1
|
Rocha-Almeida F, Conde-Moro AR, Fernández-Ruiz A, Delgado-García JM, Gruart A. Cortical and subcortical activities during food rewards versus social interaction in rats. Sci Rep 2025; 15:4389. [PMID: 39910316 PMCID: PMC11799384 DOI: 10.1038/s41598-025-87880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Balancing food foraging with social interaction is crucial for survival and reproduction in many species of mammals. We wanted to investigate the reward preferences in adult male rats by allowing them to lever-press for both food and social rewards (interaction with another rat), while their performance and electrophysiological activities were recorded. Local field potentials (LFPs) were analyzed across five neuroanatomical regions involved in reward processing, decision-making, and social behavior. Despite ad libitum food availability, rats consistently prioritized food. LFP analysis revealed a decrease in nucleus accumbens (NAc) spectral power following social interaction, accompanied by specific alterations in delta and theta bands within the medial prefrontal cortex (mPFC). The spectral power of LFPs delta and/or theta bands were different for the five selected regions following food reward vs. social interactions. Cross-frequency coupling analysis provided further insights, demonstrating dynamic changes in theta-to-gamma coupling during both food and social rewards, with distinct roles for slow- and fast-gamma frequencies. These findings shed light on the intricate neural processes underlying reward preferences and/or decision-making choices, highlighting the NAc's potential role in social reward processing, and the mPFC's involvement in modulating theta-gamma rhythms during reward-related decision-making.
Collapse
Affiliation(s)
| | - Ana R Conde-Moro
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | | | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|
2
|
Muñoz-Redondo C, Parras GG, Andreu-Sánchez C, Martín-Pascual MÁ, Delgado-García JM, Gruart A. Functional states of prelimbic and related circuits during the acquisition of a GO/noGO task in rats. Cereb Cortex 2024; 34:bhae271. [PMID: 38997210 DOI: 10.1093/cercor/bhae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
GO/noGO tasks enable assessing decision-making processes and the ability to suppress a specific action according to the context. Here, rats had to discriminate between 2 visual stimuli (GO or noGO) shown on an iPad screen. The execution (for GO) or nonexecution (for noGO) of the selected action (to touch or not the visual display) were reinforced with food. The main goal was to record and to analyze local field potentials collected from cortical and subcortical structures when the visual stimuli were shown on the touch screen and during the subsequent activities. Rats were implanted with recording electrodes in the prelimbic cortex, primary motor cortex, nucleus accumbens septi, basolateral amygdala, dorsolateral and dorsomedial striatum, hippocampal CA1, and mediodorsal thalamic nucleus. Spectral analyses of the collected data demonstrate that the prelimbic cortex was selectively involved in the cognitive and motivational processing of the learning task but not in the execution of reward-directed behaviors. In addition, the other recorded structures presented specific tendencies to be involved in these 2 types of brain activity in response to the presentation of GO or noGO stimuli. Spectral analyses, spectrograms, and coherence between the recorded brain areas indicate their specific involvement in GO vs. noGO tasks.
Collapse
Affiliation(s)
| | - Gloria G Parras
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | - Celia Andreu-Sánchez
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
- Cerdanyola del Vallès, Institut de Neurociènces, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
| | - Miguel Ángel Martín-Pascual
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
- Research and Development, Institute of Spanish Public Television (RTVE), Corporación Radio Televisión Española, Barcelona 08190, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| |
Collapse
|
3
|
Rautio IV, Holmberg EH, Kurup D, Dunn BA, Whitlock JR. A novel paradigm for observational learning in rats. Cogn Neurodyn 2024; 18:757-767. [PMID: 38699625 PMCID: PMC11061086 DOI: 10.1007/s11571-023-10022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 05/05/2024] Open
Abstract
The ability to learn by observing the behavior of others is energy efficient and brings high survival value, making it an important learning tool that has been documented in a myriad of species in the animal kingdom. In the laboratory, rodents have proven useful models for studying different forms of observational learning, however, the most robust learning paradigms typically rely on aversive stimuli, like foot shocks, to drive the social acquisition of fear. Non-fear-based tasks have also been used but they rarely succeed in having observer animals perform a new behavior de novo. Consequently, little known regarding the cellular mechanisms supporting non-aversive types of learning, such as visuomotor skill acquisition. To address this we developed a reward-based observational learning paradigm in adult rats, in which observer animals learn to tap lit spheres in a specific sequence by watching skilled demonstrators, with successful trials leading to rewarding intracranial stimulation in both observers and performers. Following three days of observation and a 24-hour delay, observer animals outperformed control animals on several metrics of task performance and efficiency, with a subset of observers demonstrating correct performance immediately when tested. This paradigm thus introduces a novel tool to investigate the neural circuits supporting observational learning and memory for visuomotor behavior, a phenomenon about which little is understood, particularly in rodents.
