1
|
Akulenko N, Mikhaleva E, Marfina S, Kutelev I, Kornyakov D, Bobrov V, Artamonov A, Arapidi G, Shender V, Ryazansky S. Insights into the target-directed miRNA degradation mechanism in Drosophila ovarian cell culture. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195092. [PMID: 40328417 DOI: 10.1016/j.bbagrm.2025.195092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
Target-directed miRNA degradation (TDMD) is a process of post-transcriptional regulation of miRNA stability in animals induced by an extended pairing of Ago-bound miRNAs with specialized complementary RNA targets. As suggested by studies on human cell culture, Ago engaged with the extended duplex is recognized by the ZSWIM8 receptor of the Cullin-RING-ligase complex (CRL3), which also contains Cul3, EloB, and EloC proteins. The CRL activity is accelerated by the neddylation of Cul3 with the involvement of the E2 conjugating protein UbcE2M. The CRL ubiquitinates Ago, resulting in proteolysis of Ago and degradation of the released miRNAs. To date, the molecular mechanism of TDMD has not been studied in other species. To further characterize TDMD in animals, we investigated the protein Dora, the Drosophila ortholog of ZSWIM8, in the culture of Drosophila ovarian somatic cells (OSC). We showed that Dora in OSCs localizes in protein granules unrelated to P- and GW-bodies. The dora knockout resulted in the accumulation of multiple miRNAs, including miR-7-5p, and transcriptome-wide affected the mRNA targets of differentially expressed miRNAs. We also showed that Dora associates with proteins of the CRL3 complex, and the depletion of CRL3 components or inhibition of Cul3 neddylation upregulates miR-7-5p. We concluded that the molecular mechanism of TDMD is conserved in humans and Drosophila. Finally, we found that cells without Dora have an impaired Notch signaling pathway, indicating that TDMD in OSCs may contribute to the modulation of the Notch pathway.
Collapse
Affiliation(s)
- Natalia Akulenko
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia
| | - Elena Mikhaleva
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofya Marfina
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Mendeleev University of Chemical Technology of Russia, Miusskaya st. 9b1, Moscow 125047, Russia; Lomonosov Moscow State University, Biological Department, Lomonosov st. 1b12, Moscow 119234, Russia
| | - Ivan Kutelev
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Lomonosov Moscow State University, Biological Department, Lomonosov st. 1b12, Moscow 119234, Russia
| | - Dmitry Kornyakov
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Mendeleev University of Chemical Technology of Russia, Miusskaya st. 9b1, Moscow 125047, Russia
| | - Vlad Bobrov
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Andrei Artamonov
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Lomonosov Moscow State University, Biological Department, Lomonosov st. 1b12, Moscow 119234, Russia
| | - Georgij Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya st. 1a, Moscow 119435, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Victoria Shender
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya st. 1a, Moscow 119435, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Sergei Ryazansky
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia.
| |
Collapse
|
2
|
Lee T, Kim CJ, Lim DH, Lee YS. microRNA miR-315-5p regulates developmental growth in Drosophila wings by targeting S6k. INSECT SCIENCE 2025. [PMID: 40166978 DOI: 10.1111/1744-7917.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
Tissue growth in Drosophila is regulated by various factors, with microRNAs (miRNAs) emerging as key players over the past decade. However, the precise roles of miRNAs in growth regulation remain incompletely understood. In this study, we explored the biological role of miR-315 in wing growth regulation. Inhibition of miR-315-5p activity using a miR-315 sponge led to an increase in wing size, whereas its overexpression resulted in reduced wing size, primarily through a decrease in wing cell size. We identified ribosomal protein kinase p-70-S6k (S6k) as a target of miR-315-5p in relation to wing growth control. Overexpression of miR-315 reduced both total S6k and phosphorylated S6k protein levels in Drosophila S2 cells and wing discs. Additionally, a luciferase reporter assay confirmed that miR-315-5p directly binds to the 3'-untranslated region of S6k. Consistently, RNAi-mediated depletion of S6k led to smaller wings, primarily due to a reduction in cell size. Notably, co-overexpression of active S6k rescued the wing defects caused by miR-315 overexpression. Overall, these findings demonstrate that miR-315 regulates wing growth by suppressing S6k expression.
Collapse
Affiliation(s)
- Taeheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Chae Jeong Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Clarke A, Høye E, Hembrom A, Paynter V, Vinther J, Wyrożemski Ł, Biryukova I, Formaggioni A, Ovchinnikov V, Herlyn H, Pierce A, Wu C, Aslanzadeh M, Cheneby J, Martinez P, Friedländer M, Hovig E, Hackenberg M, Umu SU, Johansen M, Peterson K, Fromm B. MirGeneDB 3.0: improved taxonomic sampling, uniform nomenclature of novel conserved microRNA families and updated covariance models. Nucleic Acids Res 2025; 53:D116-D128. [PMID: 39673268 PMCID: PMC11701709 DOI: 10.1093/nar/gkae1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/16/2024] Open
Abstract
We present a major update of MirGeneDB (3.0), the manually curated animal microRNA gene database. Beyond moving to a new server and the creation of a computational mirror, we have expanded the database with the addition of 33 invertebrate species, including representatives of 5 previously unsampled phyla, and 6 mammal species. MirGeneDB now contains entries for 21 822 microRNA genes (5160 of these from the new species) belonging to 1743 microRNA families. The inclusion of these new species allowed us to refine both the evolutionary node of appearance of a number of microRNA genes/families, as well as MirGeneDB's phylogenetically informed nomenclature system. Updated covariance models of all microRNA families, along with all smallRNA read data are now downloadable. These enhanced annotations will allow researchers to analyze microRNA properties such as secondary structure and features of their biogenesis within a robust phylogenetic context and without the database plagued with numerous false positives and false negatives. In light of these improvements, MirGeneDB 3.0 will assume the responsibility for naming conserved novel metazoan microRNAs. MirGeneDB is part of RNAcentral and Elixir Norway and is publicly and freely available at mirgenedb.org.
Collapse
Affiliation(s)
- Alexander W Clarke
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Eirik Høye
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Anju Angelina Hembrom
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Vanessa Molin Paynter
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Jakob Vinther
- School of Earth Sciences & School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, BS5 8EH, Bristol, UK
| | - Łukasz Wyrożemski
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Alessandro Formaggioni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Vladimir Ovchinnikov
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Alexandra Pierce
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Charles Wu
- Valley Stream North High School, 750 Herman Ave, Franklin Square, NY 11010, USA
| | - Morteza Aslanzadeh
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Jeanne Cheneby
- Center for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal, 643; 08028-Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Passeig Lluis Companys 23; 08010-Barcelona, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway
| | - Michael Hackenberg
- Department of Genetics, Faculty of Sciences, University of Granada, Avenida de la Fuente Nueva S/N, C.P. 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute & Biomedical Research Centre (CIBM), Avenida del Conocimiento 19 Granada, 18100, Spain
| | - Sinan Uğur Umu
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Morten Johansen
- Center for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| |
Collapse
|
4
|
Kim CJ, Jang D, Lim DH. Drosophila miR-263b-5p controls wing developmental growth by targeting Akt. Anim Cells Syst (Seoul) 2024; 29:35-45. [PMID: 39777023 PMCID: PMC11703049 DOI: 10.1080/19768354.2024.2444366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Tissue growth is controlled by various signaling pathways, such as the insulin/IGF-signaling (IIS) pathway. Although IIS activation is regulated by a complex regulatory network, the mechanism underlying miRNA-based regulation of the IIS pathway in Drosophila wing development remains unclear. In this study, we found that the wing size of adult flies was negatively affected by miR-263b expression. The miR-263b-mediated alteration in wing size was linked to a reduction in wing cell number. Additionally, miR-263b overexpression in Drosophila S2 cells decreased cell proliferation and increased cell death. Consequently, we identified Akt as a direct target of miR-263b-5p and found that miR-263b-mediated wing growth regulation was due to changes in Akt expression. Co-expression of Akt in miR-263b-overexpressing wings rescued the miR-263b overexpression-mediated reduction in wing growth. These results enhance our understanding of the crucial role of miRNAs in growth regulation during Drosophila wing development.
Collapse
Affiliation(s)
- Chae Jeong Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Daegyu Jang
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yao X, Lin L, Ye Z, Huo M, Jin P, Ma F. NF-κB/Relish readjusts miR-100 expression and recovers immune homeostasis in Drosophila melanogaster. INSECT SCIENCE 2024. [PMID: 39688880 DOI: 10.1111/1744-7917.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
The regulation and maintenance of immune homeostasis are essential for animal survival, but the molecular mechanisms are not fully understood. Here, we used the model organism Drosophila melanogaster to uncover a potential mechanism by which the nuclear factor-κB transcription factor Relish and miR-100 cooperatively regulate innate immune homeostasis. We first demonstrated in vitro and in vivo that miR-100 can negatively regulate the immune responses of the Imd pathway by inhibiting the expression of TAK1-associated binding protein 2 (Tab2) gene. Second, we found that Relish, an important transcription factor in the Drosophila Imd pathway, could not only modulate the expressions of antimicrobial peptides (AMPs) to promote immune responses, but also bind to the promoter region of miR-100 and activate its transcription to inhibit immune responses. Third, the dynamic expression of genes profiling indicated that the Relish/miR-100/Tab2 regulatory axis could contribute to innate immune homeostasis in Drosophila. Together, our findings reveal the dual role of Relish in immune regulation, that is, Relish promotes the expression of AMPs to resist pathogen infection in the early immune response, while in the late immune stages, Relish readjusts the expression of miR-100 to negatively control immune responses to avoid excessive immunity thus maintaining immunohomeostasis. Meanwhile, our study provides a new perspective for further understanding the complex regulatory mechanism of immune homeostasis in animals.
