1
|
Zhang B, Bu Y, Song J, Yuan B, Xiao S, Wang F, Fang Q, Ye G, Yang Y, Ye X. Genomic Analysis Reveals the Role of New Genes in Venom Regulatory Network of Parasitoid Wasps. INSECTS 2025; 16:502. [PMID: 40429215 PMCID: PMC12112512 DOI: 10.3390/insects16050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025]
Abstract
New genes play a critical role in phenotypic diversity and evolutionary innovation. Parasitoid wasps, a highly abundant and diverse group of insects, parasitize other arthropods and exhibit remarkable evolutionary adaptations, such as evading host immune responses and exploiting host resources. However, the specific contributions of new genes to their unique traits remain poorly understood. Here, we identified 480 new genes that emerged after the Nasonia-Pteromalus divergence. Among these, 272 (56.7%) originated through DNA-mediated duplication, representing the largest proportion, followed by 77 (16.0%) derived from RNA-mediated duplication and 131 (27.3%) that arose de novo. Comparative analysis revealed that these new genes generally have shorter coding sequences and fewer exons compared to single-copy older genes conserved in the seven parasitoid wasps. These new genes are predominantly expressed in the reproductive glands and exhibit venom gland-biased expression. Notably, gene co-expression network analysis further identified that a new gene may act as a hub by interacting with older genes to regulate venom-related networks rather than directly encoding venom proteins. Together, our findings provide novel insights into the role of new genes in driving venom innovation in parasitoid wasps.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yifan Bu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Jiqiang Song
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Bo Yuan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xinhai Ye
- College of Advanced Agriculture Science, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Xia S, Chen J, Arsala D, Emerson JJ, Long M. Functional innovation through new genes as a general evolutionary process. Nat Genet 2025; 57:295-309. [PMID: 39875578 DOI: 10.1038/s41588-024-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants. New genes have important roles in phenotypic and functional evolution across diverse biological processes and structures, with detectable fitness effects of sexual conflict genes that can shape species divergence. Such knowledge of new genes can be of translational value in agriculture and medicine.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Najera P, Dratler OA, Mai AB, Elizarraras M, Vanchinathan R, Gonzales CA, Meisel RP. Testis- and ovary-expressed polo-like kinase transcripts and gene duplications affect male fertility when expressed in the Drosophila melanogaster germline. G3 (BETHESDA, MD.) 2025; 15:jkae273. [PMID: 39566185 PMCID: PMC11708218 DOI: 10.1093/g3journal/jkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Polo-like kinases (Plks) are essential for spindle attachment to the kinetochore during prophase and the subsequent dissociation after anaphase in both mitosis and meiosis. There are structural differences in the spindle apparatus among mitosis, male meiosis, and female meiosis. It is therefore possible that alleles of Plk genes could improve kinetochore attachment or dissociation in spermatogenesis or oogenesis, but not both. These opposing effects could result in sexually antagonistic selection at Plk loci. In addition, Plk genes have been independently duplicated in many different evolutionary lineages within animals. This raises the possibility that Plk gene duplication may resolve sexual conflicts over mitotic and meiotic functions. We investigated this hypothesis by comparing the evolution, gene expression, and functional effects of the single Plk gene in Drosophila melanogaster (polo) and the duplicated Plks in D. pseudoobscura (Dpse-polo and Dpse-polo-dup1). Dpse-polo-dup1 is expressed primarily in testis, while other Drosophila Plk genes have broader expression profiles. We found that the protein-coding sequence of Dpse-polo-dup1 is evolving significantly faster than a canonical polo gene across all functional domains, yet the essential structure of the encoded protein has been retained. We present additional evidence that the faster evolution of Dpse-polo-dup1 is driven by the adaptive fixation of amino acid substitutions. We also found that over or ectopic expression of polo or Dpse-polo in the D. melanogaster male germline resulted in greater male infertility than expression of Dpse-polo-dup1. Last, expression of Dpse-polo or an ovary-derived transcript of polo in the male germline caused males to sire female-biased broods, suggesting that some Plk transcripts can affect the meiotic transmission of the sex chromosomes in the male germline. However, there was no sex bias in the progeny when Dpse-polo-dup1 was ectopically expressed, or a testis-derived transcript of polo was overexpressed in the D. melanogaster male germline. Our results therefore suggest that Dpse-polo-dup1 may have experienced positive selection to improve its regulation of the male meiotic spindle, resolving sexual conflict over meiotic Plk functions. Alternatively, Dpse-polo-dup1 may encode a hypomorphic Plk that has reduced deleterious effects when overexpressed in the male germline. Similarly, testis transcripts of D. melanogaster polo may be optimized for regulating the male meiotic spindle, and we provide evidence that the untranslated regions of the polo transcript may be involved in sex-specific germline functions.
Collapse
Affiliation(s)
- Paola Najera
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Olivia A Dratler
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander B Mai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Miguel Elizarraras
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rahul Vanchinathan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
4
|
Bie L, Sun J, Wang Y, Wang C. Identification of Retrocopies in Lepidoptera and Impact on Domestication of Silkworm. Genes (Basel) 2024; 15:1641. [PMID: 39766908 PMCID: PMC11675541 DOI: 10.3390/genes15121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND During the domestication of silkworm, an economic insect, its physiological characteristics have changed greatly. RNA-based gene duplication, known as retrocopy, plays an important role in the formation of new genes and genome evolution, but the retrocopies of lepidopteran insects have not been fully identified and analyzed, which not only severely limits researchers from exploring the effects of retrocopies on lepidopteran insects but also affects the studies on the domestication of silkworm. METHODS We compared the genomes and proteomes of eight lepidopteran insects and used a series of screening criteria for auxiliary screening to obtain the retrocopies in lepidopteran insects and explored their characteristics. In addition, based on the silkworm transcriptome data from the SilkDB3.0 website, we explored the functions of the retrocopies on the domestication of the silkworm. RESULTS A total of 1993 retrocopies and 1208 parental genes in lepidopteran insects were obtained. We revealed that the retrocopies in Lepidoptera do not conform to the "out of X" hypothesis but fit the "out of testis" hypothesis. These retrocopies were subject to strong functional constraints and performed important functions in growth and development. Transcriptome analysis revealed that the expression pattern of the retrocopies and their parental genes were irrelevant. Through the analysis of the retrocopies in silkworm generated after domestication and located in the candidate domestication regions, the possible universal connection between the retrocopies and the domestication of silkworm were found. CONCLUSIONS Our study pioneered the exploration of retrocopies in multiple Lepidoptera species and found the potential association between the retrocopies and the domestication of silkworm.
Collapse
Affiliation(s)
- Lingzi Bie
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.B.); (J.S.)
| | - Jiahe Sun
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.B.); (J.S.)
| | - Yi Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.B.); (J.S.)
| | - Chunfang Wang
- Southwest University Hospital, Chongqing 400715, China
| |
Collapse
|
5
|
Ahmad A, Zhang W. Genomic exploration of retrocopies in Insect pests of plants and their role in the expansion of heat shock proteins superfamily as evolutionary targets. BMC Genomics 2024; 25:1116. [PMID: 39567882 PMCID: PMC11577761 DOI: 10.1186/s12864-024-11056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Gene duplication is a dominant mechanism for the evolution of genomes and plays a key role in genome expansion. Gene duplication via retroposition produces RNA-mediated intron-less copies called retrocopies, that may gain regulatory sequence and biological function to generate retrogenes. Retrocopies dynamics have been reported in several model insect species, but there is still a huge knowledge gap about retrocopies dynamics in most insects, and their role in adaptation. RESULTS In this study, we reported retrocopy dynamics in 40 species of insect pests of plants belonging to six insect orders. We identified a total of 9,930 retrocopies, which is so far the largest set of retrocopies identified in insects. The identified retrocopies were further grouped into 2,599 Retrogenes, 4,578 Chimeras, 1,241 Intact retrocopies, and 1,512 Pseudogene. We also analyzed all the identified retrogenes that were annotated into 506 gene families. The highest number of retrogenes annotated belong to the heat shock proteins superfamily and are present across all the 40 species from the six orders. We found a significant expansion of the heat shock protein superfamily in the studied species. Almost all the retrogenes, including those belonging to heat shock proteins, are under purifying selection. In summary, we report the retrocopies and retrogenes dynamics in a large set of insect pests of plants and the expansion of the heat shock protein family due to retroposition. CONCLUSION This study unveils retrocopy dynamics in the insect pests of plants and highlights the evolution of new genes due to retroposition, and their role in important gene families' expansion.