Collapse
Affiliation(s)
- Ida V. Rautio
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
| | - Ella Holt Holmberg
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
| | - Devika Kurup
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
| | - Benjamin A. Dunn
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 1, Trondheim, 7491 Norway
| | - Jonathan R. Whitlock
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Olav Kyrresg gate 9, Trondheim, 7089 Norway
| |
Collapse
|
4
|
Paraouty N, Yao JD, Varnet L, Chou CN, Chung S, Sanes DH. Sensory cortex plasticity supports auditory social learning. Nat Commun 2023; 14:5828. [PMID: 37730696 PMCID: PMC10511464 DOI: 10.1038/s41467-023-41641-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Social learning (SL) through experience with conspecifics can facilitate the acquisition of many behaviors. Thus, when Mongolian gerbils are exposed to a demonstrator performing an auditory discrimination task, their subsequent task acquisition is facilitated, even in the absence of visual cues. Here, we show that transient inactivation of auditory cortex (AC) during exposure caused a significant delay in task acquisition during the subsequent practice phase, suggesting that AC activity is necessary for SL. Moreover, social exposure induced an improvement in AC neuron sensitivity to auditory task cues. The magnitude of neural change during exposure correlated with task acquisition during practice. In contrast, exposure to only auditory task cues led to poorer neurometric and behavioral outcomes. Finally, social information during exposure was encoded in the AC of observer animals. Together, our results suggest that auditory SL is supported by AC neuron plasticity occurring during social exposure and prior to behavioral performance.
Collapse
Affiliation(s)
- Nihaad Paraouty
- Center for Neural Science New York University, New York, NY, 10003, USA.
| | - Justin D Yao
- Department of Otolaryngology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Léo Varnet
- Laboratoire des Systèmes Perceptifs, UMR 8248, Ecole Normale Supérieure, PSL University, Paris, 75005, France
| | - Chi-Ning Chou
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, USA
- School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - SueYeon Chung
- Center for Neural Science New York University, New York, NY, 10003, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Dan H Sanes
- Center for Neural Science New York University, New York, NY, 10003, USA
- Department of Psychology, New York University, New York, NY, 10003, USA
- Department of Biology, New York University, New York, NY, 10003, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10003, USA
| |
Collapse
|
5
|
Gruart A, Delgado-García JM. Neural bases of freedom and responsibility. Front Neural Circuits 2023; 17:1191996. [PMID: 37334060 PMCID: PMC10272542 DOI: 10.3389/fncir.2023.1191996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
This review presents a broad perspective of the Neuroscience of our days with special attention to how the brain generates our behaviors, emotions, and mental states. It describes in detail how unconscious and conscious processing of sensorimotor and mental information takes place in our brains. Likewise, classic and recent experiments illustrating the neuroscientific foundations regarding the behavioral and cognitive abilities of animals and, in particular, of human beings are described. Special attention is applied to the description of the different neural regulatory systems dealing with behavioral, cognitive, and emotional functions. Finally, the brain process for decision-making, and its relationship with individual free will and responsibility, are also described.
Collapse
|
6
|
Parras GG, Leal-Campanario R, López-Ramos JC, Gruart A, Delgado-García JM. Functional properties of eyelid conditioned responses and involved brain centers. Front Behav Neurosci 2022; 16:1057251. [PMID: 36570703 PMCID: PMC9780278 DOI: 10.3389/fnbeh.2022.1057251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For almost a century the classical conditioning of nictitating membrane/eyelid responses has been used as an excellent and feasible experimental model to study how the brain organizes the acquisition, storage, and retrieval of new motor abilities in alert behaving mammals, including humans. Lesional, pharmacological, and electrophysiological approaches, and more recently, genetically manipulated animals have shown the involvement of numerous brain areas in this apparently simple example of associative learning. In this regard, the cerebellum (both cortex and nuclei) has received particular attention as a putative site for the acquisition and storage of eyelid conditioned responses, a proposal not fully accepted by all researchers. Indeed, the acquisition of this type of learning implies the activation of many neural processes dealing with the sensorimotor integration and the kinematics of the acquired ability, as well as with the attentional and cognitive aspects also involved in this process. Here, we address specifically the functional roles of three brain structures (red nucleus, cerebellar interpositus nucleus, and motor cortex) mainly involved in the acquisition and performance of eyelid conditioned responses and three other brain structures (hippocampus, medial prefrontal cortex, and claustrum) related to non-motor aspects of the acquisition process. The main conclusion is that the acquisition of this motor ability results from the contribution of many cortical and subcortical brain structures each one involved in specific (motor and cognitive) aspects of the learning process.
Collapse
|
7
|
Yamada M, Sakurai Y. Medial prefrontal cortex stimulation disrupts observational learning in Barnes maze in rats. Cogn Neurodyn 2021; 16:497-505. [PMID: 35401858 PMCID: PMC8934901 DOI: 10.1007/s11571-021-09715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
Observational learning, which improves one's own behavior by observing the adaptive behavior of others, has been experimentally demonstrated in primates and rodents in several behavioral studies, including our previous study. However, its neural mechanisms remain unclear. We electrically stimulated the brain regions of rats and disturbed their neural activities during observation periods in the observational learning task using Barnes maze. According to comparison of escaping latencies of the observer and model rats, the observer rats with stimulation of the medial prefrontal cortex (mPFC) showed no observational learning, whereas both of the observer rats with stimulation of the dorsal hippocampus and with no stimulation (control) showed observational learning. These results suggest that mPFC stimulation disrupts observational learning and confirms that the mPFC is an important brain region for it in rats.
