding pattern-based methods like repetitive sequence-based PCR (rep-PCR). However, integration of WGS into clinical epidemiology is limited by the lack of consensus in methodology and data analysis/interpretation. In this study, WGS was performed on 22 multidrug-resistant Pseudomonas aeruginosa (MDR-PA) genomic DNA using the Illumina MiSeq platform. Resulting high quality reads were analyzed for phylogenetic relatedness using whole genome multi-locus sequence typing (wgMLST)-based BIOMÉRIEUX EPISEQ CS (EpiSeq; Durham, NC) and Single Nucleotide Variant PHYLogenomics (SNVPhyl). WGS-based results were compared to conventional MLST and archived rep-PCR results. Rep-PCR identified three independent clonal clusters of MDR-PA. Only one clonal cluster identified by rep-PCR, an endemic strain within the pediatric cystic fibrosis population at Texas Children's Hospital, was concordantly identified using wgMLST (EpiSeq) and SNVPhyl. Results were highly consistent between the three sequence-based analyses (conventional MLST, wgMLST, and SNVPhyl), and these results remained consistent with the addition of 74 MDR-PA genomes. These WGS-based methods provided greater resolution for strain discrimination than rep-PCR or standard MLST classification, and the ease of use of EpiSeq renders it clinically viable for analysis, interpretation, and reporting of WGS-based strain typing.
Collapse
|
18
|
Ge T, Jiang H, Johnson SB, Larkin RP, Charkowski AO, Secor G, Hao J. Genotyping Dickeya dianthicola Causing Potato Blackleg and Soft Rot Outbreak Associated With Inoculum Geography in the United States. PLANT DISEASE 2021; 105:1976-1983. [PMID: 33210970 DOI: 10.1094/pdis-10-20-2138-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An outbreak of blackleg and soft rot of potato, caused primarily by the bacterial pathogen Dickeya dianthicola, has resulted in significant economic losses in the northeastern United States since 2015. The spread of this seedborne disease is highly associated with seed distribution; therefore, the pathogen likely spread with seed tubers. To describe the blackleg epidemic and track inoculum origins, a total of 1,183 potato samples were collected from 11 states associated with blackleg outbreak from 2015 to 2019. Of these samples, 39.8% tested positive for D. dianthicola. Seventeen isolates of D. dianthicola were recovered from these samples and the genetic diversity of these isolates was examined. Fingerprinting with BOX-A1R-based repetitive extragenic palindromic PCR and phylogenetic analysis based on sequences of the 16S rRNA and gapA genes indicated that D. dianthicola isolates were divided into three genotypes, denoted types I, II, and III. Ninety-five percent of samples from Maine were type I. Type II was found in Maine only in 2015 and 2018. Type II was present throughout the 5 years in some states at a lower percentage than type I. Type III was found in Pennsylvania, New Jersey, and Massachusetts, but not in Maine. Therefore, type I appears to be associated with Maine, but type II appeared to be distributed throughout the northeastern United States. The type II and rarer type III strains were closer to the D. dianthicola type strain isolated from the United Kingdom. This work provides evidence that the outbreak of blackleg of potato in the northeastern United States was caused by multiple strains of D. dianthicola. The geographic origins of these strains remain unknown.
Collapse
Affiliation(s)
- Tongling Ge
- School of Food and Agriculture, University of Maine, Orono, ME
| | - He Jiang
- School of Food and Agriculture, University of Maine, Orono, ME
| | | | - Robert P Larkin
- New England Plant, Soil, and Water Laboratory, U.S. Department of Agriculture Agricultural Research Service, University of Maine, Orono, ME
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO
| | - Gary Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME
| |
Collapse
|
19
|
Isolation, Identification, and Screening of Lactic Acid Bacteria with Probiotic Potential in Silage of Different Species of Forage Plants, Cocoa Beans, and Artisanal Salami. Probiotics Antimicrob Proteins 2021; 13:173-186. [PMID: 32601953 DOI: 10.1007/s12602-020-09679-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The objective of this study was to isolate and characterize lactic acid bacteria with probiotic potential in silages of different species of forage plants, cocoa beans, and artisanal salami. The obtained isolates were submitted to the following evaluations: (i) screening for tolerance to pH 2 and bile salts, (ii) genotypic identification of isolates, (iii) survival in simulated gastric and pancreatic conditions, (iv) antimicrobial activity, (v) antibiotic susceptibility and safety, and (vi) properties associated with adhesion capacity. A total of 82 isolates were obtained and were screened for pH 2.0 tolerance and capacity to growth in the presence of bile salts (1.0 and 2.0%). Only 19 strains simultaneously presented tolerance to pH 2.0 and bile salts. These 19 strains were evaluated for genetic profile by Box-PCR. Subsequently, the selected strains were subjected to partial sequencing of the 16S rRNA gene. The species Lactobacillus plantarum was prevalent. The identified strains were evaluated for survival under simulated gastric and pancreatic conditions. Some strains have shown tolerance in both conditions. Different strains showed variations in antimicrobial activity, susceptibility to antibiotics, and properties associated with adhesion (hydrophobicity, autoaggregation, coaggregation, and adhesion to CaCo2 cells). All strains were negative for hemolysis, DNase, gelatinase, and biogenic amine synthesis activity. The L. plantarum SBR64.7 strain can be considered the most promising for it presented the lowest viability reduction when exposed to gastric and pancreatic juices.
Collapse
|
20
|
Pseudomonas lalucatii sp. nov. isolated from Vallgornera, a karstic cave in Mallorca, Western Mediterranean. Syst Appl Microbiol 2021; 44:126205. [PMID: 33989980 DOI: 10.1016/j.syapm.2021.126205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Caves are extreme underground environments colonized by oligotrophic bacterial communities that influence mineral transformations. The identification at the species level is important and this study aims to the taxonomic characterisation of four bacterial strains previously isolated from rock surfaces and water samples from a karstic cave located on Mallorca (Spain) that were assigned to the genus Pseudomonas according to 16S rRNA nucleotide sequence analysis. Sequence analysis of the RNA polymerase sigma factor gene (rpoD) allocated these strains to the P. fluorescens lineage within the P. anguilliseptica phylogenetic group, close to the P. benzenivorans type strain. A polyphasic taxonomic approach included phenotypic characterization, fatty acid composition analysis, and whole-cell protein profiling, together with phylogenomic data. The results supported the proposal of a new species in the Pseudomonas genus. Characteristic fatty acid methyl esters of members of the Pseudomonas genus were present (C16:0, C10:0 3-OH, C12:0 2-OH and C12:0 3-OH) and the C12:1 3OH content differentiated these strains from P. benzenivorans. The genomic G + C mol% content of the four sequenced genomes was 66.9%. The average nucleotide indices based on BLAST analysis and the calculation of genome-to-genome distance with respect to their closest relative were lower than 88% and 30%, respectively. These data confirm that the four isolates, R1b-4, R1b-52A, A2bC-1 and R1b-54T, represent a new species, for which the name Pseudomonas lalucatii is proposed, with strain R1b-54T as the type strain (=CCUG 74754T = CECT 30179T). This is the first species in the P. anguilliseptica group isolated from this extreme habitat.