Collapse
Affiliation(s)
- Aftab Ahmad
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wenyu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China.
| |
Collapse
|
6
|
Zhao Q, Zheng Y, Li Y, Shi L, Zhang J, Ma D, You M. An Orphan Gene Enhances Male Reproductive Success in Plutella xylostella. Mol Biol Evol 2024; 41:msae142. [PMID: 38990889 PMCID: PMC11290247 DOI: 10.1093/molbev/msae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Plutella xylostella exhibits exceptional reproduction ability, yet the genetic basis underlying the high reproductive capacity remains unknown. Here, we demonstrate that an orphan gene, lushu, which encodes a sperm protein, plays a crucial role in male reproductive success. Lushu is located on the Z chromosome and is prevalent across different P. xylostella populations worldwide. We subsequently generated lushu mutants using transgenic CRISPR/Cas9 system. Knockout of Lushu results in reduced male mating efficiency and accelerated death in adult males. Furthermore, our findings highlight that the deficiency of lushu reduced the transfer of sperms from males to females, potentially resulting in hindered sperm competition. Additionally, the knockout of Lushu results in disrupted gene expression in energy-related pathways and elevated insulin levels in adult males. Our findings reveal that male reproductive performance has evolved through the birth of a newly evolved, lineage-specific gene with enormous potentiality in fecundity success. These insights hold valuable implications for identifying the target for genetic control, particularly in relation to species-specific traits that are pivotal in determining high levels of fecundity.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Yahong Zheng
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiying Li
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingping Shi
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Dongna Ma
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
7
|
VanKuren NW, Chen J, Long M. Sexual conflict drive in the rapid evolution of new gametogenesis genes. Semin Cell Dev Biol 2024; 159-160:27-37. [PMID: 38309142 DOI: 10.1016/j.semcdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The evolutionary forces underlying the rapid evolution in sequences and functions of new genes remain a mystery. Adaptation by natural selection explains the evolution of some new genes. However, many new genes perform sex-biased functions that have rapidly evolved over short evolutionary time scales, suggesting that new gene evolution may often be driven by conflicting selective pressures on males and females. It is well established that such sexual conflict (SC) plays a central role in maintaining phenotypic and genetic variation within populations, but the role of SC in driving new gene evolution remains essentially unknown. This review explores the connections between SC and new gene evolution through discussions of the concept of SC, the phenotypic and genetic signatures of SC in evolving populations, and the molecular mechanisms by which SC could drive the evolution of new genes. We synthesize recent work in this area with a discussion of the case of Apollo and Artemis, two extremely young genes (<200,000 years) in Drosophila melanogaster, which offered the first empirical insights into the evolutionary process by which SC could drive the evolution of new genes. These new duplicate genes exhibit the hallmarks of sexually antagonistic selection: rapid DNA and protein sequence evolution, essential sex-specific functions in gametogenesis, and complementary sex-biased expression patterns. Importantly, Apollo is essential for male fitness but detrimental to female fitness, while Artemis is essential for female fitness but detrimental to male fitness. These sexually antagonistic fitness effects and complementary changes to expression, sequence, and function suggest that these duplicates were selected for mitigating SC, but that SC has not been fully resolved. Finally, we propose Sexual Conflict Drive as a self-driven model to interpret the rapid evolution of new genes, explain the potential for SC and sexually antagonistic selection to contribute to long-term evolution, and suggest its utility for understanding the rapid evolution of new genes in gametogenesis.
Collapse
Affiliation(s)
- Nicholas W VanKuren
- Department of Ecology and Evolution, The University of Chicago, United States.
| | - Jianhai Chen
- Department of Ecology and Evolution, The University of Chicago, United States
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, United States.
| |
Collapse
|
8
|
Castellanos MDP, Wickramasinghe CD, Betrán E. The roles of gene duplications in the dynamics of evolutionary conflicts. Proc Biol Sci 2024; 291:20240555. [PMID: 38865605 DOI: 10.1098/rspb.2024.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
Evolutionary conflicts occur when there is antagonistic selection between different individuals of the same or different species, life stages or between levels of biological organization. Remarkably, conflicts can occur within species or within genomes. In the dynamics of evolutionary conflicts, gene duplications can play a major role because they can bring very specific changes to the genome: changes in protein dose, the generation of novel paralogues with different functions or expression patterns or the evolution of small antisense RNAs. As we describe here, by having those effects, gene duplication might spark evolutionary conflict or fuel arms race dynamics that takes place during conflicts. Interestingly, gene duplication can also contribute to the resolution of a within-locus evolutionary conflict by partitioning the functions of the gene that is under an evolutionary trade-off. In this review, we focus on intraspecific conflicts, including sexual conflict and illustrate the various roles of gene duplications with a compilation of examples. These examples reveal the level of complexity and the differences in the patterns of gene duplications within genomes under different conflicts. These examples also reveal the gene ontologies involved in conflict and the genomic location of the elements of the conflict. The examples provide a blueprint for the direct study of these conflicts or the exploration of the presence of similar conflicts in other lineages.
Collapse
Affiliation(s)
| | | | - Esther Betrán
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| |
Collapse
|
9
|
Wei KHC, Chatla K, Bachtrog D. Single-cell RNA-seq of Drosophila miranda testis reveals the evolution and trajectory of germline sex chromosome regulation. PLoS Biol 2024; 22:e3002605. [PMID: 38687805 PMCID: PMC11135767 DOI: 10.1371/journal.pbio.3002605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/29/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Although sex chromosomes have evolved from autosomes, they often have unusual regulatory regimes that are sex- and cell-type-specific such as dosage compensation (DC) and meiotic sex chromosome inactivation (MSCI). The molecular mechanisms and evolutionary forces driving these unique transcriptional programs are critical for genome evolution but have been, in the case of MSCI in Drosophila, subject to continuous debate. Here, we take advantage of the younger sex chromosomes in D. miranda (XR and the neo-X) to infer how former autosomes acquire sex-chromosome-specific regulatory programs using single-cell and bulk RNA sequencing and ribosome profiling, in a comparative evolutionary context. We show that contrary to mammals and worms, the X down-regulation through germline progression is most consistent with the shutdown of DC instead of MSCI, resulting in half gene dosage at the end of meiosis for all 3 X's. Moreover, lowly expressed germline and meiotic genes on the neo-X are ancestrally lowly expressed, instead of acquired suppression after sex linkage. For the young neo-X, DC is incomplete across all tissue and cell types and this dosage imbalance is rescued by contributions from Y-linked gametologs which produce transcripts that are translated to compensate both gene and protein dosage. We find an excess of previously autosomal testis genes becoming Y-specific, showing that the neo-Y and its masculinization likely resolve sexual antagonism. Multicopy neo-sex genes are predominantly expressed during meiotic stages of spermatogenesis, consistent with their amplification being driven to interfere with mendelian segregation. Altogether, this study reveals germline regulation of evolving sex chromosomes and elucidates the consequences these unique regulatory mechanisms have on the evolution of sex chromosome architecture.
Collapse
Affiliation(s)
- Kevin H-C. Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
10
|
Nunes WVB, Oliveira DS, Dias GDR, Carvalho AB, Caruso ÍP, Biselli JM, Guegen N, Akkouche A, Burlet N, Vieira C, Carareto CMA. A comprehensive evolutionary scenario for the origin and neofunctionalization of the Drosophila speciation gene Odysseus (OdsH). G3 (BETHESDA, MD.) 2024; 14:jkad299. [PMID: 38156703 PMCID: PMC10917504 DOI: 10.1093/g3journal/jkad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Odysseus (OdsH) was the first speciation gene described in Drosophila related to hybrid sterility in offspring of mating between Drosophila mauritiana and Drosophila simulans. Its origin is attributed to the duplication of the gene unc-4 in the subgenus Sophophora. By using a much larger sample of Drosophilidae species, we showed that contrary to what has been previously proposed, OdsH origin occurred 62 MYA. Evolutionary rates, expression, and transcription factor-binding sites of OdsH evidence that it may have rapidly experienced neofunctionalization in male sexual functions. Furthermore, the analysis of the OdsH peptide allowed the identification of mutations of D. mauritiana that could result in incompatibility in hybrids. In order to find if OdsH could be related to hybrid sterility, beyond Sophophora, we explored the expression of OdsH in Drosophila arizonae and Drosophila mojavensis, a pair of sister species with incomplete reproductive isolation. Our data indicated that OdsH expression is not atypical in their male-sterile hybrids. In conclusion, we have proposed that the origin of OdsH occurred earlier than previously proposed, followed by neofunctionalization. Our results also suggested that its role as a speciation gene might be restricted to D. mauritiana and D. simulans.
Collapse
Affiliation(s)
- William Vilas Boas Nunes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Daniel Siqueira Oliveira
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Guilherme de Rezende Dias
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS sl A2-075, 373 Carlos Chagas Filho Avenue, 21941-971 Rio de Janeiro, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS sl A2-075, 373 Carlos Chagas Filho Avenue, 21941-971 Rio de Janeiro, Brazil
| | - Ícaro Putinhon Caruso
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| | - Joice Matos Biselli
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| | - Nathalie Guegen
- Faculté de Médecine, iGReD, Université Clermont Auvergne, CNRS, INSERM, 4 Bd Claude Bernard, 63000 Clermont-Ferrande, France
| | - Abdou Akkouche
- Faculté de Médecine, iGReD, Université Clermont Auvergne, CNRS, INSERM, 4 Bd Claude Bernard, 63000 Clermont-Ferrande, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Bât. Grégor Mendel, 43 Boulevard 11 Novembre 1918, 69622 Villeurbanne, France
| | - Claudia M A Carareto
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, Brazil
| |
Collapse
|
11
|
Rogov VV, Nezis IP, Tsapras P, Zhang H, Dagdas Y, Noda NN, Nakatogawa H, Wirth M, Mouilleron S, McEwan DG, Behrends C, Deretic V, Elazar Z, Tooze SA, Dikic I, Lamark T, Johansen T. Atg8 family proteins, LIR/AIM motifs and other interaction modes. AUTOPHAGY REPORTS 2023; 2:27694127.2023.2188523. [PMID: 38214012 PMCID: PMC7615515 DOI: 10.1080/27694127.2023.2188523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The Atg8 family of ubiquitin-like proteins play pivotal roles in autophagy and other processes involving vesicle fusion and transport where the lysosome/vacuole is the end station. Nuclear roles of Atg8 proteins are also emerging. Here, we review the structural and functional features of Atg8 family proteins and their protein-protein interaction modes in model organisms such as yeast, Arabidopsis, C. elegans and Drosophila to humans. Although varying in number of homologs, from one in yeast to seven in humans, and more than ten in some plants, there is a strong evolutionary conservation of structural features and interaction modes. The most prominent interaction mode is between the LC3 interacting region (LIR), also called Atg8 interacting motif (AIM), binding to the LIR docking site (LDS) in Atg8 homologs. There are variants of these motifs like "half-LIRs" and helical LIRs. We discuss details of the binding modes and how selectivity is achieved as well as the role of multivalent LIR-LDS interactions in selective autophagy. A number of LIR-LDS interactions are known to be regulated by phosphorylation. New methods to predict LIR motifs in proteins have emerged that will aid in discovery and analyses. There are also other interaction surfaces than the LDS becoming known where we presently lack detailed structural information, like the N-terminal arm region and the UIM-docking site (UDS). More interaction modes are likely to be discovered in future studies.