Collapse
|
8
|
Li RR, Yan J, Chen H, Zhang WW, Hu YB, Zhang J, Hu ZA, Xiong Y, Yao ZX, Hu B. Sleep Deprivation Impairs Learning-Induced Increase in Hippocampal Sharp Wave Ripples and Associated Spike Dynamics during Recovery Sleep. Cereb Cortex 2021; 32:824-838. [PMID: 34383018 DOI: 10.1093/cercor/bhab247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
Sleep deprivation (SD) causes deficits in off-line memory consolidation, but the underlying network oscillation mechanisms remain unclear. Hippocampal sharp wave ripple (SWR) oscillations play a critical role in off-line memory consolidation. Therefore, we trained mice to learn a hippocampus-dependent trace eyeblink conditioning (tEBC) task and explored the influence of 1.5-h postlearning SD on hippocampal SWRs and related spike dynamics during recovery sleep. We found an increase in hippocampal SWRs during postlearning sleep, which predicted the consolidation of tEBC in conditioned mice. In contrast, sleep-deprived mice showed a loss of tEBC learning-induced increase in hippocampal SWRs during recovery sleep. Moreover, the sleep-deprived mice exhibited weaker reactivation of tEBC learning-associated pyramidal cells in hippocampal SWRs during recovery sleep. In line with these findings, tEBC consolidation was impaired in sleep-deprived mice. Furthermore, sleep-deprived mice showed augmented fast excitation from pyramidal cells to interneurons and enhanced participation of interneurons in hippocampal SWRs during recovery sleep. Among various interneurons, parvalbumin-expressing interneurons specifically exhibited overexcitation during hippocampal SWRs. Our findings suggest that altered hippocampal SWRs and associated spike dynamics during recovery sleep may be candidate network oscillation mechanisms underlying SD-induced memory deficits.
Collapse
Affiliation(s)
- Rong-Rong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Wei-Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yu-Bo Hu
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.,Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| |
Collapse
|
9
|
Liu CY, Lai WS. Functional neuroanatomy and neural oscillations during social eavesdropping in male golden hamsters. Horm Behav 2021; 127:104881. [PMID: 33127368 DOI: 10.1016/j.yhbeh.2020.104881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Social eavesdropping is a low-cost learning mechanism by which individuals extract relevant social information from social interactions between conspecifics, thereby gaining subsequent advantages in information gathering and usage. The aim of this study was to take advantage of a new hamster model of social eavesdropping to investigate behavioral consequences and neural activity in male hamsters during social eavesdropping. Bystander hamsters with a defeat experience were exposed to either a fighting interaction, a neutral encounter, or control conditions for 3 days of social eavesdropping. In Experiment 1, bystanders in the fight and neutral groups displayed more information gathering behaviors and less nonsocial behavior than control hamsters. The fight group displayed significant increases in c-Fos-positive neurons in the anterior mid-cingulate cortex (aMCC) and the piriform cortex. A slight but not significant group difference was found in their serum cortisol levels. In vivo local field potential oscillation recordings in Experiment 2 revealed that bystanders in the fight group had more delta oscillations in the aMCC during information gathering across 3-day social eavesdropping than those in the other 2 groups. Experiment 3 confirmed that 20 min of social eavesdropping on Day 1 was sufficient to evoke differential behavioral outcomes, and the behavioral responses became more prominent after 3 days of social eavesdropping. Collectively, our study confirmed that male golden hamsters are capable of social eavesdropping and indicated the involvement of aMCC delta oscillations in social eavesdropping.
Collapse
Affiliation(s)
- Ching-Yi Liu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Quarta E, Cohen EJ, Bravi R, Minciacchi D. Future Portrait of the Athletic Brain: Mechanistic Understanding of Human Sport Performance Via Animal Neurophysiology of Motor Behavior. Front Syst Neurosci 2020; 14:596200. [PMID: 33281568 PMCID: PMC7705174 DOI: 10.3389/fnsys.2020.596200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Sport performances are often showcases of skilled motor control. Efforts to understand the neural processes subserving such movements may teach us about general principles of behavior, similarly to how studies on neurological patients have guided early work in cognitive neuroscience. While investigations on non-human animal models offer valuable information on the neural dynamics of skilled motor control that is still difficult to obtain from humans, sport sciences have paid relatively little attention to these mechanisms. Similarly, knowledge emerging from the study of sport performance could inspire innovative experiments in animal neurophysiology, but the latter has been only partially applied. Here, we advocate that fostering interactions between these two seemingly distant fields, i.e., animal neurophysiology and sport sciences, may lead to mutual benefits. For instance, recording and manipulating the activity from neurons of behaving animals offer a unique viewpoint on the computations for motor control, with potentially untapped relevance for motor skills development in athletes. To stimulate such transdisciplinary dialog, in the present article, we also discuss steps for the reverse translation of sport sciences findings to animal models and the evaluation of comparability between animal models of a given sport and athletes. In the final section of the article, we envision that some approaches developed for animal neurophysiology could translate to sport sciences anytime soon (e.g., advanced tracking methods) or in the future (e.g., novel brain stimulation techniques) and could be used to monitor and manipulate motor skills, with implications for human performance extending well beyond sport.