Collapse
|
21
|
Liu Y, Song Z, Zeng H, Lu M, Zhu W, Wang X, Lian X, Zhang Q. Pseudomonas eucalypticola sp. nov., a producer of antifungal agents isolated from Eucalyptus dunnii leaves. Sci Rep 2021; 11:3006. [PMID: 33542376 PMCID: PMC7862484 DOI: 10.1038/s41598-021-82682-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2021] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas are ubiquitously occurring microorganisms and are known for their ability to produce antimicrobials. An endophytic bacterial strain NP-1 T, isolated from Eucalyptus dunnii leaves, exhibits antifungal properties against five tested phytopathogenic fungi. The strain is a Gram-negative rod-shaped bacterium containing a single polar flagellum. It is strictly aerobic, grows at 4-37 °C, 2-5% NaCl, and pH 3-7. The 16S rRNA sequence analysis showed that NP-1 T belongs to the Pseudomonas genus. Phylogenetic analysis based on four concatenated partial genes (16S rDNA, gyrB, rpoB and rpoD) and the phylogenomic tree indicated that NP-1 T belongs to Pseudomonas fluorescens lineage but is distinct from any known Pseudomonas species. The G + C mol % of NP-1 T genome is 63.96, and the differences between NP-1 T and related species are larger than 1. The digital DNA-DNA hybridization and tetranucleotide signatures are 23.8 and 0.97, which clearly separates strain NP-1 T from its closest neighbours, Pseudomonas coleopterorum and Pseudomonas rhizosphaerae. Its phenotypic and chemotaxonomic features confirmed its differentiation from related taxa. The results from this polyphasic approach support the classification of NP-1 T as a novel species of Pseudomonas, and the name of Pseudomonas eucalypticola is thus proposed for this strain, whose type is NP-1 T (= CCTCC M2018494T = JCM 33572 T).
Collapse
Affiliation(s)
- Yujing Liu
- Institute of Forest Protection in Forestry College of Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhang Song
- Institute of Forest Protection in Forestry College of Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hualong Zeng
- Institute of Forest Protection in Forestry College of Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng Lu
- Institute of Forest Protection in Forestry College of Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiyao Zhu
- Institute of Forest Protection in Forestry College of Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoting Wang
- Institute of Forest Protection in Forestry College of Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinkun Lian
- Institute of Forest Protection in Forestry College of Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinghua Zhang
- Institute of Forest Protection in Forestry College of Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Goharjoo ME, Edalatian Dovom MR, Shahidi F, Tabatabaei Yazdi F, Varidi MJ. Evaluation of the ginger and yogurt serum different levels on the lactic flora biodiversity in fermented carrot. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mohammad Ebrahim Goharjoo
- Food Science and Technology Department Agriculture Faculty Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | | | - Fakhri Shahidi
- Food Science and Technology Department Agriculture Faculty Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Farideh Tabatabaei Yazdi
- Food Science and Technology Department Agriculture Faculty Ferdowsi University of Mashhad (FUM) Mashhad Iran
| | - Mohammad Javad Varidi
- Food Science and Technology Department Agriculture Faculty Ferdowsi University of Mashhad (FUM) Mashhad Iran
| |
Collapse
|
23
|
Oueslati M, Mulet M, Zouaoui M, Chandeysson C, Lalucat J, Hajlaoui MR, Berge O, García-Valdés E, Sadfi-Zouaoui N. Diversity of pathogenic Pseudomonas isolated from citrus in Tunisia. AMB Express 2020; 10:198. [PMID: 33130970 PMCID: PMC7604283 DOI: 10.1186/s13568-020-01134-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 11/12/2022] Open
Abstract
The damages observed in Tunisian citrus orchards have prompted studies on the Pseudomonas spp. responsible for blast and black pit. Prospective orchards between 2015 and 2017 showed that the diseases rapidly spread geographically and to new cultivars. A screening of Pseudomonas spp. isolated from symptomatic trees revealed their wide diversity according to phylogenetic analysis of their housekeeping rpoD and cts genes. The majority of strains were affiliated to Pseudomonas syringae pv. syringae (Phylogroup PG02b), previously described in Tunisia. However, they exhibited various BOX-PCR fingerprints and were not clonal. This work demonstrated, for the first time in Tunisia, the involvement of Pseudomonas cerasi (PG02a) and Pseudomonas congelans (PG02c). The latter did not show significant pathogenicity on citrus, but was pathogenic on cantaloupe and active for ice nucleation that could play a role in the disease. A comparative phylogenetic study of citrus pathogens from Iran, Montenegro and Tunisia revealed that P. syringae (PG02b) strains are closely related but again not clonal. Interestingly P. cerasi (PG02a) was isolated in two countries and seems to outspread. However, its role in the diseases is not fully understood and it should be monitored in future studies. The diversity of pathogenic Pseudomonas spp. and the extension of the diseases highlight that they have become complex and synergistic. It opens questions about which factors favor diseases and how to fight against them efficiently and with sustainable means.
Collapse
|
24
|
Jia J, Wang X, Deng P, Ma L, Baird SM, Li X, Lu S. Pseudomonas glycinae sp. nov. isolated from the soybean rhizosphere. Microbiologyopen 2020; 9:e1101. [PMID: 32657018 PMCID: PMC7520993 DOI: 10.1002/mbo3.1101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/31/2020] [Accepted: 06/20/2020] [Indexed: 01/26/2023] Open
Abstract
Strains MS586T and MS82, which are aerobic, Gram-negative, rod-shaped, and polar-flagellated bacteria, were isolated from the soybean rhizosphere in Mississippi. Taxonomic positions of MS586T and MS82 were determined using a polyphasic approach. 16S rRNA gene sequence analyses of the two strains showed high pairwise sequence similarities (>98%) to some Pseudomonas species. Analysis of the concatenated 16S rRNA, rpoB, rpoD, and gyrB gene sequences indicated that the strains belonging to the Pseudomonas koreensis subgroup (SG) shared the highest similarity with Pseudomonas kribbensis strain 46-2T . Analyses of average nucleotide identity (ANI), genome-to-genome distance, delineated MS586T and MS82 from other species within the genus Pseudomonas. The predominant quinone system of the strain was ubiquinone 9 (Q-9), and the DNA G+C content was 60.48 mol%. The major fatty acids were C16:0 , C17:0 cyclo, and the summed features 3 and 8 consisting of C16:1 ω7c/C16:1 ω6c and C18:1 ω7c/C18:1 ω6c, respectively. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. Based on these data, it is proposed that strains MS586T and MS82 represent a novel species within the genus Pseudomonas. The proposed name for the new species is Pseudomonas glycinae, and the type strain is MS586T (accession NRRL B-65441 = accession LMG 30275).