Collapse
Affiliation(s)
- Vladimir V. Rogov
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, 60438 Frankfurt, am Main, and Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | | | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China and College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Martina Wirth
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Christian Behrends
- Munich Cluster of Systems Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM and Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Trond Lamark
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Lasne C, Elkrewi M, Toups MA, Layana L, Macon A, Vicoso B. The Scorpionfly (Panorpa cognata) Genome Highlights Conserved and Derived Features of the Peculiar Dipteran X Chromosome. Mol Biol Evol 2023; 40:msad245. [PMID: 37988296 PMCID: PMC10715201 DOI: 10.1093/molbev/msad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Many insects carry an ancient X chromosome-the Drosophila Muller element F-that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 My. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of a long overlooked sister-order to Diptera: Mecoptera. We compare the scorpionfly Panorpa cognata X-chromosome gene content, expression, and structure to that of several dipteran species as well as more distantly related insect orders (Orthoptera and Blattodea). We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the 2 homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects.
Collapse
Affiliation(s)
- Clementine Lasne
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Marwan Elkrewi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Melissa A Toups
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Lorena Layana
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
13
|
Chen J. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. RESEARCH SQUARE 2023:rs.3.rs-3632644. [PMID: 38045389 PMCID: PMC10690325 DOI: 10.21203/rs.3.rs-3632644/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are structural novelties pivotal in mammalian evolution. Their phenotypic impact on humans, however, remains elusive due to the technical and ethical complexities in functional studies. Through combining gene age dating with Mendelian disease phenotyping, our research reveals that new genes associated with disease phenotypes steadily integrate into the human genome at a rate of ~ 0.07% every million years over macroevolutionary timescales. Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures between young and old genes. Notably, young genes show significant enrichment in the male reproductive system, indicating strong sexual selection. Young genes also exhibit functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, bipedal locomotion, and color vision. Our findings further reveal increasing levels of pleiotropy over evolutionary time, which accompanies stronger selective constraints. We propose a "pleiotropy-barrier" model that delineates different potentials for phenotypic innovation between young and older genes subject to natural selection. Our study demonstrates that evolutionary new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
|
14
|
Chen X, Wang Z, Zhang C, Hu J, Lu Y, Zhou H, Mei Y, Cong Y, Guo F, Wang Y, He K, Liu Y, Li F. Unraveling the complex evolutionary history of lepidopteran chromosomes through ancestral chromosome reconstruction and novel chromosome nomenclature. BMC Biol 2023; 21:265. [PMID: 37981687 PMCID: PMC10658929 DOI: 10.1186/s12915-023-01762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Lepidoptera is one of the most species-rich animal groups, with substantial karyotype variations among species due to chromosomal rearrangements. Knowledge of the evolutionary patterns of lepidopteran chromosomes still needs to be improved. RESULTS Here, we used chromosome-level genome assemblies of 185 lepidopteran insects to reconstruct an ancestral reference genome and proposed a new chromosome nomenclature. Thus, we renamed over 5000 extant chromosomes with this system, revealing the historical events of chromosomal rearrangements and their features. Additionally, our findings indicate that, compared with autosomes, the Z chromosome in Lepidoptera underwent a fast loss of conserved genes, rapid acquisition of lineage-specific genes, and a low rate of gene duplication. Moreover, we presented evidence that all available 67 W chromosomes originated from a common ancestor chromosome, with four neo-W chromosomes identified, including one generated by fusion with an autosome and three derived through horizontal gene transfer. We also detected nearly 4000 inter-chromosomal gene movement events. Notably, Geminin is transferred from the autosome to the Z chromosome. When located on the autosome, Geminin shows female-biased expression, but on the Z chromosome, it exhibits male-biased expression. This contributes to the sexual dimorphism of body size in silkworms. CONCLUSIONS Our study sheds light on the complex evolutionary history of lepidopteran chromosomes based on ancestral chromosome reconstruction and novel chromosome nomenclature.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zuoqi Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chaowei Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingheng Hu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yueqi Lu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Guo
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ying Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Mulhair PO, Crowley L, Boyes DH, Lewis OT, Holland PWH. Opsin Gene Duplication in Lepidoptera: Retrotransposition, Sex Linkage, and Gene Expression. Mol Biol Evol 2023; 40:msad241. [PMID: 37935057 PMCID: PMC10642689 DOI: 10.1093/molbev/msad241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across ∼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.
Collapse
Affiliation(s)
- Peter O Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Liam Crowley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|
16
|
Chakraborty M, Lara AG, Dang A, McCulloch KJ, Rainbow D, Carter D, Ngo LT, Solares E, Said I, Corbett-Detig RB, Gilbert LE, Emerson JJ, Briscoe AD. Sex-linked gene traffic underlies the acquisition of sexually dimorphic UV color vision in Heliconius butterflies. Proc Natl Acad Sci U S A 2023; 120:e2301411120. [PMID: 37552755 PMCID: PMC10438391 DOI: 10.1073/pnas.2301411120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/16/2023] [Indexed: 08/10/2023] Open
Abstract
The acquisition of novel sexually dimorphic traits poses an evolutionary puzzle: How do new traits arise and become sex-limited? Recently acquired color vision, sexually dimorphic in animals like primates and butterflies, presents a compelling model for understanding how traits become sex-biased. For example, some Heliconius butterflies uniquely possess UV (ultraviolet) color vision, which correlates with the expression of two differentially tuned UV-sensitive rhodopsins, UVRh1 and UVRh2. To discover how such traits become sexually dimorphic, we studied Heliconius charithonia, which exhibits female-specific UVRh1 expression. We demonstrate that females, but not males, discriminate different UV wavelengths. Through whole-genome shotgun sequencing and assembly of the H. charithonia genome, we discovered that UVRh1 is present on the W chromosome, making it obligately female-specific. By knocking out UVRh1, we show that UVRh1 protein expression is absent in mutant female eye tissue, as in wild-type male eyes. A PCR survey of UVRh1 sex-linkage across the genus shows that species with female-specific UVRh1 expression lack UVRh1 gDNA in males. Thus, acquisition of sex linkage is sufficient to achieve female-specific expression of UVRh1, though this does not preclude other mechanisms, like cis-regulatory evolution from also contributing. Moreover, both this event, and mutations leading to differential UV opsin sensitivity, occurred early in the history of Heliconius. These results suggest a path for acquiring sexual dimorphism distinct from existing mechanistic models. We propose a model where gene traffic to heterosomes (the W or the Y) genetically partitions a trait by sex before a phenotype shifts (spectral tuning of UV sensitivity).
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
- Department of Biology, Texas A&M University, College Station, TX77843
| | | | - Andrew Dang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Kyle J. McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN55108
| | - Dylan Rainbow
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - David Carter
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA92521
| | - Luna Thanh Ngo
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Edwin Solares
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Iskander Said
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, CA95064
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, CA95064
| | | | - J. J. Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| |
Collapse
|
17
|
Amici DR, Cingoz H, Alasady MJ, Alhayek S, Phoumyvong CM, Sahni N, Yi SS, Mendillo ML. The HAPSTR2 retrogene buffers stress signaling and resilience in mammals. Nat Commun 2023; 14:152. [PMID: 36631436 PMCID: PMC9834230 DOI: 10.1038/s41467-022-35697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.
Collapse
Affiliation(s)
- David R Amici
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Harun Cingoz
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Milad J Alasady
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Sammy Alhayek
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Claire M Phoumyvong
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marc L Mendillo
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
| |
Collapse
|
18
|
Lakhotia SC. Delayed discovery of Hsp60 and subsequent characterization of moonlighting functions of multiple Hsp60 genes in Drosophila: a personal historical perspective. J Genet 2022. [DOI: 10.1007/s12041-022-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Functional Diversity and Evolution of the Drosophila Sperm Proteome. Mol Cell Proteomics 2022; 21:100281. [PMID: 35985624 PMCID: PMC9494239 DOI: 10.1016/j.mcpro.2022.100281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Spermatozoa are central to fertilization and the evolutionary fitness of sexually reproducing organisms. As such, a deeper understanding of sperm proteomes (and associated reproductive tissues) has proven critical to the advancement of the fields of sexual selection and reproductive biology. Due to their extraordinary complexity, proteome depth-of-coverage is dependent on advancements in technology and related bioinformatics, both of which have made significant advancements in the decade since the last Drosophila sperm proteome was published. Here, we provide an updated version of the Drosophila melanogaster sperm proteome (DmSP3) using improved separation and detection methods and an updated genome annotation. Combined with previous versions of the sperm proteome, the DmSP3 contains a total of 3176 proteins, and we provide the first label-free quantitation of the sperm proteome for 2125 proteins. The top 20 most abundant proteins included the structural elements α- and β-tubulins and sperm leucyl-aminopeptidases. Both gene content and protein abundance were significantly reduced on the X chromosome, consistent with prior genomic studies of X chromosome evolution. We identified 9 of the 16 Y-linked proteins, including known testis-specific male fertility factors. We also identified almost one-half of known Drosophila ribosomal proteins in the DmSP3. The role of this subset of ribosomal proteins in sperm is unknown. Surprisingly, our expanded sperm proteome also identified 122 seminal fluid proteins (Sfps), proteins originally identified in the accessory glands. We show that a significant fraction of 'sperm-associated Sfps' are recalcitrant to concentrated salt and detergent treatments, suggesting this subclass of Sfps are expressed in testes and may have additional functions in sperm, per se. Overall, our results add to a growing landscape of both sperm and seminal fluid protein biology and in particular provides quantitative evidence at the protein level for prior findings supporting the meiotic sex-chromosome inactivation model for male-specific gene and X chromosome evolution.