Collapse
Affiliation(s)
| | | | | | - Diego Minciacchi
- Physiological Sciences Section, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Social learning exploits the available auditory or visual cues. Sci Rep 2020; 10:14117. [PMID: 32839492 PMCID: PMC7445250 DOI: 10.1038/s41598-020-71005-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
The ability to acquire a behavior can be facilitated by exposure to a conspecific demonstrator. Such social learning occurs under a range of conditions in nature. Here, we tested the idea that social learning can benefit from any available sensory cue, thereby permitting learning under different natural conditions. The ability of naïve gerbils to learn a sound discrimination task following 5 days of exposure adjacent to a demonstrator gerbil was tested in the presence or absence of visual cues. Naïve gerbils acquired the task significantly faster in either condition, as compared to controls. We also found that exposure to a demonstrator was more potent in facilitating learning, as compared to exposure to the sounds used to perform the discrimination task. Therefore, social learning was found to be flexible and equally efficient in the auditory or visual domains.
Collapse
|
12
|
Creus-Muncunill J, Badillos-Rodríguez R, Garcia-Forn M, Masana M, Garcia-Díaz Barriga G, Guisado-Corcoll A, Alberch J, Malagelada C, Delgado-García JM, Gruart A, Pérez-Navarro E. Increased translation as a novel pathogenic mechanism in Huntington's disease. Brain 2020; 142:3158-3175. [PMID: 31365052 DOI: 10.1093/brain/awz230] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene. Striatal projection neurons are mainly affected, leading to motor symptoms, but molecular mechanisms involved in their vulnerability are not fully characterized. Here, we show that eIF4E binding protein (4E-BP), a protein that inhibits translation, is inactivated in Huntington's disease striatum by increased phosphorylation. Accordingly, we detected aberrant de novo protein synthesis. Proteomic characterization indicates that translation specifically affects sets of proteins as we observed upregulation of ribosomal and oxidative phosphorylation proteins and downregulation of proteins related to neuronal structure and function. Interestingly, treatment with the translation inhibitor 4EGI-1 prevented R6/1 mice motor deficits, although corticostriatal long-term depression was not markedly changed in behaving animals. At the molecular level, injection of 4EGI-1 normalized protein synthesis and ribosomal content in R6/1 mouse striatum. In conclusion, our results indicate that dysregulation of protein synthesis is involved in mutant huntingtin-induced striatal neuron dysfunction.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Raquel Badillos-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Marta Garcia-Forn
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Mercè Masana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Gerardo Garcia-Díaz Barriga
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Anna Guisado-Corcoll
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Alberch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Malagelada
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | - Esther Pérez-Navarro
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
13
|
Martín‐Rodríguez JF, Ramos‐Herrero VD, Parras GG, Flores‐Martínez Á, Madrazo‐Atutxa A, Cano DA, Gruart A, Delgado‐García JM, Leal‐Cerro A, Leal‐Campanario R. Chronic adult-onset of growth hormone/IGF-I hypersecretion improves cognitive functions and LTP and promotes neuronal differentiation in adult rats. Acta Physiol (Oxf) 2020; 229:e13293. [PMID: 31059193 DOI: 10.1111/apha.13293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 01/30/2023]
Abstract
AIM Besides their metabolic and endocrine functions, the growth hormone (GH) and its mediated factor, the insulin-like growth factor I (IGF-I), have been implicated in different brain functions, including neurogenesis. Long-lasting elevated GH and IGF-I levels result in non-reversible somatic, endocrine and metabolic morbidities. However, the subcutaneous implantation of the GH-secreting (GH-S) GC cell line in rats leads to the controllable over-secretion of GH and elevated IGF-I levels, allowing the experimental study of their short-term effects on brain functions. METHODS Adult rats were implanted with GC cells and checked 10 weeks later, when a GH/IGF-I-secreting tumour was already formed. RESULTS Tumour-bearing rats acquired different operant conditioning tasks faster and better than controls and tumour-resected groups. They also presented better retentions of long-term memories in the passive avoidance test. Experimentally evoked long-term potentiation (LTP) in the hippocampus was also larger and longer lasting in the tumour bearing than in the other groups. Chronic adult-onset of GH/IGF-I hypersecretion caused an acceleration of early progenitors, facilitating a faster neural differentiation, maturation and integration in the dentate gyrus, and increased the complexity of dendritic arbours and spine density of granule neurons. CONCLUSION Thus, adult-onset hypersecretion of GH/IGF-I improves neurocognitive functions, long-term memories, experimental LTP and neural differentiation, migration and maturation.
