1
|
Ansari A, Kumar R, Ray SK, Patel A, Dwivedi P, Ghosh A, Machado E, Suffys PN, Singh P. Genetic variability, genotyping, and genomics of Mycobacterium leprae. FEMS Microbiol Rev 2025; 49:fuaf012. [PMID: 40280733 PMCID: PMC12035532 DOI: 10.1093/femsre/fuaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/13/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025] Open
Abstract
Leprosy, caused by Mycobacterium leprae and Mycobacterium lepromatosis, remains a significant global health issue despite a tremendous decline in its worldwide prevalence in the last four decades. Mycobacterium leprae strains possess very limited genetic variability, making it difficult to distinguish them using traditional genotyping tools. Successful genome sequencing of a considerable number of M. leprae strains in the recent past has allowed development of improved genotyping tools for the molecular epidemiology of leprosy. Comparative genomics has identified distinct M. leprae genotypes and revealed their characteristic genomic markers. This review summarizes the progress made in M. leprae genomics, with special emphasis on the development of genotyping schemes. Further, an updated genotyping scheme is introduced that also includes the newly reported genotypes 1B_Bangladesh, 1D_Malagasy, 3K-0/3K-1, 3Q and 4N/O. Additionally, genotype-specific markers (single nucleotide polymorphisms, Insertion/Deletion) have been incorporated into the typing scheme for the first time to enable differentiation of closely related strains. This will be particularly useful for geographic regions where M. leprae strains characterized by a small number of genotypes are predominant. The detailed compilation of genomic markers will also enable accurate identification of M. leprae genotypes, using targeted analysis of variable regions. Such markers are good candidates for developing artificial intelligence-based algorithms for classifying M. leprae genomic datasets.
Collapse
Affiliation(s)
- Afzal Ansari
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roopendra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India
| | - Suman Kumar Ray
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India
| | - Aarti Patel
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India
| | - Purna Dwivedi
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India
- The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Arup Ghosh
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India
| | - Edson Machado
- Laboratory of Molecular Biology Applied to Mycobacteria - Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Philip N Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria - Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, Madhya Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Model Rural Health Research Unit, Badoni, Datia 475686, Madhya Pradesh, India
| |
Collapse
|
2
|
Grijsen ML, Nguyen TH, Pinheiro RO, Singh P, Lambert SM, Walker SL, Geluk A. Leprosy. Nat Rev Dis Primers 2024; 10:90. [PMID: 39609422 DOI: 10.1038/s41572-024-00575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Leprosy, a neglected tropical disease, causes significant morbidity in marginalized communities. Before the COVID-19 pandemic, annual new case detection plateaued for over a decade at ~200,000 new cases. The clinical phenotypes of leprosy strongly parallel host immunity to its causative agents Mycobacterium leprae and Mycobacterium lepromatosis. The resulting spectrum spans from paucibacillary leprosy, characterized by vigorous pro-inflammatory immunity with few bacteria, to multibacillary leprosy, harbouring large numbers of bacteria with high levels of seemingly non-protective, anti-M. leprae antibodies. Leprosy diagnosis remains clinical, leaving asymptomatic individuals with infection undetected. Antimicrobial treatment is effective with recommended multidrug therapy for 6 months for paucibacillary leprosy and 12 months for multibacillary leprosy. The incubation period ranges from 2 to 6 years, although longer periods have been described. Given this lengthy incubation period and dwindling clinical expertise, there is an urgent need to create innovative, low-complexity diagnostic tools for detection of M. leprae infection. Such advancements are vital for enabling swift therapeutic and preventive interventions, ultimately transforming patient outcomes. National health-care programmes should prioritize early case detection and consider post-exposure prophylaxis for individuals in close contact with affected persons. These measures will help interrupt transmission, prevent disease progression, and mitigate the risk of nerve damage and disabilities to achieve the WHO goal 'Towards Zero Leprosy' and reduce the burden of leprosy.
Collapse
Affiliation(s)
- Marlous L Grijsen
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Thuan H Nguyen
- University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Pushpendra Singh
- Microbial Pathogenesis & Genomics Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Saba M Lambert
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
- Africa Leprosy, Tuberculosis, Rehabilitation and Training (ALERT) Hospital, Addis Ababa, Ethiopia
| | - Stephen L Walker
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
| | - Annemieke Geluk
- Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Sharma M, Dwivedi P, Joshi V, Singh P. Novel mutations found in Mycobacterium leprae DNA repair gene nth from central India. J Infect Chemother 2024; 30:531-535. [PMID: 38141720 DOI: 10.1016/j.jiac.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION The importance of DNA repair enzymes in maintaining genomic integrity is highlighted by the hypothesis that DNA damage by reactive oxygen/nitrogen species produced inside the host cell is essential for the mutagenesis process. Endonuclease III (Nth), formamidopyrimide (Fpg) and endonuclease VIII (Nei) DNA glycosylases are essential components of the bacterial base excision repair process. Mycobacterium leprae lost both fpg/nei genes during the reductive evolution event and only has the nth (ML2301) gene. This study aims to characterize the mutations in the nth gene of M. leprae strains and explore its correlation with drug-resistance. METHOD A total of 91 M. leprae positive DNA samples extracted from skin biopsy samples of newly diagnosed leprosy patients from NSCB Hospital Jabalpur were assessed for the nth gene as well as drug resistance-associated loci of the rpoB, gyrA and folP1 genes through PCR followed by Sanger sequencing. RESULTS Of these 91 patients, a total of two insertion frameshift mutations, two synonymous and seven nonsynonymous mutations were found in nth in seven samples. Sixteen samples were found to be resistant to ofloxacin and one was found to be dapsone resistant as per the known DRDR mutations. No mutations were found in the rpoB region. Interestingly, none of the nth mutations were identified in the drug-resistant associated samples. CONCLUSION The in-silico structural analysis of the non-synonymous mutations in the Nth predicted five of them were to be deleterious. Our results suggest that the mutations in the nth gene may be potential markers for phylogenetic and epidemiological studies.
Collapse
Affiliation(s)
- Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Purna Dwivedi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Vandana Joshi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India.
| |
Collapse
|
4
|
Zhang L, Lin TY, Liu WT, Ling F. Toward Characterizing Environmental Sources of Non-tuberculous Mycobacteria (NTM) at the Species Level: A Tutorial Review of NTM Phylogeny and Phylogenetic Classification. ACS ENVIRONMENTAL AU 2024; 4:127-141. [PMID: 38765059 PMCID: PMC11100324 DOI: 10.1021/acsenvironau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 05/21/2024]
Abstract
Nontuberculous mycobacteria (NTM) are any mycobacteria that do not cause tuberculosis or leprosy. While the majority of NTM are harmless and some of them are considered probiotic, a growing number of people are being diagnosed with NTM infections. Therefore, their detection in the environment is of interest to clinicians, environmental microbiologists, and water quality researchers alike. This review provides a tutorial on the foundational approaches for taxonomic classifications, with a focus on the phylogenetic relationships among NTM revealed by the 16S rRNA gene, rpoB gene, and hsp65 gene, and by genome-based approaches. Recent updates on the Mycobacterium genus taxonomy are also provided. A synthesis on the habitats of 189 mycobacterial species in a genome-based taxonomy framework was performed, with attention paid to environmental sources (e.g., drinking water, aquatic environments, and soil). The 16S rRNA gene-based classification accuracy for various regions was evaluated (V3, V3-V4, V3-V5, V4, V4-V5, and V1-V9), revealing overall excellent genus-level classification (up to 100% accuracy) yet only modest performance (up to 63.5% accuracy) at the species level. Future research quantifying NTM species in water systems, determining the effects of water treatment and plumbing conditions on their variations, developing high throughput species-level characterization tools for use in the environment, and incorporating the characterization of functions in a phylogenetic framework will likely fill critical knowledge gaps. We believe this tutorial will be useful for researchers new to the field of molecular or genome-based taxonomic profiling of environmental microbiomes. Experts may also find this review useful in terms of the selected key findings of the past 30 years, recent updates on phylogenomic analyses, as well as a synthesis of the ecology of NTM in a phylogenetic framework.
Collapse
Affiliation(s)
- Lin Zhang
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tzu-Yu Lin
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wen-Tso Liu
- Department
of Civil and Environmental Engineering, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fangqiong Ling
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Yang Y, Wang P, Qaidi SE, Hardwidge PR, Huang J, Zhu G. Loss to gain: pseudogenes in microorganisms, focusing on eubacteria, and their biological significance. Appl Microbiol Biotechnol 2024; 108:328. [PMID: 38717672 PMCID: PMC11078800 DOI: 10.1007/s00253-023-12971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 05/12/2024]
Abstract
Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- College of Bioscience and Biotechnology, Yangzhou University, 12 East Wenhui Road Yangzhou, Jiangsu, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Singh L, Karthikeyan S, Thakur KG. Biochemical and structural characterization reveals Rv3400 codes for β-phosphoglucomutase in Mycobacterium tuberculosis. Protein Sci 2024; 33:e4943. [PMID: 38501428 PMCID: PMC10949319 DOI: 10.1002/pro.4943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/22/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Mycobacterium tuberculosis (Mtb) adapt to various host environments and utilize a variety of sugars and lipids as carbon sources. Among these sugars, maltose and trehalose, also play crucial role in bacterial physiology and virulence. However, some key enzymes involved in trehalose and maltose metabolism in Mtb are not yet known. Here we structurally and functionally characterized a conserved hypothetical gene Rv3400. We determined the crystal structure of Rv3400 at 1.7 Å resolution. The crystal structure revealed that Rv3400 adopts Rossmann fold and shares high structural similarity with haloacid dehalogenase family of proteins. Our comparative structural analysis suggested that Rv3400 could perform either phosphatase or pyrophosphatase or β-phosphoglucomutase (β-PGM) activity. Using biochemical studies, we further confirmed that Rv3400 performs β-PGM activity and hence, Rv3400 encodes for β-PGM in Mtb. Our data also confirm that Mtb β-PGM is a metal dependent enzyme having broad specificity for divalent metal ions. β-PGM converts β-D-glucose-1-phosphate to β-D-glucose-6-phosphate which is required for the generation of ATP and NADPH through glycolysis and pentose phosphate pathway, respectively. Using site directed mutagenesis followed by biochemical studies, we show that two Asp residues in the highly conserved DxD motif, D29 and D31, are crucial for enzyme activity. While D29A, D31A, D29E, D31E and D29N mutants lost complete activity, D31N mutant retained about 30% activity. This study further helps in understanding the role of β-PGM in the physiology of Mtb.