Collapse
Affiliation(s)
- Xiaolong Yao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lu Lin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zifeng Ye
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Miaomiao Huo
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Kim MS, Yang Z, Lee JS. In silico identification and characterization of microRNAs from rotifers, cladocerans, and copepods. MARINE POLLUTION BULLETIN 2024; 209:117098. [PMID: 39442355 DOI: 10.1016/j.marpolbul.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcription and influence various biological processes across species. Despite various studies of miRNAs in vertebrates, plants, and other organisms, miRNA data in aquatic invertebrates are insufficient. In this study, we identified miRNAs from four aquatic invertebrate species that are widely used in aquatic toxicology: the rotifer Brachionus koreanus, the water flea Daphnia magna, the cyclopoid copepod Paracyclopina nana, and the harpacticoid copepod Tigriopus japonicus, using next-generation sequencing and in silico analysis. We identified total 188, 41, 47, and 100 miRNAs from each species, and target genes were predicted based on 3'-untranslated region information. Target prediction and functional annotation results provided the biological processes of these miRNAs in various development-related mechanisms, signaling transduction, and metabolism-related pathways. Moreover, the network between the miRNAs and their targets concerning defense-related and antioxidant genes suggests the suitability of miRNAs as biomarkers in ecotoxicological studies.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Matsuura-Suzuki E, Kiyokawa K, Iwasaki S, Tomari Y. miRNA-mediated gene silencing in Drosophila larval development involves GW182-dependent and independent mechanisms. EMBO J 2024; 43:6161-6179. [PMID: 39322759 PMCID: PMC11612316 DOI: 10.1038/s44318-024-00249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/11/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
MicroRNAs (miRNAs) regulate a wide variety of biological processes by silencing their target genes. Argonaute (AGO) proteins load miRNAs to form an RNA-induced silencing complex (RISC), which mediates translational repression and/or mRNA decay of the targets. A scaffold protein called GW182 directly binds AGO and the CCR4-NOT deadenylase complex, initiating the mRNA decay reaction. Although previous studies have demonstrated the critical role of GW182 in cultured cells as well as in cell-free systems, its biological significance in living organisms remains poorly explored, especially in Drosophila melanogaster. Here, we generated gw182-null flies using the CRISPR/Cas9 system and found that, unexpectedly, they can survive until an early second-instar larval stage. Moreover, in vivo miRNA reporters can be effectively repressed in gw182-null first-instar larvae. Nevertheless, gw182-null flies have defects in the expression of chitin-related genes and the formation of the larval trachea system, preventing them from completing larval development. Our results highlight the importance of both GW182-dependent and -independent silencing mechanisms in vivo.
Collapse
Affiliation(s)
- Eriko Matsuura-Suzuki
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Kaori Kiyokawa
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
8
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Yao X, He Y, Zhu C, Yang S, Wu J, Ma F, Jin P. miR-190 restores the innate immune homeostasis of Drosophila by directly inhibiting Tab2 in Imd pathway. Microbes Infect 2024; 26:105399. [PMID: 39084397 DOI: 10.1016/j.micinf.2024.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The Drosophila Imd pathways are well-known mechanisms involved in innate immunity responsible for Gram-negative (G-) bacterial infection. The intensity and durability of immunity need to be finely regulated to keep sufficient immune activation meanwhile avoid excessive immune response. In this study, we firstly demonstrated that miR-190 can downregulate the expression levels of antimicrobial peptides (AMPs) in the Imd immune pathway after Escherichia coli infection using the miR-190 overexpression flies and the miR-190KO/+ flies. Secondly, miR-190 overexpression significantly reduces while miR-190 KO increases Drosophila survival rates upon lethal Enterobacter cloacae infection. Thirdly, we further demonstrated that miR-190 negatively regulates innate immune responses by directly targeting both RA/RB and RC isoforms of Tab2. In addition, the dynamic expression pattern of AMPs (Dpt, AttA, CecA1), miR-190 and Tab2 in the wild-type flies reveals that miR-190 play an important role in Drosophila immune homeostasis restoration at the late stage of E. coli infection. Collectively, our study reveals that miR-190 can downregulate the expression of AMPs by targeting Tab2 and promote immune homeostasis restoration in Drosophila Imd pathway. Our study provides new insights into the regulatory mechanism of animal innate immune homeostasis.
Collapse
Affiliation(s)
- Xiaolong Yao
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yuqing He
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Canhe Zhu
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Shangmin Yang
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Jing Wu
- Department of Psychology, College of Victoria College, University of Toronto, Toronto, ON, M5R 0A3, Canada
| | - Fei Ma
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Ping Jin
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
10
|
de Oliveira AC, Bovolenta LA, Figueiredo L, Ribeiro ADO, Pereira BJA, de Almeida TRA, Campos VF, Patton JG, Pinhal D. MicroRNA Transcriptomes Reveal Prevalence of Rare and Species-Specific Arm Switching Events During Zebrafish Ontogenesis. Evol Bioinform Online 2024; 20:11769343241263230. [PMID: 39055772 PMCID: PMC11271096 DOI: 10.1177/11769343241263230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
In metazoans, microRNAs (miRNAs) are essential regulators of gene expression, affecting critical cellular processes from differentiation and proliferation, to homeostasis. During miRNA biogenesis, the miRNA strand that loads onto the RNA-induced Silencing Complex (RISC) can vary, leading to changes in gene targeting and modulation of biological pathways. To investigate the impact of these "arm switching" events on gene regulation, we analyzed a diverse range of tissues and developmental stages in zebrafish by comparing 5p and 3p arms accumulation dynamics between embryonic developmental stages, adult tissues, and sexes. We also compared variable arm usage patterns observed in zebrafish to other vertebrates including arm switching data from fish, birds, and mammals. Our comprehensive analysis revealed that variable arm usage events predominantly take place during embryonic development. It is also noteworthy that isomiR occurrence correlates to changes in arm selection evidencing an important role of microRNA distinct isoforms in reinforcing and modifying gene regulation by promoting dynamics switches on miRNA 5p and 3p arms accumulation. Our results shed new light on the emergence and coordination of gene expression regulation and pave the way for future investigations in this field.
Collapse
Affiliation(s)
- Arthur Casulli de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Luiz Augusto Bovolenta
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Lucas Figueiredo
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda De Oliveira Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Beatriz Jacinto Alves Pereira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Talita Roberto Aleixo de Almeida
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Vinicius Farias Campos
- Laboratory of Structural Genomics, Postgraduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
11
|
Zhou H, Huang Y, Jia C, Pang Y, Liu L, Xu Y, Jin P, Qian J, Ma F. NF-κB factors cooperate with Su(Hw)/E4F1 to balance Drosophila/human immune responses via modulating dynamic expression of miR-210. Nucleic Acids Res 2024; 52:6906-6927. [PMID: 38742642 PMCID: PMC11229355 DOI: 10.1093/nar/gkae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
MicroRNAs (miRNAs) play crucial regulatory roles in controlling immune responses, but their dynamic expression mechanisms are poorly understood. Here, we firstly confirm that the conserved miRNA miR-210 negatively regulates innate immune responses of Drosophila and human via targeting Toll and TLR6, respectively. Secondly, our findings demonstrate that the expression of miR-210 is dynamically regulated by NF-κB factor Dorsal in immune response of Drosophila Toll pathway. Thirdly, we find that Dorsal-mediated transcriptional inhibition of miR-210 is dependent on the transcriptional repressor Su(Hw). Mechanistically, Dorsal interacts with Su(Hw) to modulate cooperatively the dynamic expression of miR-210 in a time- and dose-dependent manner, thereby controlling the strength of Drosophila Toll immune response and maintaining immune homeostasis. Fourthly, we reveal a similar mechanism in human cells, where NF-κB/RelA cooperates with E4F1 to regulate the dynamic expression of hsa-miR-210 in the TLR immune response. Overall, our study reveals a conservative regulatory mechanism that maintains animal innate immune homeostasis and provides new insights into the dynamic regulation of miRNA expression in immune response.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Chaolong Jia
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, Jiangsu, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
12
|
Jang D, Kim CJ, Shin BH, Lim DH. The Biological Roles of microRNAs in Drosophila Development. INSECTS 2024; 15:491. [PMID: 39057224 PMCID: PMC11277110 DOI: 10.3390/insects15070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Drosophila is a well-established insect model system for studying various physiological phenomena and developmental processes, with a focus on gene regulation. Drosophila development is controlled by programmed regulatory mechanisms specific to individual tissues. When key developmental processes are shared among various insects, the associated regulatory networks are believed to be conserved across insects. Thus, studies of developmental regulation in Drosophila have substantially contributed to our understanding of insect development. Over the past two decades, studies on microRNAs (miRNAs) in Drosophila have revealed their crucial regulatory roles in various developmental processes. This review focuses on the biological roles of miRNAs in specific tissues and processes associated with Drosophila development. Additionally, as a future direction, we discuss sequencing technologies that can analyze the interactions between miRNAs and their target genes, with the aim of enhancing miRNA studies in Drosophila development.
Collapse
Affiliation(s)
| | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (D.J.); (C.J.K.); (B.H.S.)
| |
Collapse
|
13
|
Perry N, Braun R, Ben‐Hamo‐Arad A, Kanaan D, Arad T, Porat‐Kuperstein L, Toledano H. Integrin restriction by miR-34 protects germline progenitors from cell death during aging. Aging Cell 2024; 23:e14131. [PMID: 38450871 PMCID: PMC11166360 DOI: 10.1111/acel.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
During aging, regenerative tissues must dynamically balance the two opposing processes of proliferation and cell death. While many microRNAs are differentially expressed during aging, their roles as dynamic regulators of tissue regeneration have yet to be described. We show that in the highly regenerative Drosophila testis, miR-34 levels are significantly elevated during aging. miR-34 modulates germ cell death and protects the progenitor germ cells from accelerated aging. However, miR-34 is not expressed in the progenitors themselves but rather in neighboring cyst cells that kill the progenitors. Transcriptomics followed by functional analysis revealed that during aging, miR-34 modifies integrin signaling by limiting the levels of the heterodimeric integrin receptor αPS2 and βPS subunits. In addition, we found that in cyst cells, this heterodimer is essential for inducing phagoptosis and degradation of the progenitor germ cells. Together, these data suggest that the miR-34-integrin signaling axis acts as a sensor of progenitor germ cell death to extend progenitor functionality during aging.