Collapse
Affiliation(s)
- Juan Francisco Martín‐Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville Spain
| | - Víctor Darío Ramos‐Herrero
- Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville Spain
- Division of Neurosciences Pablo de Olavide University Seville Spain
| | - Gloria G. Parras
- Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville Spain
- Division of Neurosciences Pablo de Olavide University Seville Spain
| | - Álvaro Flores‐Martínez
- Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville Spain
| | - Ainara Madrazo‐Atutxa
- Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville Spain
| | - David A. Cano
- Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville Spain
| | - Agnès Gruart
- Division of Neurosciences Pablo de Olavide University Seville Spain
| | | | - Alfonso Leal‐Cerro
- Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville Spain
| | | |
Collapse
|
14
|
Abstract
The posterior parietal cortex (PPC) and frontal motor areas comprise a cortical network supporting goal-directed behaviour, with functions including sensorimotor transformations and decision making. In primates, this network links performed and observed actions via mirror neurons, which fire both when individuals perform an action and when they observe the same action performed by a conspecific. Mirror neurons are believed to be important for social learning, but it is not known whether mirror-like neurons occur in similar networks in other social species, such as rodents, or if they can be measured in such models using paradigms where observers passively view a demonstrator. Therefore, we imaged Ca2+ responses in PPC and secondary motor cortex (M2) while mice performed and observed pellet-reaching and wheel-running tasks, and found that cell populations in both areas robustly encoded several naturalistic behaviours. However, neural responses to the same set of observed actions were absent, although we verified that observer mice were attentive to performers and that PPC neurons responded reliably to visual cues. Statistical modelling also indicated that executed actions outperformed observed actions in predicting neural responses. These results raise the possibility that sensorimotor action recognition in rodents could take place outside of the parieto-frontal circuit, and underscore that detecting socially-driven neural coding depends critically on the species and behavioural paradigm used.
Collapse
|
15
|
Olsson A, Knapska E, Lindström B. The neural and computational systems of social learning. Nat Rev Neurosci 2020; 21:197-212. [PMID: 32221497 DOI: 10.1038/s41583-020-0276-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
Learning the value of stimuli and actions from others - social learning - adaptively contributes to individual survival and plays a key role in cultural evolution. We review research across species targeting the neural and computational systems of social learning in both the aversive and appetitive domains. Social learning generally follows the same principles as self-experienced value-based learning, including computations of prediction errors and is implemented in brain circuits activated across task domains together with regions processing social information. We integrate neural and computational perspectives of social learning with an understanding of behaviour of varying complexity, from basic threat avoidance to complex social learning strategies and cultural phenomena.
Collapse
Affiliation(s)
- Andreas Olsson
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Solna, Sweden.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Centre of Excellence for Neural Plasticity and Brain Disorders (BRAINCITY), Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Björn Lindström
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Solna, Sweden.,Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Duchon A, Gruart A, Albac C, Delatour B, Zorrilla de San Martin J, Delgado-García JM, Hérault Y, Potier MC. Long-lasting correction of in vivo LTP and cognitive deficits of mice modelling Down syndrome with an α5-selective GABA A inverse agonist. Br J Pharmacol 2020; 177:1106-1118. [PMID: 31652355 PMCID: PMC7042104 DOI: 10.1111/bph.14903] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Excessive GABAergic inhibition contributes to cognitive dysfunctions in Down syndrome (DS). Selective negative allosteric modulators (NAMs) of α5‐containing GABAA receptors such as the α5 inverse agonist (α5IA) restore learning and memory deficits in Ts65Dn mice, a model of DS. In this study we have assessed the long‐lasting effects of α5IA on in vivo LTP and behaviour in Ts65Dn mice. Experimental Approach We made in vivo LTP recordings for six consecutive days in freely moving Ts65Dn mice and their wild‐type littermates, treated with vehicle or α5IA. In parallel, Ts65Dn mice were assessed by various learning and memory tests (Y maze, Morris water maze, or the novel object recognition) for up to 7 days, following one single injection of α5IA or vehicle. Key Results LTP was not evoked in vivo in Ts65Dn mice at hippocampal CA3‐CA1 synapses. However, this deficit was sustainably reversed for at least six consecutive days following a single injection of α5IA. This long‐lasting effect of α5IA was also observed when assessing working and long‐term memory deficits in Ts65Dn mice. Conclusion and Implications We show for the first time in vivo LTP deficits in Ts65Dn mice. These deficits were restored for at least 6 days following acute treatment with α5IA and might be the substrate for the long‐lasting pharmacological effects of α5IA on spatial working and long‐term recognition and spatial memory tasks. Our results demonstrate the relevance of negative allosteric modulators of α5‐containing GABAA receptors to the treatment of cognitive deficits associated with DS.