Collapse
|
20
|
Marco A. The chromosomal distribution of sex-biased microRNAs in Drosophila is non-adaptive. Genome Biol Evol 2022; 14:6637416. [PMID: 35809037 PMCID: PMC9290354 DOI: 10.1093/gbe/evac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 11/24/2022] Open
Abstract
Genes are often differentially expressed between males and females. In Drosophila melanogaster, the analysis of sex-biased microRNAs (short noncoding regulatory molecules) has revealed striking differences with protein-coding genes. Mainly, the X chromosome is enriched in male-biased microRNA genes, although it is depleted of male-biased protein-coding genes. The paucity of male-biased genes in the X chromosome is generally explained by an evolutionary process called demasculinization. I suggest that the excess of male-biased microRNAs in the X chromosome is due to high rates of de novo emergence of microRNAs (mostly in other neighboring microRNAs), a tendency of novel microRNAs in the X chromosome to be expressed in testis, and to a lack of a demasculinization process. To test this hypothesis, I analyzed the expression profile of microRNAs in males, females, and gonads in D. pseudoobscura, in which an autosome translocated into the X chromosome effectively becoming part of a sex chromosome (neo-X). I found that the pattern of sex-biased expression is generally conserved between D. melanogaster and D. pseudoobscura. Also, orthologous microRNAs in both species conserve their chromosomal location, indicating that there is no evidence of demasculinization or other interchromosomal movement of microRNAs. Drosophila pseudoobscura-specific microRNAs in the neo-X chromosome tend to be male-biased and particularly expressed in testis. In summary, the apparent paradox resulting from male-biased protein-coding genes depleted in the X chromosome and an enrichment in male-biased microRNAs is consistent with different evolutionary dynamics between coding genes and short RNAs.
Collapse
Affiliation(s)
- Antonio Marco
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
21
|
Meisel RP, Asgari D, Schlamp F, Unckless RL. Induction and inhibition of Drosophila X chromosome gene expression are both impeded by the dosage compensation complex. G3 (BETHESDA, MD.) 2022; 12:6632659. [PMID: 35792851 PMCID: PMC9434221 DOI: 10.1093/g3journal/jkac165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Sex chromosomes frequently differ from the autosomes in the frequencies of genes with sexually dimorphic or tissue-specific expression. Multiple hypotheses have been put forth to explain the unique gene content of the X chromosome, including selection against male-beneficial X-linked alleles, expression limits imposed by the haploid dosage of the X in males, and interference by the dosage compensation complex on expression in males. Here, we investigate these hypotheses by examining differential gene expression in Drosophila melanogaster following several treatments that have widespread transcriptomic effects: bacterial infection, viral infection, and abiotic stress. We found that genes that are induced (upregulated) by these biotic and abiotic treatments are frequently under-represented on the X chromosome, but so are those that are repressed (downregulated) following treatment. We further show that whether a gene is bound by the dosage compensation complex in males can largely explain the paucity of both up- and downregulated genes on the X chromosome. Specifically, genes that are bound by the dosage compensation complex, or close to a dosage compensation complex high-affinity site, are unlikely to be up- or downregulated after treatment. This relationship, however, could partially be explained by a correlation between differential expression and breadth of expression across tissues. Nonetheless, our results suggest that dosage compensation complex binding, or the associated chromatin modifications, inhibit both up- and downregulation of X chromosome gene expression within specific contexts, including tissue-specific expression. We propose multiple possible mechanisms of action for the effect, including a role of Males absent on the first, a component of the dosage compensation complex, as a dampener of gene expression variance in both males and females. This effect could explain why the Drosophila X chromosome is depauperate in genes with tissue-specific or induced expression, while the mammalian X has an excess of genes with tissue-specific expression.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204-5001, USA
| | - Danial Asgari
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204-5001, USA
| | - Florencia Schlamp
- Department of Medicine, NYU Grossman School of Medicine, 435 E 30th St, New York, NY 10016, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, 4055 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
22
|
Zhou Y, Zhang C, Zhang L, Ye Q, Liu N, Wang M, Long G, Fan W, Long M, Wing RA. Gene fusion as an important mechanism to generate new genes in the genus Oryza. Genome Biol 2022; 23:130. [PMID: 35706016 PMCID: PMC9199173 DOI: 10.1186/s13059-022-02696-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Events of gene fusion have been reported in several organisms. However, the general role of gene fusion as part of new gene origination remains unknown. RESULTS We conduct genome-wide interrogations of four Oryza genomes by designing and implementing novel pipelines to detect fusion genes. Based on the phylogeny of ten plant species, we detect 310 fusion genes across four Oryza species. The estimated rate of origination of fusion genes in the Oryza genus is as high as 63 fusion genes per species per million years, which is fixed at 16 fusion genes per species per million years and much higher than that in flies. By RNA sequencing analysis, we find more than 44% of the fusion genes are expressed and 90% of gene pairs show strong signals of purifying selection. Further analysis of CRISPR/Cas9 knockout lines indicates that newly formed fusion genes regulate phenotype traits including seed germination, shoot length and root length, suggesting the functional significance of these genes. CONCLUSIONS We detect new fusion genes that may drive phenotype evolution in Oryza. This study provides novel insights into the genome evolution of Oryza.
Collapse
Affiliation(s)
- Yanli Zhou
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Chengjun Zhang
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China.
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA.
| | - Li Zhang
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA
- Chinese Institute for Brain Research, (CIBR), Beijing, 102206, China
| | - Qiannan Ye
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Ningyawen Liu
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Muhua Wang
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Guangqiang Long
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wei Fan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA.
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- Center for Desert Agriculture, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
23
|
Miller D, Chen J, Liang J, Betrán E, Long M, Sharakhov IV. Retrogene Duplication and Expression Patterns Shaped by the Evolution of Sex Chromosomes in Malaria Mosquitoes. Genes (Basel) 2022; 13:genes13060968. [PMID: 35741730 PMCID: PMC9222922 DOI: 10.3390/genes13060968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Genes that originate during evolution are an important source of novel biological functions. Retrogenes are functional copies of genes produced by retroduplication and as such are located in different genomic positions. To investigate retroposition patterns and retrogene expression, we computationally identified interchromosomal retroduplication events in nine portions of the phylogenetic history of malaria mosquitoes, making use of species that do or do not have classical sex chromosomes to test the roles of sex-linkage. We found 40 interchromosomal events and a significant excess of retroduplications from the X chromosome to autosomes among a set of young retrogenes. These young retroposition events occurred within the last 100 million years in lineages where all species possessed differentiated sex chromosomes. An analysis of available microarray and RNA-seq expression data for Anopheles gambiae showed that many of the young retrogenes evolved male-biased expression in the reproductive organs. Young autosomal retrogenes with increased meiotic or postmeiotic expression in the testes tend to be male biased. In contrast, older retrogenes, i.e., in lineages with undifferentiated sex chromosomes, do not show this particular chromosomal bias and are enriched for female-biased expression in reproductive organs. Our reverse-transcription PCR data indicates that most of the youngest retrogenes, which originated within the last 47.6 million years in the subgenus Cellia, evolved non-uniform expression patterns across body parts in the males and females of An. coluzzii. Finally, gene annotation revealed that mitochondrial function is a prominent feature of the young autosomal retrogenes. We conclude that mRNA-mediated gene duplication has produced a set of genes that contribute to mosquito reproductive functions and that different biases are revealed after the sex chromosomes evolve. Overall, these results suggest potential roles for the evolution of meiotic sex chromosome inactivation in males and of sexually antagonistic conflict related to mitochondrial energy function as the main selective pressures for X-to-autosome gene reduplication and testis-biased expression in these mosquito lineages.
Collapse
Affiliation(s)
- Duncan Miller
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA;
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA;
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA;
- Correspondence: (M.L.); (I.V.S.)
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
- Department of Genetics and Cell Biology, Tomsk State University, 634050 Tomsk, Russia
- Correspondence: (M.L.); (I.V.S.)
| |
Collapse
|
24
|
Maltseva AL, Lobov AA, Pavlova PA, Panova M, Gafarova ER, Marques JP, Danilov LG, Granovitch AI. Orphan gene in Littorina: An unexpected role of symbionts in the host evolution. Gene 2022; 824:146389. [PMID: 35257790 DOI: 10.1016/j.gene.2022.146389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Mechanisms of reproductive isolation between closely related sympatric species are of high evolutionary significance as they may function as initial drivers of speciation and protect species integrity afterwards. Proteins involved in the establishment of reproductive barriers often evolve fast and may be key players in cessation of gene flow between the incipient species. The five Atlantic Littorina (Neritrema) species represent a notable example of recent radiation. The geographic ranges of these young species largely overlap and the mechanisms of reproductive isolation are poorly understood. In this study, we performed a detailed analysis of the reproductive protein LOSP, previously identified in Littorina. We showed that this protein is evolutionary young and taxonomically restricted to the genus Littorina. It has high sequence variation both within and between Littorina species, which is compatible with its presumable role in the reproductive isolation. The strongest differences in the LOSP structure were detected between Littorina subgenera with distinctive repetitive motifs present exclusively in the Neritrema species, but not in L. littorea. Moreover, the sequence of these repetitive structural elements demonstrates a high homology with genetic elements of bacteria, identified as components of Littorina associated microbiomes. We suggest that these elements were acquired from a symbiotic bacterial donor via horizontal genetic transfer (HGT), which is indirectly confirmed by the presence of multiple transposable elements in the LOSP flanking and intronic regions. Furthermore, we hypothesize that this HGT-driven evolutionary innovation promoted LOSP function in reproductive isolation, which might be one of the factors determining the intensive cladogenesis in the Littorina (Neritrema) lineage in contrast to the anagenesis in the L. littorea clade.