Collapse
Affiliation(s)
- Noam Perry
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Racheli Braun
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
- Biomedical Engineering FacultyTechnion IITsHaifaIsrael
| | - Aya Ben‐Hamo‐Arad
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Diana Kanaan
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Tal Arad
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | | | - Hila Toledano
- Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| |
Collapse
|
14
|
Li Y, Sun Y, Li R, Zhou H, Li S, Jin P. Genetic Screening Revealed the Negative Regulation of miR-310~313 Cluster Members on Imd Pathway during Gram-Negative Bacterial Infection in Drosophila. Genes (Basel) 2024; 15:601. [PMID: 38790230 PMCID: PMC11120675 DOI: 10.3390/genes15050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Innate immune response is the first line of host defense against pathogenic microorganisms, and its excessive or insufficient activation is detrimental to the organism. Many individual microRNAs (miRNAs) have emerged as crucial post-transcriptional regulators of immune homeostasis in Drosophila melanogaster. However, the synergistical regulation of miRNAs located within a cluster on the Imd-immune pathway remains obscured. In our study, a genetic screening with 52 transgenic UAS-miRNAs was performed to identify ten miRNAs or miRNA clusters, including the miR310~313 cluster, which may function on Imd-dependent immune responses. The miRNA RT-qPCR analysis showed that the expression of miR-310~313 cluster members exhibited an increase at 6-12 h post E. coli infection. Furthermore, the overexpression of the miR-310~313 cluster impaired the Drosophila survival. And the overexpression of miR-310/311/312 reduced Dpt expression, an indication of Imd pathway induced by Gram-negative bacteria. Conversely, the knockdown of miR-310/311/312 led to increases in Dpt expression. The Luciferase reporter expression assays and RT-qPCR analysis confirmed that miR-310~313 cluster members directly co-targeted and inhibited Imd transcription. These findings reveal that the members of the miR-310~313 cluster synergistically inhibit Imd-dependent immune responses by co-targeting the Imd gene in Drosophila.
Collapse
Affiliation(s)
- Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yixuan Sun
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (R.L.); (H.Z.)
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (R.L.); (H.Z.)
| | - Shengjie Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China;
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (R.L.); (H.Z.)
| |
Collapse
|
15
|
Wang Y, Tang X, Lu J. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. Biol Rev Camb Philos Soc 2024; 99:525-545. [PMID: 37987240 DOI: 10.1111/brv.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The evolution of microRNAs (miRNAs) has been studied extensively to understand their roles in gene regulation and evolutionary processes. This review focuses on how miRNA-mediated regulation has evolved in bilaterian animals, highlighting both convergent and divergent evolution. Since animals and plants display significant differences in miRNA biogenesis and target recognition, the 'independent origin' hypothesis proposes that miRNA pathways in these groups independently evolved from the RNA interference (RNAi) pathway, leading to modern miRNA repertoires through convergent evolution. However, recent evidence raises the alternative possibility that the miRNA pathway might have already existed in the last common ancestor of eukaryotes, and that the differences in miRNA pathway and miRNA repertoires among animal and plant lineages arise from lineage-specific innovations and losses of miRNA pathways, miRNA acquisition, and loss of miRNAs after eukaryotic divergence. The repertoire of miRNAs has considerably expanded during bilaterian evolution, primarily through de novo creation and duplication processes, generating new miRNAs. Although ancient functionally established miRNAs are rarely lost, many newly emerged miRNAs are transient and lineage specific, following a birth-death evolutionary pattern aligning with the 'out-of-the-testis' and 'transcriptional control' hypotheses. Our focus then shifts to the convergent molecular evolution of miRNAs. We summarize how miRNA clustering and seed mimicry contribute to this phenomenon, and we review how miRNAs from different sources converge to degrade maternal messenger RNAs (mRNAs) during animal development. Additionally, we describe how miRNAs evolve across species due to changes in sequence, seed shifting, arm switching, and spatiotemporal expression patterns, which can result in variations in target sites among orthologous miRNAs across distant strains or species. We also provide a summary of the current understanding regarding how the target sites of orthologous miRNAs can vary across strains or distantly related species. Although many paralogous miRNAs retain their seed or mature sequences after duplication, alterations can occur in the seed or mature sequences or expression patterns of paralogous miRNAs, leading to functional diversification. We discuss our current understanding of the functional divergence between duplicated miRNAs, and illustrate how the functional diversification of duplicated miRNAs impacts target site evolution. By investigating these topics, we aim to enhance our current understanding of the functions and evolutionary dynamics of miRNAs. Additionally, we shed light on the existing challenges in miRNA evolutionary studies, particularly the complexity of deciphering the role of miRNA-mediated regulatory network evolution in shaping gene expression divergence and phenotypic differences among species.
Collapse
Affiliation(s)
- Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Huang Y, Pang Y, Xu Y, Liu L, Zhou H. The identification of regulatory ceRNA network involved in Drosophila Toll immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105105. [PMID: 38013113 DOI: 10.1016/j.dci.2023.105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Non-coding RNAs play important roles in the innate immunity of Drosophila, with various lncRNAs and miRNAs identified to maintain Drosophila innate immune homeostasis by regulating protein functions. However, it remains unclear whether interactions between lncRNAs and miRNAs give rise to a ceRNA network. In our previous study, we observed the highest differential expression levels of lncRNA-CR11538, lncRNA-CR33942, and lncRNA-CR46018 in wild-type flies after Gram-positive bacterial infection, prompting us to investigate their role in the regulation of Drosophila Toll immune response through RNA-seq analysis. Herein, our comprehensive bioinformatics analysis revealed that lncRNA-CR11538, lncRNA-CR33942, and lncRNA-CR46018 are involved in defense mechanisms and stimulus response. Moreover, lncRNA-CR11538 and lncRNA-CR46018 can also participate in the metabolic recovery processes following Gram-positive bacterial infection. Subsequently, we employed GSEA screening and RT-qPCR to identify seven miRNAs (miR-957, miR-1015, miR-982, miR-993, miR-1007, miR-193, and miR-978) that may be regulated by these three lncRNAs. Furthermore, we predicted the potential target genes in the Toll signaling pathway for these miRNAs and their interaction with the three lncRNAs using TargetScan and miRanda software and preliminary verification. As a result, we established a potential ceRNA regulatory network for Toll immune responses in Drosophila, comprising three lncRNAs and seven miRNAs. This study provides evidence of a ceRNA regulatory network in Drosophila Toll immune responses and offers novel insights into understanding the regulatory networks involved in the innate immunity of other animals.
Collapse
Affiliation(s)
- Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China; Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China; Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
17
|
Saedi H, Waro G, Giacchetta L, Tsunoda S. miR-137 regulates PTP61F, affecting insulin signaling, metabolic homeostasis, and starvation resistance in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2319475121. [PMID: 38252824 PMCID: PMC10835047 DOI: 10.1073/pnas.2319475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
miR-137 is a highly conserved brain-enriched microRNA (miRNA) that has been associated with neuronal function and proliferation. Here, we show that Drosophila miR-137 null mutants display increased body weight with enhanced triglyceride content and decreased locomotor activity. In addition, when challenged by nutrient deprivation, miR-137 mutants exhibit reduced motivation to feed and prolonged survival. We show through genetic epistasis and rescue experiments that this starvation resistance is due to a disruption in insulin signaling. Our studies further show that miR-137 null mutants exhibit a drastic reduction in levels of the phosphorylated/activated insulin receptor, InR (InR-P). We investigated if this is due to the predicted miR-137 target, Protein Tyrosine Phosphatase 61F (PTP61F), ortholog of mammalian TC-PTP/PTP1B, which are known to dephosphorylate InR-P. Indeed, levels of an endogenously tagged GFP-PTP61F are significantly elevated in miR-137 null mutants, and we show that overexpression of PTP61F alone is sufficient to mimic many of the metabolic phenotypes of miR-137 mutants. Finally, we knocked-down elevated levels of PTP61F in the miR-137 null mutant background and show that this rescues levels of InR-P, restores normal body weight and triglyceride content, starvation sensitivity, as well as attenuates locomotor and starvation-induced feeding defects. Our study supports a model in which miR-137 is critical for dampening levels of PTP61F, thereby maintaining normal insulin signaling and energy homeostasis.
Collapse
Affiliation(s)
- Hana Saedi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Lea Giacchetta
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
18
|
Lee S, Kim N, Jang D, Kim HK, Kim J, Jeon JW, Lim DH. Ecdysone-induced microRNA miR-276a-3p controls developmental growth by targeting the insulin-like receptor in Drosophila. INSECT MOLECULAR BIOLOGY 2023; 32:703-715. [PMID: 37702106 DOI: 10.1111/imb.12872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023]
Abstract
Animal growth is controlled by a variety of external and internal factors during development. The steroid hormone ecdysone plays a critical role in insect development by regulating the expression of various genes. In this study, we found that fat body-specific expression of miR-276a, an ecdysone-responsive microRNA (miRNA), led to a decrease in the total mass of the larval fat body, resulting in significant growth reduction in Drosophila. Changes in miR-276a expression also affected the proliferation of Drosophila S2 cells. Furthermore, we found that the insulin-like receptor (InR) is a biologically relevant target gene regulated by miR-276a-3p. In addition, we found that miR-276a-3p is upregulated by the canonical ecdysone signalling pathway involving the ecdysone receptor and broad complex. A reduction in cell proliferation caused by ecdysone was compromised by blocking miR-276a-3p activity. Thus, our results suggest that miR-276a-3p is involved in ecdysone-mediated growth reduction by controlling InR expression in the insulin signalling pathway.