Collapse
Affiliation(s)
- Latika Singh
- Division of Protein Science and EngineeringCouncil of Scientific and Industrial Research—Institute of Microbial Technology (CSIR‐IMTECH)ChandigarhIndia
| | - Subramanian Karthikeyan
- Division of Protein Science and EngineeringCouncil of Scientific and Industrial Research—Institute of Microbial Technology (CSIR‐IMTECH)ChandigarhIndia
| | - Krishan Gopal Thakur
- Division of Protein Science and EngineeringCouncil of Scientific and Industrial Research—Institute of Microbial Technology (CSIR‐IMTECH)ChandigarhIndia
| |
Collapse
|
7
|
Sodani M, Misra CS, Nigam G, Fatima Z, Kulkarni S, Rath D. MSMEG_0311 is a conserved essential polar protein involved in mycobacterium cell wall metabolism. Int J Biol Macromol 2024; 260:129583. [PMID: 38242409 DOI: 10.1016/j.ijbiomac.2024.129583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Cell wall synthesis and cell division are two closely linked pathways in a bacterial cell which distinctly influence the growth and survival of a bacterium. This requires an appreciable coordination between the two processes, more so, in case of mycobacteria with an intricate multi-layered cell wall structure. In this study, we investigated a conserved gene cluster using CRISPR-Cas12 based gene silencing technology to show that knockdown of most of the genes in this cluster leads to growth defects. Investigating conserved genes is important as they likely perform vital cellular functions and the functional insights on such genes can be extended to other mycobacterial species. We characterised one of the genes in the locus, MSMEG_0311. The repression of this gene not only imparts severe growth defect but also changes colony morphology. We demonstrate that the protein preferentially localises to the polar region and investigate its influence on the polar growth of the bacillus. A combination of permeability and drug susceptibility assay strongly suggests a cell wall associated function of this gene which is also corroborated by transcriptomic analysis of the knockdown where a number of cell wall associated genes, particularly iniA and sigF regulon get altered. Considering the gene is highly conserved across mycobacterial species and appears to be essential for growth, it may serve as a potential drug target.
Collapse
Affiliation(s)
- Megha Sodani
- Radiation Medicine Centre, Medical Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| | - Chitra S Misra
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Gaurav Nigam
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India; Department of Laboratory Medicine, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Savita Kulkarni
- Radiation Medicine Centre, Medical Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India.
| | - Devashish Rath
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India; Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
8
|
Shyam M, Kumar S, Singh V. Unlocking Opportunities for Mycobacterium leprae and Mycobacterium ulcerans. ACS Infect Dis 2024; 10:251-269. [PMID: 38295025 PMCID: PMC10862552 DOI: 10.1021/acsinfecdis.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
In the recent decade, scientific communities have toiled to tackle the emerging burden of drug-resistant tuberculosis (DR-TB) and rapidly growing opportunistic nontuberculous mycobacteria (NTM). Among these, two neglected mycobacteria species of the Acinetobacter family, Mycobacterium leprae and Mycobacterium ulcerans, are the etiological agents of leprosy and Buruli ulcer infections, respectively, and fall under the broad umbrella of neglected tropical diseases (NTDs). Unfortunately, lackluster drug discovery efforts have been made against these pathogenic bacteria in the recent decade, resulting in the discovery of only a few countable hits and majorly repurposing anti-TB drug candidates such as telacebec (Q203), P218, and TB47 for current therapeutic interventions. Major ignorance in drug candidate identification might aggravate the dramatic consequences of rapidly spreading mycobacterial NTDs in the coming days. Therefore, this Review focuses on an up-to-date account of drug discovery efforts targeting selected druggable targets from both bacilli, including the accompanying challenges that have been identified and are responsible for the slow drug discovery. Furthermore, a succinct discussion of the all-new possibilities that could be alternative solutions to mitigate the neglected mycobacterial NTD burden and subsequently accelerate the drug discovery effort is also included. We anticipate that the state-of-the-art strategies discussed here may attract major attention from the scientific community to navigate and expand the roadmap for the discovery of next-generation therapeutics against these NTDs.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department
of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mersa, Ranchi, Jharkhand 835215, India
| | - Sumit Kumar
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute
of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
9
|
Schaeffer RD, Zhang J, Medvedev KE, Kinch LN, Cong Q, Grishin NV. ECOD domain classification of 48 whole proteomes from AlphaFold Structure Database using DPAM2. PLoS Comput Biol 2024; 20:e1011586. [PMID: 38416793 PMCID: PMC10927120 DOI: 10.1371/journal.pcbi.1011586] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/11/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Protein structure prediction has now been deployed widely across several different large protein sets. Large-scale domain annotation of these predictions can aid in the development of biological insights. Using our Evolutionary Classification of Protein Domains (ECOD) from experimental structures as a basis for classification, we describe the detection and cataloging of domains from 48 whole proteomes deposited in the AlphaFold Database. On average, we can provide positive classification (either of domains or other identifiable non-domain regions) for 90% of residues in all proteomes. We classified 746,349 domains from 536,808 proteins comprised of over 226,424,000 amino acid residues. We examine the varying populations of homologous groups in both eukaryotes and bacteria. In addition to containing a higher fraction of disordered regions and unassigned domains, eukaryotes show a higher proportion of repeated proteins, both globular and small repeats. We enumerate those highly populated domains that are shared in both eukaryotes and bacteria, such as the Rossmann domains, TIM barrels, and P-loop domains. Additionally, we compare the sampling of homologous groups from this whole proteome set against our stable ECOD reference and discuss groups that have been enriched by structure predictions. Finally, we discuss the implication of these results for protein target selection for future classification strategies for very large protein sets.
Collapse
Affiliation(s)
- R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirill E. Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
10
|
Arai H, Watada M, Kageyama D. Two male-killing Wolbachia from Drosophila birauraia that are closely related but distinct in genome structure. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231502. [PMID: 38204789 PMCID: PMC10776216 DOI: 10.1098/rsos.231502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Insects harbour diverse maternally inherited bacteria and viruses, some of which have evolved to kill the male progeny of their hosts (male killing: MK). The fly species Drosophila biauraria carries a maternally transmitted MK-inducing partiti-like virus, but it was unknown if it carries other MK-inducing endosymbionts. Here, we identified two male-killing Wolbachia strains (wBiau1 and wBiau2) from D. biauraria and compared their genomes to elucidate their evolutionary processes. The two strains were genetically closely related but had exceptionally different genome structures with considerable rearrangements compared with combinations of other Wolbachia strains. Despite substantial changes in the genome structure, the two Wolbachia strains did not experience gene losses that would disrupt the male-killing expression or persistence in the host population. The two Wolbachia-infected matrilines carried distinct mitochondrial haplotypes, suggesting that wBiau1 and wBiau2 have invaded D. biauraria independently and undergone considerable genome changes owing to unknown selective pressures in evolutionary history. This study demonstrated the presence of three male-killers from two distinct origins in one fly species and highlighted the diverse and rapid genome evolution of MK Wolbachia in the host.
Collapse
Affiliation(s)
- Hiroshi Arai
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Masayoshi Watada
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 780-8857, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| |
Collapse
|
11
|
Lee D, Kim DH, Seo H, Choi S, Kim BJ. Phylogenetic distribution of malonate semialdehyde decarboxylase (MSAD) genes among strains within the genus Mycobacterium: evidence of MSAD gene loss in the evolution of pathogenic mycobacteria. Front Microbiol 2023; 14:1275616. [PMID: 37901833 PMCID: PMC10606566 DOI: 10.3389/fmicb.2023.1275616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Despite the great diversity of malonate semialdehyde decarboxylases (MSADs), one of five subgroups of the tautomerase superfamily (TSF) found throughout the biosphere, their distribution among strains within the genus Mycobacterium remains unknown. In this study, we sought to investigate the phylogenetic distribution of MSAD genes of mycobacterial species via genome analysis of 192 different reference Mycobacterium species or subspecies retrieved from NCBI databases. We found that in a total of 87 of 192 strains (45.3%), MSAD-1 and MSAD-2 were distributed in an exclusive manner among Mycobacterium species except for 12 strains, including Mycobacterium chelonae members, with both in their genome. Of note, Mycobacterium strains better adapted to the host and of high virulence potential, such as the Mycobacterium tuberculosis complex, Mycobacterium leprae, Mycobacterium marinum, Mycobacterium ulcerans, and Mycobacterium avium subsp. paratuberculosis, had no orthologs of MSAD in their genome, suggesting MSAD loss during species differentiation in pathogenic slow-growing Mycobacterium. To investigate the MSAD distribution among strains of M. avium subspecies, the genome sequences of a total of 255 reference strains from the four subspecies of M. avium (43 of subspecies avium, 162 of subspecies hominissuis, 49 of subspecies paratuberculosis, and 1 of subspecies silvaticum) were further analyzed. We found that only 121 of 255 strains (47.4%) had MSADs in their genome, with none of the 49 M. avium subsp. paratuberculosis strains having MSAD genes. Even in 13 of 121 M. avium strains with the MSAD-1 gene in their genome, deletion mutations in the 98th codon causing premature termination of MSAD were found, further highlighting the occurrence of MSAD pseudogenization during species or subspecies differentiation of M. avium. In conclusion, our data indicated that there are two distinct types of MSADs, MSAD-1 and MSAD-2, among strains in the Mycobacterium genus, but more than half of the strains, including pathogenic mycobacteria, M. tuberculosis and M. leprae, have no orthologs in their genome, suggesting MSAD loss during host adaptation of pathogenic mycobacteria. In the future, the role of two distinct MSADs, MSAD-1 and MSAD-2, in mycobacterial pathogenesis or evolution should be investigated.