Collapse
Affiliation(s)
- Arnaud Duchon
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Neuropôle, Université de Strasbourg, Illkirch, France
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Seville, Spain
| | - Christelle Albac
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Javier Zorrilla de San Martin
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Yann Hérault
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Neuropôle, Université de Strasbourg, Illkirch, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
17
|
Conde-Moro AR, Rocha-Almeida F, Sánchez-Campusano R, Delgado-García JM, Gruart A. The activity of the prelimbic cortex in rats is enhanced during the cooperative acquisition of an instrumental learning task. Prog Neurobiol 2019; 183:101692. [PMID: 31521703 DOI: 10.1016/j.pneurobio.2019.101692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
The objective of this study was to identify the functional properties of the prefrontal cortex that allow animals to work together to obtain a mutual reward. We induced pairs of male rats to develop a cooperative behavior in two adjacent Skinner boxes divided by a metallic grille. The experimental boxes allowed the two rats to see and to smell each other and to have limited physical contact through the grille. Rats were progressively trained to climb onto two separate platforms (and stay there simultaneously for >0.5 s) to get food pellets for both. This set-up was compatible with the in vivo recording of local field potentials (LFPs) at the prelimbic (PrL) cortex throughout the task. A dominant delta/theta activity appeared mostly during the period in which rats were located on the platforms. Spectral powers were larger when rats had to stay together on the platforms than when they jumped individually onto them. When paired together, rats presented significant differences in the power of delta and low theta bands depending if they were leading or following the joint activity. PrL cortex encodes neural commands related to the individual and joint acquisition of an operant conditioning task by behaving rats.
Collapse
Affiliation(s)
- Ana R Conde-Moro
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain
| | | | | | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain.
| |
Collapse
|
18
|
Duran J, Gruart A, Varea O, López-Soldado I, Delgado-García JM, Guinovart JJ. Lack of Neuronal Glycogen Impairs Memory Formation and Learning-Dependent Synaptic Plasticity in Mice. Front Cell Neurosci 2019; 13:374. [PMID: 31456667 PMCID: PMC6700221 DOI: 10.3389/fncel.2019.00374] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/30/2019] [Indexed: 12/01/2022] Open
Abstract
Since brain glycogen is stored mainly in astrocytes, the role of this polysaccharide in neurons has been largely overlooked. To study the existence and relevance of an active neuronal glycogen metabolism in vivo, we generated a mouse model lacking glycogen synthase specifically in the Camk2a-expressing postnatal forebrain pyramidal neurons (GYS1Camk2a–KO), which include the prefrontal cortex and the CA3 and CA1 cell layers of the hippocampus. The latter are involved in memory and learning processes and participate in the hippocampal CA3-CA1 synapse, the function of which can be analyzed electrophysiologically. Long-term potentiation evoked in the hippocampal CA3-CA1 synapse was decreased in alert behaving GYS1Camk2a–KO mice. They also showed a significant deficiency in the acquisition of an instrumental learning task – a type of associative learning involving prefrontal and hippocampal circuits. Interestingly, GYS1Camk2a–KO animals did not show the greater susceptibility to hippocampal seizures and myoclonus observed in animals completely depleted of glycogen in the whole CNS. These results unequivocally demonstrate the presence of an active glycogen metabolism in neurons in vivo and reveal a key role of neuronal glycogen in the proper acquisition of new motor and cognitive abilities, and in the changes in synaptic strength underlying such acquisition.
Collapse
Affiliation(s)
- Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | - Olga Varea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Bertacchi M, Gruart A, Kaimakis P, Allet C, Serra L, Giacobini P, Delgado-García JM, Bovolenta P, Studer M. Mouse Nr2f1 haploinsufficiency unveils new pathological mechanisms of a human optic atrophy syndrome. EMBO Mol Med 2019; 11:e10291. [PMID: 31318166 PMCID: PMC6685104 DOI: 10.15252/emmm.201910291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
Optic nerve atrophy represents the most common form of hereditary optic neuropathies leading to vision impairment. The recently described Bosch‐Boonstra‐Schaaf optic atrophy (BBSOA) syndrome denotes an autosomal dominant genetic form of neuropathy caused by mutations or deletions in the NR2F1 gene. Herein, we describe a mouse model recapitulating key features of BBSOA patients—optic nerve atrophy, optic disc anomalies, and visual deficits—thus representing the only available mouse model for this syndrome. Notably, Nr2f1‐deficient optic nerves develop an imbalance between oligodendrocytes and astrocytes leading to postnatal hypomyelination and astrogliosis. Adult heterozygous mice display a slower optic axonal conduction velocity from the retina to high‐order visual centers together with associative visual learning deficits. Importantly, some of these clinical features, such the optic nerve hypomyelination, could be rescued by chemical drug treatment in early postnatal life. Overall, our data shed new insights into the cellular mechanisms of optic nerve atrophy in BBSOA patients and open a promising avenue for future therapeutic approaches.