Collapse
Affiliation(s)
- Jiayuan Jia
- Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityMississippi StateMSUSA
| | - Xiaoqiang Wang
- Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityMississippi StateMSUSA
- Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Peng Deng
- Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityMississippi StateMSUSA
| | - Lin Ma
- Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityMississippi StateMSUSA
- Institute of Vegetable CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Sonya M. Baird
- Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityMississippi StateMSUSA
| | - Xiangdong Li
- Department of Plant PathologyShandong Agricultural UniversityTaianChina
| | - Shi‐En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant PathologyMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|
25
|
Comparative Evaluation of Band-Based Genotyping Methods for Mycobacterium intracellulare and Its Application for Epidemiological Analysis. Microorganisms 2020; 8:microorganisms8091315. [PMID: 32872369 PMCID: PMC7564390 DOI: 10.3390/microorganisms8091315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium intracellulare is a leading cause of nontuberculous mycobacterial pulmonary disease, with a rapidly increasing prevalence worldwide. This bacterium, commonly distributed in soil and water, is known to be transmitted through the environment rather than between people. Therefore, it is imperative to establish distinguishable genotyping methods to understand the clinical outcome, disease relapses, and epidemiology. Therefore, in this study, representative band-based genotyping methods were performed using M. intracellualre clinical isolates, and their Hunter-Gaston discriminatory index (HGDI) was 0.947, 0.994, and 1 for variable number tandem repetition (VNTR), VNTR-mycobacterial interspersed repetitive units, pulsed field gel electrophoresis, and repetitive sequence based-PCR, respectively. Although VNTR showed relatively low HGDI, co-infection with other M. intracellualre strains could be determined by loci showing allele diversity from 0 to 0.69. Additionally, genetic distance of clinical isolates from Gyeongnam/Korea, and other regions/countries were visualized by minimum spanning tree (MST) using the globally available VNTR profiles. The results of MST revealed that M. intracellulare isolated from patients in Gyeongnam/Korea had specific VNTR genotypes, which may be evidence of the geographic distribution of M. intracellulare specific genotypes. The comparative results of genotyping techniques and geographical characteristics in this study may provide fundamental information for the epidemiology of M. intracellulare.
Collapse
|
26
|
Zenteno-Rojas A, Martínez-Romero E, Castañeda-Valbuena D, Rincón-Molina CI, Ruíz-Valdiviezo VM, Meza-Gordillo R, Villalobos-Maldonado JJ, Vences-Guzmán MÁ, Rincón-Rosales R. Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls. AMB Express 2020; 10:124. [PMID: 32651884 PMCID: PMC7351888 DOI: 10.1186/s13568-020-01058-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
Persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are a group of high-risk synthetic substances for human and environmental health. Currently, the study of sites contaminated by the spillage of equipment PCBs containing have been considered targeted areas for the study of bacterial communities with potential for PCBs degradation. There in isolation of bacterial strains is vital for use in biodegradable processes, such as bacterial bioaugmentation, which accelerates the development of phenomena such as natural attenuation of contaminated sites. The objective of this study was to assess biodiversity of bacteria contained in anthropogenic contaminated soils (HS and HP) with PCBs compared to a control sample without contaminant and the modified forest (F) and agricultural (A) soil in the laboratory with 100 mg L−1 PCB. For the analysis of 16S rRNA genes amplified from DNA extracted from the soils evaluated, the latest generation of Illumina Miseq and Sanger sequencing for the cultivable strains were detected. The bacteria identified as the most abundant bacterial phyla for HS and HP soil was Proteobacteria (56.7%) and Firmicutes (22.9%), which decreased in F and A soils. The most abundant bacterial genera were Burkholderia, Bacillus, Acinetobacter, Comamonas and Cupriavidus. Several species identified in this study, such as Bacillus cereus, Burkholderia cepacia, Comamonas testosteroni and Acinetobacter pittii have been reported as PCBs degraders. Finally, by means of a principal component analysis (PCA), a correlation between the physical and chemical characteristics of the soils in relation to the relative abundances of the bacteria identified was obtained. The C/N ratio was directly related to the control soil (without contaminant), while SOM maintained a relationship with F and A soils and the bacterial abundances were directly related to Hs and Hp soils due to the presence of aroclor 1260. Bacteria with the ability to tolerate high concentrations of this pollutant are considered for future use in biostimulation and bioaugmentation processes in contaminated soils.
Collapse
|
27
|
Sirichoat A, Flórez AB, Vázquez L, Buppasiri P, Panya M, Lulitanond V, Mayo B. Antibiotic Resistance-Susceptibility Profiles of Enterococcus faecalis and Streptococcus spp. From the Human Vagina, and Genome Analysis of the Genetic Basis of Intrinsic and Acquired Resistances. Front Microbiol 2020; 11:1438. [PMID: 32695087 PMCID: PMC7333779 DOI: 10.3389/fmicb.2020.01438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023] Open
Abstract
The spread of antibiotic resistance is a major public health concern worldwide. Commensal bacteria from the human genitourinary tract can act as reservoirs of resistance genes playing a role in their transfer to pathogens. In this study, the minimum inhibitory concentration of 16 antibiotics to 15 isolates from the human vagina, identified as Enterococcus faecalis, Streptococcus anginosus, and Streptococcus salivarius, was determined. Eight isolates were considered resistant to tetracycline, five to clindamycin and quinupristin-dalfopristin, and four to rifampicin. To investigate the presence of antimicrobial resistance genes, PCR analysis was performed in all isolates, and five were subjected to whole-genome sequencing analysis. PCR reactions identified tet(M) in all tetracycline-resistant E. faecalis isolates, while both tet(M) and tet(L) were found in tetracycline-resistant S. anginosus isolates. The tet(M) gene in E. faecalis VA02-2 was carried within an entire copy of the transposon Tn916. In S. anginosus VA01-10AN and VA01-14AN, the tet(M) and tet(L) genes were found contiguous with one another and flanked by genes encoding DNA mobilization and plasmid replication proteins. Amplification and sequencing suggested the lsaA gene to be complete in all E. faecalis isolates resistant to clindamycin and quinupristin-dalfopristin, while the gene contain mutations rendering to a non-functional LsaA in susceptible isolates. These results were subsequently confirmed by genome analysis of clindamycin and quinupristin-dalfopristin resistant and susceptible E. faecalis strains. Although a clinical breakpoint to kanamycin for S. salivarius has yet to be established, S. salivarius VA08-2AN showed an MIC to this antibiotic of 128 μg mL-1. However, genes involved in kanamycin resistance were not identified. Under the assayed conditions, neither tet(L) nor tet(M) from either E. faecalis or S. anginosus was transferred by conjugation to recipient strains of E. faecalis, Lactococcus lactis, or Lactobacillus plantarum. Nonetheless, the tet(L) gene from S. anginosus VA01-10AN was amplified by PCR, and cloned and expressed in Escherichia coli, to which it provided a resistance of 48-64 μg mL-1 to tetracycline. Our results expand the knowledge of the antibiotic resistance-susceptibility profiles of vaginal bacteria and provide the genetic basis of their intrinsic and acquired resistance.
Collapse
Affiliation(s)
- Auttawit Sirichoat
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- Department of Microbiology, Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
| | - Pranom Buppasiri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Marutpong Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Viraphong Lulitanond
- Department of Microbiology, Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), Oviedo, Spain
| |
Collapse
|
28
|
Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an Adlercreutzia Equolifaciens Strain That Does Not Produce Equol. Biomolecules 2020; 10:biom10060950. [PMID: 32586036 PMCID: PMC7355428 DOI: 10.3390/biom10060950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Isoflavones are transformed in the gut into more estrogen-like compounds or into inactive molecules. However, neither the intestinal microbes nor the pathways leading to the synthesis of isoflavone-derived metabolites are fully known. In the present work, 73 fecal isolates from three women with an equol-producing phenotype were considered to harbor equol-related genes by qPCR. After typing, 57 different strains of different taxa were tested for their ability to act on the isoflavones daidzein and genistein. Strains producing small to moderate amounts of dihydrodaidzein and/or O-desmethylangolensin (O-DMA) from daidzein and dihydrogenistein from genistein were recorded. However, either alone or in several strain combinations, equol producers were not found, even though one of the strains, W18.34a (also known as IPLA37004), was identified as Adlercreutzia equolifaciens, a well-described equol-producing species. Analysis and comparison of A. equolifaciens W18.34a and A. equolifaciens DSM19450T (an equol producer bacterium) genome sequences suggested a deletion in the former involving a large part of the equol operon. Furthermore, genome comparison of A. equolifaciens and Asaccharobacter celatus (other equol-producing species) strains from databases indicated many of these also showed deletions within the equol operon. The present results contribute to our knowledge to the activity of gut bacteria on soy isoflavones.
