1
|
Pasantes JJ, Wimmer R, Knebel S, Münch C, Kelbova C, Junge A, Kieback P, Küpferling P, Schempp W. 47,X,idic(Y),inv dup(Y): a non-mosaic case of a phenotypically normal boy with two different Y isochromosomes and neocentromere formation. Cytogenet Genome Res 2012; 136:157-62. [PMID: 22286088 DOI: 10.1159/000335705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2011] [Indexed: 11/19/2022] Open
Abstract
A de novo aberrant karyotype with 47 chromosomes including 2 different-sized markers was identified during prenatal diagnosis. Fluorescence in situ hybridization (FISH) with a Y painting probe tagged both marker chromosomes which were supposed to be isochromosomes of the short and the long arm, respectively. A normal boy was born in time who shows normal physical and mental development. To characterize both Y markers in detail, we postnatally FISH-mapped a panel of Y chromosomal probes including SHOX (PAR1), TSPY, DYZ3 (Y centromere), UTY, XKRY, CDY, RBMY, DAZ, DYZ1 (Yq12 heterochromatin), SYBL1 (PAR2), and the human telomeric sequence (TTAGGG)(n). The smaller Y marker turned out to be an isochromosome containing an inverted duplication of the entire short arm, the original Y centromere, and parts of the proximal long arm, including AZFa. The bigger Y marker was an isochromosome of the rest of the Y long arm. Despite a clearly visible primary constriction within one of the DAPI- and DYZ1-positive heterochromatic regions, hybridization of DYZ3 detected no Y-specific alphoid sequences in that constriction. Because of its stable mitotic distribution, a de novo formation of a neocentromere has to be assumed.
Collapse
Affiliation(s)
- J J Pasantes
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Greve G, Alechine E, Pasantes JJ, Hodler C, Rietschel W, Robinson TJ, Schempp W. Y-Chromosome variation in hominids: intraspecific variation is limited to the polygamous chimpanzee. PLoS One 2011; 6:e29311. [PMID: 22216243 PMCID: PMC3246485 DOI: 10.1371/journal.pone.0029311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/25/2011] [Indexed: 11/23/2022] Open
Abstract
Background We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y) varied with respect to copy number and position among chimpanzees (Pan troglodytes). In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus), the chimpanzee's closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus), and examine the resulting patterns in the light of the species' markedly different social and mating behaviors. Methodology/Principal Findings Fluorescence in situ hybridization analysis (FISH) of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla) and a single lineage of the eastern lowland gorilla (G. beringei graueri) showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus), and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii). We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR) in chimpanzee and bonobo. Conclusion/Significance High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans—species that are not subject to sperm competition—showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA sequences, but is also shaped by the social and behavioral circumstances under which the specific species has evolved.
Collapse
Affiliation(s)
- Gabriele Greve
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | - Evguenia Alechine
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
- Servicio de Huellas Digitales Genéticas, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan J. Pasantes
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Christine Hodler
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | | | - Terence J. Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Werner Schempp
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
3
|
Knebel S, Pasantes JJ, Thi DAD, Schaller F, Schempp W. Heterogeneity of pericentric inversions of the human y chromosome. Cytogenet Genome Res 2011; 132:219-26. [PMID: 21307635 DOI: 10.1159/000322080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2010] [Indexed: 11/19/2022] Open
Abstract
Pericentric inversions of the human Y chromosome (inv(Y)) are the result of breakpoints in Yp and Yq. Whether these breakpoints occur recurrently on specific hotspots or appear at different locations along the repeat structure of the human Y chromosome is an open question. Employing FISH for a better definition and refinement of the inversion breakpoints in 9 cases of inv(Y) chromosomes, with seemingly unvarying metacentric appearance after banding analysis, unequivocally resulted in heterogeneity of the pericentric inversions of the human Y chromosome. While in all 9 inv(Y) cases the inversion breakpoints in the short arm fall in a gene-poor region of X-transposed sequences proximal to PAR1 and SRY in Yp11.2, there are clearly 3 different inversion breakpoints in the long arm. Inv(Y)-types I and II are familial cases showing inversion breakpoints that map in Yq11.23 or in Yq11.223, outside the ampliconic fertility gene cluster of DAZ and CDY in AZFc. Inv(Y)-type III shows an inversion breakpoint in Yq11.223 that splits the DAZ and CDY fertility gene-cluster in AZFc. This inversion type is representative of both familial cases and cases with spermatogenetic impairment. In a further familial case of inv(Y), with almost acrocentric morphology, the breakpoints are within the TSPY and RBMY repeat in Yp and within the heterochromatin in Yq. Therefore, the presence of specific inversion breakpoints leading to impaired fertility in certain inv(Y) cases remains an open question.