Collapse
Affiliation(s)
- A L Maltseva
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia.
| | - A A Lobov
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia; Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Sciences, St Petersburg, Russia
| | - P A Pavlova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - M Panova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia; Department of Marine Sciences - Tjärnö, University of Gothenburg, Sweden
| | - E R Gafarova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - J P Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências do Porto, 4169-007 Porto, Portugal; ISEM, Univ Montpellier, CNRS, EPHE, IRD, 34095 Montpellier, France
| | - L G Danilov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - A I Granovitch
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| |
Collapse
|
25
|
Chen C, Yin Y, Li H, Zhou B, Zhou J, Zhou X, Li Z, Liu G, Pan X, Zhang R, Lin Z, Chen L, Qiu Q, Zhang YE, Wang W. Ruminant-specific genes identified using high-quality genome data and their roles in rumen evolution. Sci Bull (Beijing) 2022; 67:825-835. [PMID: 36546235 DOI: 10.1016/j.scib.2022.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023]
Abstract
Ruminants comprise a highly successful group of mammals with striking morphological innovations, including the presence of a rumen. Many studies have shown that species-specific or lineage-specific genes (referred to as new genes) play important roles in phenotypic evolution. In this study, we identified 1064 ruminant-specific genes based on the newly assembled high-quality genomes of representative members of two ruminant families and other publically available high-quality genomes. Ruminant-specific genes shared similar evolutionary and expression patterns with new genes found in other mammals, such as primates and rodents. Most new genes were derived from gene duplication and tended to be expressed in the testes or immune-related tissues, but were depleted in the adult brain. We also found that most genes expressed in the rumen were genes predating sheep-sperm whale split (referred to as old genes), but some new genes were also involved in the evolution of the rumen, and contributed more during rumen development than in the adult rumen. Notably, expression levels of members of the ruminant-specific PRD-SPRRII gene family, which are subject to positive selection, varied throughout rumen development and may thus play important roles in the development of the keratin-rich surface of the rumen. Overall, this study generated two novel ruminant genomes and also provided novel insights into the evolution of new mammalian organs.
Collapse
Affiliation(s)
- Chunyan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaofang Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiangyu Pan
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
26
|
Shippy TD, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D’Elia T, Saha S. Annotation of Hox cluster and Hox cofactor genes in the Asian citrus psyllid, Diaphorina citri, reveals novel features. GIGABYTE 2022; 2022:gigabyte49. [PMID: 36824511 PMCID: PMC9933525 DOI: 10.46471/gigabyte.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Hox genes and their cofactors are essential developmental genes specifying regional identity in animals. Hox genes have a conserved arrangement in clusters in the same order in which they specify identity along the anterior-posterior axis. A few insect species have breaks in the cluster, but these are exceptions. We annotated the 10 Hox genes of the Asian citrus psyllid Diaphorina citri, and found a split in its Hox cluster between the Deformed and Sex combs reduced genes - the first time a break at this position has been observed in an insect Hox cluster. We also annotated D. citri orthologs of the Hox cofactor genes homothorax, PKNOX and extradenticle and found an additional copy of extradenticle in D. citri that appears to be a retrogene. Expression data and sequence conservation suggest that the extradenticle retrogene may have retained the original extradenticle function and allowed divergence of the parental extradenticle gene.
Collapse
Affiliation(s)
- Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
27
|
Chen J, Zhong J, He X, Li X, Ni P, Safner T, Šprem N, Han J. The de novo assembly of a European wild boar genome revealed unique patterns of chromosomal structural variations and segmental duplications. Anim Genet 2022; 53:281-292. [PMID: 35238061 PMCID: PMC9314987 DOI: 10.1111/age.13181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023]
Abstract
The rapid progress of sequencing technology has greatly facilitated the de novo genome assembly of pig breeds. However, the assembly of the wild boar genome is still lacking, hampering our understanding of chromosomal and genomic evolution during domestication from wild boars into domestic pigs. Here, we sequenced and de novo assembled a European wild boar genome (ASM2165605v1) using the long‐range information provided by 10× Linked‐Reads sequencing. We achieved a high‐quality assembly with contig N50 of 26.09 Mb. Additionally, 1.64% of the contigs (222) with lengths from 107.65 kb to 75.36 Mb covered 90.3% of the total genome size of ASM2165605v1 (~2.5 Gb). Mapping analysis revealed that the contigs can fill 24.73% (93/376) of the gaps present in the orthologous regions of the updated pig reference genome (Sscrofa11.1). We further improved the contigs into chromosome level with a reference‐assistant scaffolding method. Using the ‘assembly‐to‐assembly’ approach, we identified intra‐chromosomal large structural variations (SVs, length >1 kb) between ASM2165605v1 and Sscrofa11.1 assemblies. Interestingly, we found that the number of SV events on the X chromosome deviated significantly from the linear models fitting autosomes (R2 > 0.64, p < 0.001). Specifically, deletions and insertions were deficient on the X chromosome by 66.14 and 58.41% respectively, whereas duplications and inversions were excessive on the X chromosome by 71.96 and 107.61% respectively. We further used the large segmental duplications (SDs, >1 kb) events as a proxy to understand the large‐scale inter‐chromosomal evolution, by resolving parental‐derived relationships for SD pairs. We revealed a significant excess of SD movements from the X chromosome to autosomes (p < 0.001), consistent with the expectation of meiotic sex chromosome inactivation. Enrichment analyses indicated that the genes within derived SD copies on autosomes were significantly related to biological processes involving nervous system, lipid biosynthesis and sperm motility (p < 0.01). Together, our analyses of the de novo assembly of ASM2165605v1 provides insight into the SVs between European wild boar and domestic pig, in addition to the ongoing process of meiotic sex chromosome inactivation in driving inter‐chromosomal interaction between the sex chromosome and autosomes.
Collapse
Affiliation(s)
- Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pan Ni
- Animal Husbandry and Veterinary Institute of Keqiao District, Shaoxing, Zhejiang, China
| | - Toni Safner
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding, (CoE CroP-BioDiv), Zagreb, Croatia
| | - Nikica Šprem
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Jianlin Han
- International Livestock Research Institute, Nairobi, Kenya.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Xia S, Ventura IM, Blaha A, Sgromo A, Han S, Izaurralde E, Long M. Rapid Gene Evolution in an Ancient Post-transcriptional and Translational Regulatory System Compensates for Meiotic X Chromosomal Inactivation. Mol Biol Evol 2022; 39:msab296. [PMID: 34626117 PMCID: PMC8763131 DOI: 10.1093/molbev/msab296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is conventionally assumed that conserved pathways evolve slowly with little participation of gene evolution. Nevertheless, it has been recently observed that young genes can take over fundamental functions in essential biological processes, for example, development and reproduction. It is unclear how newly duplicated genes are integrated into ancestral networks and reshape the conserved pathways of important functions. Here, we investigated origination and function of two autosomal genes that evolved recently in Drosophila: Poseidon and Zeus, which were created by RNA-based duplications from the X-linked CAF40, a subunit of the conserved CCR4-NOT deadenylase complex involved in posttranscriptional and translational regulation. Knockdown and knockout assays show that the two genes quickly evolved critically important functions in viability and male fertility. Moreover, our transcriptome analysis demonstrates that the three genes have a broad and distinct effect in the expression of hundreds of genes, with almost half of the differentially expressed genes being perturbed exclusively by one paralog, but not the others. Co-immunoprecipitation and tethering assays show that the CAF40 paralog Poseidon maintains the ability to interact with the CCR4-NOT deadenylase complex and might act in posttranscriptional mRNA regulation. The rapid gene evolution in the ancient posttranscriptional and translational regulatory system may be driven by evolution of sex chromosomes to compensate for the meiotic X chromosomal inactivation (MXCI) in Drosophila.