Collapse
|
29
|
Damnjanovic D, Vázquez-Campos X, Winter DL, Harvey M, Bridge WJ. Bacteriophage genotyping using BOXA repetitive-PCR. BMC Microbiol 2020; 20:154. [PMID: 32527227 PMCID: PMC7291552 DOI: 10.1186/s12866-020-01770-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repetitive-PCR (rep-PCR) using BOXA1R and BOXA2R as single primers was investigated for its potential to genotype bacteriophage. Previously, this technique has been primarily used for the discrimination of bacterial strains. Reproducible DNA fingerprint patterns for various phage types were generated using either of the two primers. RESULTS The similarity index of replicates ranged from 89.4-100% for BOXA2R-PCR, and from 90 to 100% for BOXA1R-PCR. The method of DNA isolation (p = 0.08) and the phage propagation conditions at two different temperatures (p = 0.527) had no significant influence on generated patterns. Rep-PCR amplification products were generated from different templates including purified phage DNA, phage lysates and phage plaques. The use of this method enabled comparisons of phage genetic profiles to establish their similarity to related or unrelated phages and their bacterial hosts. CONCLUSION The findings suggest that repetitive-PCR could be used as a rapid and inexpensive method to preliminary screen phage isolates prior to their selection for more comprehensive studies. The adoption of this rapid, simple and reproducible technique could facilitate preliminary characterisation of a large number of phage isolates and the investigation of genetic relationship between phage genotypes.
Collapse
Affiliation(s)
- Dragica Damnjanovic
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, Australia
| | - Daniel L. Winter
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, Australia
| | - Melissa Harvey
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, Australia
| | - Wallace J. Bridge
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, Australia
| |
Collapse
|
30
|
Sirichoat A, Flórez AB, Vázquez L, Buppasiri P, Panya M, Lulitanond V, Mayo B. Antibiotic Susceptibility Profiles of Lactic Acid Bacteria from the Human Vagina and Genetic Basis of Acquired Resistances. Int J Mol Sci 2020; 21:E2594. [PMID: 32276519 PMCID: PMC7178285 DOI: 10.3390/ijms21072594] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Lactic acid bacteria can act as reservoirs of antibiotic resistance genes that can be ultimately transferred to pathogens. The present work reports on the minimum inhibitory concentration (MIC) of 16 antibiotics to 25 LAB isolates of five Lactobacillus and one Bifidobacterium species from the human vagina. Acquired resistances were detected to kanamycin, streptomycin, chloramphenicol, gentamicin, and ampicillin. A PCR analysis of lactobacilli failed to identify genetic determinants involved in any of these resistances. Surprisingly, a tet(W) gene was detected by PCR in two Bifidobacterium bifidum strains, although they proved to be tetracycline-susceptible. In agreement with the PCR results, no acquired genes were identified in the genome of any of the Lactobacillus spp. strains sequenced. A genome analysis of B. bifidum VA07-1AN showed an insertion of two guanines in the middle of tet(W) interrupting the open reading frame. By growing the strain in the presence of tetracycline, stable tetracycline-resistant variants were obtained. An amino acid substitution in the ribosomal protein S12 (K43R) was further identified as the most likely cause of VA07-1AN being streptomycin resistance. The results of this work expand our knowledge of the resistance profiles of vaginal LAB and provide evidence for the genetic basis of some acquired resistances.
Collapse
Affiliation(s)
- Auttawit Sirichoat
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Pranom Buppasiri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Marutpong Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Viraphong Lulitanond
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| |
Collapse
|
31
|
Abstract
AbstractWe isolated 18 rhizobial strains from root nodules of a leguminous shrub Laburnum anagyroides (common laburnum) grown in Southeast Poland as an exotic plant. With the use of BOX-PCR fingerprinting, the isolates were clustered into 2 main groups and one separate lineage, which was congruent with the ITS-RFLP results. The phylogenetic trees constructed based on 16S rRNA and combined atpD, dnaK, glnA, and recA gene sequence data separated the representative strains into three evolutionary lineages within the Bradyrhizobium jicamae supergroup, with Bradyrhizobium algeriense and Bradyrhizobium valentinum as the closest relatives. The nodA and nifH gene phylogenies proved that the L. anagyroides symbionts carry a symbiotic gene variant known as Clade IV, representing the symbiovar retamae. Phenotypic characteristics of the isolates and reference strains are also reported. Our study of the rhizobia nodulating L. anagyroides growing in Poland complements earlier few findings on the symbiotic associations of this Genisteae species.
Collapse
|
32
|
|
33
|
Differential Genotyping of Mycobacterium avium Complex and Its Implications in Clinical and Environmental Epidemiology. Microorganisms 2020; 8:microorganisms8010098. [PMID: 31936743 PMCID: PMC7022546 DOI: 10.3390/microorganisms8010098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
In recent decades, the incidence and prevalence of nontuberculous mycobacteria (NTM) have greatly increased, becoming a major worldwide public health problem. Among numerous NTM species, the Mycobacterium avium complex (MAC) is the most predominant species, causing disease in humans. MAC is recognized as a ubiquitous microorganism, with contaminated water and soil being established sources of infection. However, the reason for the recent increase in MAC-associated disease has not yet been fully elucidated. Furthermore, human MAC infections are associated with a variety of infection sources. To improve the determination of infection sources and epidemiology of MAC, feasible and reliable genotyping methods are required to allow for the characterization of the epidemiology and biology of MAC. In this review, we discuss genotyping methods, such as pulsed-field gel electrophoresis, a variable number of tandem repeats, mycobacterial interspersed repetitive-unit-variable number of tandem repeats, and repetitive element sequence-based PCR that have been applied to elucidate the association between the MAC genotypes and epidemiological dominance, clinical phenotypes, evolutionary process, and control measures of infection. Characterizing the association between infection sources and the epidemiology of MAC will allow for the development of novel preventive strategies for the effective control of MAC infection.