Collapse
Affiliation(s)
- S Knebel
- Institute of Human Genetics, University Clinic Freiburg, Germany
| | | | | | | | | |
Collapse
|
4
|
Makrinou E, Fox M, Wolfe J, Cameron J, Taylor K, Edwards YH. DNM1DN: a new class of paralogous genomic segments (duplicons) with highly conserved copies on chromosomes Y and 15. Ann Hum Genet 2004; 68:85-92. [PMID: 15008788 DOI: 10.1046/j.1529-8817.2003.00076.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Screening a testis cDNA selection library for Y-linked genes yielded 79 cDNAs. Of these, 9 matched the 3' region of the dynamin 1 gene (DNM1) on chromosome 9q34 with >90% identity. Fluoresence in situ hybridisation and PCR amplification were used to localise a large number of DNM1-like sequences to human chromosomes 15 and Y. PCR amplification of overlapping Y-linked YACs allowed a more accurate mapping of the Y-linked DNM1-like cDNAs to a euchromatic locus in close proximity to heterochromatin at Yq11.23. A search of the genome database identified 64 highly homologous copies of the DNM1 fragment. Most of these copies were localised to chromosomes 15 and Y, but others mapped to chromosomes 5, 8, 10, 12, 19 and 22. These sequences exhibit all the major features of a duplicon and have been designated DNM1DN (DNM1 duplicon). Evolutionary studies using fluorescence in situ hybridisation indicate that transposition of the DNM1DN sequence to chromosome 15 took place earlier in primate evolution than the transposition to the Y chromosome. The translocation to the Y took place at a time following the divergence of a common ancestor from gorilla, approximately 4-7 million years ago.
Collapse
MESH Headings
- Animals
- Chromosome Mapping
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Y
- Chromosomes, Mammalian
- Conserved Sequence
- DNA, Complementary
- Dynamin I/genetics
- Evolution, Molecular
- Gene Library
- Genes, Duplicate
- Genome, Human
- Gorilla gorilla/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Multigene Family
- Pan troglodytes/genetics
- Phylogeny
- Polymerase Chain Reaction
- Testis
- Y Chromosome
Collapse
Affiliation(s)
- E Makrinou
- MRC Human Biochemical Genetics Unit, University College London, Wolfson House, London NW1 2HE, UK.