Collapse
Affiliation(s)
- Duhyung Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seaone Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Brain Korea 21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Medical Research Center, Seoul, Republic of Korea
- Brain Korea 21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Wang BX, Butler DS, Hamblin M, Monack DM. One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections. Curr Opin Microbiol 2023; 72:102262. [PMID: 36640585 PMCID: PMC10023398 DOI: 10.1016/j.mib.2022.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Salmonella enterica is one of the most widespread bacterial pathogens found worldwide, resulting in approximately 100 million infections and over 200 000 deaths per year. Salmonella isolates, termed 'serovars', can largely be classified as either nontyphoidal or typhoidal Salmonella, which differ in regard to disease manifestation and host tropism. Nontyphoidal Salmonella causes gastroenteritis in many hosts, while typhoidal Salmonella is human-restricted and causes typhoid fever, a systemic disease with a mortality rate of up to 30% without treatment. There has been considerable interest in understanding how different Salmonella serovars cause different diseases, but the molecular details that underlie these infections have not yet been fully characterized, especially in the case of typhoidal Salmonella. In this review, we highlight the current state of research into understanding the pathogenesis of both nontyphoidal and typhoidal Salmonella, with a specific interest in serovar-specific traits that allow human-adapted strains of Salmonella to cause enteric fever. Overall, a more detailed molecular understanding of how different Salmonella isolates infect humans will provide critical insights into how we can eradicate these dangerous enteric pathogens.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Daniel Sc Butler
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Meagan Hamblin
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Denise M Monack
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Long-term presence of autoantibodies in plasma of cured leprosy patients. Sci Rep 2023; 13:228. [PMID: 36604576 PMCID: PMC9816311 DOI: 10.1038/s41598-022-27256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Autoantibodies have been detected in leprosy patients, indicating that infection with M. leprae may lead to autoimmune disorders. However, whether autoimmune response last until patients are cured is unknown. Knowing the autoimmune response in cured leprosy patients is essential to identify whether symptoms are caused by leprosy itself or by other immune-related diseases. This knowledge is essential for the ongoing health management in cured leprosy patients where autoimmune disorders still exist. In our study, we selected six autoantibodies, including anticardiolipin antibody of IgG (ACA), anti-nuclear antibody (ANA), extractable nuclear antigen antibody (ENA), anti-streptolysin O (ASO), anti-double stranded DNA antibody (dsDNA), and rheumatoid factor (RF), that had been reported in leprosy patients as typical autoantibodies. We tested the six typical autoantibodies combined with LACC1, which encodes a protein associated with autoimmune disease such as Crohn's disease and is also the susceptible gene conferring leprosy risk, in cured leprosy patients through ELISA to assess the cured patient's immune status. We observed high positive rates of autoantibodies in cured leprosy patients, and the average plasma levels of five (ACA, ANA, ENA, ASO, and RF) out of the six autoantibodies were significantly higher in cured leprosy patients than in controls. The positive detection of autoantibodies is independent of the recovery period. Moreover, the level of these autoantibodies showed a strong positive correlation with the level of LACC1 in both controls and cured patients. This study showed that there is long-term autoimmunological activation in leprosy patients, even after decades of recovery. Autoimmune responses may influence the development and prognosis of leprosy. Special care should be given to posttreatment or cured leprosy patients regarding long-term autoimmunological activation.
Collapse
|
14
|
Cohn AR, Orsi RH, Carroll LM, Liao J, Wiedmann M, Cheng RA. Salmonella enterica serovar Cerro displays a phylogenetic structure and genomic features consistent with virulence attenuation and adaptation to cattle. Front Microbiol 2022; 13:1005215. [PMID: 36532462 PMCID: PMC9748477 DOI: 10.3389/fmicb.2022.1005215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
Salmonella enterica subsp. enterica (S.) serovar Cerro is rarely isolated from human clinical cases of salmonellosis but represents the most common serovar isolated from cattle without clinical signs of illness in the United States. In this study, using a large, diverse set of 316 isolates, we utilized genomic methods to further elucidate the evolutionary history of S. Cerro and to identify genomic features associated with its apparent virulence attenuation in humans. Phylogenetic analyses showed that within this polyphyletic serovar, 98.4% of isolates (311/316) represent a monophyletic clade within section Typhi and the remaining 1.6% of isolates (5/316) form a monophyletic clade within subspecies enterica Clade A1. Of the section Typhi S. Cerro isolates, 93.2% of isolates (290/311) clustered into a large clonal clade comprised of predominantly sequence type (ST) 367 cattle and environmental isolates, while the remaining 6.8% of isolates (21/311), primarily from human clinical sources, clustered outside of this clonal clade. A tip-dated phylogeny of S. Cerro ST367 identified two major clades (I and II), one of which overwhelmingly consisted of cattle isolates that share a most recent common ancestor that existed circa 1975. Gene presence/absence and rarefaction curve analyses suggested that the pangenome of section Typhi S. Cerro is open, potentially reflecting the gain/loss of prophage; human isolates contained the most open pangenome, while cattle isolates had the least open pangenome. Hypothetically disrupted coding sequences (HDCs) displayed clade-specific losses of intact speC and sopA virulence genes within the large clonal S. Cerro clade, while loss of intact vgrG, araH, and vapC occurred in all section Typhi S. Cerro isolates. Further phenotypic analysis suggested that the presence of a premature stop codon in speC does not abolish ornithine decarboxylase activity in S. Cerro, likely due to the activity of the second ornithine decarboxylase encoded by speF, which remained intact in all isolates. Overall, our study identifies specific genomic features associated with S. Cerro's infrequent isolation from humans and its apparent adaptation to cattle, which has broader implications for informing our understanding of the evolutionary events facilitating host adaptation in Salmonella.
Collapse
Affiliation(s)
- Alexa R. Cohn
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H. Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Silva FJ, Santos-Garcia D, Zheng X, Zhang L, Han XY. Construction and Analysis of the Complete Genome Sequence of Leprosy Agent Mycobacterium lepromatosis. Microbiol Spectr 2022; 10:e0169221. [PMID: 35467405 PMCID: PMC9248898 DOI: 10.1128/spectrum.01692-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/07/2022] [Indexed: 12/29/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae and Mycobacterium lepromatosis. We report construction and analyses of the complete genome sequence of M. lepromatosis FJ924. The genome contained 3,271,694 nucleotides to encode 1,789 functional genes and 1,564 pseudogenes. It shared 1,420 genes and 885 pseudogenes (71.4%) with M. leprae but differed in 1,281 genes and pseudogenes (28.6%). In phylogeny, the leprosy bacilli started from a most recent common ancestor (MRCA) that diverged ~30 million years ago (Mya) from environmental organism Mycobacterium haemophilum. The MRCA then underwent reductive evolution with pseudogenization, gene loss, and chromosomal rearrangements. Analysis of the shared pseudogenes estimated the pseudogenization event ~14 Mya, shortly before species bifurcation. Afterwards, genomic changes occurred to lesser extent in each species. Like M. leprae, four major types of highly repetitive sequences were detected in M. lepromatosis, contributing to chromosomal rearrangements within and after MRCA. Variations in genes and copy numbers were noted, such as three copies of the gene encoding bifunctional diguanylate cyclase/phosphodiesterase in M. lepromatosis, but single copy in M. leprae; 6 genes encoding the TetR family transcriptional regulators in M. lepromatosis, but 11 such genes in M. leprae; presence of hemW gene in M. lepromatosis, but absence in M. leprae; and others. These variations likely aid unique pathogenesis, such as diffuse lepromatous leprosy associated with M. lepromatosis, while the shared genomic features should explain the common pathogenesis of dermatitis and neuritis in leprosy. Together, these findings and the genomic data of M. lepromatosis may facilitate future research and care for leprosy. IMPORTANCE Leprosy is a dreaded infection that still affects millions of people worldwide. Mycobacterium lepromatosis is a recently recognized cause in addition to the well-known Mycobacterium leprae. M. lepromatosis is likely specific for diffuse lepromatous leprosy, a severe form of the infection and endemic in Mexico. This study constructed and annotated the complete genome sequence of M. lepromatosis FJ924 and performed comparative genomic analyses with related mycobacteria. The results afford new and refined insights into the genome size, gene repertoire, pseudogenes, phylogenomic relationship, genome organization and plasticity, process and timing of reductive evolution, and genetic and proteomic basis for pathogenesis. The availability of the complete M. lepromatosis genome may prove to be useful for future research and care for the infection.
Collapse
Affiliation(s)
- Francisco J. Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Paterna, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology UMR CNRS, University of Lyon, Villeurbanne, France
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiang Y. Han
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Urban C, Blom AA, Pfrengle S, Walker-Meikle K, Stone AC, Inskip SA, Schuenemann VJ. One Health Approaches to Trace Mycobacterium leprae's Zoonotic Potential Through Time. Front Microbiol 2021; 12:762263. [PMID: 34745073 PMCID: PMC8566891 DOI: 10.3389/fmicb.2021.762263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Hansen's disease (leprosy), mainly caused by infection with Mycobacterium leprae, has accompanied humanity for thousands of years. Although currently rare in Europe, there are over 200,000 new infections annually in South East Asia, Africa, and South America. Over the years many disciplines - palaeopathology, ancient DNA and other ancient biomolecules, and history - have contributed to a better understanding of leprosy's past, in particular its history in medieval Europe. We discuss their contributions and potential, especially in relation to the role of inter-species transmission, an unexplored phenomenon in the disease's history. Here, we explore the potential of interdisciplinary approaches that understand disease as a biosocial phenomenon, which is a product of both infection with M. leprae and social behaviours that facilitate transmission and spread. Genetic evidence of M. leprae isolated from archaeological remains combined with systematic zooarchaeological and historical analysis would not only identify when and in what direction transmission occurred, but also key social behaviours and motivations that brought species together. In our opinion, this combination is crucial to understand the disease's zoonotic past and current potential.