Collapse
Affiliation(s)
- Sojeong Lee
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Nayeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Daegyu Jang
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Hee Kyung Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jongin Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Ji Won Jeon
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Lim DH, Choi MS, Jeon JW, Lee YS. MicroRNA miR-252-5p regulates the Notch signaling pathway by targeting Rab6 in Drosophila wing development. INSECT SCIENCE 2023; 30:1431-1444. [PMID: 36847222 DOI: 10.1111/1744-7917.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The Notch signaling pathway plays a central role in the development of various organisms. However, dysregulation of microRNAs (miRNAs), which are crucial regulators of gene expression, can disrupt signaling pathways at all stages of development. Although Notch signaling is involved in wing development in Drosophila, the mechanism underlying miRNA-based regulation of the Notch signaling pathway is unclear. Here, we report that loss of Drosophila miR-252 increases the size of adult wings, whereas the overexpression of miR-252 in specific compartments of larval wing discs leads to patterning defects in the adult wings. The miR-252 overexpression-induced wing phenotypes were caused by aberrant Notch signaling with intracellular accumulation of the full-length Notch receptor during development, which could be due to defects in intracellular Notch trafficking associated with its recycling to the plasma membrane and autophagy-mediated degradation. Moreover, we identified Rab6 as a direct target of miR-252-5p; Rab6 encodes a small Ras-like GTPase that regulates endosomal trafficking pathways. Consistent with this finding, RNAi-mediated downregulation of Rab6 led to similar defects in both wing patterning and Notch signaling. Notably, co-overexpression of Rab6 completely rescued the wing phenotype associated with miR-252 overexpression, further supporting that Rab6 is a biologically relevant target of miR-252-5p in the context of wing development. Thus, our data indicate that the miR-252-5p-Rab6 regulatory axis is involved in Drosophila wing development by controlling the Notch signaling pathway.
Collapse
Affiliation(s)
- Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ji Won Jeon
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Mercuri RLV, Conceição HB, Guardia GDA, Goldstein G, Vibranovski MD, Hinske LC, Galante PAF. Retro-miRs: novel and functional miRNAs originating from mRNA retrotransposition. Mob DNA 2023; 14:12. [PMID: 37684690 PMCID: PMC10486083 DOI: 10.1186/s13100-023-00301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Reverse-transcribed gene copies (retrocopies) have emerged as major sources of evolutionary novelty. MicroRNAs (miRNAs) are small and highly conserved RNA molecules that serve as key post-transcriptional regulators of gene expression. The origin and subsequent evolution of miRNAs have been addressed but not fully elucidated. RESULTS In this study, we performed a comprehensive investigation of miRNA origination through retroduplicated mRNA sequences (retro-miRs). We identified 17 retro-miRs that emerged from the mRNA retrocopies. Four of these retro-miRs had de novo origins within retrocopied sequences, while 13 retro-miRNAs were located within exon regions and duplicated along with their host mRNAs. We found that retro-miRs were primate-specific, including five retro-miRs conserved among all primates and two human-specific retro-miRs. All retro-miRs were expressed, with predicted and experimentally validated target genes except miR-10527. Notably, the target genes of retro-miRs are involved in key biological processes such as metabolic processes, cell signaling, and regulation of neurotransmitters in the central nervous system. Additionally, we found that these retro-miRs play a potential oncogenic role in cancer by targeting key cancer genes and are overexpressed in several cancer types, including liver hepatocellular carcinoma and stomach adenocarcinoma. CONCLUSIONS Our findings demonstrated that mRNA retrotransposition is a key mechanism for the generation of novel miRNAs (retro-miRs) in primates. These retro-miRs are expressed, conserved, have target genes with important cellular functions, and play important roles in cancer.
Collapse
Affiliation(s)
- Rafael L V Mercuri
- Hospital Sirio-Libanes, São Paulo, 01308-060, Brazil
- Interunidades Em Bioinformática, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Helena B Conceição
- Hospital Sirio-Libanes, São Paulo, 01308-060, Brazil
- Interunidades Em Bioinformática, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | | | - Gabriel Goldstein
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Ludwig C Hinske
- Institute for Digital Medicine/Clinic of Anaesthesiology, University of Augsburg, Augsburg, Germany
| | | |
Collapse
|
21
|
Kim CJ, Kim HH, Kim HK, Lee S, Jang D, Kim C, Lim DH. MicroRNA miR-263b-5p Regulates Developmental Growth and Cell Association by Suppressing Laminin A in Drosophila. BIOLOGY 2023; 12:1096. [PMID: 37626982 PMCID: PMC10451713 DOI: 10.3390/biology12081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Basement membranes (BMs) play important roles under various physiological conditions in animals, including ecdysozoans. During development, BMs undergo alterations through diverse intrinsic and extrinsic regulatory mechanisms; however, the full complement of pathways controlling these changes remain unclear. Here, we found that fat body-overexpression of Drosophila miR-263b, which is highly expressed during the larval-to-pupal transition, resulted in a decrease in the overall size of the larval fat body, and ultimately, in a severe growth defect accompanied by a reduction in cell proliferation and cell size. Interestingly, we further observed that a large proportion of the larval fat body cells were prematurely disassociated from each other. Moreover, we present evidence that miR-263b-5p suppresses the main component of BMs, Laminin A (LanA). Through experiments using RNA interference (RNAi) of LanA, we found that its depletion phenocopied the effects in miR-263b-overexpressing flies. Overall, our findings suggest a potential role for miR-263b in developmental growth and cell association by suppressing LanA expression in the Drosophila fat body.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (C.J.K.); (H.H.K.); (H.K.K.); (S.L.); (D.J.); (C.K.)
| |
Collapse
|
22
|
Örkenby L, Skog S, Ekman H, Gozzo A, Kugelberg U, Ramesh R, Magadi S, Zambanini G, Nordin A, Cantú C, Nätt D, Öst A. Stress-sensitive dynamics of miRNAs and Elba1 in Drosophila embryogenesis. Mol Syst Biol 2023; 19:e11148. [PMID: 36938679 PMCID: PMC10167479 DOI: 10.15252/msb.202211148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
Early-life stress can result in life-long effects that impact adult health and disease risk, but little is known about how such programming is established and maintained. Here, we show that such epigenetic memories can be initiated in the Drosophila embryo before the major wave of zygotic transcription, and higher-order chromatin structures are established. An early short heat shock results in elevated levels of maternal miRNA and reduced levels of a subgroup of zygotic genes in stage 5 embryos. Using a Dicer-1 mutant, we show that the stress-induced decrease in one of these genes, the insulator-binding factor Elba1, is dependent on functional miRNA biogenesis. Reduction in Elba1 correlates with the upregulation of early developmental genes and promotes a sustained weakening of heterochromatin in the adult fly as indicated by an increased expression of the PEV wm4h reporter. We propose that maternal miRNAs, retained in response to an early embryonic heat shock, shape the subsequent de novo heterochromatin establishment that occurs during early development via direct or indirect regulation of some of the earliest expressed genes, including Elba1.
Collapse
Affiliation(s)
- Lovisa Örkenby
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helen Ekman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alessandro Gozzo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rashmi Ramesh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Srivathsa Magadi
- Division of Neurobiology (NEURO), Linköping University, Linköping, Sweden
| | - Gianluca Zambanini
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Anna Nordin
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Claudio Cantú
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Daniel Nätt
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Ste-Croix DT, Bélanger RR, Mimee B. Characterization of microRNAs in the cyst nematode Heterodera glycines identifies possible candidates involved in cross-kingdom interactions with its host Glycine max. RNA Biol 2023; 20:614-628. [PMID: 37599428 PMCID: PMC10443972 DOI: 10.1080/15476286.2023.2244790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The soybean cyst nematode (SCN - Heterodera glycines) is one of the most damaging pests to the cultivated soybean worldwide. Using a wide array of stylet-secreted effector proteins, this nematode can restructure its host cells into a complex and highly active feeding structure called the syncytium. Tight regulation of these proteins is thought to be essential to the successful formation of this syncytium. To date, multiple mechanisms have been proposed to regulate the expression of these proteins including through post-transcriptional regulation. MicroRNAs (miRNAs) are a class of small, roughly 22-nucleotide-long, non-coding RNA shown to regulate gene expression through its interaction with the 3' untranslated region of genes. These same small RNAs have also been hypothesized to be able to cross over kingdom barriers and regulate genes in other species in a process called cross-kingdom interactions. In this study, we characterized the miRNome of the SCN via sequencing of small-RNAs isolated from whole nematodes and exosomes representing all developmental stages. We identified 121 miRNA loci encoding 96 distinct miRNA families including multiple lineage- and species-specific candidates. Using a combination of plant- and animal-specific miRNA target predictors, we generated a unique repertoire of miRNA:mRNA interacting partners in the nematode and its host plant leading to the identification of a set of nine probable cross-kingdom miRNA candidates.
Collapse
Affiliation(s)
- Dave T. Ste-Croix
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-Sur-Richelieu, Canada
- Département de Phytologie, Université Laval, Québec, Canada
| | - Richard R. Bélanger
- Département de Phytologie, Université Laval, Québec, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Benjamin Mimee
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-Sur-Richelieu, Canada
| |
Collapse
|
24
|
Salemi M, Marchese G, Lanza G, Cosentino FII, Salluzzo MG, Schillaci FA, Ventola GM, Cordella A, Ravo M, Ferri R. Role and Dysregulation of miRNA in Patients with Parkinson's Disease. Int J Mol Sci 2022; 24:712. [PMID: 36614153 PMCID: PMC9820759 DOI: 10.3390/ijms24010712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative synucleinopathy that has a not yet fully understood molecular pathomechanism behind it. The role of risk genes regulated by small non-coding RNAs, or microRNAs (miRNAs), has also been highlighted in PD, where they may influence disease progression and comorbidities. In this case-control study, we analyzed miRNAs on peripheral blood mononuclear cells by means of RNA-seq in 30 participants, with the aim of identifying miRNAs differentially expressed in PD compared to age-matched healthy controls. Additionally, we investigated the pathways influenced by differentially expressed miRNAs and assessed whether a specific pathway could potentially be associated with PD susceptibility (enrichment analyses performed using the Ingenuity Pathway Analysis tools). Overall, considering that the upregulation of miRNAs might be related with the downregulation of their messenger RNA targets, and vice versa, we found several putative targets of dysregulated miRNAs (i.e., upregulated: hsa-miR-1275, hsa-miR-23a-5p, hsa-miR-432-5p, hsa-miR-4433b-3p, and hsa-miR-4443; downregulated: hsa-miR-142-5p, hsa-miR-143-3p, hsa-miR-374a-3p, hsa-miR-542-3p, and hsa-miR-99a-5p). An inverse connection between cancer and neurodegeneration, called "inverse comorbidity", has also been noted, showing that some genes or miRNAs may be expressed oppositely in neurodegenerative disorders and in some cancers. Therefore, it may be reasonable to consider these miRNAs as potential diagnostic markers and outcome measures.