| | | | | | | | | | | |
Collapse
|
5
|
Ekong R, Jeremiah S, Judah D, Lehmann O, Mirzayans F, Hung YC, Walter MA, Bhattacharya S, Gant TW, Povey S, Wolfe J. Chromosomal anomalies on 6p25 in iris hypoplasia and Axenfeld-Rieger syndrome patients defined on a purpose-built genomic microarray. Hum Mutat 2004; 24:76-85. [PMID: 15221791 DOI: 10.1002/humu.20059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In many inherited diseases, the same phenotype can be produced both by single-base changes and by large deletions, or in some cases by duplications. Routine high-throughput sequencing can now detect small mutations relatively easily in a diagnostic setting, but deletions and duplications in the 50-500-kb region remain a more difficult problem. We have explored the application of array-CGH to the detection of such changes on a set of 20 samples consisting of patients with eye diseases associated with changes on chromosome 6p25 together with unaffected individuals, as well as two samples from tuberous sclerosis 2 (TSC2)-affected patients. We developed a microarray consisting of degenerate oligonucleotide primer (DOP)-PCR products from 260 human genomic clones, including BACs, PACs, and cosmids. In a masked study, chromosome changes in patients with iris hypoplasia (duplication) and Axenfeld-Rieger syndrome (deletion) were unequivocally distinguished from controls. Of the 20 6p25 samples analyzed, 19 were analyzed correctly (10 duplication cases, two deletions, and seven normals), while one individual failed to give a result because of poor hybridization. The extent of the duplication or deletion estimated was similar to that obtained by independent and much more time-consuming FISH experiments. On the other hand, deletions in the two TSC2-affected samples, previously mapped by DNA molecular combing, were not detected on the array, possibly due to the repeat content of that region. Excluding the 16p13 cosmids, consistent results were obtained from all other cosmid clones; the potential for producing affordable disease-specific diagnostic microarray as an adjunct to diagnosis is discussed.
Collapse
|
6
|
Röttger S, Yen PH, Schempp W. A fiber-FISH contig spanning the non-recombining region of the human Y chromosome. Chromosome Res 2003; 10:621-35. [PMID: 12575791 DOI: 10.1023/a:1021556108571] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using fluorescence in-situ hybridization on interphase chromatin fibers (fiber-FISH), we have constructed an overlapping fiber-FISH contig spanning the non-recombining region of the human Y chromosome (NRY). We first established a standard FISH-signal pattern for a distinct panel of DNA clones on prometaphase Y chromosomes in six healthy fertile men. Clones in the panel were selected from all R-bands as well as deletion intervals 1 through 7 plus PAR1 and PAR2 of the human Y chromosome. We next used signals of these marker clones to build a fiber-FISH contig for the multicopy gene families, CDY, DAZ, RBMY, TSPY and XKRY, along the NRY. Our fiber-FISH contig of human NRY may help to close the four gaps that still exist in the current physical map of the human Y chromosome. Furthermore, it provides a more complete picture with respect to the positions and arrangements of the multicopy gene families along the human NRY.
Collapse
Affiliation(s)
- Susanne Röttger
- Institute of Human Genetics and Anthropology, University of Freiburg, Breisacher Str. 33, 79106 Freiburg, Germany
| | | | | |
Collapse
|
7
|
Quilter CR, Svennevik EC, Serhal P, Ralph D, Bahadur G, Stanhope R, Sütterlin M, Delhanty JDA, Taylor KE. Cytogenetic and Y chromosome microdeletion screening of a random group of infertile males. Fertil Steril 2003; 79:301-7. [PMID: 12568838 DOI: 10.1016/s0015-0282(02)04692-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To assess whether to perform routine cytogenetic and Y chromosome microdeletion screening on all infertile male patients. DESIGN A cytogenetic and Y microdeletion study of a random group of infertile men. SETTING University department. PATIENT(S) In total, 40 patients had azoospermia (21 nonidiopathic), 27 had severe oligozoospermia/oligoasthenozoospermia (<or=5 x 10(6)/mL) (5 nonidiopathic), 20 had oligozoospermia/oligoasthenozoospermia (5-20 x 10(6)/mL) (6 nonidiopathic), and 16 had asthenozoospermia (5 nonidiopathic). Many were candidates for intracytoplasmic sperm injection (ICSI). INTERVENTION(S) Collection of blood samples from all patients and buccal cells from one patient. MAIN OUTCOME MEASURE(S) Karyotype analysis, polymerase chain reaction (PCR) screening for Y chromosome microdeletions, and fluorescence in situ hybridization of abnormal chromosomes. RESULT(S) Ten (9.7%) subjects, including one nonidiopathic patient, were found to have an abnormal karyotype. Two idiopathic azoospermic patients were missing large portions of Y chromosome euchromatin, confirmed by PCR analysis and an additional idiopathic azoospermic patient had a Y chromosome microdeletion. CONCLUSION(S) Routine cytogenetic analysis of all infertile male patients is required but it may be advisable to limit routine Y chromosome microdeletion screening to patients with severe male factor infertility (<or=5 x 10(6)/mL).