Collapse
Affiliation(s)
- Christian Urban
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Alette A. Blom
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | | | - Anne C. Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| | - Sarah A. Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
17
|
Bansal K, Kumar S, Kaur A, Singh A, Patil PB. Deep phylo-taxono genomics reveals Xylella as a variant lineage of plant associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas. Genomics 2021; 113:3989-4003. [PMID: 34610367 DOI: 10.1016/j.ygeno.2021.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Genus Xanthomonas is a group of phytopathogens that is phylogenetically related to Xylella, Stenotrophomonas, and Pseudoxanthomonas, having diverse lifestyles. Xylella is a lethal plant pathogen with a highly reduced genome, atypical GC content and is taxonomically related to these three genera. Deep phylo-taxono genomics reveals that Xylella is a variant Xanthomonas lineage that is sandwiched between Xanthomonas clades. Comparative studies suggest the role of unique pigment and exopolysaccharide gene clusters in the emergence of Xanthomonas and Xylella clades. Pan-genome analysis identified a set of unique genes associated with sub-lineages representing plant-associated Xanthomonas clade and nosocomial origin Stenotrophomonas clade. Overall, our study reveals the importance of reconciling classical phenotypic data and genomic findings in reconstituting the taxonomic status of these four genera. SIGNIFICANCE STATEMENT: Xylella fastidiosa is a devastating pathogen of perennial dicots such as grapes, citrus, coffee, and olives. An insect vector transmits the pathogen to its specific host wherein the infection leads to complete wilting of the plants. The genome of X. fastidiosa is significantly reduced both in terms of size (2 Mb) and GC content (50%) when compared with its relatives such as Xanthomonas, Stenotrophomonas, and Pseudoxanthomonas that have higher GC content (65%) and larger genomes (5 Mb). In this study, using systematic and in-depth genome-based taxonomic and phylogenetic criteria and comparative studies, we assert the need to unify Xanthomonas with its relatives (Xylella, Stenotrophomonas and Pseudoxanthomonas). Interestingly, Xylella revealed itself as a minor variant lineage embedded within two major Xanthomonas lineages comprising member species of different hosts.
Collapse
Affiliation(s)
- Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anu Singh
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
18
|
Gautam S, Sharma D, Goel A, Patil SA, Bisht D. Insights into Mycobacterium leprae Proteomics and Biomarkers-An Overview. Proteomes 2021; 9:7. [PMID: 33573064 PMCID: PMC7931084 DOI: 10.3390/proteomes9010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although leprosy is curable, the identification of biomarkers for the early diagnosis of leprosy would play a pivotal role in reducing transmission and the overall prevalence of the disease. Leprosy-specific biomarkers for diagnosis, particularly for the paucibacillary disease, are not well defined. Therefore, the identification of new biomarkers for leprosy is one of the prime themes of leprosy research. Studying Mycobacterium leprae, the causative agent of leprosy, at the proteomic level may facilitate the identification, quantification, and characterization of proteins that could be potential diagnostics or targets for drugs and can help in better understanding the pathogenesis. This review aims to shed light on the knowledge gained to understand leprosy or its pathogen employing proteomics and its role in diagnosis.
Collapse
Affiliation(s)
- Sakshi Gautam
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
- Department of Biotechnology, GLA University, NH-2, Mathura-Delhi Road, Mathura 281406, India;
| | - Devesh Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| | - Anjana Goel
- Department of Biotechnology, GLA University, NH-2, Mathura-Delhi Road, Mathura 281406, India;
| | - Shripad A. Patil
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| |
Collapse
|
19
|
Borah K, Kearney JL, Banerjee R, Vats P, Wu H, Dahale S, Manjari Kasibhatla S, Joshi R, Bonde B, Ojo O, Lahiri R, Williams DL, McFadden J. GSMN-ML- a genome scale metabolic network reconstruction of the obligate human pathogen Mycobacterium leprae. PLoS Negl Trop Dis 2020; 14:e0007871. [PMID: 32628669 PMCID: PMC7365477 DOI: 10.1371/journal.pntd.0007871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/16/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
Leprosy, caused by Mycobacterium leprae, has plagued humanity for thousands of years and continues to cause morbidity, disability and stigmatization in two to three million people today. Although effective treatment is available, the disease incidence has remained approximately constant for decades so new approaches, such as vaccine or new drugs, are urgently needed for control. Research is however hampered by the pathogen's obligate intracellular lifestyle and the fact that it has never been grown in vitro. Consequently, despite the availability of its complete genome sequence, fundamental questions regarding the biology of the pathogen, such as its metabolism, remain largely unexplored. In order to explore the metabolism of the leprosy bacillus with a long-term aim of developing a medium to grow the pathogen in vitro, we reconstructed an in silico genome scale metabolic model of the bacillus, GSMN-ML. The model was used to explore the growth and biomass production capabilities of the pathogen with a range of nutrient sources, such as amino acids, glucose, glycerol and metabolic intermediates. We also used the model to analyze RNA-seq data from M. leprae grown in mouse foot pads, and performed Differential Producibility Analysis to identify metabolic pathways that appear to be active during intracellular growth of the pathogen, which included pathways for central carbon metabolism, co-factor, lipids, amino acids, nucleotides and cell wall synthesis. The GSMN-ML model is thereby a useful in silico tool that can be used to explore the metabolism of the leprosy bacillus, analyze functional genomic experimental data, generate predictions of nutrients required for growth of the bacillus in vitro and identify novel drug targets.
Collapse
Affiliation(s)
- Khushboo Borah
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jacque-Lucca Kearney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Pankaj Vats
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Huihai Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sonal Dahale
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Sunitha Manjari Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Rajendra Joshi
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Bhushan Bonde
- Head of Innovation Development, IT-Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Olabisi Ojo
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Program, Baton Rouge, Louisiana, United States of America
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Program, Baton Rouge, Louisiana, United States of America
| | - Diana L. Williams
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Program, Baton Rouge, Louisiana, United States of America
| | - Johnjoe McFadden
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
20
|
Satyam R, Bhardwaj T, Jha NK, Jha SK, Nand P. Toward a chimeric vaccine against multiple isolates of Mycobacteroides - An integrative approach. Life Sci 2020; 250:117541. [PMID: 32169520 DOI: 10.1016/j.lfs.2020.117541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 01/31/2023]
Abstract
AIM Nontuberculous mycobacterial (NTM) infection such as endophthalmitis, dacryocystitis, and canaliculitis are pervasive across the globe and are currently managed by antibiotics. However, the recent cases of Mycobacteroides developing drug resistance reported along with the improper practice of medicine intrigued us to explore its genomic and proteomic canvas at a global scale and develop a chimeric vaccine against Mycobacteroides. MAIN METHODS We carried out a vivid genomic study on five recently sequenced strains of Mycobacteroides and explored their Pan-core genome/proteome in three different phases. The promiscuous antigenic proteins were identified via a subtractive proteomics approach that qualified for virulence causation, resistance and essentiality factors for this notorious bacterium. An integrated pipeline was developed for the identification of B-Cell, MHC (Major histocompatibility complex) class I and II epitopes. KEY FINDINGS Phase I identified the shreds of evidence of reductive evolution and propensity of the Pan-genome of Mycobacteroides getting closed soon. Phase II and Phase III produced 8 vaccine constructs. Our final vaccine construct, V6 qualified for all tests such as absence for allergenicity, presence of antigenicity, etc. V6 contains β-defensin as an adjuvant, linkers, Lysosomal-associated membrane protein 1 (LAMP1) signal peptide, and PADRE (Pan HLA-DR epitopes) amino acid sequence. Besides, V6 also interacts with a maximum number of MHC molecules and the TLR4/MD2 (Toll-like receptor 4/Myeloid differentiation factor 2) complex confirmed by docking and molecular dynamics simulation studies. SIGNIFICANCE The knowledge harnessed from the current study can help improve the current treatment regimens or in an event of an outbreak and propel further related studies.
Collapse
Affiliation(s)
- Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering and Technology (NIET), Greater Noida, India
| | - Tulika Bhardwaj
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| |
Collapse
|
21
|
Chavarro-Portillo B, Soto CY, Guerrero MI. Mycobacterium leprae's evolution and environmental adaptation. Acta Trop 2019; 197:105041. [PMID: 31152726 DOI: 10.1016/j.actatropica.2019.105041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
Abstract
Leprosy is an ancient disease caused by the acid-fast bacillus Mycobacterium leprae, also known as Hansen's bacillus. M. leprae is an obligate intracellular microorganism with a marked Schwann cell tropism and is the only human pathogen capable of invading the superficial peripheral nerves. The transmission mechanism of M. leprae is not fully understood; however, the nasal mucosa is accepted as main route of M. leprae entry to the human host. The complete sequencing and the comparative genome analysis show that M. leprae underwent a genome reductive evolution process, as result of lifestyle change and adaptation to different environments; some of lost genes are homologous to those of host cells. Thus, M. leprae reduced its genome size to 3.3 Mbp, contributing to obtain the lowest GC content (approximately 58%) among mycobacteria. The M. leprae genome contains 1614 open reading frames coding for functional proteins, and 1310 pseudogenes corresponding to 41% of the genome, approximately. Comparative analyses to different microorganisms showed that M. leprae possesses the highest content of pseudogenes among pathogenic and non-pathogenic bacteria and archaea. The pathogen adaptation into host cells, as the Schwann cells, brought about the reduction of the genome and induced multiple gene inactivation. The present review highlights the characteristics of genome's reductive evolution that M. leprae experiences in the genetic aspects compared with other pathogens. The possible mechanisms of pseudogenes formation are discussed.
Collapse
|
22
|
Bohlin J, Pettersson JHO. Evolution of Genomic Base Composition: From Single Cell Microbes to Multicellular Animals. Comput Struct Biotechnol J 2019; 17:362-370. [PMID: 30949307 PMCID: PMC6429543 DOI: 10.1016/j.csbj.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
Whole genome sequencing (WGS) of thousands of microbial genomes has provided considerable insight into evolutionary mechanisms in the microbial world. While substantially fewer eukaryotic genomes are available for analyses the number is rapidly increasing. This mini-review summarizes broadly evolutionary dynamics of base composition in the different domains of life from the perspective of prokaryotes. Common and different evolutionary mechanisms influencing genomic base composition in eukaryotes and prokaryotes are discussed. The conclusion from the data currently available suggests that while there are similarities there are also striking differences in how genomic base composition has evolved within prokaryotes and eukaryotes. For instance, homologous recombination appears to increase GC content locally in eukaryotes due to a non-selective process termed GC-biased gene conversion (gBGC). For prokaryotes on the other hand, increase in genomic GC content seems to be driven by the environment and selection. We find that similar phenomena observed for some organisms in each respective domain may be caused by very different mechanisms: while gBGC and recombination rates appear to explain the negative correlation between GC3 (GC content based on the third codon nucleotides) and genome size in some eukaryotes uptake of AT rich DNA sequences is the main reason for a similar negative correlation observed in prokaryotes. We provide further examples that indicate that base composition in prokaryotes and eukaryotes have evolved under very different constraints.