Collapse
|
34
|
Zinc biosorption, biochemical and molecular characterization of plant growth-promoting zinc-tolerant bacteria. 3 Biotech 2019; 9:421. [PMID: 31696026 DOI: 10.1007/s13205-019-1959-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 01/15/2023] Open
Abstract
Zinc plays a key role in plant nutrition at low levels; however, at higher concentrations Zn ions can be highly phytotoxic and plant growth-promoting rhizobacteria can be used to reduce such metal toxicity. In the present investigation we had reported the zinc biosorption and molecular characterization of plant growth-promoting zinc-tolerant bacteria. Initially, thirty bacteria having zinc solubilizing ability were screened for MIC against zinc ion and displayed high value of MIC ranging from 2.5 to 62.5 mM. Biochemically, all the 30 isolates showed significant difference in the 6 biochemical tests performed. The molecular diversity studies based on the repetitive DNA PCR viz, REP, ERIC and BOX elements showed significant genetic diversity among these 30 zinc-tolerant bacteria. These ZTB strains also showed multiple PGP activities and all ZTB strains were found positive for production of IAA, GA3 and ammonia, whereas 24 were found positive for ACC deaminase activity, 8 showed siderophore production and 9 ZTB isolates were positive for HCN production. Out of 30 isolates, 24 showed phosphorus solubilization activity, 30 showed potash solubilization, 15 showed silica solubilization and 27 showed phytase production activities. All the 30 ZTB stains showed zinc solubilization up to 0.25% insoluble ZnO in the medium, whereas at 2% ZnO in MSM only 12 isolates showed solubilization which were further selected for zinc biosorption and pot studies. The heavy metal removal studies revealed that ZTB stains were able to remove zinc ions effectively from the medium efficiently and the highest zinc biosorption (< 90%) was recorded with the bacterial strain Z-15. Further, the inoculation of ZTB strains under zinc stress conditions (pot containing 1000 mg/kg Zn) resulted in significant increase of shoot length, root length and total chlorophyll content in maize seedlings compared with the uninoculated control. The partial 16S rDNA sequence of the potential ZTB isolates viz. Z-15, Z-24, Z-28 and Z-29 revealed their identity as Serratia sp. The ability of these zinc-tolerant bacteria to tolerate the toxic level of zinc may serve as suitable candidates for developing microbial formulations for the growth of crop plants in Zn-contaminated areas.
Collapse
|
35
|
Effectiveness of BOX-PCR in Differentiating Genetic Relatedness among Salmonella enterica Serotype 4,[5],12:i:- Isolates from Hospitalized Patients and Minced Pork Samples in Northern Thailand. Int J Microbiol 2019; 2019:5086240. [PMID: 31316564 PMCID: PMC6604291 DOI: 10.1155/2019/5086240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica Serotype 4,[5],12:i:-, a monophasic variant of S. Typhimurium, with high virulence and multidrug resistance is distributed globally causing pathogenicity to both humans and domesticated animals. BOX-A1R-based repetitive extragenic palindromic-PCR (BOX)-PCR proved to be superior to three other repetitive element-based PCR typing methods, namely, enterobacterial repetitive intergenic consensus (ERIC)-, poly-trinucleotide (GTG)5-, and repetitive extragenic palindromic (REP)-PCR (carried out under a single optimized amplification condition), in differentiating genetic relatedness among S. 4,[5],12:i:- isolates from feces of hospitalized patients (n=12) and isolates from minced pork samples of S. 4,[5],12:i:- (n=6), S. Typhimurium (n=6), and Salmonella Serogroup B (n=4) collected from different regions of northern Thailand. Construction of phylogenetic trees from amplicon size patterns allowed allocation of Salmonella isolates into clusters of similar genetic relatedness, with BOX-PCR generating more unique clusters for each serotype than the other three typing methods. BOX-, (GTG)5-, and REP-PCR indicated significant genetic relatedness between S. 4,[5],12:i:- isolates 1 and 9 from hospitalized patients and S. 4,[5],12:i:- isolate en 29 from minced pork, suggesting a possible route of transmission. Thus, BOX-PCR provides a suitable molecular typing method for discriminating genetic relatedness among Salmonella spp. of the same and different serotypes and should be suitable for application in typing and tracking route of transmission in Salmonella outbreaks.
Collapse
|
36
|
Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars. Braz J Microbiol 2019; 50:759-767. [PMID: 31144269 DOI: 10.1007/s42770-019-00090-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022] Open
Abstract
The genus Bradyrhizobium harbors many endosymbionts of legumes, but recent research has shown their widespread presence in soils and in non-legumes, notably in roots of sugarcane. This study aimed to investigate the Bradyrhizobium sp. community density in the endosphere and the rhizosphere of two commercial sugarcane cultivars. Samples of the rhizosphere and root endosphere of two Brazilian sugarcane cultivars (RB867515 and IACSP95-5000) were collected, serially diluted, and inoculated on axenic cowpea (Vigna unguiculata) and the induction of nodules was evaluated. Based on the results, a density was estimated of at least 1.6 × 104 rhizobia g root-1 in rhizosphere samples and up to 105 rhizobia g root -1 in endosphere. BOX-PCR profiling of 93 Bradyrhizobium isolates revealed genetic variability, with some dominant (up to 18 representants) and less dominant genotypes. 16S rRNA and ITS sequence analyses confirmed nine phylotypes, six of which pertained to the B. elkanii clade and three to the B. japonicum clade. Five isolates were genetically similar to the recently described species B. sacchari. There was no effect of the factors "plant cultivar" and "root compartment" on Bradyrhizobium sp. community composition and the most abundant genotypes occurred both in rhizosphere and endosphere of both cultivars. Therefore, this study confirms the natural presence of diverse Bradyrhizobium spp. in sugarcane root systems (mainly the rhizosphere) and indicates that certain Bradyrhizobium phylotypes have a special affinity for sugarcane root colonization.
Collapse
|
37
|
Iturralde ET, Covelli JM, Alvarez F, Pérez-Giménez J, Arrese-Igor C, Lodeiro AR. Soybean-Nodulating Strains With Low Intrinsic Competitiveness for Nodulation, Good Symbiotic Performance, and Stress-Tolerance Isolated From Soybean-Cropped Soils in Argentina. Front Microbiol 2019; 10:1061. [PMID: 31139173 PMCID: PMC6527597 DOI: 10.3389/fmicb.2019.01061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Soybean is the most important oilseed in the world, cropped in 120–130 million hectares each year. The three most important soybean producers are Argentina, Brazil, and United States, where soybean crops are routinely inoculated with symbiotic N2-fixing Bradyrhizobium spp. This extended inoculation gave rise to soybean-nodulating allochthonous populations (SNAPs) that compete against new inoculant for nodulation, thus impairing yield responses. Competitiveness depends on intrinsic factors contributed by genotype, extrinsic ones determined by growth and environmental conditions, and strain persistence in the soil. To assess these factors in Argentinean SNAPs, we studied 58 isolates from five sites of the main soybean cropping area. BOX-A1R DNA fingerprint distributed these isolates in 10 clades that paralleled the pHs of their original soils. By contrast, reference Bradyrhizobium spp. strains, including those used as soybean-inoculants, were confined to a single clade. More detailed characterization of a subset of 11 SNAP-isolates revealed that five were Bradyrhizobium japonicum, two Bradyrhizobium elkanii, two Rhizobium radiobacter (formerly Agrobacterium tumefaciens), one Bradyrhizobium diazoefficiens, and one Paenibacillus glycanilyticus-which did not nodulate when inoculated alone, and therefore was excluded from further characterization. The remaining subset of 10 SNAP-isolates was used for deeper characterization. All SNAP-isolates were aluminum- and heat-tolerant, and most of them were glyphosate-tolerant. Meanwhile, inoculant strains tested were sensitive to aluminum and glyphosate. In addition, all SNAP-isolates were motile to different degrees. Only three SNAP-isolates were deficient for N2-fixation, and none was intrinsically more competitive than the inoculant strain. These results are in contrast to the general belief that rhizobia from soil populations evolved as intrinsically more competitive for nodulation and less N2-fixing effective than inoculants strains. Shoot:root ratios, both as dry biomass and as total N, were highly correlated with leaf ureide contents, and therefore may be easy indicators of N2-fixing performance, suggesting that highly effective N2-fixing and well-adapted strains may be readily selected from SNAPs. In addition, intrinsic competitiveness of the inoculants strains seems already optimized against SNAP strains, and therefore our efforts to improve nodules occupation by inoculated strains should focus on the optimization of extrinsic competitiveness factors, such as inoculant formulation and inoculation technology.