Collapse
Affiliation(s)
- Claire R Quilter
- The Galton Laboratory, University College London (UCL), NW1 2HE, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kühl H, Röttger S, Heilbronner H, Enders H, Schempp W. Loss of the Y chromosomal PAR2-region in four familial cases of satellited Y chromosomes (Yqs). Chromosome Res 2001; 9:215-22. [PMID: 11330396 DOI: 10.1023/a:1012219820317] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Applying fluorescence in-situ hybridization (FISH) of various Y chromosomal DNA probes to four familial cases of human Yqs, it was possible to demonstrate that the formation of Yqs must have arisen from a reciprocal translocation involving the short arm of an acrocentric autosome and the heterochromatin of the long arm of the Y chromosome (Yqh). Breakpoints map within Yqh and the proximal short arm of an acrocentric autosome resulting in the gain of a nucleolus organizer region (NOR) including the telomere repeat (TTAGGG)n combined with the loss of the pseudoautosomal region 2 (PAR2) at the long arm of the recipient Y chromosome. In no case could the reciprocal product of an acrocentric autosome with loss of the NOR and gain of PAR2 be detected. Using the 15p-specific classical satellite-III probe D15Z1 in two of the four Yqs probands presented here, it could be shown that the satellited material originated from the short arm of chromosome 15. In contrast to the loss of PAR2 in Yqs chromosomes, another Y chromosomal variant (Yqh-) showing deletion of long-arm heterochromatin in Yq12 has retained PAR2 referring to an interstitial deletion of Yq heterochromatin in such deleted Y chromosomes.
Collapse
Affiliation(s)
- H Kühl
- Institut für Humangenetik und Anthropologie, Universität Freiburg
| | | | | | | | | |
Collapse
|
9
|
Ding Y, Johnson MD, Chen WQ, Wong D, Chen YJ, Benson SC, Lam JY, Kim YM, Shizuya H. Five-color-based high-information-content fingerprinting of bacterial artificial chromosome clones using type IIS restriction endonucleases. Genomics 2001; 74:142-54. [PMID: 11386750 DOI: 10.1006/geno.2001.6547] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a high-information-content fingerprinting (HICF) system for bacterial artificial chromosome (BAC) clones using a Type IIS restriction endonuclease, HgaI, paired with a Type II restriction endonuclease, RsaI. In the method described, unknown five-base overhangs generated with HgaI are partially or fully sequenced by modified fluorescent dideoxy terminators. Using an in-lane size standard labeled with a fifth dye, fragments are characterized by both the size and the sequence of its terminal one to five bases. The enhanced information content associated with this approach significantly increases the accuracy and efficiency of detecting shared fragments among BAC clones. We have compared data obtained from this method to predicted HICF patterns of 10 fully sequenced BACs. We have further applied HICF to 555 BAC clones to assemble contigs spanning 16p11.2 to 16p13.1 of human chromosome 16.
Collapse
Affiliation(s)
- Y Ding
- Beckman Institute, Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Makrinou E, Fox M, Lovett M, Haworth K, Cameron JM, Taylor K, Edwards YH. TTY2: a multicopy Y-linked gene family. Genome Res 2001; 11:935-45. [PMID: 11381023 PMCID: PMC311066 DOI: 10.1101/gr.175901] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genes involved in human male sex determination and spermatogenesis are likely to be located on the Y chromosome. In an effort to identify Y-linked, testis-expressed genes, a cDNA selection library was generated by selecting testis cDNA with Y-cosmid clones. Resultant clones containing repetitive or vector material were eliminated, and 79 of the remaining clones were sequenced. Nineteen cDNAs showed homology with the TTY2 gene, and indicated that TTY2 is part of a large gene family. Screening of a panel of Y-linked cosmids revealed that the TTY2 gene family includes at least 26 members organized in 14 subfamilies. Further investigation revealed that TTY2 genes are arranged in tandemly arrayed clusters on both arms of the Y chromosome, and each gene comprises a series of tandemly arranged repeats. RT-PCR studies for two of these genes revealed that they are expressed in adult and fetal testis, as well as in the adult kidney. None of the genes investigated in detail contain an open reading frame. We conclude that the TTY2 gene family is composed of multiple copies, some of which may function as noncoding RNA transcripts and some may be pseudogenes.