Collapse
Affiliation(s)
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | | | | | | | - Giovanna Maria Ventola
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Angela Cordella
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Maria Ravo
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | | |
Collapse
|
25
|
Kingston ER, Blodgett LW, Bartel DP. Endogenous transcripts direct microRNA degradation in Drosophila, and this targeted degradation is required for proper embryonic development. Mol Cell 2022; 82:3872-3884.e9. [PMID: 36150386 PMCID: PMC9648618 DOI: 10.1016/j.molcel.2022.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/25/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
MicroRNAs (miRNAs) typically direct degradation of their mRNA targets. However, some targets have unusual miRNA-binding sites that direct degradation of cognate miRNAs. Although this target-directed miRNA degradation (TDMD) is thought to shape the levels of numerous miRNAs, relatively few sites that endogenously direct degradation have been identified. Here, we identify six sites, five in mRNAs and one in a noncoding RNA named Marge, which serve this purpose in Drosophila cells or embryos. These six sites direct miRNA degradation without collateral target degradation, helping explain the effectiveness of this miRNA-degradation pathway. Mutations that disrupt this pathway are lethal, with many flies dying as embryos. Concomitant derepression of miR-3 and its paralog miR-309 appears responsible for some of this lethality, whereas the loss of Marge-directed degradation of miR-310 miRNAs causes defects in embryonic cuticle development. Thus, TDMD is implicated in the viability of an animal and is required for its proper development.
Collapse
Affiliation(s)
- Elena R Kingston
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lianne W Blodgett
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Luo J, Zhao S, Ren Q, Wang Q, Chen Z, Cui J, Jing Y, Liu P, Yan R, Song X, Liu G, Li X. Dynamic Analysis of microRNAs from Different Life Stages of Rhipicephalus microplus (Acari: Ixodidae) by High-Throughput Sequencing. Pathogens 2022; 11:pathogens11101148. [PMID: 36297205 PMCID: PMC9611014 DOI: 10.3390/pathogens11101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
MicroRNAs (miRNAs), which are small, noncoding RNA molecules, play an important regulatory role in gene expression at the posttranscriptional level. Relatively limited knowledge exists on miRNAs in Rhipicephalus microplus ticks in China; however, understanding the physiology of miRNA functions and expression at different developmental stages is important. In this study, three small RNA libraries were constructed for R. microplus eggs, larvae, and female adults; miRNAs were detected during these developmental stages by high-throughput sequencing, with 18,162,337, 8,090,736, and 11,807,326 clean reads, respectively. A total of 5132 known miRNAs and 31 novel miRNAs were identified. A total of 1736 differentially expressed miRNAs were significantly different at a p-value of <0.01; in female adults, 467 microRNAs were upregulated and 376 miRNAs downregulated compared to larval tick controls. Using larvae as controls, 218 upregulated and 203 downregulated miRNAs were detected in eggs; in eggs, 108 miRNAs were upregulated and 364 downregulated compared to female adults controls. To verify the reliability of the sequencing data, RT−qPCR was applied to compare expression levels of novel miRNAs. Some differentially expressed miRNAs are involved in developmental physiology, signal transduction, and cell-extracellular communications based on GO annotation and KEGG pathway analyses. Here, we provide a dynamic analysis of miRNAs in R. microplus and their potential targets, which has significance for understanding the biology of ticks and lays the foundation for improved understanding of miRNA functioning in the regulation of R. microplus development. These results can assist future miRNA studies in other tick species that have great significance for human and animal health.
Collapse
Affiliation(s)
- Jin Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Qilin Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Zeyu Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Jingjing Cui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Yujiao Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Peiwen Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
- Correspondence: (G.L.); (X.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (G.L.); (X.L.)
| |
Collapse
|
27
|
Hildebrandt K, Klöppel C, Gogel J, Hartenstein V, Walldorf U. Orthopedia expression during Drosophila melanogaster nervous system development and its regulation by microRNA-252. Dev Biol 2022; 492:87-100. [PMID: 36179878 DOI: 10.1016/j.ydbio.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
During brain development of Drosophila melanogaster many transcription factors are involved in regulating neural fate and morphogenesis. In our study we show that the transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, plays an important role in this process. Otp is expressed in a stable pattern in defined lineages from mid-embryonic stages into the adult brain and therefore a very stable marker for these lineages. We determined the abundance of the two different otp transcripts in the brain and hindgut during development using qPCR. CRISPR/Cas9 generated otp mutants of the longer protein form significantly affect the expression of Otp in specific areas. We generated an otp enhancer trap strain by gene targeting and reintegration of Gal4, which mimics the complete expression of otp during development except the embryonic hindgut expression. Since in the embryo, the expression of Otp is posttranscriptionally regulated, we looked for putative miRNAs interacting with the otp 3'UTR, and identified microRNA-252 as a candidate. Further analyses with mutated and deleted forms of the microRNA-252 interacting sequence in the otp 3'UTR demonstrate an in vivo interaction of microRNA-252 with the otp 3'UTR. An effect of this interaction is seen in the adult brain, where Otp expression is partially abolished in a knockout strain of microRNA-252. Our results show that Otp is another important factor for brain development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg, Saar, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg, Saar, Germany
| | - Jasmin Gogel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg, Saar, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg, Saar, Germany.
| |
Collapse
|
28
|
Hobin M, Dorfman K, Adel M, Rivera-Rodriguez EJ, Kuklin EA, Ma D, Griffith LC. The Drosophila microRNA bantam regulates excitability in adult mushroom body output neurons to promote early night sleep. iScience 2022; 25:104874. [PMID: 36034229 PMCID: PMC9400086 DOI: 10.1016/j.isci.2022.104874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep circuitry evolved to have both dedicated and context-dependent modulatory elements. Identifying modulatory subcircuits and understanding their molecular machinery is a major challenge for the sleep field. Previously, we identified 25 sleep-regulating microRNAs in Drosophila melanogaster, including the developmentally important microRNA bantam. Here we show that bantam acts in the adult to promote early nighttime sleep through a population of glutamatergic neurons that is intimately involved in applying contextual information to behaviors, the γ5β'2a/β'2mp/β'2mp_bilateral Mushroom Body Output Neurons (MBONs). Calcium imaging revealed that bantam inhibits the activity of these cells during the early night, but not the day. Blocking synaptic transmission in these MBONs rescued the effect of bantam knockdown. This suggests bantam promotes early night sleep via inhibition of the γ5β'2a/β'2mp/β'2mp_bilateral MBONs. RNAseq identifies Kelch and CCHamide-2 receptor as possible mediators, establishing a new role for bantam as an active regulator of sleep and neural activity in the adult fly.
Collapse
Affiliation(s)
- Michael Hobin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Katherine Dorfman
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Mohamed Adel
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuel J. Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Elena A. Kuklin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Dingbang Ma
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Leslie C. Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
29
|
Imran M, Liu T, Wang Z, Wang M, Liu S, Gao X, Wang A, Liu S, Tian Z, Zhang M. Evolutionary conservation of nested MIR159 structural microRNA genes and their promoter characterization in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:948751. [PMID: 35958213 PMCID: PMC9361848 DOI: 10.3389/fpls.2022.948751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs, that are vital for gene expression regulation in eukaryotes. Whenever a pri-miRNA precursor includes another miRNA precursor, and both of these precursors may generate independent, non-overlapping mature miRNAs, we named them nested miRNAs. However, the extent of nested miR159 structural evolutionary conservation and its promoter characterization remains unknown. In this study, the sequence alignment and phylogenetic analysis reveal that the MIR159 family is ancient, and its nested miR159 structures are evolutionary conserved in different plant species. The overexpression of ath-MIR159a, including the 1.2 kb downstream region, has no effect on rescuing the mir159ab phenotype. The promoter truncation results revealed that the 1.0 kb promoter of ath-MIR159a is sufficient for rescuing the mir159ab phenotype. The cis-regulatory elements in the ath-miR159a promoters indicated functions related to different phytohormones, abiotic stresses, and transcriptional activation. While the MybSt1 motif-containing region is not responsible for activating the regulation of the miR159a promoter. The qRT-PCR results showed that overexpression of ath-MIR159a led to high expression levels of miR159a.1-5 and miR159a.1-3 and complemented the growth defect of mir159ab via downregulation of MYB33 and MYB65. Furthermore, continuously higher expression of the miR159a.2 duplex in transgenic lines with the curly leaf phenotype indicates that miR159a.2 is functional in Arabidopsis and suggests that it is possible for a miRNA precursor to encode several regulatory small RNAs in plants. Taken together, our study demonstrates that the nested miR159 structure is evolutionary conserved and miRNA-mediated gene regulation is more complex than previously thought.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xinyan Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songfeng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Du X, He X, Liu Q, Liu Q, Di R, Chu M. Identification of photoperiod-induced specific miRNAs in the adrenal glands of Sunite sheep (Ovis aries). Front Vet Sci 2022; 9:888207. [PMID: 35937294 PMCID: PMC9354845 DOI: 10.3389/fvets.2022.888207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
In seasonal estrus, it is well known that melatonin-regulated biorhythm plays a key role. Some studies indicate that the adrenal gland plays an important role in reproduction in mammals, but the molecular mechanism is not clear. This study used an artificially controlled light photoperiod model, combined with RNA-seq technology and bioinformatics analysis, to analyze the messenger RNA (mRNA) and microRNA (miRNA) of ewe (Sunite) adrenal glands under different photoperiod treatments. After identification, the key candidate genes GRHL2, CENPF, FGF16 and SLC25A30 that photoperiod affects reproduction were confirmed. The miRNAs (oar-miR-544-3p, oar-miR-411b-5p, oar-miR-376e-3p, oar-miR-376d, oar-miR-376b-3p, oar-miR-376a-3p) were specifically expressed in the adrenal gland. The candidate mRNA-miRNA pairs (e.g., SLC25A30 coagulated by novel miRNA554, novel miRNA555 and novel miRNA559) may affect seasonal estrus. In summary, we constructed relation network of the mRNAs and miRNAs of sheep adrenal glands using RNA sequencing and bioinformatics analysis, thereby, providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep.