Collapse
Affiliation(s)
- Jon Bohlin
- Norwegian Institute of Public Health, Division of Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Lovisenberggata 8, 0456 Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, PO-Box 222 Skøyen, N-0213 Oslo, Norway.,Norwegian University of Life Sciences, Faculty of Veterinary Sciences, Production Animal Clinical Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - John H-O Pettersson
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School the University of Sydney, New South Wales 2006, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Public Health Agency of Sweden, Nobels vg 18, SE-171 82 Solna, Sweden
| |
Collapse
|
23
|
Abstract
Humans encounter mycobacterial species due to their ubiquity in different environmental niches. In many individuals, pathogenic mycobacterial species may breach our first-line barrier defenses of the innate immune system and modulate the activation of phagocytes to cause disease of the respiratory tract or the skin and soft tissues, sometimes resulting in disseminated infection. Cutaneous mycobacterial infections may cause a wide range of clinical manifestations, which are divided into four main disease categories: (i) cutaneous manifestations of Mycobacterium tuberculosis infection, (ii) Buruli ulcer caused by Mycobacterium ulcerans and other related slowly growing mycobacteria, (iii) leprosy caused by Mycobacterium leprae and Mycobacterium lepromatosis, and (iv) cutaneous infections caused by rapidly growing mycobacteria. Clinically, cutaneous mycobacterial infections present with widely different clinical presentations, including cellulitis, nonhealing ulcers, subacute or chronic nodular lesions, abscesses, superficial lymphadenitis, verrucous lesions, and other types of findings. Mycobacterial infections of the skin and subcutaneous tissue are associated with important stigma, deformity, and disability. Geography-based environmental exposures influence the epidemiology of cutaneous mycobacterial infections. Cutaneous tuberculosis exhibits different clinical phenotypes acquired through different routes, including via extrinsic inoculation of the tuberculous bacilli and dissemination to the skin from other sites, or represents hypersensitivity reactions to M. tuberculosis infection. In many settings, leprosy remains an important cause of neurological impairment, deformity, limb loss, and stigma. Mycobacterium lepromatosis, a mycobacterial species related to M. leprae, is linked to diffuse lepromatous leprosy of Lucio and Latapí. Mycobacterium ulcerans produces a mycolactone toxin that leads to subcutaneous tissue destruction and immunosuppression, resulting in deep ulcerations that often produce substantial disfigurement and disability. Mycobacterium marinum, a close relative of M. ulcerans, is an important cause of cutaneous sporotrichoid nodular lymphangitic lesions. Among patients with advanced immunosuppression, Mycobacterium kansasii, the Mycobacterium avium-intracellulare complex, and Mycobacterium haemophilum may cause cutaneous or disseminated disease. Rapidly growing mycobacteria, including the Mycobacterium abscessus group, Mycobacterium chelonei, and Mycobacterium fortuitum, are increasingly recognized pathogens in cutaneous infections associated particularly with plastic surgery and cosmetic procedures. Skin biopsies of cutaneous lesions to identify acid-fast staining bacilli and cultures represent the cornerstone of diagnosis. Additionally, histopathological evaluation of skin biopsy specimens may be useful in identifying leprosy, Buruli ulcer, and cutaneous tuberculosis. Molecular assays are useful in some cases. The treatment for cutaneous mycobacterial infections depends on the specific pathogen and therefore requires a careful consideration of antimicrobial choices based on official treatment guidelines.
Collapse
|
24
|
Danneels B, Pinto-Carbó M, Carlier A. Patterns of Nucleotide Deletion and Insertion Inferred from Bacterial Pseudogenes. Genome Biol Evol 2018; 10:1792-1802. [PMID: 29982456 PMCID: PMC6054270 DOI: 10.1093/gbe/evy140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Pseudogenes are a paradigm of neutral evolution and their study has the potential to reveal intrinsic mutational biases. However, this potential is mitigated by the fact that pseudogenes are quickly purged from bacterial genomes. Here, we assembled a large set of pseudogenes from genomes experiencing reductive evolution as well as functional references for which we could establish reliable phylogenetic relationships. Using this unique dataset, we identified 857 independent insertion and deletion mutations and discover a pervasive bias towards deletions, but not insertions, with sizes multiples of 3 nt. We further show that selective constraints for the preservation of gene frame are unlikely to account for the observed mutational bias and propose that a mechanistic bias in alternative end-joining repair, a recombination-independent double strand break DNA repair mechanism, is responsible for the accumulation of 3n deletions.
Collapse
Affiliation(s)
- Bram Danneels
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Marta Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Aurelien Carlier
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| |
Collapse
|
25
|
Sharma M, Das M, Diana D, Wedderburn A, Anindya R. Identification of novel open reading frames in the intergenic regions of Mycobacterium leprae genome and detection of transcript by qRT-PCR. Microb Pathog 2018; 124:316-321. [DOI: 10.1016/j.micpath.2018.08.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
26
|
Avni E, Montoya D, Lopez D, Modlin R, Pellegrini M, Snir S. A phylogenomic study quantifies competing mechanisms for pseudogenization in prokaryotes-The Mycobacterium leprae case. PLoS One 2018; 13:e0204322. [PMID: 30383852 PMCID: PMC6211624 DOI: 10.1371/journal.pone.0204322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/06/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pseudogenes are non-functional sequences in the genome with homologous sequences that are functional (i.e. genes). They are abundant in eukaryotes where they have been extensively investigated, while in prokaryotes they are significantly scarcer and less well studied. Here we conduct a comprehensive analysis of the evolution of orthologs of Mycobacterium leprae pseudogenes in prokaryotes. The leprosy pathogen M. leprae is of particular interest since it contains an unusually large number of pseudogenes, comprising approximately 40% of its entire genome. The analysis is conducted in both broad and narrow phylogenetic ranges. RESULTS We have developed an informatics-based approach to characterize the evolution of pseudogenes. This approach combines tools from phylogenomics, genomics, and transcriptomics. The results we obtain are used to assess the contributions of two mechanisms for pseudogene formation: failed horizontal gene transfer events and disruption of native genes. CONCLUSIONS We conclude that, although it was reported that in most bacteria the former is most likely responsible for the majority of pseudogenization events, in mycobacteria, and in particular in M. leprae with its exceptionally high pseudogene numbers, the latter predominates. We believe that our study sheds new light on the evolution of pseudogenes in bacteria, by utilizing new methodologies that are applied to the unusually abundant M. leprae pseudogenes and their orthologs.
Collapse
Affiliation(s)
- Eliran Avni
- Dept. of Evolutionary Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dennis Montoya
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - David Lopez
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Robert Modlin
- Dept. of Microbiology, Immunology and Molecular Genetics, and Division of Dermatology, David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Matteo Pellegrini
- Dept. of Molecular, Cell and Developmental Biology; University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Sagi Snir
- Dept. of Evolutionary Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
27
|
McNally CP, Borenstein E. Metabolic model-based analysis of the emergence of bacterial cross-feeding via extensive gene loss. BMC SYSTEMS BIOLOGY 2018; 12:69. [PMID: 29907104 PMCID: PMC6003207 DOI: 10.1186/s12918-018-0588-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
Abstract
Background Metabolic dependencies between microbial species have a significant impact on the assembly and activity of microbial communities. However, the evolutionary origins of such dependencies and the impact of metabolic and genomic architecture on their emergence are not clear. Results To address these questions, we developed a novel framework, coupling a reductive evolution model with a multi-species genome-scale metabolic model to simulate the evolution of two-species microbial communities. Simulating thousands of independent evolutionary trajectories, we surprisingly found that under certain environmental and evolutionary settings metabolic dependencies emerged frequently even though our model does not include explicit selection for cooperation. Evolved dependencies involved cross-feeding of a diverse set of metabolites, reflecting constraints imposed by metabolic network architecture. We additionally found metabolic ‘missed opportunities’, wherein species failed to capitalize on metabolites made available by their partners. Examining the genes deleted in each evolutionary trajectory and the deletion timing further revealed both genome-wide properties and specific metabolic mechanisms associated with species interaction. Conclusion Our findings provide insight into the evolution of cooperative interaction among microbial species and a unique view into the way such relationships emerge. Electronic supplementary material The online version of this article (10.1186/s12918-018-0588-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin P McNally
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. .,Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA. .,Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
28
|
Coppola M, van den Eeden SJF, Robbins N, Wilson L, Franken KLMC, Adams LB, Gillis TP, Ottenhoff THM, Geluk A. Vaccines for Leprosy and Tuberculosis: Opportunities for Shared Research, Development, and Application. Front Immunol 2018. [PMID: 29535713 PMCID: PMC5834475 DOI: 10.3389/fimmu.2018.00308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) and leprosy still represent significant public health challenges, especially in low- and lower middle-income countries. Both poverty-related mycobacterial diseases require better tools to improve disease control. For leprosy, there has been an increased emphasis on developing tools for improved detection of infection and early diagnosis of disease. For TB, there has been a similar emphasis on such diagnostic tests, while increased research efforts have also focused on the development of new vaccines. Bacille Calmette–Guérin (BCG), the only available TB vaccine, provides insufficient and inconsistent protection to pulmonary TB in adults. The impact of BCG on leprosy, however, is significant, and the introduction of new TB vaccines that might replace BCG could, therefore, have serious impact also on leprosy. Given the similarities in antigenic makeup between the pathogens Mycobacterium tuberculosis (Mtb) and M. leprae, it is well possible, however, that new TB vaccines could cross-protect against leprosy. New TB subunit vaccines currently evaluated in human phase I and II studies indeed often contain antigens with homologs in M. leprae. In this review, we discuss pre-clinical studies and clinical trials of subunit or whole mycobacterial vaccines for TB and leprosy and reflect on the development of vaccines that could provide protection against both diseases. Furthermore, we provide the first preclinical evidence of such cross-protection by Mtb antigen 85B (Ag85B)-early secretory antigenic target (ESAT6) fusion recombinant proteins in in vivo mouse models of Mtb and M. leprae infection. We propose that preclinical integration and harmonization of TB and leprosy research should be considered and included in global strategies with respect to cross-protective vaccine research and development.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Naoko Robbins
- The National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Louis Wilson
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Linda B Adams
- The National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Tom P Gillis
- The National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Honap TP, Pfister LA, Housman G, Mills S, Tarara RP, Suzuki K, Cuozzo FP, Sauther ML, Rosenberg MS, Stone AC. Mycobacterium leprae genomes from naturally infected nonhuman primates. PLoS Negl Trop Dis 2018; 12:e0006190. [PMID: 29381722 PMCID: PMC5790234 DOI: 10.1371/journal.pntd.0006190] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
Leprosy is caused by the bacterial pathogens Mycobacterium leprae and Mycobacterium lepromatosis. Apart from humans, animals such as nine-banded armadillos in the Americas and red squirrels in the British Isles are naturally infected with M. leprae. Natural leprosy has also been reported in certain nonhuman primates, but it is not known whether these occurrences are due to incidental infections by human M. leprae strains or by M. leprae strains specific to nonhuman primates. In this study, complete M. leprae genomes from three naturally infected nonhuman primates (a chimpanzee from Sierra Leone, a sooty mangabey from West Africa, and a cynomolgus macaque from The Philippines) were sequenced. Phylogenetic analyses showed that the cynomolgus macaque M. leprae strain is most closely related to a human M. leprae strain from New Caledonia, whereas the chimpanzee and sooty mangabey M. leprae strains belong to a human M. leprae lineage commonly found in West Africa. Additionally, samples from ring-tailed lemurs from the Bezà Mahafaly Special Reserve, Madagascar, and chimpanzees from Ngogo, Kibale National Park, Uganda, were screened using quantitative PCR assays, to assess the prevalence of M. leprae in wild nonhuman primates. However, these samples did not show evidence of M. leprae infection. Overall, this study adds genomic data for nonhuman primate M. leprae strains to the existing M. leprae literature and finds that this pathogen can be transmitted from humans to nonhuman primates as well as between nonhuman primate species. While the prevalence of natural leprosy in nonhuman primates is likely low, nevertheless, future studies should continue to explore the prevalence of leprosy-causing pathogens in the wild. Mycobacterium leprae, which causes leprosy in humans, also infects nine-banded armadillos, red squirrels, and nonhuman primates. Genomic data for M. leprae strains from wild armadillos and red squirrels show that humans were responsible for the original introduction of M. leprae to these species. It is not known whether naturally occurring leprosy among nonhuman primates is due to incidental infections from humans or whether nonhuman primates can serve as a host for M. leprae. To this end, we sequenced complete genomes of M. leprae strains from three naturally infected nonhuman primates. Our results suggest that M. leprae strains can be transmitted from humans to nonhuman primates as well as between nonhuman primate species, and thus, other primates might serve as a host for M. leprae in the wild. We also assessed whether wild ring-tailed lemurs from Madagascar and chimpanzees from Uganda showed presence of M. leprae infection. Although these populations tested negative for M. leprae infection, further research on the prevalence of M. leprae in other wild nonhuman primate populations, especially in leprosy-endemic regions, is warranted.