Collapse
Affiliation(s)
- E Makrinou
- MRC Human Biochemical Genetics Unit, University College London, Wolfson House, London NW1 2HE, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Soderlund C, Humphray S, Dunham A, French L. Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 2000. [PMID: 11076862 DOI: 10.1101/gr.gr‐1375r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Contigs have been assembled, and over 2800 clones selected for sequencing for human chromosomes 9, 10 and 13. Using the FPC (FingerPrinted Contig) software, the contigs are assembled with markers and complete digest fingerprints, and the contigs are ordered and localised by a global framework. Publicly available resources have been used, such as, the 1998 International Gene Map for the framework and the GSC Human BAC fingerprint database for the majority of the fingerprints. Additional markers and fingerprints are generated in-house to supplement this data. To support the scale up of building maps, FPC V4.7 has been extended to use markers with the fingerprints for assembly of contigs, new clones and markers can be automatically added to existing contigs, and poorly assembled contigs are marked accordingly. To test the automatic assembly, a simulated complete digest of 110 Mb of concatenated human sequence was used to create datasets with varying coverage, length of clones, and types of error. When no error was introduced and a tolerance of 7 was used in assembly, the largest contig with no false positive overlaps has 9534 clones with 37 out-of-order clones, that is, the starting coordinates of adjacent clones are in the wrong order. This paper describes the new features in FPC, the scenario for building the maps of chromosomes 9, 10 and 13, and the results from the simulation.
Collapse
Affiliation(s)
- C Soderlund
- Clemson University Genomic Institute, Clemson, South Carolina 29634-5808, USA.
| | | | | | | |
Collapse
|
12
|
Soderlund C, Humphray S, Dunham A, French L. Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 2000; 10:1772-87. [PMID: 11076862 PMCID: PMC310962 DOI: 10.1101/gr.gr-1375r] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Contigs have been assembled, and over 2800 clones selected for sequencing for human chromosomes 9, 10 and 13. Using the FPC (FingerPrinted Contig) software, the contigs are assembled with markers and complete digest fingerprints, and the contigs are ordered and localised by a global framework. Publicly available resources have been used, such as, the 1998 International Gene Map for the framework and the GSC Human BAC fingerprint database for the majority of the fingerprints. Additional markers and fingerprints are generated in-house to supplement this data. To support the scale up of building maps, FPC V4.7 has been extended to use markers with the fingerprints for assembly of contigs, new clones and markers can be automatically added to existing contigs, and poorly assembled contigs are marked accordingly. To test the automatic assembly, a simulated complete digest of 110 Mb of concatenated human sequence was used to create datasets with varying coverage, length of clones, and types of error. When no error was introduced and a tolerance of 7 was used in assembly, the largest contig with no false positive overlaps has 9534 clones with 37 out-of-order clones, that is, the starting coordinates of adjacent clones are in the wrong order. This paper describes the new features in FPC, the scenario for building the maps of chromosomes 9, 10 and 13, and the results from the simulation.