Collapse
Affiliation(s)
- Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingqing Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingxing Chu
| |
Collapse
|
31
|
Zhang L, Chen L, Zhang H, Si H, Liu X, Suo X, Hu D. A comparative study of microRNAs in different stages of Eimeria tenella. Front Vet Sci 2022; 9:954725. [PMID: 35937295 PMCID: PMC9353057 DOI: 10.3389/fvets.2022.954725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Apicomplexan parasites have divergent biogenesis machinery for small RNA generation. Analysis has shown that parasites in Plasmodium and Cryptosporidium as well as many species in Leishmania or Trypanosoma do not have a complete machinery in small RNA biogenesis. Recently, the miRNA-generating system of Toxoplasma has been identified as plant/fungal-like and its miRNAome has been elucidated. However, the microRNA (miRNA) expression profiles and their potential regulatory functions in different stages of Eimeria tenella remain largely unknown. In this study, we characterized the RNA silencing machinery of E. tenella and investigated the miRNA population distribution at different life stages by high-throughput sequencing. We characterized the expression of miRNAs in the unsporulated oocyst, sporulated oocyst and schizogony stages, obtaining a total of 392 miRNAs. We identified 58 differentially expressed miRNAs between USO (unsporulated oocysts) and SO (sporulated oocysts) that were significantly enriched for their potential target genes in the regulation of gene expression and chromatin binding, suggesting an epigenetic modulation of sporulating by these miRNAs. In comparing miRNA expression at endogenous and exogenous developmental stages, twenty-four miRNAs were identified differently expressed. Those were mainly associated with the regulation of genes with protein kinase activity, suggesting control of protein phosphorylation. This is the first study about the evolution of miRNA biogenesis system and miRNA control of gene expression in Eimeria species. Our data may lead to functional insights into of the regulation of gene expression during parasite life cycle in apicomplexan parasites.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Linlin Chen
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongtao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xianyong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Dandan Hu
| |
Collapse
|
32
|
Pandey M, Luhur A, Sokol NS, Chawla G. Molecular Dissection of a Conserved Cluster of miRNAs Identifies Critical Structural Determinants That Mediate Differential Processing. Front Cell Dev Biol 2022; 10:909212. [PMID: 35784477 PMCID: PMC9247461 DOI: 10.3389/fcell.2022.909212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Differential processing is a hallmark of clustered microRNAs (miRNAs) and the role of position and order of miRNAs in a cluster together with the contribution of stem-base and terminal loops has not been explored extensively within the context of a polycistronic transcript. To elucidate the structural attributes of a polycistronic transcript that contribute towards the differences in efficiencies of processing of the co-transcribed miRNAs, we constructed a series of chimeric variants of Drosophila let-7-Complex that encodes three evolutionary conserved and differentially expressed miRNAs (miR-100, let-7 and miR-125) and examined the expression and biological activity of the encoded miRNAs. The kinetic effects of Drosha and Dicer processing on the chimeric precursors were examined by in vitro processing assays. Our results highlight the importance of stem-base and terminal loop sequences in differential expression of polycistronic miRNAs and provide evidence that processing of a particular miRNA in a polycistronic transcript is in part determined by the kinetics of processing of adjacent miRNAs in the same cluster. Overall, this analysis provides specific guidelines for achieving differential expression of a particular miRNA in a cluster by structurally induced changes in primary miRNA (pri-miRNA) sequences.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
| | - Arthur Luhur
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Nicholas S. Sokol
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
33
|
He T, Fan Y, Wang Y, Liu M, Zhu AJ. Dissection of the microRNA Network Regulating Hedgehog Signaling in Drosophila. Front Cell Dev Biol 2022; 10:866491. [PMID: 35573695 PMCID: PMC9096565 DOI: 10.3389/fcell.2022.866491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling plays a critical role in embryogenesis and adult tissue homeostasis. Aberrant Hh signaling often leads to various forms of developmental anomalies and cancer. Since altered microRNA (miRNA) expression is associated with developmental defects and tumorigenesis, it is not surprising that several miRNAs have been found to regulate Hh signaling. However, these miRNAs are mainly identified through small-scale in vivo screening or in vitro assays. As miRNAs preferentially reduce target gene expression via the 3' untranslated region, we analyzed the effect of reduced expression of core components of the Hh signaling cascade on downstream signaling activity, and generated a transgenic Drosophila toolbox of in vivo miRNA sensors for core components of Hh signaling, including hh, patched (ptc), smoothened (smo), costal 2 (cos2), fused (fu), Suppressor of fused (Su(fu)), and cubitus interruptus (ci). With these tools in hand, we performed a genome-wide in vivo miRNA overexpression screen in the developing Drosophila wing imaginal disc. Of the twelve miRNAs identified, seven were not previously reported in the in vivo Hh regulatory network. Moreover, these miRNAs may act as general regulators of Hh signaling, as their overexpression disrupts Hh signaling-mediated cyst stem cell maintenance during spermatogenesis. To identify direct targets of these newly discovered miRNAs, we used the miRNA sensor toolbox to show that miR-10 and miR-958 directly target fu and smo, respectively, while the other five miRNAs act through yet-to-be-identified targets other than the seven core components of Hh signaling described above. Importantly, through loss-of-function analysis, we found that endogenous miR-10 and miR-958 target fu and smo, respectively, whereas deletion of the other five miRNAs leads to altered expression of Hh signaling components, suggesting that these seven newly discovered miRNAs regulate Hh signaling in vivo. Given the powerful effects of these miRNAs on Hh signaling, we believe that identifying their bona fide targets of the other five miRNAs will help reveal important new players in the Hh regulatory network.
Collapse
Affiliation(s)
- Tao He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Fan
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yao Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
34
|
Pegoraro M, Fishman B, Zonato V, Zouganelis G, Francis A, Kyriacou CP, Tauber E. Photoperiod-Dependent Expression of MicroRNA in Drosophila. Int J Mol Sci 2022; 23:ijms23094935. [PMID: 35563325 PMCID: PMC9100521 DOI: 10.3390/ijms23094935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/07/2022] Open
Abstract
Like many other insects in temperate regions, Drosophila melanogaster exploits the photoperiod shortening that occurs during the autumn as an important cue to trigger a seasonal response. Flies survive the winter by entering a state of reproductive arrest (diapause), which drives the relocation of resources from reproduction to survival. Here, we profiled the expression of microRNA (miRNA) in long and short photoperiods and identified seven differentially expressed miRNAs (dme-mir-2b, dme-mir-11, dme-mir-34, dme-mir-274, dme-mir-184, dme-mir-184*, and dme-mir-285). Misexpression of dme-mir-2b, dme-mir-184, and dme-mir-274 in pigment-dispersing, factor-expressing neurons largely disrupted the normal photoperiodic response, suggesting that these miRNAs play functional roles in photoperiodic timing. We also analyzed the targets of photoperiodic miRNA by both computational predication and by Argonaute-1-mediated immunoprecipitation of long- and short-day RNA samples. Together with global transcriptome profiling, our results expand existing data on other Drosophila species, identifying genes and pathways that are differentially regulated in different photoperiods and reproductive status. Our data suggest that post-transcriptional regulation by miRNA is an important facet of photoperiodic timing.
Collapse
Affiliation(s)
- Mirko Pegoraro
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (M.P.); (A.F.)
| | - Bettina Fishman
- Department of Evolutionary & Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
| | - Valeria Zonato
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (V.Z.); (C.P.K.)
| | | | - Amanda Francis
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (M.P.); (A.F.)
| | - Charalambos P. Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (V.Z.); (C.P.K.)
| | - Eran Tauber
- Department of Evolutionary & Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
- Correspondence:
| |
Collapse
|
35
|
Dai W, Su X, Zhang B, Wu K, Zhao P, Yan Z. An Alternative Class of Targets for microRNAs Containing CG Dinucleotide. BIOLOGY 2022; 11:biology11030478. [PMID: 35336851 PMCID: PMC8945436 DOI: 10.3390/biology11030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary MicroRNAs are ~23 nt, highly conserved non-coding RNA molecules involved in the regulation of target gene expression. Most of the microRNA-target prediction algorithms rely heavily on seed rules and evolutionary conservation. However, such strategies suffer from missing the non-canonical target sites. The aim of this study is to identify the general features of non-canonical targets and their interactions with microRNAs. We found that the bulge-targets were preferentially associated with the microRNAs containing CG dinucleotides in their seed region. This finding indicates that non-canonical targets could be rich due to high mutation frequency of CG within the target mRNAs. Multi-step validation, which included evolutionary, overexpression, correlation, and CLASH data analysis, supports the interactome between the microRNAs with CG dinucleotides in the seed region and their bugle targets. Thus, a major novelty of this work is the identification of a sequence motif, CG dinucleotides, in the seed region of microRNAs, is strongly correlated to bulge targeting patterns. Abstract MicroRNAs (miRNAs) are endogenous ~23 nt RNAs which regulate message RNA (mRNA) targets mainly through perfect pairing with their seed region (positions 2–7). Several instances of UTR sequence with an additional nucleotide that might form a bulge within the pairing region, can also be recognized by miRNA as their target (bugle-target). But the prevalence of such imperfect base pairings in human and their roles in the evolution are incompletely understood. We found that human miRNAs with the CG dinucleotides (CG dimer) in their seed region have a significant low mutation rate than their putative binding sites in mRNA targets. Interspecific comparation shows that these miRNAs had very few conservative targets with the perfect seed-pairing, while potentially having a subclass of bulge-targets. Compared with the canonical target (perfect seed-pairing), these bulge-targets had a lower negative correlation with the miRNA expression, and either were down-regulated in the miRNA overexpression experiment or up-regulated in the miRNA knock-down experiment. Our results show that the bulge-targets are widespread in the miRNAs with CG dinucleotide within their seed regions, which could in part explain the rare conserved targets of these miRNAs based on seed rule. Incorporating these bulge-targets, together with conservation information, could more accurately predict the entire targets of these miRNAs.