Collapse
Affiliation(s)
- Tanvi P. Honap
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail: (TPH); (ACS)
| | - Luz-Andrea Pfister
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Sarah Mills
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Ross P. Tarara
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Teikyo University, Tokyo, Japan
| | - Frank P. Cuozzo
- Lajuma Research Centre, Louis Trichardt (Machado), South Africa
| | - Michelle L. Sauther
- Department of Anthropology, University of Colorado, Boulder, Colorado, United States of America
| | - Michael S. Rosenberg
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Anne C. Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- * E-mail: (TPH); (ACS)
| |
Collapse
|
30
|
Steffani-Vallejo JL, Brunck ME, Acosta-Cruz EY, Montiel R, Barona-Gómez F. Genomic insights into Mycobacterium simiae human colonization. Stand Genomic Sci 2018; 13:1. [PMID: 29340007 PMCID: PMC5759803 DOI: 10.1186/s40793-017-0291-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium simiae (Karassova V, Weissfeiler J, Kraszanay E, Acta Microbiol Acad Sci Hung 12:275-82, 1965) is a slow-growing nontuberculous Mycobacterium species found in environmental niches, and recently evidenced as an opportunistic Human pathogen. We report here the genome of a clinical isolate of M. simiae (MsiGto) obtained from a patient in Guanajuato, Mexico. With a size of 6,684,413 bp, the genomic sequence of strain MsiGto is the largest of the three M. simiae genomes reported to date. Gene prediction revealed 6409 CDSs in total, including 6354 protein-coding genes and 52 RNA genes. Comparative genomic analysis identified shared features between strain MsiGto and the other two reported M. simiae genomes, as well as unique genes. Our data reveals that M. simiae MsiGto harbors virulence-related genes, such as arcD, ESAT-6, and those belonging to the antigen 85 complex and mce clusters, which may explain its successful transition to the human host. We expect the genome information of strain MsiGto will provide a better understanding of infective mechanisms and virulence of this emergent pathogen.
Collapse
Affiliation(s)
- José L. Steffani-Vallejo
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Marion E. Brunck
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Erika Y. Acosta-Cruz
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
- Paleogenomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
- Present address: Laboratorio de Biología Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | - Rafael Montiel
- Paleogenomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| |
Collapse
|
31
|
Abstract
Coevolution of pathogens and host has led to many metabolic strategies employed by intracellular pathogens to deal with the immune response and the scarcity of food during infection. Simply put, bacterial pathogens are just looking for food. As a consequence, the host has developed strategies to limit nutrients for the bacterium by containment of the intruder in a pathogen-containing vacuole and/or by actively depleting nutrients from the intracellular space, a process called nutritional immunity. Since metabolism is a prerequisite for virulence, such pathways could potentially be good targets for antimicrobial therapies. In this chapter, we review the current knowledge about the in vivo diet of Mycobacterium tuberculosis, with a focus on amino acid and cofactors, discuss evidence for the bacilli's nutritionally independent lifestyle in the host, and evaluate strategies for new chemotherapeutic interventions.
Collapse
|
32
|
Decoding the similarities and differences among mycobacterial species. PLoS Negl Trop Dis 2017; 11:e0005883. [PMID: 28854187 PMCID: PMC5595346 DOI: 10.1371/journal.pntd.0005883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/12/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
Mycobacteriaceae comprises pathogenic species such as Mycobacterium tuberculosis, M. leprae and M. abscessus, as well as non-pathogenic species, for example, M. smegmatis and M. thermoresistibile. Genome comparison and annotation studies provide insights into genome evolutionary relatedness, identify unique and pathogenicity-related genes in each species, and explore new targets that could be used for developing new diagnostics and therapeutics. Here, we present a comparative analysis of ten-mycobacterial genomes with the objective of identifying similarities and differences between pathogenic and non-pathogenic species. We identified 1080 core orthologous clusters that were enriched in proteins involved in amino acid and purine/pyrimidine biosynthetic pathways, DNA-related processes (replication, transcription, recombination and repair), RNA-methylation and modification, and cell-wall polysaccharide biosynthetic pathways. For their pathogenicity and survival in the host cell, pathogenic species have gained specific sets of genes involved in repair and protection of their genomic DNA. M. leprae is of special interest owing to its smallest genome (1600 genes and ~1300 psuedogenes), yet poor genome annotation. More than 75% of the pseudogenes were found to have a functional ortholog in the other mycobacterial genomes and belong to protein families such as transferases, oxidoreductases and hydrolases. Members of the Mycobacteriaceae family, which are known to adapt to different environmental niches, comprise bacterial species with varied genome sizes. They are unique in their cell-wall composition, which is remarkably thick and lipid-rich as compared to other bacteria. We performed a comparative analysis at the proteome level for ten mycobacterial species that differ in their pathogenicity, genome size and environmental niches. A total of 1080 orthologous clusters with representation from all ten species were obtained, and these were further examined for their domain annotations, domain architecture similarities and enriched GO terms. These core orthologous clusters are enriched in various biosynthetic pathways. The proteins that are specific to each of the ten species were also investigated for their GO functions. The M. leprae genome has a large number of pseudogenes and we searched for their functional orthologs in other mycobacterial species in order to understand the functions that are lost from the M. leprae genome. The proteins present exclusively in M. leprae genome were studied in more detail, in order to predict putative drug targets and diagnostic markers. These findings, which have implications in understanding evolution of mycobacterial genomes, identify species-specific proteins that have potential for use in developing new diagnostic tools and therapeutics.
Collapse
|
33
|
Common variants in the PARL and PINK1 genes increase the risk to leprosy in Han Chinese from South China. Sci Rep 2016; 6:37086. [PMID: 27876828 PMCID: PMC5120299 DOI: 10.1038/srep37086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023] Open
Abstract
Leprosy is a chronic infectious and neurological disease caused by Mycobacterium leprae, an unculturable pathogen with massive genomic decay and dependence on host metabolism. We hypothesized that mitochondrial genes PARL and PINK1 would confer risk to leprosy. Thirteen tag SNPs of PARL and PINK1 were analyzed in 3620 individuals with or without leprosy from China. We also sequenced the entire exons of PARL, PINK1 and PARK2 in 80 patients with a family history of leprosy by using the next generation sequencing technology (NGS). We found that PARL SNP rs12631031 conferred a risk to leprosy (Padjusted = 0.019) and multibacillary leprosy (MB, Padjusted = 0.020) at the allelic level. rs12631031 and rs7653061 in PARL were associated with leprosy and MB (dominant model, Padjusted < 0.05) at the genotypic level. PINK1 SNP rs4704 was associated with leprosy at the genotypic level (Padjusted = 0.004). We confirmed that common variants in PARL and PINK1 were associated with leprosy in patients underwent NGS. Furthermore, PARL and PINK1 could physically interact with each other and were involved in the highly connected network formed by reported leprosy susceptibility genes. Together, our results showed that PARL and PINK1 genetic variants are associated with leprosy.
Collapse
|
34
|
Genetic variants of the MAVS, MITA and MFN2 genes are not associated with leprosy in Han Chinese from Southwest China. INFECTION GENETICS AND EVOLUTION 2016; 45:105-110. [DOI: 10.1016/j.meegid.2016.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
|
35
|
Kuang MC, Hutchins PD, Russell JD, Coon JJ, Hittinger CT. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network. eLife 2016; 5:e19027. [PMID: 27690225 PMCID: PMC5089864 DOI: 10.7554/elife.19027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022] Open
Abstract
The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.