Collapse
Affiliation(s)
- Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Iuri M Ventura
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Andreas Blaha
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuaibo Han
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Cridland JM, Majane AC, Zhao L, Begun DJ. Population biology of accessory gland-expressed de novo genes in Drosophila melanogaster. Genetics 2022; 220:iyab207. [PMID: 34791207 PMCID: PMC8733444 DOI: 10.1093/genetics/iyab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Early work on de novo gene discovery in Drosophila was consistent with the idea that many such genes have male-biased patterns of expression, including a large number expressed in the testis. However, there has been little formal analysis of variation in the abundance and properties of de novo genes expressed in different tissues. Here, we investigate the population biology of recently evolved de novo genes expressed in the Drosophila melanogaster accessory gland, a somatic male tissue that plays an important role in male and female fertility and the post mating response of females, using the same collection of inbred lines used previously to identify testis-expressed de novo genes, thus allowing for direct cross tissue comparisons of these genes in two tissues of male reproduction. Using RNA-seq data, we identify candidate de novo genes located in annotated intergenic and intronic sequence and determine the properties of these genes including chromosomal location, expression, abundance, and coding capacity. Generally, we find major differences between the tissues in terms of gene abundance and expression, though other properties such as transcript length and chromosomal distribution are more similar. We also explore differences between regulatory mechanisms of de novo genes in the two tissues and how such differences may interact with selection to produce differences in D. melanogaster de novo genes expressed in the two tissues.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
30
|
Krinsky BH, Arthur RK, Xia S, Sosa D, Arsala D, White KP, Long M. Rapid Cis-Trans Coevolution Driven by a Novel Gene Retroposed from a Eukaryotic Conserved CCR4-NOT Component in Drosophila. Genes (Basel) 2021; 13:57. [PMID: 35052398 PMCID: PMC8774992 DOI: 10.3390/genes13010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Young, or newly evolved, genes arise ubiquitously across the tree of life, and they can rapidly acquire novel functions that influence a diverse array of biological processes. Previous work identified a young regulatory duplicate gene in Drosophila, Zeus that unexpectedly diverged rapidly from its parent, Caf40, an extremely conserved component in the CCR4-NOT machinery in post-transcriptional and post-translational regulation of eukaryotic cells, and took on roles in the male reproductive system. This neofunctionalization was accompanied by differential binding of the Zeus protein to loci throughout the Drosophila melanogaster genome. However, the way in which new DNA-binding proteins acquire and coevolve with their targets in the genome is not understood. Here, by comparing Zeus ChIP-Seq data from D. melanogaster and D. simulans to the ancestral Caf40 binding events from D. yakuba, a species that diverged before the duplication event, we found a dynamic pattern in which Zeus binding rapidly coevolved with a previously unknown DNA motif, which we term Caf40 and Zeus-Associated Motif (CAZAM), under the influence of positive selection. Interestingly, while both copies of Zeus acquired targets at male-biased and testis-specific genes, D. melanogaster and D. simulans proteins have specialized binding on different chromosomes, a pattern echoed in the evolution of the associated motif. Using CRISPR-Cas9-mediated gene knockout of Zeus and RNA-Seq, we found that Zeus regulated the expression of 661 differentially expressed genes (DEGs). Our results suggest that the evolution of young regulatory genes can be coupled to substantial rewiring of the transcriptional networks into which they integrate, even over short evolutionary timescales. Our results thus uncover dynamic genome-wide evolutionary processes associated with new genes.
Collapse
Affiliation(s)
- Benjamin H. Krinsky
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA;
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Robert K. Arthur
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| | - Kevin P. White
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA
| | - Manyuan Long
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA;
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA; (R.K.A.); (S.X.); (D.S.); (D.A.); (K.P.W.)
| |
Collapse
|
31
|
Zhang W, Tautz D. Tracing the origin and evolutionary fate of recent gene retrocopies in natural populations of the house mouse. Mol Biol Evol 2021; 39:6481550. [PMID: 34940842 PMCID: PMC8826619 DOI: 10.1093/molbev/msab360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although the contribution of retrogenes to the evolution of genes and genomes has long been recognized, the evolutionary patterns of very recently derived retrocopies that are still polymorphic within natural populations have not been much studied so far. We use here a set of 2,025 such retrocopies in nine house mouse populations from three subspecies (Mus musculus domesticus, M. m. musculus, and M. m. castaneus) to trace their origin and evolutionary fate. We find that ancient house-keeping genes are significantly more likely to generate retrocopies than younger genes and that the propensity to generate a retrocopy depends on its level of expression in the germline. Although most retrocopies are detrimental and quickly purged, we focus here on the subset that appears to be neutral or even adaptive. We show that retrocopies from X-chromosomal parental genes have a higher likelihood to reach elevated frequencies in the populations, confirming the notion of adaptive effects for “out-of-X” retrogenes. Also, retrocopies in intergenic regions are more likely to reach higher population frequencies than those in introns of genes, implying a more detrimental effect when they land within transcribed regions. For a small subset of retrocopies, we find signatures of positive selection, indicating they were involved in a recent adaptation process. We show that the population-specific distribution pattern of retrocopies is phylogenetically informative and can be used to infer population history with a better resolution than with SNP markers.
Collapse
Affiliation(s)
- Wenyu Zhang
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, D-24306, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, D-24306, Germany
| |
Collapse
|
32
|
Mirsalehi A, Markova DN, Eslamieh M, Betrán E. Nuclear transport genes recurrently duplicate by means of RNA intermediates in Drosophila but not in other insects. BMC Genomics 2021; 22:876. [PMID: 34863092 PMCID: PMC8645118 DOI: 10.1186/s12864-021-08170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background The nuclear transport machinery is involved in a well-known male meiotic drive system in Drosophila. Fast gene evolution and gene duplications have been major underlying mechanisms in the evolution of meiotic drive systems, and this might include some nuclear transport genes in Drosophila. So, using a comprehensive, detailed phylogenomic study, we examined 51 insect genomes for the duplication of the same nuclear transport genes. Results We find that most of the nuclear transport duplications in Drosophila are of a few classes of nuclear transport genes, RNA mediated and fast evolving. We also retrieve many pseudogenes for the Ran gene. Some of the duplicates are relatively young and likely contributing to the turnover expected for genes under strong but changing selective pressures. These duplications are potentially revealing what features of nuclear transport are under selection. Unlike in flies, we find only a few duplications when we study the Drosophila duplicated nuclear transport genes in dipteran species outside of Drosophila, and none in other insects. Conclusions These findings strengthen the hypothesis that nuclear transport gene duplicates in Drosophila evolve either as drivers or suppressors of meiotic drive systems or as other male-specific adaptations circumscribed to flies and involving a handful of nuclear transport functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08170-4.
Collapse
Affiliation(s)
- Ayda Mirsalehi
- Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA
| | - Dragomira N Markova
- Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA
| | - Mohammadmehdi Eslamieh
- Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA
| | - Esther Betrán
- Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX, 76019, USA.
| |
Collapse
|
33
|
Li H, Chen C, Wang Z, Wang K, Li Y, Wang W. Pattern of New Gene Origination in a Special Fish Lineage, the Flatfishes. Genes (Basel) 2021; 12:genes12111819. [PMID: 34828425 PMCID: PMC8618825 DOI: 10.3390/genes12111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Origination of new genes are of inherent interest of evolutionary geneticists for decades, but few studies have addressed the general pattern in a fish lineage. Using our recent released whole genome data of flatfishes, which evolved one of the most specialized body plans in vertebrates, we identified 1541 (6.9% of the starry flounder genes) flatfish-lineage-specific genes. The origination pattern of these flatfish new genes is largely similar to those observed in other vertebrates, as shown by the proportion of DNA-mediated duplication (1317; 85.5%), RNA-mediated duplication (retrogenes; 96; 6.2%), and de novo-origination (128; 8.3%). The emergence rate of species-specific genes is 32.1 per Mya and the whole average level rate for the flatfish-lineage-specific genes is 20.9 per Mya. A large proportion (31.4%) of these new genes have been subjected to selection, in contrast to the 4.0% in primates, while the old genes remain quite similar (66.4% vs. 65.0%). In addition, most of these new genes (70.8%) are found to be expressed, indicating their functionality. This study not only presents one example of systematic new gene identification in a teleost taxon based on comprehensive phylogenomic data, but also shows that new genes may play roles in body planning.
Collapse
|
34
|
Wang Z, Zhang J, Xu X, Witt C, Deng Y, Chen G, Meng G, Feng S, Xu L, Szekely T, Zhang G, Zhou Q. Phylogeny and sex chromosome evolution of palaeognathae. J Genet Genomics 2021; 49:109-119. [PMID: 34872841 DOI: 10.1016/j.jgg.2021.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of "evolutionary strata". Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate the "defeminization" of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females that evolved in their common ancestors.
Collapse
Affiliation(s)
- Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria; Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Xiaoman Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Christopher Witt
- Department of Biology and the Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yuan Deng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Guangji Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Guanliang Meng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Tamas Szekely
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA1 7AY, UK
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria; Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.
| |
Collapse
|
35
|
Zeng H, Chen X, Li H, Zhang J, Wei Z, Wang Y. Interpopulation differences of retroduplication variations (RDVs) in rice retrogenes and their phenotypic correlations. Comput Struct Biotechnol J 2021; 19:600-611. [PMID: 33510865 PMCID: PMC7811064 DOI: 10.1016/j.csbj.2020.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Retroduplication variation (RDV), a type of retrocopy polymorphism, is considered to have essential biological significance, but its effect on gene function and species phenotype is still poorly understood. To this end, we analyzed the retrocopies and RDVs in 3,010 rice genomes. We calculated the RDV frequencies in the genome of each rice population; detected the mutated, ancestral and expressed retrogenes in rice genomes; and analyzed their RDV influence on rice phenotypic traits. Collectively, 73 RDVs were identified, and 14 RDVs in ancestral retrogenes can significantly affect rice phenotypes. Our research reveals that RDV plays an important role in rice migration, domestication and evolution. We think that RDV is a good molecular breeding marker candidate. To our knowledge, this is the first study on the relationship between retrogene function, expression, RDV and species phenotype.