Collapse
Affiliation(s)
- Michele Bertacchi
- CNRS, Inserm, iBV, Université Côte d'Azur, Nice, France.,Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | - Polynikis Kaimakis
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | - Cécile Allet
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S 1172, Inserm, Lille, France.,University of Lille, FHU 1,000 Days for Health, Lille, France
| | - Linda Serra
- CNRS, Inserm, iBV, Université Côte d'Azur, Nice, France.,Department of Biotechnology and Biological Sciences, University of Milano-Bicocca, Milano, Italy
| | - Paolo Giacobini
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S 1172, Inserm, Lille, France.,University of Lille, FHU 1,000 Days for Health, Lille, France
| | | | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Campus de la Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
20
|
Pennartz CMA, Farisco M, Evers K. Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Front Syst Neurosci 2019; 13:25. [PMID: 31379521 PMCID: PMC6660257 DOI: 10.3389/fnsys.2019.00025] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
In today's society, it becomes increasingly important to assess which non-human and non-verbal beings possess consciousness. This review article aims to delineate criteria for consciousness especially in animals, while also taking into account intelligent artifacts. First, we circumscribe what we mean with "consciousness" and describe key features of subjective experience: qualitative richness, situatedness, intentionality and interpretation, integration and the combination of dynamic and stabilizing properties. We argue that consciousness has a biological function, which is to present the subject with a multimodal, situational survey of the surrounding world and body, subserving complex decision-making and goal-directed behavior. This survey reflects the brain's capacity for internal modeling of external events underlying changes in sensory state. Next, we follow an inside-out approach: how can the features of conscious experience, correlating to mechanisms inside the brain, be logically coupled to externally observable ("outside") properties? Instead of proposing criteria that would each define a "hard" threshold for consciousness, we outline six indicators: (i) goal-directed behavior and model-based learning; (ii) anatomic and physiological substrates for generating integrative multimodal representations; (iii) psychometrics and meta-cognition; (iv) episodic memory; (v) susceptibility to illusions and multistable perception; and (vi) specific visuospatial behaviors. Rather than emphasizing a particular indicator as being decisive, we propose that the consistency amongst these indicators can serve to assess consciousness in particular species. The integration of scores on the various indicators yields an overall, graded criterion for consciousness, somewhat comparable to the Glasgow Coma Scale for unresponsive patients. When considering theoretically derived measures of consciousness, it is argued that their validity should not be assessed on the basis of a single quantifiable measure, but requires cross-examination across multiple pieces of evidence, including the indicators proposed here. Current intelligent machines, including deep learning neural networks (DLNNs) and agile robots, are not indicated to be conscious yet. Instead of assessing machine consciousness by a brief Turing-type of test, evidence for it may gradually accumulate when we study machines ethologically and across time, considering multiple behaviors that require flexibility, improvisation, spontaneous problem-solving and the situational conspectus typically associated with conscious experience.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Fernández-Lamo I, Delgado-García JM, Gruart A. When and Where Learning is Taking Place: Multisynaptic Changes in Strength During Different Behaviors Related to the Acquisition of an Operant Conditioning Task by Behaving Rats. Cereb Cortex 2019; 28:1011-1023. [PMID: 28199479 DOI: 10.1093/cercor/bhx011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Indexed: 01/02/2023] Open
Abstract
Although it is generally assumed that brain circuits are modified by new experiences, the question of which changes in synaptic efficacy take place in cortical and subcortical circuits across the learning process remains unanswered. Rats were trained in the acquisition of an operant conditioning in a Skinner box provided with light beams to detect animals' approaches to lever and feeder. Behaviors such as pressing the lever, eating, exploring, and grooming were also recorded. Animals were chronically implanted with stimulating and recording electrodes in hippocampal, prefrontal, and subcortical sites relevant to the task. Field synaptic potentials were evoked during the performance of the above-mentioned behaviors and before, during, and after the acquisition process. Afferent pathways to the hippocampus and the intrinsic hippocampal circuit were slightly modified in synaptic strength during the performance of those behaviors. In contrast, afferent and efferent circuits of the medial prefrontal cortex were significantly modified in synaptic strength across training sessions, mostly at the moment of the largest change in the learning curve. Performance of behaviors nondirectly related to the acquisition process (exploring, grooming) also evoked changes in synaptic strength across training. This study helps to understand when and where learning is being engraved in the brain.
Collapse
Affiliation(s)
- Iván Fernández-Lamo
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain
| |
Collapse
|
22
|
A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice. Sci Rep 2019; 9:1857. [PMID: 30755637 PMCID: PMC6372581 DOI: 10.1038/s41598-018-37885-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023] Open
Abstract
A growing pool of transgenic mice expressing Cre-recombinases, together with Cre-dependent opsin viruses, provide good tools to manipulate specific neural circuits related to eyeblink conditioning (EBC). However, currently available methods do not enable to get fast and precise readout of optogenetic control when the freely-moving mice are receiving EBC training. In the current study, we describe a laser diode (LD)-optical fiber (OF)-Tetrode assembly that allows for simultaneous multiple units recording and optical stimulation. Since the numbers of various cables that require to be connected are minimized, the LD-OF-Tetrode assembly can be combined with CS-US delivery apparatus for revealing the effects of optical stimulation on EBC in freely- moving mice. Moreover, this combination of techniques can be utilized to optogenetically intervene in hippocampal neuronal activities during the post-conditioning sleep in a closed-loop manner. This novel device thus enhances our ability to explore how specific neuronal assembly contributes to associative motor memory in vivo.