Collapse
Affiliation(s)
- Esteban T Iturralde
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Julieta M Covelli
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Florencia Alvarez
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Cesar Arrese-Igor
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Aníbal R Lodeiro
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
38
|
Damnjanovic D, Harvey M, Bridge WJ. Application of colony BOXA2R-PCR for the differentiation and identification of lactic acid COCCI. Food Microbiol 2019; 82:277-286. [PMID: 31027784 DOI: 10.1016/j.fm.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/15/2022]
Abstract
Repetitive-PCR (rep-PCR) is a well-established genetic method for bacterial strain fingerprinting that is used mostly with REP, ERIC, (GTG)5, BOXA1R and occasionally BOXA2R repetitive primers. In this study, it was demonstrated that BOXA2R-PCR could effectively discriminate between Lactococcus lactis, Leuconostoc mesenteroides and Streptococcus thermophilus; differentiate Lactococcus lactis strains and subspeciate them into lactis and cremoris in a single reaction; generate unique strain fingerprints of various lactic acid bacteria (LAB species) commonly isolated from fermented dairy products, including occasional spoilage bacteria and yeasts. Furthermore, using direct colony PCR a reproducible and rapid method was developed for the differentiation and identification of lactic acid cocci. The simplicity and speed of this microbial identification method has potential practical value for dairy microbiologists, which was demonstrated through a microbiota investigation of select Australian retail dairy products.
Collapse
Affiliation(s)
- Dragica Damnjanovic
- School of Biotechnology and Biomolecular Sciences (BABS), Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Melissa Harvey
- School of Biotechnology and Biomolecular Sciences (BABS), Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences (BABS), Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
39
|
Paulitsch F, Klepa MS, da Silva AR, do Carmo MRB, Dall’Agnol RF, Delamuta JRM, Hungria M, da Silva Batista JS. Phylogenetic diversity of rhizobia nodulating native Mimosa gymnas grown in a South Brazilian ecotone. Mol Biol Rep 2018; 46:529-540. [DOI: 10.1007/s11033-018-4506-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022]
|
40
|
Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions. Mol Biol Rep 2018; 46:451-460. [DOI: 10.1007/s11033-018-4494-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/10/2018] [Indexed: 12/01/2022]
|
41
|
Riley LW. Laboratory Methods in Molecular Epidemiology: Bacterial Infections. Microbiol Spectr 2018; 6:10.1128/microbiolspec.ame-0004-2018. [PMID: 30387415 PMCID: PMC11633637 DOI: 10.1128/microbiolspec.ame-0004-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
In infectious disease epidemiology, the laboratory plays a critical role in diagnosis, outbreak investigations, surveillance, and characterizing biologic properties of microbes associated with their transmissibility, resistance to anti-infectives, and pathogenesis. The laboratory can inform and refine epidemiologic study design and data analyses. In public health, the laboratory functions to assess effect of an intervention. In addition to research laboratories, the new-generation molecular microbiology technology has been adapted into clinical and public health laboratories to simplify, accelerate, and make precise detection and identification of infectious disease pathogens. This technology is also being applied to subtype microbes to conduct investigations that advance our knowledge of epidemiology of old and emerging infectious diseases. Because of the recent explosive progress in molecular microbiology technology and the vast amount of data generated from the applications of this technology, this Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases describes these methods separately for bacteria, viruses, and parasites. This review discusses past and current advancements made in laboratory methods used to conduct epidemiologic studies of bacterial infections. It describes methods used to subtype bacterial organisms based on molecular microbiology techniques, following a discussion on what is meant by bacterial "species" and "clones." Discussions on past and new genotyping tests applied to epidemiologic investigations focus on tests that compare electrophoretic band patterns, hybridization matrices, and nucleic acid sequences. Applications of these genotyping tests to address epidemiologic issues are detailed elsewhere in other reviews of this series. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
42
|
Tuohy JM, Mueller-Spitz SR, Albert CM, Scholz-Ng SE, Wall ME, Noutsios GT, Gutierrez AJ, Sandrin TR. MALDI-TOF MS Affords Discrimination of Deinococcus aquaticus Isolates Obtained From Diverse Biofilm Habitats. Front Microbiol 2018; 9:2442. [PMID: 30374340 PMCID: PMC6196315 DOI: 10.3389/fmicb.2018.02442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectroscopy (MALDI-TOF MS) has been used routinely over the past decade in clinical microbiology laboratories to rapidly characterize diverse microorganisms of medical importance both at the genus and species levels. Currently, there is keen interest in applying MALDI-TOF MS at taxonomic levels beyond species and to characterize environmental isolates. We constructed a model system consisting of 19 isolates of Deinococcus aquaticus obtained from biofilm communities indigenous to diverse substrates (concrete, leaf tissue, metal, and wood) in the Fox River - Lake Winnebago system of Wisconsin to: (1) develop rapid sample preparation methods that produce high quality, reproducible MALDI-TOF spectra and (2) compare the performance of MALDI-TOF MS-based profiling to common DNA-based approaches including 16S rRNA sequencing and genomic diversity by BOX-A1R fingerprinting. Our results suggest that MALDI-TOF MS can be used to rapidly and reproducibly characterize environmental isolates of D. aquaticus at the subpopulation level. MALDI-TOF MS provided higher taxonomic resolution than either 16S rRNA gene sequence analysis or BOX-A1R fingerprinting. Spectra contained features that appeared to permit characterization of isolates into two co-occurring subpopulations. However, reliable strain-level performance required rigorous and systematic standardization of culture conditions and sample preparation. Our work suggests that MALDI-TOF MS offers promise as a rapid, reproducible, and high-resolution approach to characterize environmental isolates of members of the genus Deinococcus. Future work will focus upon application of methods described here to additional members of this ecologically diverse and ubiquitous genus.
Collapse
Affiliation(s)
- James M Tuohy
- Biology Department, Glendale Community College, Glendale, AZ, United States
| | - Sabrina R Mueller-Spitz
- Biology Department, University of Wisconsin Oshkosh, Oshkosh, WI, United States.,Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, WI, United States
| | - Chad M Albert
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - Stacy E Scholz-Ng
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - Melinda E Wall
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - George T Noutsios
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Anthony J Gutierrez
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States.,Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
43
|
Pizzolante G, Durante M, Rizzo D, Di Salvo M, Tredici SM, Tufariello M, De Paolis A, Talà A, Mita G, Alifano P, De Benedetto GE. Characterization of two Pantoea strains isolated from extra-virgin olive oil. AMB Express 2018; 8:113. [PMID: 29992518 PMCID: PMC6039349 DOI: 10.1186/s13568-018-0642-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/05/2018] [Indexed: 11/10/2022] Open
Abstract
The olive oil is an unfavorable substrate for microbial survival and growth. Only few microorganisms use olive oil fatty acids as carbon and energy sources, and survive in the presence of olive oil anti-microbial components. In this study, we have evaluated the occurrence of microorganisms in 1-year-stored extra-virgin olive oil samples. We detected the presence of bacterial and yeast species with a recurrence of the bacterium Stenotrophomonas rhizophila and yeast Sporobolomyces roseus. We then assayed the ability of all isolates to grow in a mineral medium supplemented with a commercial extra-virgin olive oil as a sole carbon and energy source, and analyzed the utilization of olive oil fatty acids during their growth. We finally focused on two bacterial isolates belonging to the species Pantoea septica. Both these isolates produce carotenoids, and one of them synthesizes bioemulsifiers enabling the bacteria to better survive/growth in this unfavorable substrate. Analyses point to a mixture of glycolipids with glucose, galactose and xylose as carbohydrate moieties whereas the lipid domain was constituted by C6-C10 β-hydroxy carboxylic acids.