Collapse
Affiliation(s)
- Meihua Christina Kuang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
- JF Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Madison, United States
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
| | - Paul D Hutchins
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
| | - Jason D Russell
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
- Metabolism Research Group, Morgridge Institute for Research, Madison, United States
| | - Joshua J Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
- Metabolism Research Group, Morgridge Institute for Research, Madison, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
- JF Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Madison, United States
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
36
|
Estimation of Gene Insertion/Deletion Rates with Missing Data. Genetics 2016; 204:513-529. [PMID: 27565162 DOI: 10.1534/genetics.116.191973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
Lateral gene transfer is an important mechanism for evolution among bacteria. Here, genome-wide gene insertion and deletion rates are modeled in a maximum-likelihood framework with the additional flexibility of modeling potential missing data. The performance of the models is illustrated using simulations and a data set on gene family phyletic patterns from Gardnerella vaginalis that includes an ancient taxon. A novel application involving pseudogenization/genome reduction magnitudes is also illustrated, using gene family data from Mycobacterium spp. Finally, an R package called indelmiss is available from the Comprehensive R Archive Network at https://cran.r-project.org/package=indelmiss, with support documentation and examples.
Collapse
|
37
|
Pouyet F, Bailly-Bechet M, Mouchiroud D, Guéguen L. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage. Genome Biol Evol 2016; 8:2427-41. [PMID: 27401173 PMCID: PMC5010899 DOI: 10.1093/gbe/evw165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences.
Collapse
Affiliation(s)
- Fanny Pouyet
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Marc Bailly-Bechet
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Dominique Mouchiroud
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Laurent Guéguen
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| |
Collapse
|
38
|
Franco-Paredes C, Rodriguez-Morales AJ. Unsolved matters in leprosy: a descriptive review and call for further research. Ann Clin Microbiol Antimicrob 2016; 15:33. [PMID: 27209077 PMCID: PMC4875741 DOI: 10.1186/s12941-016-0149-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/11/2016] [Indexed: 10/25/2022] Open
Abstract
Leprosy, a chronic mycobacterial infection caused by Mycobacterium leprae, is an infectious disease that has ravaged human societies throughout millennia. This ancestral pathogen causes disfiguring cutaneous lesions, peripheral nerve injury, ostearticular deformity, limb loss and dysfunction, blindness and stigma. Despite ongoing efforts in interrupting leprosy transmission, large numbers of new cases are persistently identified in many endemic areas. Moreover, at the time of diagnosis, most newly identified cases have considerable neurologic disability. Many challenges remain in our understanding of the epidemiology of leprosy including: (a) the precise mode and route of transmission; (b) the socioeconomic, environmental, and behavioral factors that promote its transmission; and
Collapse
Affiliation(s)
- Carlos Franco-Paredes
- Infectious Diseases Clinic, Phoebe Putney Memorial Hospital, 507 3rd Avenue, Albany, GA, 31721, USA. .,Hospital Infantil de México, Federico Gómez, Mexico D.F., Mexico.
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
| |
Collapse
|
39
|
Akinola RO, Mazandu GK, Mulder NJ. A Quantitative Approach to Analyzing Genome Reductive Evolution Using Protein-Protein Interaction Networks: A Case Study of Mycobacterium leprae. Front Genet 2016; 7:39. [PMID: 27066064 PMCID: PMC4809885 DOI: 10.3389/fgene.2016.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/08/2016] [Indexed: 01/18/2023] Open
Abstract
The advance in high-throughput sequencing technologies has yielded complete genome sequences of several organisms, including complete bacterial genomes. The growing number of these available sequenced genomes has enabled analyses of their dynamics, as well as the molecular and evolutionary processes which these organisms are under. Comparative genomics of different bacterial genomes have highlighted their genome size and gene content in association with lifestyles and adaptation to various environments and have contributed to enhancing our understanding of the mechanisms of their evolution. Protein–protein functional interactions mediate many essential processes for maintaining the stability of the biological systems under changing environmental conditions. Thus, these interactions play crucial roles in the evolutionary processes of different organisms, especially for obligate intracellular bacteria, proven to generally have reduced genome sizes compared to their nearest free-living relatives. In this study, we used the approach based on the Renormalization Group (RG) analysis technique and the Maximum-Excluded-Mass-Burning (MEMB) model to investigate the evolutionary process of genome reduction in relation to the organization of functional networks of two organisms. Using a Mycobacterium leprae (MLP) network in comparison with a Mycobacterium tuberculosis (MTB) network as a case study, we show that reductive evolution in MLP was as a result of removal of important proteins from neighbors of corresponding orthologous MTB proteins. While each orthologous MTB protein had an increase in number of interacting partners in most instances, the corresponding MLP protein had lost some of them. This work provides a quantitative model for mapping reductive evolution and protein–protein functional interaction network organization in terms of roles played by different proteins in the network structure.
Collapse
Affiliation(s)
- Richard O Akinola
- Computational Biology Group, Department of Integrative Biomedical Sciences, Medical School, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa; Department of Mathematics, Faculty of Natural Sciences, University of JosJos, Nigeria
| | - Gaston K Mazandu
- Computational Biology Group, Department of Integrative Biomedical Sciences, Medical School, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa; African Institute for Mathematical SciencesCape Town, South Africa; African Institute for Mathematical SciencesCape Coast, Ghana
| | - Nicola J Mulder
- Computational Biology Group, Department of Integrative Biomedical Sciences, Medical School, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| |
Collapse
|
40
|
Zhang DF, Wang D, Li YY, Yao YG. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile. J Dermatol Sci 2016; 82:18-27. [PMID: 26805555 DOI: 10.1016/j.jdermsci.2016.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. OBJECTIVES To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. METHODS We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. RESULTS A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. CONCLUSIONS Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity.
Collapse
Affiliation(s)
- Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| | - Dong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yu-Ye Li
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| |
Collapse
|
41
|
Xiang YL, Zhang DF, Wang D, Li YY, Yao YG. Common variants of OPA1 conferring genetic susceptibility to leprosy in Han Chinese from Southwest China. J Dermatol Sci 2015; 80:133-41. [PMID: 26360011 DOI: 10.1016/j.jdermsci.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Leprosy is an ancient chronic infection caused by Mycobacterium leprae. Onset of leprosy was highly affected by host nutritional condition and energy production, (partially) due to genomic loss and parasitic life style of M. leprae. The optic atrophy 1 (OPA1) gene plays an essential role in mitochondria, which function in cellular energy supply and innate immunity. OBJECTIVE To investigate the potential involvement of OPA1 in leprosy. METHODS We analyzed 7 common genetic variants of OPA1 in 1110 Han Chinese subjects with and without leprosy, followed by mRNA expression profiling and protein-protein interaction (PPI) network analysis. RESULTS We observed positive associations between OPA1 variants rs9838374 (Pgenotypic=0.003) and rs414237 (Pgenotypic=0.002) with lepromatous leprosy. expression quantitative trait loci (eQTL) analysis showed that the leprosy-related risk allele C of rs414237 is correlated with lower OPA1 mRNA expression level. Indeed, we identified a decrease of OPA1 mRNA expression in both with patients and cellular model of leprosy. In addition, the PPI analysis showed that OPA1 protein was actively involved in the interaction network of M. leprae induced differentially expressed genes. CONCLUSION Our results indicated that OPA1 variants confer risk of leprosy and may affect OPA1 expression, mitochondrial function and antimicrobial pathways.
Collapse
Affiliation(s)
- Yang-Lin Xiang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Dong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Yu-Ye Li
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
42
|
Abstract
Mycobacterium tuberculosis is able to utilize cholesterol as a carbon source, and this ability is linked to its virulence in macrophages and in the mouse model of infection. The M. tuberculosis cytochrome P450 Cyp125 plays a key role in cholesterol metabolism being involved in the first steps of its degradation. Cyp125 is a cholesterol hydroxylase which is essential for cholesterol catabolism in M. bovis BCG and some strains of M. tuberculosis. We generated an unmarked, in-frame deletion of Cyp125 in M. tuberculosis H37Rv. The deletion strain was able to grow as well as wild-type in medium containing glucose as the carbon source. The Cyp125 deletion strain was more sensitive to growth inhibition by clotrimazole consistent with the ability of Cyp125 to bind azoles with high affinity. The deletion strain showed no difference in sensitivity to nitric oxide or hydrogen peroxide and was not attenuated for growth inside THP-1 human macrophage-like cells. These data suggest that the attenuation of virulence seen in operon deletion strains is not linked to the lack of Cyp125 alone.
Collapse
Affiliation(s)
- Paul Carroll
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Infectious Disease, London, United Kingdom
| | - Tanya Parish
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Infectious Disease, London, United Kingdom
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
43
|
Bolotin E, Hershberg R. Gene Loss Dominates As a Source of Genetic Variation within Clonal Pathogenic Bacterial Species. Genome Biol Evol 2015; 7:2173-87. [PMID: 26163675 PMCID: PMC4558853 DOI: 10.1093/gbe/evv135] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some of the most dangerous pathogens such as Mycobacterium tuberculosis and Yersinia pestis evolve clonally. This means that little or no recombination occurs between strains belonging to these species. Paradoxically, although different members of these species show extreme sequence similarity of orthologous genes, some show considerable intraspecies phenotypic variation, the source of which remains elusive. To examine the possible sources of phenotypic variation within clonal pathogenic bacterial species, we carried out an extensive genomic and pan-genomic analysis of the sources of genetic variation available to a large collection of clonal and nonclonal pathogenic bacterial species. We show that while nonclonal species diversify through a combination of changes to gene sequences, gene loss and gene gain, gene loss completely dominates as a source of genetic variation within clonal species. Indeed, gene loss is so prevalent within clonal species as to lead to levels of gene content variation comparable to those found in some nonclonal species that are much more diverged in their gene sequences and that acquire a substantial number of genes horizontally. Gene loss therefore needs to be taken into account as a potential dominant source of phenotypic variation within clonal bacterial species.