Collapse
Affiliation(s)
- C Soderlund
- Clemson University Genomic Institute, Clemson, South Carolina 29634-5808, USA.
| | | | | | | |
Collapse
|
13
|
Enkerli J, Reed H, Briley A, Bhatt G, Covert SF. Physical map of a conditionally dispensable chromosome in Nectria haematococca mating population VI and location of chromosome breakpoints. Genetics 2000; 155:1083-94. [PMID: 10880471 PMCID: PMC1461165 DOI: 10.1093/genetics/155.3.1083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Certain isolates of the plant pathogenic fungus Nectria haematococca mating population (MP) VI contain a 1.6-Mb conditionally dispensable (CD) chromosome carrying the phytoalexin detoxification genes MAK1 and PDA6-1. This chromosome is structurally unstable during sexual reproduction. As a first step in our analysis of the mechanisms underlying this chromosomal instability, hybridization between overlapping cosmid clones was used to construct a map of the MAK1 PDA6-1 chromosome. The map consists of 33 probes that are linked by 199 cosmid clones. The polymerase chain reaction and Southern analysis of N. haematococca MP VI DNA digested with infrequently cutting restriction enzymes were used to close gaps and order the hybridization-derived contigs. Hybridization to a probe extended from telomeric repeats was used to anchor the ends of the map to the actual chromosome ends. The resulting map is estimated to cover 95% of the MAK1 PDA6-1 chromosome and is composed of two ordered contigs. Thirty-eight percent of the clones in the minimal map are known to contain repeated DNA sequences. Three dispersed repeats were cloned during map construction; each is present in five to seven copies on the chromosome. The cosmid clones representing the map were probed with deleted forms of the CD chromosome and the results were integrated into the map. This allowed the identification of chromosome breakpoints and deletions.
Collapse
Affiliation(s)
- J Enkerli
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
14
|
Hunt DM, Sahota VK, Taylor K, Simrak D, Hornigold N, Arnemann J, Wolfe J, Buxton RS. Clustered cadherin genes: a sequence-ready contig for the desmosomal cadherin locus on human chromosome 18. Genomics 1999; 62:445-55. [PMID: 10644442 DOI: 10.1006/geno.1999.6036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the assembly of a cosmid and PAC contig of approximately 700 kb on human chromosome 18q12 spanning the DSC and DSG genes coding for the desmocollins and desmogleins. These are members of the cadherin superfamily of calcium-dependent cell adhesion proteins present in the desmosome type of cell junction found especially in epithelial cells. They provide the strong cell-cell adhesion generated by this type of cell junction for which expression of both a desmocollin and a desmoglein is required. In the autoimmune skin diseases pemphigus foliaceous and pemphigus vulgaris (PV), where the autoantigens are, respectively, encoded by the DSG1 and DSG3 genes, severe areas of acantholysis (cell separation), potentially life-threatening in the case of PV, are evident. Dominant mutations in the DSG1 gene causing striate palmoplantar keratoderma result in hyperkeratosis of the skin on the parts of the body where pressure and abrasion are greatest, viz., on the palms and soles. These genes are also candidate tumor suppressor genes in squamous cell carcinomas and other epithelial cancers. We have screened two chromosome 18-specific cosmid libraries by hybridization with previously isolated YAC clones and DSC and DSG cDNAs, and a whole genome PAC library, both by hybridization with the YACs and by screening by PCR using cDNA sequences and YAC end sequence. The contigs were extended by further PCR screens using STSs generated by vectorette walking from the ends of the cosmids and PACs, together with sequence from PAC ends. Despite screening of two libraries, the cosmid contig still had four gaps. The PAC contig filled these gaps and in fact covered the whole locus. The positions of 45 STSs covering the whole of this region are presented. The desmocollin and desmoglein genes, which are about 30-35 kb in size, are quite well separated at approximately 20-30 kb apart and are arranged in two clusters, one DSC cluster and one DSG cluster, which are transcribed outward from the interlocus region. The order of the genes is correlated with the spatial order of gene expression in the developing mouse embryo, and this, and previous transgenic experiments, suggests that long-range genetic elements that coordinate expression of these genes may be present. The complete bacterial clone contig described in this paper is thus a resource not only for future sequencing but also for investigations into the control of expression of these clustered genes.