Collapse
Affiliation(s)
- Haiyue Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Shennong Class, Southwest University, Chongqing 400715, China
| | - Xingyu Chen
- Shennong Class, Southwest University, Chongqing 400715, China
| | - Hongbo Li
- College of Electronic and Information Engineering, Southwest University, Chongqing 400715
| | - Jun Zhang
- College of Computer & Information Science, Southwest University, Chongqing 400715, China
| | - Zhaoyuan Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Jipa A, Vedelek V, Merényi Z, Ürmösi A, Takáts S, Kovács AL, Horváth GV, Sinka R, Juhász G. Analysis of Drosophila Atg8 proteins reveals multiple lipidation-independent roles. Autophagy 2020; 17:2565-2575. [PMID: 33249988 DOI: 10.1080/15548627.2020.1856494] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Yeast Atg8 and its homologs are involved in autophagosome biogenesis in all eukaryotes. These are the most widely used markers for autophagy thanks to the association of their lipidated forms with autophagic membranes. The Atg8 protein family expanded in animals and plants, with most Drosophila species having two Atg8 homologs. In this Brief Report, we use clear-cut genetic analysis in Drosophila melanogaster to show that lipidated Atg8a is required for autophagy, while its non-lipidated form is essential for developmentally programmed larval midgut elimination and viability. In contrast, expression of Atg8b is restricted to the male germline and its loss causes male sterility without affecting autophagy. We find that high expression of non-lipidated Atg8b in the male germline is required for fertility. Consistent with these non-canonical functions of Atg8 proteins, loss of Atg genes required for Atg8 lipidation lead to autophagy defects but do not cause lethality or male sterility.
Collapse
Affiliation(s)
- András Jipa
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Adél Ürmösi
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor V Horváth
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.,Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
37
|
Liao Y, Zhang X, Li B, Liu T, Chen J, Bai Z, Wang M, Shi J, Walling JG, Wing RA, Jiang J, Chen M. Comparison of Oryza sativa and Oryza brachyantha Genomes Reveals Selection-Driven Gene Escape from the Centromeric Regions. THE PLANT CELL 2018; 30:1729-1744. [PMID: 29967288 PMCID: PMC6139686 DOI: 10.1105/tpc.18.00163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Accepted: 06/28/2018] [Indexed: 05/03/2023]
Abstract
Centromeres are dynamic chromosomal regions, and the genetic and epigenetic environment of the centromere is often regarded as oppressive to protein-coding genes. Here, we used comparative genomic and phylogenomic approaches to study the evolution of centromeres and centromere-linked genes in the genus Oryza We report a 12.4-Mb high-quality BAC-based pericentromeric assembly for Oryza brachyantha, which diverged from cultivated rice (Oryza sativa) ∼15 million years ago. The synteny analyses reveal seven medium (>50 kb) pericentric inversions in O. sativa and 10 in O. brachyantha Of these inversions, three resulted in centromere movement (Chr1, Chr7, and Chr9). Additionally, we identified a potential centromere-repositioning event, in which the ancestral centromere on chromosome 12 in O. brachyantha jumped ∼400 kb away, possibly mediated by a duplicated transposition event (>28 kb). More strikingly, we observed an excess of syntenic gene loss at and near the centromeric regions (P < 2.2 × 10-16). Most (33/47) of the missing genes moved to other genomic regions; therefore such excess could be explained by the selective loss of the copy in or near centromeric regions after gene duplication. The pattern of gene loss immediately adjacent to centromeric regions suggests centromere chromatin dynamics (e.g., spreading or microrepositioning) may drive such gene loss.
Collapse
Affiliation(s)
- Yi Liao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tieyan Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfeng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zetao Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijiao Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jason G Walling
- USDA-ARS-MWA-Cereal Crops Research Unit, Madison, Wisconsin 53726
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Xia S, Wang Z, Zhang H, Hu K, Zhang Z, Qin M, Dun X, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Altered Transcription and Neofunctionalization of Duplicated Genes Rescue the Harmful Effects of a Chimeric Gene in Brassica napus. THE PLANT CELL 2016; 28:2060-2078. [PMID: 27559024 PMCID: PMC5059798 DOI: 10.1105/tpc.16.00281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/24/2016] [Indexed: 05/04/2023]
Abstract
Chimeric genes contribute to the evolution of diverse functions in plants and animals. However, new chimeric genes also increase the risk of developmental defects. Here, we show that the chimeric gene Brassica napus male sterile 4 (Bnams4b ) is responsible for genic male sterility in the widely used canola line 7365A (Bnams3 ms3ms4bms4b ). Bnams4b originated via exon shuffling ∼4.6 million years ago. It causes defects in the normal functions of plastids and induces aborted anther formation and/or albino leaves and buds. Evidence of the age of the mutation, its tissue expression pattern, and its sublocalization indicated that it coevolved with BnaC9.Tic40 (BnaMs3). In Arabidopsis thaliana, Bnams4b results in complete male sterility that can be rescued by BnaC9.Tic40, suggesting that BnaC9.Tic40 might restore fertility through effects on protein level. Another suppressor gene, Bnams4a , rescues sterility by reducing the level of transcription of Bnams4b Our results suggest that Brassica plants have coevolved altered transcription patterns and neofunctionalization of duplicated genes that can block developmental defects resulting from detrimental chimeric genes.
Collapse
Affiliation(s)
- Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoling Dun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
39
|
Wang J, Tao F, Marowsky NC, Fan C. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes. PLANT PHYSIOLOGY 2016; 172:427-40. [PMID: 27485883 PMCID: PMC5074645 DOI: 10.1104/pp.16.01177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 05/02/2023]
Abstract
Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Feng Tao
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Nicholas C Marowsky
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
40
|
Wang J, Tao F, Marowsky NC, Fan C. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes. PLANT PHYSIOLOGY 2016. [PMID: 27485883 DOI: 10.1104/pp.l6.01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Feng Tao
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Nicholas C Marowsky
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
41
|
Cui X, Lv Y, Chen M, Nikoloski Z, Twell D, Zhang D. Young Genes out of the Male: An Insight from Evolutionary Age Analysis of the Pollen Transcriptome. MOLECULAR PLANT 2015; 8:935-45. [PMID: 25670339 DOI: 10.1016/j.molp.2014.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 05/13/2023]
Abstract
The birth of new genes in genomes is an important evolutionary event. Several studies reveal that new genes in animals tend to be preferentially expressed in male reproductive tissues such as testis (Betrán et al., 2002; Begun et al., 2007; Dubruille et al., 2012), and thus an "out of testis" hypothesis for the emergence of new genes has been proposed (Vinckenbosch et al., 2006; Kaessmann, 2010). However, such phenomena have not been examined in plant species. Here, by employing a phylostratigraphic method, we dated the origin of protein-coding genes in rice and Arabidopsis thaliana and observed a number of young genes in both species. These young genes tend to encode short extracellular proteins, which may be involved in rapid evolving processes, such as reproductive barriers, species specification, and anti-microbial processes. Further analysis of transcriptome age indexes across different tissues revealed that male reproductive cells express a phylogenetically younger transcriptome than other plant tissues. Compared with sporophytic tissues, the young transcriptomes of the male gametophyte displayed greater complexity and diversity, which included a higher ratio of anti-sense and inter-genic transcripts, reflecting a pervasive transcription state that facilitated the emergence of new genes. Here, we propose that pollen may act as an "innovation incubator" for the birth of de novo genes. With cases of male-biased expression of young genes reported in animals, the "new genes out of the male" model revealed a common evolutionary force that drives reproductive barriers, species specification, and the upgrading of defensive mechanisms against pathogens.
Collapse
Affiliation(s)
- Xiao Cui
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Lv
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaolin Chen
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, University of Potsdam and Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam 114424, Germany
| | - David Twell
- Department of Biology, University of Leicester, Leicester LE1 7RA, UK
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, University of Adelaide-Shanghai Jiao Tong University Joint Centre for Agriculture and Health, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.
| |
Collapse
|
42
|
Zhang C, Gschwend AR, Ouyang Y, Long M. Evolution of gene structural complexity: an alternative-splicing-based model accounts for intron-containing retrogenes. PLANT PHYSIOLOGY 2014; 165:412-23. [PMID: 24520158 PMCID: PMC4012599 DOI: 10.1104/pp.113.231696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The structure of eukaryotic genes evolves extensively by intron loss or gain. Previous studies have revealed two models for gene structure evolution through the loss of introns: RNA-based gene conversion, dubbed the Fink model and retroposition model. However, retrogenes that experienced both intron loss and intron-retaining events have been ignored; evolutionary processes responsible for the variation in complex exon-intron structure were unknown. We detected hundreds of retroduplication-derived genes in human (Homo sapiens), fly (Drosophila melanogaster), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) and categorized them either as duplicated genes that have all introns lost or as duplicated genes that have at least lost one and retained one intron compared with the parental copy (intron-retaining [IR] type). Our new model attributes intron retention alternative splicing to the generation of these IR-type gene pairs. We presented 25 parental genes that have an intron retention isoform and have retained introns in the same locations in the IR-type duplicate genes, which directly support our hypothesis. Our alternative-splicing-based model in conjunction with the retroposition and Fink models can explain the IR-type gene observed. We discovered a greater percentage of IR-type genes in plants than in animals, which may be due to the abundance of intron retention cases in plants. Given the prevalence of intron retention in plants, this new model gives a support that plant genomes have very complex gene structures.
Collapse
|
43
|
Functional evidence that a recently evolved Drosophila sperm-specific gene boosts sperm competition. Proc Natl Acad Sci U S A 2012; 109:2043-8. [PMID: 22308475 DOI: 10.1073/pnas.1121327109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many species, both morphological and molecular traits related to sex and reproduction evolve faster in males than in females. Ultimately, rapid male evolution relies on the acquisition of genetic variation associated with differential reproductive success. Many newly evolved genes are associated with novel functions that might enhance male fitness. However, functional evidence of the adaptive role of recently originated genes in males is still lacking. The Sperm dynein intermediate chain multigene family, which encodes a Sperm dynein intermediate chain presumably involved in sperm motility, originated from complex genetic rearrangements in the lineage that leads to Drosophila melanogaster within the last 5.4 million years since its split from Drosophila simulans. We deleted all the members of this multigene family resident on the X chromosome of D. melanogaster by chromosome engineering and found that, although the deletion does not result in a reduction of progeny number, it impairs the competence of the sperm in the presence of sperm from wild-type males. Therefore, the Sperm dynein intermediate chain multigene family contributes to the differential reproductive success among males and illustrates precisely how quickly a new gene function can be incorporated into the genetic network of a species.