Collapse
Affiliation(s)
- Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Miriana Durante
- Istituto di Scienze Delle Produzioni Alimentari-CNR, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Daniela Rizzo
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Marco Di Salvo
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Salvatore Maurizio Tredici
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Maria Tufariello
- Istituto di Scienze Delle Produzioni Alimentari-CNR, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Angelo De Paolis
- Istituto di Scienze Delle Produzioni Alimentari-CNR, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Giovanni Mita
- Istituto di Scienze Delle Produzioni Alimentari-CNR, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| |
Collapse
|
44
|
Mulet M, Sánchez D, Rodríguez AC, Nogales B, Bosch R, Busquets A, Gomila M, Lalucat J, García-Valdés E. Pseudomonas gallaeciensis sp. nov., isolated from crude-oil-contaminated intertidal sand samples after the Prestige oil spill. Syst Appl Microbiol 2018; 41:340-347. [DOI: 10.1016/j.syapm.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
45
|
Abstract
Lectin-like bacteriocins (LlpAs) are secreted by proteobacteria and selectively kill strains of their own or related species, and they are composed of two B-lectin domains with divergent sequences. In Pseudomonas spp., initial binding of these antibacterial proteins to cells is mediated by the carboxy-terminal domain through d-rhamnose residues present in the common polysaccharide antigen of their lipopolysaccharide, whereas the amino-terminal domain accounts for strain selectivity of killing. Here, we show that spontaneous LlpA-resistant mutants carry mutations in one of three surface-exposed moieties of the essential β-barrel outer membrane protein insertase BamA, the core component of the BAM complex. Polymorphism of this loop in different Pseudomonas groups is linked to LlpA susceptibility, and targeted cells all share the same signature motif in this loop. Since heterologous expression of such a bamA gene confers LlpA susceptibility upon a resistant strain, BamA represents the primary bacteriocin selectivity determinant in pseudomonads. Contrary to modular bacteriocins that require uptake via the Tol or Ton system, parasitism of BamA as an LlpA receptor advocates a novel bacteriocin killing mechanism initiated by impairment of the BAM machinery. Bacteria secrete a variety of molecules to eliminate microbial rivals. Bacteriocins are a pivotal group of peptides and proteins that assist in this fight, specifically killing related bacteria. In Gram-negative bacteria, these antibacterial proteins often comprise distinct domains for initial binding to a target cell’s surface and subsequent killing via enzymatic or pore-forming activity. Here, we show that lectin-like bacteriocins, a family of bacteriocins that lack the prototypical modular toxin architecture, also stand out by parasitizing BamA, the core component of the outer membrane protein assembly machinery. A particular surface-exposed loop of BamA, critical for its function, serves as a key discriminant for cellular recognition, and polymorphisms in this loop determine whether a strain is susceptible or immune to a particular bacteriocin. These findings suggest a novel mechanism of contact-dependent killing that does not require cellular uptake. The evolutionary advantage of piracy of an essential cellular compound is highlighted by the observation that contact-dependent growth inhibition, a distinct antagonistic system, can equally take advantage of this receptor.
Collapse
|
46
|
Flórez AB, Mayo B. Antibiotic Resistance-Susceptibility Profiles of Streptococcus thermophilus Isolated from Raw Milk and Genome Analysis of the Genetic Basis of Acquired Resistances. Front Microbiol 2017; 8:2608. [PMID: 29312272 PMCID: PMC5744436 DOI: 10.3389/fmicb.2017.02608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022] Open
Abstract
The food chain is thought to play an important role in the transmission of antibiotic resistances from commensal and beneficial bacteria to pathogens. Streptococcus thermophilus is a lactic acid bacterium of major importance as a starter for the dairy industry. This study reports the minimum inhibitory concentration (MIC) of 16 representative antimicrobial agents to 41 isolates of S. thermophilus derived from raw milk. Strains showing resistance to tetracycline (seven), erythromycin and clindamycin (two), and streptomycin and neomycin (one) were found. PCR amplification identified tet(S) in all the tetracycline-resistant strains, and ermB in the two erythromycin/clindamycin-resistant strains. Hybridisation experiments suggested each resistance gene to be located in the chromosome with a similar genetic organization. Five antibiotic-resistant strains -two resistant to tetracycline (St-2 and St-9), two resistant to erythromycin/clindamycin (St-5 and St-6), and one resistant to streptomycin/neomycin (St-10)- were subjected to genome sequencing and analysis. The tet(S) gene was identified in small contigs of 3.2 and 3.7 kbp in St-2 and St-9, respectively, flanked by truncated copies of insertion sequence (IS) elements. Similarly, ermB in St-6 and St-5 was found in contigs of 1.6 and 28.1 kbp, respectively. Sequence analysis and comparison of the largest contig showed it to contain three segments (21.9, 3.7, and 1.4 kbp long) highly homologous to non-collinear sequences of pRE25 from Enterococcus faecalis. These segments contained the ermB gene, a transference module with an origin of transfer (oriT) plus 15 open reading frames encoding proteins involved in conjugation, and modules for plasmid replication and segregation. Homologous stretches were separated by short, IS-related sequences, resembling the genetic organization of the integrative and conjugative elements (ICEs) found in Streptococcus species. No gene known to provide aminoglycoside resistance was seen in St-10. Four strain-specific amino acid substitutions in the RsmG methyltransferase were scored in this strain; these might be associated to its streptomycin/neomycin resistance. Under yogurt manufacturing and storage conditions, no transfer of either tet(S) or ermB from S. thermophilus to L. delbrueckii was detected. The present results contribute toward characterisation of the antibiotic resistance profiles in S. thermophilus, provide evidence for the genetic basis of acquired resistances and deepen on their transference capability.