Collapse
Affiliation(s)
- D M Hunt
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ding Y, Johnson MD, Colayco R, Chen YJ, Melnyk J, Schmitt H, Shizuya H. Contig assembly of bacterial artificial chromosome clones through multiplexed fluorescence-labeled fingerprinting. Genomics 1999; 56:237-46. [PMID: 10087190 DOI: 10.1006/geno.1998.5734] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rapid multiplexed fingerprinting method has been developed for bacterial artificial chromosome (BAC) contig assembly. Defined subsets of BAC DNA fragments that result from digestion by three paired restriction endonucleases are labeled with unique fluorescent F-ddATP for each subset. Lists of the labeled fragment size are generated by an ABI 377 DNA sequencer and the GeneScan analysis software and then processed by an assembly program, FPC (Fingerprinted Contigs), to produce contig maps. Data obtained from the multiplexed labeling permit detection of smaller overlaps than is observed when data from a single double-digest are analyzed. The method has been tested on 98 BACs from chromosome 22 regions where large-scale sequencing is under way and also through simulation, using randomly generated BAC clones derived from existing DNA sequence data. In each case, contig assembly results demonstrated the advantages of multiplexed fingerprinting.
Collapse
Affiliation(s)
- Y Ding
- Beckman Institute, Division of Biology, 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Gläser B, Yen PH, Schempp W. Fibre-fluorescence in situ hybridization unravels apparently seven DAZ genes or pseudogenes clustered within a Y-chromosome region frequently deleted in azoospermic males. Chromosome Res 1998; 6:481-6. [PMID: 9865787 DOI: 10.1023/a:1009256613348] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using the technique of 'fibre-FISH' (fluorescence in situ hybridization), we describe the direct visualization of seven longer DAZ signal stretches and in addition a maximum of four isolated single DAZ signals on Y-chromatin fibres of four different individuals. These seven longer DAZ signal stretches may represent seven DAZ genes or pseudogenes, whereas the single DAZ signals may represent truncated DAZ genes.
Collapse
Affiliation(s)
- B Gläser
- Institute of Human Genetics and Anthropology, University of Freiburg, Germany
| | | | | |
Collapse
|
17
|
Gläser B, Grützner F, Willmann U, Stanyon R, Arnold N, Taylor K, Rietschel W, Zeitler S, Toder R, Schempp W. Simian Y chromosomes: species-specific rearrangements of DAZ, RBM, and TSPY versus contiguity of PAR and SRY. Mamm Genome 1998; 9:226-31. [PMID: 9501307 DOI: 10.1007/s003359900730] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The three human male specific expressed gene families DAZ, RBM, and TSPY are known to be repetitively clustered in the Y-specific region of the human Y Chromosome (Chr). RBM and TSPY are Y-specifically conserved in simians, whereas DAZ cannot be detected on the Y chromosomes of New World monkeys. The proximity of SRY to the pseudoautosomal region (PAR) is highly conserved and thus most effectively stabilizes the pseudoautosomal boundary on the Y (PABY) in simians. In contrast, the non-recombining part of the Y Chrs, including DAZ, RBM, and TSPY, was exposed to species-specific amplifications, diversifications, and rearrangements. Evolutionary fast fixation of any of these variations was possible as long as they did not interfere with male fertility.
Collapse
Affiliation(s)
- B Gläser
- Institute of Human Genetics and Anthropology, University of Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The construction of sequence-ready maps of overlapping genomic clones is central to large-scale genome sequencing. We have implemented a method for fluorescent fingerprinting of bacterial clones to assemble contig maps. The method utilizes three spectrally distinct fluorescently tagged dideoxy ATPs to specifically label the HindIII termini in HindIII and Sau3AI restriction digests of clones that are multiplexed prior to electrophoresis and data collection. There is excellent reproducibility of raw data, improved resolution of large fragments, and concordance between the results obtained using this and the equivalent radioactive protocol. This method also allows detection of smaller overlaps between clones when compared to the analysis of restriction digests on nondenaturing agarose gels.