Collapse
|
44
|
Inferring the history of interchromosomal gene transposition in Drosophila using n-dimensional parsimony. Genetics 2011; 190:813-25. [PMID: 22095076 DOI: 10.1534/genetics.111.135947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gene transposition puts a new gene copy in a novel genomic environment. Moreover, genes moving between the autosomes and the X chromosome experience change in several evolutionary parameters. Previous studies of gene transposition have not utilized the phylogenetic framework that becomes possible with the availability of whole genomes from multiple species. Here we used parsimonious reconstruction on the genomic distribution of gene families to analyze interchromosomal gene transposition in Drosophila. We identified 782 genes that have moved chromosomes within the phylogeny of 10 Drosophila species, including 87 gene families with multiple independent movements on different branches of the phylogeny. Using this large catalog of transposed genes, we detected accelerated sequence evolution in duplicated genes that transposed when compared to the parental copy at the original locus. We also observed a more refined picture of the biased movement of genes from the X chromosome to the autosomes. The bias of X-to-autosome movement was significantly stronger for RNA-based movements than for DNA-based movements, and among DNA-based movements there was an excess of genes moving onto the X chromosome as well. Genes involved in female-specific functions moved onto the X chromosome while genes with male-specific functions moved off the X. There was a significant overrepresentation of proteins involving chromosomal function among transposed genes, suggesting that genetic conflict between sexes and among chromosomes may be a driving force behind gene transposition in Drosophila.
Collapse
|
45
|
Role of testis-specific gene expression in sex-chromosome evolution of Anopheles gambiae. Genetics 2011; 189:1117-20. [PMID: 21890740 DOI: 10.1534/genetics.111.133157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene expression in Anopheles gambiae shows a deficiency of testis-expressed genes on the X chromosome associated with an excessive movement of retrogene duplication. We suggest that the degeneration of sex chromosomes in this monandrous species is likely the result of pressures from X inactivation, dosage compensation, and sexual antagonism.
Collapse
|
46
|
Dorus S, Wilkin EC, Karr TL. Expansion and functional diversification of a leucyl aminopeptidase family that encodes the major protein constituents of Drosophila sperm. BMC Genomics 2011; 12:177. [PMID: 21466698 PMCID: PMC3078892 DOI: 10.1186/1471-2164-12-177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/05/2011] [Indexed: 11/12/2022] Open
Abstract
Background The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the Drosophila sperm proteome (termed, Sperm-LeucylAminoPeptidases, S-LAPs 1-8) led us to hypothesize that this gene family may have experienced such a diversification during insect evolution. Results To assess putative functional activities of S-LAPs, we (i) demonstrated that all S-LAPs are specifically expressed in the testis, (ii) confirmed their presence in sperm by two-dimensional gel electrophoresis and mass spectrometry, (iii) determined that they represent a major portion of the total protein in sperm and (iv) identified aminopeptidase enzymatic activity in sperm extracts using LAP-specific substrates. Functionally significant divergence at the canonical M17 active site indicates that the largest phylogenetic group of S-LAPs lost catalytic activity and likely acquired novel, as yet undetermined, functions in sperm prior to the expansion of the gene family. Conclusions Comparative genomic and phylogenetic analyses revealed the dramatic expansion of the S-LAP gene family during Drosophila evolution and copy number heterogeneity in the genomes of related insects. This finding, in conjunction with the loss of catalytic activity and potential neofunctionalization amongst some family members, extends empirical support for pervasive "revolving door" turnover in the evolution of reproductive gene family composition and function.
Collapse
Affiliation(s)
- Steve Dorus
- Centers for Evolutionary Medicine and Informatics and Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA.
| | | | | |
Collapse
|
47
|
Connallon T, Clark AG. The resolution of sexual antagonism by gene duplication. Genetics 2011; 187:919-37. [PMID: 21220356 PMCID: PMC3063682 DOI: 10.1534/genetics.110.123729] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/07/2011] [Indexed: 12/17/2022] Open
Abstract
Disruptive selection between males and females can generate sexual antagonism, where alleles improving fitness in one sex reduce fitness in the other. This type of genetic conflict arises because males and females carry nearly identical sets of genes: opposing selection, followed by genetic mixing during reproduction, generates a population genetic "tug-of-war" that constrains adaptation in either sex. Recent verbal models suggest that gene duplication and sex-specific cooption of paralogs might resolve sexual antagonism and facilitate evolutionary divergence between the sexes. However, this intuitive proximal solution for sexual dimorphism potentially belies a complex interaction between mutation, genetic drift, and positive selection during duplicate fixation and sex-specific paralog differentiation. The interaction of these processes--within the explicit context of duplication and sexual antagonism--has yet to be formally described by population genetics theory. Here, we develop and analyze models of gene duplication and sex-specific differentiation between paralogs. We show that sexual antagonism can favor the fixation and maintenance of gene duplicates, eventually leading to the evolution of sexually dimorphic genetic architectures for male and female traits. The timescale for these evolutionary transitions is sensitive to a suite of genetic and demographic variables, including allelic dominance, recombination, sex linkage, and population size. Interestingly, we find that female-beneficial duplicates preferentially accumulate on the X chromosome, whereas male-beneficial duplicates are biased toward autosomes, independent of the dominance parameters of sexually antagonistic alleles. Although this result differs from previous models of sexual antagonism, it is consistent with several findings from the empirical genomics literature.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA.
| | | |
Collapse
|
48
|
Abstract
The mosquito Anopheles gambiae has heteromorphic sex chromosomes, while the mosquito Aedes aegypti has homomorphic sex chromosomes. We use retrotransposed gene duplicates to show an excess of movement off the An. gambiae X chromosome only after the split with Ae. aegypti, suggesting that their ancestor had homomorphic sex chromosomes.
Collapse
|
49
|
Tracy C, Río J, Motiwale M, Christensen SM, Betrán E. Convergently recruited nuclear transport retrogenes are male biased in expression and evolving under positive selection in Drosophila. Genetics 2010; 184:1067-76. [PMID: 20065068 PMCID: PMC2865908 DOI: 10.1534/genetics.109.113522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/31/2009] [Indexed: 01/03/2023] Open
Abstract
The analyses of gene duplications by retroposition have revealed an excess of male-biased duplicates generated from X chromosome to autosomes in flies and mammals. Investigating these genes is of primary importance in understanding sexual dimorphism and genome evolution. In a particular instance in Drosophila, X-linked nuclear transport genes (Ntf-2 and ran) have given rise to autosomal retroposed copies three independent times (along the lineages leading to Drosophila melanogaster, D. ananassae, and D. grimshawi). Here we explore in further detail the expression and the mode of evolution of these Drosophila Ntf-2- and ran-derived retrogenes. Five of the six retrogenes show male-biased expression. The ran-like gene of D. melanogaster and D. simulans has undergone recurrent positive selection. Similarly, in D. ananassae and D. atripex, the Ntf-2 and ran retrogenes show evidence of past positive selection. The data suggest that strong selection is acting on the origin and evolution of these retrogenes. Avoiding male meiotic X inactivation, increasing level of expression of X-linked genes in male testes, and/or sexual antagonism might explain the recurrent duplication of retrogenes from X to autosomes. Interestingly, the ran-like in D. yakuba has mostly pseudogenized alleles. Disablement of the ran-like gene in D. yakuba indicates turnover of these duplicates. We discuss the possibility that Dntf-2r and ran-like might be involved in genomic conflicts during spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Esther Betrán
- Department of Biology, University of Texas, Arlington, Texas 76019
| |
Collapse
|
50
|
Steiger D, Fetchko M, Vardanyan A, Atanesyan L, Steiner K, Turski ML, Thiele DJ, Georgiev O, Schaffner W. The Drosophila copper transporter Ctr1C functions in male fertility. J Biol Chem 2010; 285:17089-97. [PMID: 20351114 DOI: 10.1074/jbc.m109.090282] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Living organisms have evolved intricate systems to harvest trace elements from the environment, to control their intracellular levels, and to ensure adequate delivery to the various organs and cellular compartments. Copper is one of these trace elements. It is at the same time essential for life but also highly toxic, not least because it facilitates the generation of reactive oxygen species. In mammals, copper uptake in the intestine and copper delivery into other organs are mediated by the copper importer Ctr1. Drosophila has three Ctr1 homologs: Ctr1A, Ctr1B, and Ctr1C. Earlier work has shown that Ctr1A is an essential gene that is ubiquitously expressed throughout development, whereas Ctr1B is responsible for efficient copper uptake in the intestine. Here, we characterize the function of Ctr1C and show that it functions as a copper importer in the male germline, specifically in maturing spermatocytes and mature sperm. We further demonstrate that loss of Ctr1C in a Ctr1B mutant background results in progressive loss of male fertility that can be rescued by copper supplementation to the food. These findings hint at a link between copper and male fertility, which might also explain the high Ctr1 expression in mature mammalian spermatozoa. In both mammals and Drosophila, the X chromosome is known to be inactivated in the male germline. In accordance with such a scenario, we provide evidence that in Drosophila, the autosomal Ctr1C gene originated as a retrogene copy of the X-linked Ctr1A, thus maintaining copper delivery during male spermatogenesis.
Collapse
Affiliation(s)
- Dominik Steiger
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|