Collapse
Affiliation(s)
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (CSIC), Paseo Río Linares s/n, Asturias, Spain
| |
Collapse
|
47
|
Lacerda LCC, de Souza-Pollo A, Padua IRM, Conceição LF, da Silveira CPB, Silva GA, Maluta RP, Laus JL. Molecular characterization and potential sources of aqueous humor bacterial contamination during phacoemulsification with intraocular lens implantation in dogs. Vet Microbiol 2017; 213:95-101. [PMID: 29292010 DOI: 10.1016/j.vetmic.2017.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/29/2022]
Abstract
Bacterial contamination of the anterior chamber during cataract surgery is one of the main responsible for endophthalmitis postoperative. Phacoemulsification is a less invasive technique for cataract treatment, although it does not exclude the possibility of contamination. In this study, bacterial contaminants of aqueous humor collected pre- and post-phacoemulsification with intraocular lens implantation (IOL) of twenty dogs were identified. As the conjunctival microbiota constitute a significant source of anterior chamber contamination, bacterial isolates from aqueous humor were genetically compared with those present in the conjunctival surface of the patients. Three dogs presented bacterial growth in both aqueous humor and conjunctival surface samples. Bacterial isolates from these samples were grouped according to their genetic profiles by repetitive-element PCR (rep-PCR) and their representatives were identified by 16S rRNA sequencing. Isolates from conjunctival surface were identified as Enterobacter spp., Staphylococcus spp. and S. aureus; and from aqueous humor samples as Enterobacter spp., Pantoea spp., Streptococcus spp. and Staphylococcus spp., respectively in decreasing order of prevalence. According to the rep-PCR analysis, 16.6% of Enterobacter spp. isolates from conjunctival surface were genetically similar to those from aqueous humor. The rest of isolates encountered in aqueous humor were genetically distinct from those of conjunctival surface. The significant genetic diversity of bacterial isolates found in the aqueous humor samples after surgery denoted the possibility of anterior chamber contamination during phacoemulsification by bacteria not only from conjunctival surface but also from different sources related to surgical environment.
Collapse
Affiliation(s)
- Luciana C C Lacerda
- Department of Veterinary Clinic and Surgery, São Paulo State University-FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| | - Andressa de Souza-Pollo
- Laboratory of Molecular Epidemiology, Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University-FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| | - Ivan Ricardo M Padua
- Department of Veterinary Clinic and Surgery, São Paulo State University-FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| | - Luciano F Conceição
- Department of Veterinary Clinic and Surgery, São Paulo State University-FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| | | | - Germana A Silva
- Department of Veterinary Clinic and Surgery, São Paulo State University-FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| | - Renato P Maluta
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - José L Laus
- Department of Veterinary Clinic and Surgery, São Paulo State University-FCAV/UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
48
|
Vandermaesen J, Lievens B, Springael D. Isolation and identification of culturable bacteria, capable of heterotrophic growth, from rapid sand filters of drinking water treatment plants. Res Microbiol 2017; 168:594-607. [DOI: 10.1016/j.resmic.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 03/08/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
49
|
Dall'Agnol RF, Bournaud C, de Faria SM, Béna G, Moulin L, Hungria M. Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiol Ecol 2017; 93:3045887. [PMID: 28334155 DOI: 10.1093/femsec/fix027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 11/13/2022] Open
Abstract
Some species of the genus Paraburkholderia that are able to nodulate and fix nitrogen in symbiosis with legumes are called β-rhizobia and represent a group of ecological and biotechnological importance. We used Mimosa pudica and Phaseolus vulgaris to trap 427 rhizobial isolates from rhizospheric soil of Mimoseae trees in the Brazilian Atlantic Forest. Eighty-four representative strains were selected according to the 16S rRNA haplotypes and taxonomically characterized using a concatenated 16S rRNA-recA phylogeny. Most strains were assembled in the genus Paraburkholderia, including Paraburkholderia sabiae and Pa. nodosa. Mesorhizobium (α-rhizobia) and Cupriavidus (β-rhizobia) were also isolated, but in smaller proportions. Multilocus sequence analysis and BOX-PCR analyses indicated that six clusters of Paraburkholderia represent potential new species. In the phylogenetic analysis of the nodC gene, the majority of the strains were positioned in the same groups as in the 16S rRNA-recA tree, indicative of stability and vertical inheritance, but we also identified horizontal transfer of nodC in Pa. sabiae. All α- and β-rhizobial species were trapped by both legumes, although preferences of the host plants for specific rhizobial species have been observed.
Collapse
Affiliation(s)
- Rebeca Fuzinatto Dall'Agnol
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 231, 86001-970, Londrina, PR, Brazil.,Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 10.011, 86057-970, Londrina, PR, Brazil.,IRD, Cirad, Univ. Montpellier, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet 34398 Montpellier, France
| | - Caroline Bournaud
- IRD, Cirad, Univ. Montpellier, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet 34398 Montpellier, France.,Embrapa Recursos Genéticos e Biotecnologia, LIMPP Laboratory, C.P. 02372, 70770-917, Brasília, DF, Brazil
| | | | - Gilles Béna
- IRD, Cirad, Univ. Montpellier, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet 34398 Montpellier, France.,IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Lionel Moulin
- IRD, Cirad, Univ. Montpellier, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet 34398 Montpellier, France.,IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Mariangela Hungria
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 231, 86001-970, Londrina, PR, Brazil
| |
Collapse
|
50
|
Pizzolante G, Cordero C, Tredici SM, Vergara D, Pontieri P, Del Giudice L, Capuzzo A, Rubiolo P, Kanchiswamy CN, Zebelo SA, Bicchi C, Maffei ME, Alifano P. Cultivable gut bacteria provide a pathway for adaptation of Chrysolina herbacea to Mentha aquatica volatiles. BMC PLANT BIOLOGY 2017; 17:30. [PMID: 28249605 PMCID: PMC5333409 DOI: 10.1186/s12870-017-0986-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND A chemical cross-talk between plants and insects is required in order to achieve a successful co-adaptation. In response to herbivory, plants produce specific compounds, and feeding insects respond adequately7 to molecules produced by plants. Here we show the role of the gut microbial community of the mint beetle Chrysolina herbacea in the chemical cross-talk with Mentha aquatica (or watermint). RESULTS By using two-dimensional gas chromatography-mass spectrometry we first evaluated the chemical patterns of both M. aquatica leaf and frass volatiles extracted by C. herbacea males and females feeding on plants, and observed marked differences between males and females volatiles. The sex-specific chemical pattern of the frass paralleled with sex-specific distribution of cultivable gut bacteria. Indeed, all isolated gut bacteria from females belonged to either α- or γ-Proteobacteria, whilst those from males were γ-Proteobacteria or Firmicutes. We then demonstrated that five Serratia marcescens strains from females possessed antibacterial activity against bacteria from males belonging to Firmicutes suggesting competition by production of antimicrobial compounds. By in vitro experiments, we lastly showed that the microbial communities from the two sexes were associated to specific metabolic patterns with respect to their ability to biotransform M. aquatica terpenoids, and metabolize them into an array of compounds with possible pheromone activity. CONCLUSIONS Our data suggest that cultivable gut bacteria of Chrysolina herbacea males and females influence the volatile blend of herbivory induced Mentha aquatica volatiles in a sex-specific way.
Collapse
Affiliation(s)
- Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Salvatore M. Tredici
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Davide Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| | - Paola Pontieri
- Dipartimento di Biologia, Sezione di Igiene, Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o, 80134 Naples, Italy
| | - Luigi Del Giudice
- Dipartimento di Biologia, Sezione di Igiene, Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o, 80134 Naples, Italy
| | - Andrea Capuzzo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Quarello 15/A, 10135 Torino, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Chidananda N. Kanchiswamy
- Research and Innovation Centre Genomics and Biology of Fruit Crop Department, Fondazione Edmund Mach (FEM), Istituto Agrario San Michele (IASMA), Via Mach 1, 38010 San Michele all’Adige, TN Italy
| | - Simon A. Zebelo
- Department of Natural Sciences, University of Maryland Eastern Shore, 1117 Trigg Hall, Princess Anne, 21853 MD USA
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria n°9, 10125 Torino, Italy
| | - Massimo E. Maffei
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Quarello 15/A, 10135 Torino, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 165, 73100 Lecce, Italy
| |
Collapse
|