Collapse
Affiliation(s)
- S G Gregory
- The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | |
Collapse
|
19
|
Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH. High throughput fingerprint analysis of large-insert clones. Genome Res 1997; 7:1072-84. [PMID: 9371743 PMCID: PMC310686 DOI: 10.1101/gr.7.11.1072] [Citation(s) in RCA: 316] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/1997] [Accepted: 09/12/1997] [Indexed: 02/05/2023]
Abstract
As part of the Human Genome Project, the Washington University Genome Sequencing Center has commenced systematic sequencing of human chromsome 7. To organize and supply the effort, we have undertaken the construction of sequence-ready physical maps for defined chromosomal intervals. Map construction is a serial process composed of three main activities. First, candidate STS-positive large-insert PAC and BAC clones are identified. Next, these candidate clones are subjected to fingerprint analysis. Finally, the fingerprint data are used to assemble sequence-ready maps. The fingerprinting method we have devised is key to the success of the overall approach. We present here the details of the method and show that the fingerprints are of sufficient quality to permit the construction of megabase-size contigs in defined regions of the human genome. We anticipate that the high throughput and precision characteristic of our fingerprinting method will make it of general utility.
Collapse
Affiliation(s)
- M A Marra
- Washington University School of Medicine, Genome Sequencing Center, St. Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gläser B, Grützner F, Taylor K, Schiebel K, Meroni G, Tsioupra K, Pasantes J, Rietschel W, Toder R, Willmann U, Zeitler S, Yen P, Ballabio A, Rappold G, Schempp W. Comparative mapping of Xp22 genes in hominoids--evolutionary linear instability of their Y homologues. Chromosome Res 1997; 5:167-76. [PMID: 9246409 DOI: 10.1023/a:1018490713273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several genes located within or proximal to the human PAR in Xp22 have homologues on the Y chromosome and escape, or partly escape, inactivation. To study the evolution of Xp22 genes and their Y homologues, we applied multicolour fluorescence in situ hybridization (FISH) to comparatively map DNA probes for the genes ANT3, XG, ARSD, ARSE (CDPX), PRK, STS, KAL and AMEL to prometaphase chromosomes of the human species and hominoid apes. We demonstrate that the genes residing proximal to the PAR have a highly conserved order on the higher primate X chromosomes but show considerable rearrangements on the Y chromosomes of hominoids. These rearrangements cannot be traced back to a simple model involving only a single or a few evolutionary events. The linear instability of the Y chromosomes gives some insight into the evolutionary isolation of large parts of the Y chromosomes and thus might reflect the isolated evolutionary history of the primate species over millions of years.
Collapse
Affiliation(s)
- B Gläser
- Institute of Human Genetics and Anthropology, University of Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gläser B, Hierl T, Taylor K, Schiebel K, Zeitler S, Papadopoullos K, Rappold G, Schempp W. High-resolution fluorescence in situ hybridization of human Y-linked genes on released chromatin. Chromosome Res 1997; 5:23-30. [PMID: 9088640 DOI: 10.1023/a:1018437301461] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genes within the differential region of the human Y chromosome do not recombine, and therefore the determination of their location depends on physical mapping. Yeast artificial chromosome (YAC) contigs spanning the euchromatic region of the human Y have become a powerful tool for the generation of an overlapping clone map. With this approach, however, complete physical mapping is difficult in Y euchromatic regions that are rich in repetitive sequences. We have, therefore, made use of the fluorescence in situ hybridization technique as an alternative strategy for physically mapping the PRKY and AMELY genes as well as the TSPY, RBM and DAZ gene families to human Y chromosomes in prometaphase and to extended Y chromatin in interphase. From our results, the following order of gene sequences in interval 3 of the short arm of the human Y chromosome is suggested: TSPY major with few RBM sequences interspersed-PRKY-AMELY-TSPY minor with few RBM sequences interspersed-cen. On the long arm, RBM sequences appear to be distributed over wide regions of intervals 5 and 6 with few TSPY sequences interspersed. Distal to an RBM signal cluster, a large cluster of DAZ signals is located with only a few DAZ and RBM signals overlapping in between the two clusters.
Collapse
Affiliation(s)
- B Gläser
- Institute of Human Genetics and Anthropology, University of Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|