Collapse
Affiliation(s)
- Evgeni Bolotin
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
44
|
Gola S, Munder T, Casonato S, Manganelli R, Vicente M. The essential role of SepF in mycobacterial division. Mol Microbiol 2015; 97:560-76. [DOI: 10.1111/mmi.13050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Susanne Gola
- Centro Nacional de Biotecnología - CSIC; Calle Darwin 3 28049 Madrid Spain
| | - Thomas Munder
- Department of Medical Engineering and Biotechnology; Ernst-Abbe-Hochschule Jena - University of Applied Sciences; Carl-Zeiss-Promenade 2 07745 Jena Germany
| | - Stefano Casonato
- Department of Molecular Medicine; University of Padova; V. Gabelli 63 35121 Padova Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine; University of Padova; V. Gabelli 63 35121 Padova Italy
| | - Miguel Vicente
- Centro Nacional de Biotecnología - CSIC; Calle Darwin 3 28049 Madrid Spain
| |
Collapse
|
45
|
Tan JL, Ngeow YF, Wee WY, Wong GJ, Ng HF, Choo SW. Comparative genomic analysis of Mycobacterium iranicum UM_TJL against representative mycobacterial species suggests its environmental origin. Sci Rep 2014; 4:7169. [PMID: 25417557 PMCID: PMC4241510 DOI: 10.1038/srep07169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/04/2014] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium iranicum is a newly reported mycobacterial species. We present the first comparative study of M. iranicum UM_TJL and other mycobacteria. We found M. iranicum to have a close genetic association with environmental mycobacteria infrequently associated with human infections. Nonetheless, UM_TJL is also equipped with many virulence genes (some of which appear to be the consequence of transduction-related gene transfer) that have been identified in established human pathogens. Taken all together, our data suggest that M. iranicum is an environmental bacterium adapted for pathogenicity in the human host. This comparative study provides important clues and forms the basis for future functional studies on this mycobacterium.
Collapse
Affiliation(s)
- Joon Liang Tan
- 1] Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia [2] Genome Informatics Research Laboratory, High Impact Research (HIR) Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Fong Ngeow
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei Yee Wee
- 1] Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Genome Informatics Research Laboratory, High Impact Research (HIR) Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Guat Jah Wong
- 1] Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Genome Informatics Research Laboratory, High Impact Research (HIR) Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Hien Fuh Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- 1] Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia [2] Genome Informatics Research Laboratory, High Impact Research (HIR) Building, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
D'Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. LESS IS MORE: SELECTIVE ADVANTAGES CAN EXPLAIN THE PREVALENT LOSS OF BIOSYNTHETIC GENES IN BACTERIA. Evolution 2014; 68:2559-70. [DOI: 10.1111/evo.12468] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Glen D'Souza
- Experimental Ecology and Evolution Research Group; Department of Bioorganic Chemistry; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Silvio Waschina
- Experimental Ecology and Evolution Research Group; Department of Bioorganic Chemistry; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
- Research Group Theoretical Systems Biology; Friedrich Schiller University of Jena; 07743 Jena Germany
| | - Samay Pande
- Experimental Ecology and Evolution Research Group; Department of Bioorganic Chemistry; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
| | - Katrin Bohl
- Research Group Theoretical Systems Biology; Friedrich Schiller University of Jena; 07743 Jena Germany
- Department of Bioinformatics; Friedrich Schiller University Jena; Jena Germany
| | - Christoph Kaleta
- Research Group Theoretical Systems Biology; Friedrich Schiller University of Jena; 07743 Jena Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group; Department of Bioorganic Chemistry; Max Planck Institute for Chemical Ecology; 07745 Jena Germany
- Institute of Microbiology; Friedrich Schiller University Jena; Germany
| |
Collapse
|
47
|
Ogier JC, Pagès S, Bisch G, Chiapello H, Médigue C, Rouy Z, Teyssier C, Vincent S, Tailliez P, Givaudan A, Gaudriault S. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii. Genome Biol Evol 2014; 6:1495-513. [PMID: 24904010 PMCID: PMC4079199 DOI: 10.1093/gbe/evu119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Unlike other Xenorhabdus species, Xenorhabdus poinarii is avirulent when injected into insects in the absence of its nematode host. We sequenced the genome of the X. poinarii strain G6 and the closely related but virulent X. doucetiae strain FRM16. G6 had a smaller genome (500–700 kb smaller) than virulent Xenorhabdus strains and lacked genes encoding potential virulence factors (hemolysins, type 5 secretion systems, enzymes involved in the synthesis of secondary metabolites, and toxin–antitoxin systems). The genomes of all the X. poinarii strains analyzed here had a similar small size. We did not observe the accumulation of pseudogenes, insertion sequences or decrease in coding density usually seen as a sign of genomic erosion driven by genetic drift in host-adapted bacteria. Instead, genome reduction of X. poinarii seems to have been mediated by the excision of genomic blocks from the flexible genome, as reported for the genomes of attenuated free pathogenic bacteria and some facultative mutualistic bacteria growing exclusively within hosts. This evolutionary pathway probably reflects the adaptation of X. poinarii to specific host.
Collapse
Affiliation(s)
- Jean-Claude Ogier
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Sylvie Pagès
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Gaëlle Bisch
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Hélène Chiapello
- INRA Toulouse Midi-Pyrénées, Unité MIA-T, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Claudine Médigue
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Zoé Rouy
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Corinne Teyssier
- Université Montpellier 1, UFR des Sciences Pharmaceutiques et Biologiques/UMR95 Qualisud, CIRAD-Persyst, France
| | - Stéphanie Vincent
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Patrick Tailliez
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Alain Givaudan
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Sophie Gaudriault
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| |
Collapse
|
48
|
Librado P, Vieira FG, Sánchez-Gracia A, Kolokotronis SO, Rozas J. Mycobacterial phylogenomics: an enhanced method for gene turnover analysis reveals uneven levels of gene gain and loss among species and gene families. Genome Biol Evol 2014; 6:1454-65. [PMID: 24904011 PMCID: PMC4079203 DOI: 10.1093/gbe/evu117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Species of the genus Mycobacterium differ in several features, from geographic ranges, and degree of pathogenicity, to ecological and host preferences. The recent availability of several fully sequenced genomes for a number of these species enabled the comparative study of the genetic determinants of this wide lifestyle diversity. Here, we applied two complementary phylogenetic-based approaches using information from 19 Mycobacterium genomes to obtain a more comprehensive view of the evolution of this genus. First, we inferred the phylogenetic relationships using two new approaches, one based on a Mycobacterium-specific amino acid substitution matrix and the other on a gene content dissimilarity matrix. Then, we utilized our recently developed gain-and-death stochastic models to study gene turnover dynamics in this genus in a maximum-likelihood framework. We uncovered a scenario that differs markedly from traditional 16S rRNA data and improves upon recent phylogenomic approaches. We also found that the rates of gene gain and death are high and unevenly distributed both across species and across gene families, further supporting the utility of the new models of rate heterogeneity applied in a phylogenetic context. Finally, the functional annotation of the most expanded or contracted gene families revealed that the transposable elements and the fatty acid metabolism-related gene families are the most important drivers of gene content evolution in Mycobacterium.
Collapse
Affiliation(s)
- Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Filipe G Vieira
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, SpainDepartment of Integrative Biology, University of California, Berkeley
| | - Alejandro Sánchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sergios-Orestis Kolokotronis
- Department of Biological Sciences, Fordham UniversitySackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Abstract
Leprosy is a chronic infection of the skin and nerves caused by Mycobacterium leprae and the newly discovered Mycobacterium lepromatosis. Human leprosy has been documented for millennia in ancient cultures. Recent genomic studies of worldwide M. leprae strains have further traced it along global human dispersals during the past ∼ 100,000 years. Because leprosy bacilli are strictly intracellular, we wonder how long humans have been affected by this disease-causing parasite. Based on recently published data on M. leprae genomes, M. lepromatosis discovery, leprosy bacilli evolution, and human evolution, it is most likely that the leprosy bacilli started parasitic evolution in humans or early hominids millions of years ago. This makes leprosy the oldest human-specific infection. The unique adaptive evolution has likely molded the indolent growth and evasion from human immune defense that may explain leprosy pathogenesis. Accordingly, leprosy can be viewed as a natural consequence of a long parasitism. The burden of leprosy may have affected minor selection on human genetic polymorphisms.
Collapse
Affiliation(s)
- Xiang Y. Han
- Department of Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States America
- * E-mail:
| | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
50
|
Taylor GM, Tucker K, Butler R, Pike AWG, Lewis J, Roffey S, Marter P, Lee OYC, Wu HHT, Minnikin DE, Besra GS, Singh P, Cole ST, Stewart GR. Detection and strain typing of ancient Mycobacterium leprae from a medieval leprosy hospital. PLoS One 2013; 8:e62406. [PMID: 23638071 PMCID: PMC3640063 DOI: 10.1371/journal.pone.0062406] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 11/29/2022] Open
Abstract
Nine burials excavated from the Magdalen Hill Archaeological Research Project (MHARP) in Winchester, UK, showing skeletal signs of lepromatous leprosy (LL) have been studied using a multidisciplinary approach including osteological, geochemical and biomolecular techniques. DNA from Mycobacterium leprae was amplified from all nine skeletons but not from control skeletons devoid of indicative pathology. In several specimens we corroborated the identification of M. leprae with detection of mycolic acids specific to the cell wall of M. leprae and persistent in the skeletal samples. In five cases, the preservation of the material allowed detailed genotyping using single-nucleotide polymorphism (SNP) and multiple locus variable number tandem repeat analysis (MLVA). Three of the five cases proved to be infected with SNP type 3I-1, ancestral to contemporary M. leprae isolates found in southern states of America and likely carried by European migrants. From the remaining two burials we identified, for the first time in the British Isles, the occurrence of SNP type 2F. Stable isotope analysis conducted on tooth enamel taken from two of the type 3I-1 and one of the type 2F remains revealed that all three individuals had probably spent their formative years in the Winchester area. Previously, type 2F has been implicated as the precursor strain that migrated from the Middle East to India and South-East Asia, subsequently evolving to type 1 strains. Thus we show that type 2F had also spread westwards to Britain by the early medieval period.
Collapse
Affiliation(s)
- G Michael Taylor
- Department of Microbial and Cellular Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|