Collapse
Affiliation(s)
- Wennan Dai
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
| | - Xin Su
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
| | - Bin Zhang
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Kejing Wu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Pengshan Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (P.Z.); (Z.Y.)
| | - Zheng Yan
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
- Correspondence: (P.Z.); (Z.Y.)
| |
Collapse
|
36
|
Mondal D, Chakrabarty U, Dutta S, Mallik A, Mandal N. Identification and characterization of novel microRNAs in disease-resistant and disease-susceptible Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2021; 119:347-372. [PMID: 33961994 DOI: 10.1016/j.fsi.2021.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs), known as a translational regulator, are evolutionary conserved, small, and noncoding RNA. They have played a vital role in disease biology through the host-virus-miRNA-interaction. In this study, novel miRNAs of naturally occurring, virus-free disease-resistant and disease-susceptible Penaeus monodon were identified and characterized. In disease-susceptible samples, 45 homologous mature miRNAs and 28 homologous precursor miRNAs were identified. In disease-resistant samples, 52 homologous mature miRNAs and 87 homologous precursor miRNAs were identified. In disease-susceptible samples, 33 novel mature miRNAs and 33 novel precursor miRNAs were identified. In disease-resistant samples, 523 novel mature miRNAs and 141 novel precursor miRNAs were identified. Differential expression study revealed the up-regulated and down-regulated miRNAs in disease-resistant and disease-susceptible P. monodon. Gene ontology pathway of known and novel miRNAs revealed that P. monodon miRNAs might have a potential and specific role in signal transduction, cell-to-cell signaling, innate immune response and defense response to different pathogens.
Collapse
Affiliation(s)
- Debabrata Mondal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, West Bengal, India
| | - Usri Chakrabarty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, West Bengal, India
| | - Sourav Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, West Bengal, India
| | - Ajoy Mallik
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, West Bengal, India; Department of Zoology, Dinabandhu Mahavidyalaya, North 24 Parganas, Bongaon, West Bengal, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
37
|
Li D, Ge Y, Zhao Z, Zhu R, Wang X, Bi X. Distinct and Coordinated Regulation of Small Non-coding RNAs by E2f1 and p53 During Drosophila Development and in Response to DNA Damage. Front Cell Dev Biol 2021; 9:695311. [PMID: 34368144 PMCID: PMC8339594 DOI: 10.3389/fcell.2021.695311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Small non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), play a pivotal role in biological processes. A comprehensive quantitative reference of small ncRNAs expression during development and in DNA damage response (DDR) would significantly advance our understanding of their roles. In this study, we systemically analyzed the expression profile of miRNAs and piRNAs in wild-type flies, e2f1 mutant, p53 mutant and e2f1 p53 double mutant during development and after X-ray irradiation. By using small RNA sequencing and bioinformatic analysis, we found that both miRNAs and piRNAs were expressed in a dynamic mode and formed 4 distinct clusters during development. Notably, the expression pattern of miRNAs and piRNAs was changed in e2f1 mutant at multiple developmental stages, while retained in p53 mutant, indicating a critical role of E2f1 played in mediating small ncRNAs expression. Moreover, we identified differentially expressed (DE) small ncRNAs in e2f1 mutant and p53 mutant after X-ray irradiation. Furthermore, we mapped the binding motif of E2f1 and p53 around the small ncRNAs. Our data suggested that E2f1 and p53 work differently yet coordinately to regulate small ncRNAs expression, and E2f1 may play a major role to regulate miRNAs during development and after X-ray irradiation. Collectively, our results provide comprehensive characterization of small ncRNAs, as well as the regulatory roles of E2f1 and p53 in small ncRNAs expression, during development and in DNA damage response, which reveal new insights into the small ncRNAs biology.
Collapse
Affiliation(s)
- Dong Li
- School of Medicine, Nantong University, Nantong, China
| | - Ying Ge
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ze Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Rui Zhu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaolin Bi
- School of Medicine, Nantong University, Nantong, China.,College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Olgun G, Nabi A, Tastan O. NoRCE: non-coding RNA sets cis enrichment tool. BMC Bioinformatics 2021; 22:294. [PMID: 34078267 PMCID: PMC8170991 DOI: 10.1186/s12859-021-04112-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located close-by on the genome are often regulated together. This genomic proximity on the sequence can hint at a functional association. RESULTS We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast. CONCLUSIONS NoRCE is a platform-independent, user-friendly, comprehensive R package that can be used to gain insight into the functional importance of a list of ncRNAs of any type. The tool offers flexibility to conduct the users' preferred set of analyses by designing their own pipeline of analysis. NoRCE is available in Bioconductor and https://github.com/guldenolgun/NoRCE .
Collapse
Affiliation(s)
- Gulden Olgun
- Department of Computer Engineering, Bilkent University, Ankara, Turkey.,Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Afshan Nabi
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Oznur Tastan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey. .,Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Ito T, Igaki T. Yorkie drives Ras-induced tumor progression by microRNA-mediated inhibition of cellular senescence. Sci Signal 2021; 14:14/685/eaaz3578. [PMID: 34074704 DOI: 10.1126/scisignal.aaz3578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The activation of Ras signaling is a major early event of oncogenesis in many contexts, yet paradoxically, Ras signaling induces cellular senescence, which prevents tumorigenesis. Thus, Ras-activated cells must overcome senescence to develop into cancer. Through a genetic screen in Drosophila melanogaster, we found that the ETS family transcriptional activator Pointed (Pnt) was necessary and sufficient to trigger cellular senescence upon Ras activation and blocked Ras-induced tumor growth in eye-antennal discs. Through analyses of mosaic discs using various genetic tools, we identified a mechanism of tumor progression in which loss of cell polarity, a common driver of epithelial oncogenesis, abrogated Ras-induced cellular senescence through microRNA-mediated inhibition of Pnt. Mechanistically, polarity defects in Ras-activated cells caused activation of the Hippo effector Yorkie (Yki), which induced the expression of the microRNA bantam bantam-mediated repression of the E3 ligase-associated protein Tribbles (Trbl) relieved Ras- and Akt-dependent inhibition of the transcription factor FoxO. The restoration of FoxO activity in Ras-activated cells induced the expression of the microRNAs miR-9c and miR-79, which led to reduced pnt expression, thereby abrogating cellular senescence and promoting tumor progression. Our findings provide a mechanistic explanation for how Ras-activated tumors progress toward malignancy by overcoming cellular senescence.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
40
|
miRNAs of Aedes aegypti (Linnaeus 1762) conserved in six orders of the class Insecta. Sci Rep 2021; 11:10706. [PMID: 34021209 PMCID: PMC8139948 DOI: 10.1038/s41598-021-90095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
Aedes aegypti L. is the most important vector of arboviruses such as dengue, Zika, chikungunya, Mayaro, and yellow fever, which impact millions of people's health per year. MicroRNA profile has been described in some mosquito species as being important for biological processes such as digestion of blood, oviposition, sexual differentiation, insecticide resistance, and pathogens dissemination. We identified the miRNAs of Ae. aegypti females, males and eggs of a reference insecticide susceptible strain New Orleans and compared them with those other insects to determine miRNA fingerprint by new-generation sequencing. The sequences were analyzed using data mining tools and categorization, followed by differential expression analysis and conservation with other insects. A total of 55 conserved miRNAs were identified, of which 34 were of holometabolous insects and 21 shared with hemimetabolous insects. Of these miRNAs, 32 had differential expression within the stages analyzed. Three predominant functions of miRNA were related to embryonic development regulation, metamorphosis, and basal functions. The findings of this research describe new information on Ae. aegypti physiology which could be useful for the development of new control strategies, particularly in mosquito development and metamorphosis processes.
Collapse
|
41
|
Exogenous miRNA: A Perspective Role as Therapeutic in Rheumatoid Arthritis. Curr Rheumatol Rep 2021; 23:43. [PMID: 33939021 DOI: 10.1007/s11926-021-01009-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease that causes joint deformation. Till now several studies has been carried out promising its cure, but curing has not yet achieved to the satisfactory levels. Herbal approach to treat disease by a cross-kingdom mechanism via exogenous miRNA is an emerging trend to target associated genes with RA pathogenesis as a therapeutic potential. The concept of acquired/exogenous miRNA into pathophysiological prospect provides an opportunity to explore inter-species kingdom like regulation of plant miRNAs on human health. The change in gene expression was attributed by a short 22-24 nucleotide long sequence that binds to its complementary region to suppress/silence the gene expression. This makes exogenous miRNA a novel approach for targeted therapy to treat complex chronic inflammatory diseases. Here, aim of the review was to address significance of plant derived miRNA based targeted therapy to regulate inflammation in RA.
Collapse
|
42
|
Liu G, Jia L, Shao Q, Lu H, Zhao J, Yin J. MicroRNA profiling of Neospora caninum tachyzoites (NC-1) using a high-throughput approach. Parasitol Res 2021; 120:2165-2174. [PMID: 33893549 DOI: 10.1007/s00436-021-07155-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Neospora caninum is an important pathogen commonly causing spontaneous abortion in livestock. The parasite is known to remain in cysts in an inactive state; or it can undergo expansive development within an intermediate host. However, the mechanisms that trigger the proliferation of N. caninum have not been thoroughly elucidated. For various organisms, it has been demonstrated that microRNAs (miRNAs) can act as important endogenous regulatory factors in gene regulation during cell differentiation and development. However, miRNAs and their function have not been studied in N. caninum. In this study, small RNA libraries from N. caninum tachyzoites (NC-1 strain) were analyzed using a high-throughput RNA sequencing technology combined with systematic bioinformatics analysis. A considerable number of novel miRNAs from N. caninum NC-1 strain tachyzoites were identified. Of the 300 miRNAs found by bioinformatics analysis, 10 were conserved miRNAs belonging to 10 metazoan miRNA families, while 290 were novel miRNAs. The expression of 13 novel miRNAs was verified by real-time quantitative PCR (qRT-PCR). Data from this study provided and identified authentic miRNAs for the first time in N. caninum. The study also introduces a framework for further investigations of RNAi-dependent regulatory mechanisms of the parasite and provides data for further understanding of N. caninum development.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lijun Jia
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, Yanbian University, Yanji, 133002, China
| | - Qingyan Shao
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Jigang Yin
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
43
|
Yang X, Fishilevich E, German MA, Gandra P, McEwan RE, Billion A, Knorr E, Vilcinskas A, Narva KE. Elucidation of the microRNA Transcriptome in Western Corn Rootworm Reveals Its Dynamic and Evolutionary Complexity. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:800-814. [PMID: 33607298 PMCID: PMC9170749 DOI: 10.1016/j.gpb.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/21/2018] [Accepted: 03/28/2019] [Indexed: 11/25/2022]
Abstract
Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects.
Collapse
Affiliation(s)
- Xiaozeng Yang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States.
| | - Elane Fishilevich
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States; University of Nebraska-Lincoln, Department of Entomology, Nebraska, 68583, United States
| | - Marcelo A German
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - Premchand Gandra
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - Robert E McEwan
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - André Billion
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Eileen Knorr
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Kenneth E Narva
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States.
| |
Collapse
|
44
|
Ma F, Lu GA, Chen Q, Ruan Y, Li X, Lu X, Li C. Dynamic global analysis of transcription reveals the role of miRNAs in synergistic stabilization of gene expression. Sci Bull (Beijing) 2020; 65:2130-2140. [PMID: 36732966 DOI: 10.1016/j.scib.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/29/2020] [Accepted: 06/08/2020] [Indexed: 02/04/2023]
Abstract
Buffering exogenous perturbation is crucial to maintain transcriptional homeostasis during development. While miRNAs have been speculated to play a role in stability maintenance, previous studies seeking to check this conjecture focused on measurements of transcript levels at steady state or involved individual miRNA targets. We measured whole-genome expression dynamics by introducing a transient perturbation and establishing a perturbation and recovery system in Drosophila larvae. We inhibited all transcription and assayed transcriptomes at several time points during recovery from inhibition. We performed these experiments in the wild type and miRNA-deficient genetic backgrounds. Consistent with theories about miRNAs' function in stabilizing the transcriptome, we find that attenuating miRNA expression leads to weak impairment in degradation of targets but strong destabilization of target genes when transcription is re-activated. We further fitted a model that captures the essential aspects of transcription dynamics in our experiments and found that the miRNA target transcripts uniformly overshoot the original steady state as they recover from a general inhibition of transcription if global miRNA levels are reduced. Collectively, our results provide experimental evidence for the idea that miRNAs act cumulatively to stabilize the transcriptional regulatory network. We therefore found a promising approach to assess the effect of these molecules on transcription dynamics.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, and Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
| | - Guang-An Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Genetic Resources and Evolution & CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qingjian Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongsen Ruan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution & CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyan Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, and Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
45
|
MicroRNAs as Biomarkers in Canine Osteosarcoma: A New Future? Vet Sci 2020; 7:vetsci7040146. [PMID: 33008041 PMCID: PMC7711435 DOI: 10.3390/vetsci7040146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are frequent in dogs and canine species are excellent animal models for studying the human counterpart. However, osteosarcomas are a rare form of sarcoma with high death rates in humans and dogs. miRNAs are small endogenous RNAs that regulate gene expression post-transcriptionally. The discovery of miRNAs could give a contribute in the diagnosis and prognosis of different types of tumors in animal species, as already in humans. The differentiated expression of miRNAs is a frequent finding in cancers and is related to their pathogenesis in many cases. Most canine and human sarcomas show similar miRNA aberrations. Lower levels of miR-1 and miR-133b in canine osteosarcoma tissues were found to increase tumorigenesis through a higher expression of their target genes MET and MCL1. The overexpression of miR-9 promotes a metastatic phenotype in canine osteosarcomas and its capacity as a prognostic biomarker for the disease is currently being evaluated. MicroRNAs at the 14q32 locus could be used as prognostic biomarkers, since their decreased expression has been associated with poor prognosis in canine and human osteosarcomas. Furthermore, a decreased expression of miR-34a in osteosarcoma tumour cells has been associated with shorter disease-free survival times and its reintroduction as a synthetic prodrug shows good potential as a novel therapeutic target to fight the disease. Circulating miR-214 and miR-126 are significantly increased in a broad-spectrum cancer and have the ability to successfully predict the prognosis of dogs. However, further studies are needed to make the use of miRNAs as biomarkers a common practice.
Collapse
|
46
|
Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1627. [PMID: 32954644 PMCID: PMC8047885 DOI: 10.1002/wrna.1627] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post‐transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA‐Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute‐loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch‐like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under:RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
47
|
The conserved microRNA miR-210 regulates lipid metabolism and photoreceptor maintenance in the Drosophila retina. Cell Death Differ 2020; 28:764-779. [PMID: 32913227 DOI: 10.1038/s41418-020-00622-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Abstract
Increasing evidence suggests that miRNAs play important regulatory roles in the nervous system. However, the molecular mechanisms of how specific miRNAs affect neuronal development and functions remain less well understood. In the present study, we provide evidence that the conserved microRNA miR-210 regulates lipid metabolism and prevents neurodegeneration in the Drosophila retina. miR-210 is specifically expressed in the photoreceptor neurons and other sensory organs. Genetic deletion of miR-210 leads to lipid droplet accumulation and photoreceptor degeneration in the retina. These effects are associated with abnormal activation of the Drosophila sterol regulatory element-binding protein signaling. We further identify the acetyl-coenzyme A synthetase (ACS) as one functionally important target of miR-210 in this context. Reduction of ACS in the miR-210 mutant background suppresses the neurodegeneration defects, suggesting that miR-210 acts through regulation of the ACS transcript. Together, these results reveal an unexpected role of miR-210 in controlling lipid metabolism and neuronal functions.
Collapse
|
48
|
Post-transcriptional modulation of cytochrome P450s, Cyp6g1 and Cyp6g2, by miR-310s cluster is associated with DDT-resistant Drosophila melanogaster strain 91-R. Sci Rep 2020; 10:14394. [PMID: 32873850 PMCID: PMC7463240 DOI: 10.1038/s41598-020-71250-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
The role of miRNAs in mediating insecticide resistance remains largely unknown, even for the model species Drosophila melanogaster. Building on prior research, this study used microinjection of synthetic miR-310s mimics into DDT-resistant 91-R flies and observed both a significant transcriptional repression of computationally-predicted endogenous target P450 detoxification genes, Cyp6g1 and Cyp6g2, and also a concomitant increase in DDT susceptibility. Additionally, co-transfection of D. melanogaster S2 cells with dual luciferase reporter constructs validated predictions that miR-310s bind to target binding sites in the 3ʹ untranslated regions (3ʹ-UTR) of both Cyp6g1 and Cyp6g2 in vitro. Findings in the current study provide empirical evidence for a link between reduced miRNA expression and an insecticidal resistance phenotype through reduced targeted post-transcriptional suppression of transcripts encoding proteins involved in xenobiotic detoxification. These insights are important for understanding the breadth of adaptive molecular changes that have contributed to the evolution of DDT resistance in D. melanogaster.
Collapse
|
49
|
miR-92a Suppresses Mushroom Body-Dependent Memory Consolidation in Drosophila. eNeuro 2020; 7:ENEURO.0224-20.2020. [PMID: 32737186 PMCID: PMC7642123 DOI: 10.1523/eneuro.0224-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) fine tune gene expression to regulate many aspects of nervous system physiology. Here, we show that miR-92a suppresses memory consolidation that occurs in the αβ and γ mushroom body neurons (MBns) of Drosophila, making miR-92a a memory suppressor miRNA. Bioinformatics analyses suggested that mRNAs encoding kinesin heavy chain 73 (KHC73), a protein that belongs to Kinesin-3 family of anterograde motor proteins, may be a functional target of miR-92a. Behavioral studies that employed expression of khc73 with and without its 3' untranslated region (UTR) containing miR-92a target sites, luciferase assays in HEK cells with reporters containing wild-type and mutant target sequences in the khc73 3'UTR, and immunohistochemistry experiments involving KHC73 expression with and without the wild-type khc73 3'UTR, all point to the conclusion that khc73 is a major target of miR-92a in its functional role as a miRNA memory suppressor gene.
Collapse
|
50
|
VCP Machinery Mediates Autophagic Degradation of Empty Argonaute. Cell Rep 2020; 28:1144-1153.e4. [PMID: 31365860 DOI: 10.1016/j.celrep.2019.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
The Argonaute subfamily of proteins (AGO) loads microRNAs (miRNAs) to form the effector complex that mediates target gene silencing. Empty AGO, but not miRNA-loaded AGO, is selectively degraded across species. We have reported that the degradation of empty AGO is part of a quality control pathway that eliminates dysfunctional AGO. However, how empty AGO is degraded remains unclear. Here we show that the empty state of Drosophila Ago1 is degraded by autophagy. Comprehensive LC-MS/MS analyses, together with manipulation of the Ago1 ubiquitination level, revealed that VCP, which mediates selective autophagy, recognizes empty Ago1 via the Ufd1-Npl4 heterodimer. Depletion of VCP-Ufd1-Npl4 machinery impairs degradation of empty Ago1 and miRNA-mediated target gene silencing. Our findings reveal a direct link between empty AGO degradation and selective autophagy that ensures efficient miRNA function.
Collapse
|