Collapse
|
23
|
Lensu S, Waselius T, Penttonen M, Nokia MS. Dentate spikes and learning: disrupting hippocampal function during memory consolidation can improve pattern separation. J Neurophysiol 2019; 121:131-139. [DOI: 10.1152/jn.00696.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal dentate spikes (DSs) are short-duration, large-amplitude fluctuations in hilar local field potentials and take place while resting and sleeping. During DSs, dentate gyrus granule cells increase firing while CA1 pyramidal cells decrease firing. Recent findings suggest DSs play a significant role in memory consolidation after training on a hippocampus-dependent, nonspatial associative learning task. Here, we aimed to find out whether DSs are important in other types of hippocampus-dependent learning tasks as well. To this end, we trained adult male Sprague-Dawley rats in a spatial reference memory task, a fixed interval task, and a pattern separation task. During a rest period immediately after each training session, we either let neural activity to take place as usual, timed electrical stimulation of the ventral hippocampal commissure (vHC) to immediately follow DSs, or applied the vHC stimulation during a random neural state. We found no effect of vHC stimulation on performance in the spatial reference memory task or in the fixed interval task. Surprisingly, vHC stimulation, especially contingent on DSs, improved performance in the pattern separation task. In conclusion, the behavioral relevance of hippocampal processing and DSs seems to depend on the task at hand. It could be that in an intact brain, offline memory consolidation by default involves associating neural representations of temporally separate but related events. In some cases this might be beneficial for adaptive behavior in the future (associative learning), while in other cases it might not (pattern separation). NEW & NOTEWORTHY The behavioral relevance of dentate spikes seems to depend on the learning task at hand. We suggest that dentate spikes are related to associating neural representations of temporally separate but related events within the dentate gyrus. In some cases this might be beneficial for adaptive behavior in the future (associative learning), while in other cases it might not (pattern separation).
Collapse
Affiliation(s)
- Sanna Lensu
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Faculty of Sport and Health Sciences, Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tomi Waselius
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S. Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Mony TJ, Hong M, Lee HJ. Empathy Study in Rodent Model of Autism Spectrum Disorders. Psychiatry Investig 2018; 15:104-110. [PMID: 29475229 PMCID: PMC5900397 DOI: 10.30773/pi.2017.06.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/14/2017] [Accepted: 06/20/2017] [Indexed: 11/27/2022] Open
Abstract
There is a highly cognitive and social context to empathy behavior in human. In various social contexts, rodents also display remarkable affective sensitivity and exhibit primitive forms of empathy similar to human. Therefore, we aimed to elaborate the concept of empathy about various components of empathetic behavior in rodents with the similar contexts of a human. In this review, we highlighted the behavioral paradigm that already examined different aspects of rodent empathetic behavior in response to conspecific distress. Additionally, we summarized homologous brain parts of human and rodents to express the empathetic behavior. Integrating the findings with corresponding experiments in the human will provide a novel insight into therapeutic intervention or expanded experimental approaches for neuropsychiatric disorders like autism spectrum disorders associated with empathetic behavior.
Collapse
Affiliation(s)
- Tamanna Jahan Mony
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Minha Hong
- Department of Psychiatry, School of Medicine, Seonam University, Goyang, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
25
|
Bem T, Jura B, Bontempi B, Meyrand P. Observational learning of a spatial discrimination task by rats: learning from the mistakes of others? Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Tsanov M. Speed and Oscillations: Medial Septum Integration of Attention and Navigation. Front Syst Neurosci 2017; 11:67. [PMID: 28979196 PMCID: PMC5611363 DOI: 10.3389/fnsys.2017.00067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/04/2017] [Indexed: 11/13/2022] Open
Abstract
Several cortical and diencephalic limbic brain regions incorporate neurons that fire in correlation with the speed of whole-body motion, also known as linear velocity. Besides the field mapping and head-directional information, the linear velocity is among the major signals that guide animal’s spatial navigation. Large neuronal populations in the same limbic regions oscillate with theta rhythm during spatial navigation or attention episodes; and the frequency of theta also correlates with linear velocity. A functional similarity between these brain areas is that their inactivation impairs the ability to form new spatial memories; whereas an anatomical similarity is that they all receive projections from medial septum-diagonal band of Broca complex. We review recent findings supporting the model that septal theta rhythm integrates different sensorimotor signals necessary for spatial navigation. The medial septal is described here as a circuitry that mediates experience-dependent balance of sustained attention and path integration during navigation. We discuss the hypothesis that theta rhythm serves as a key mechanism for the aligning of intrinsic spatial representation to: (1) rapid change of position in the spatial environment; (2) continuous alteration of sensory signals throughout navigation; and (3) adapting levels of attentional behavior. The synchronization of these spatial, somatosensory and neuromodulatory signals is proposed here to be anatomically and physiologically mediated by the medial septum.
Collapse
Affiliation(s)
- Marian Tsanov
- Trinity College Institute of Neuroscience, Trinity College DublinDublin, Ireland
| |
Collapse
|
27
|
Hernández-González S, Andreu-Sánchez C, Martín-Pascual MÁ, Gruart A, Delgado-García JM. A Cognition-Related Neural Oscillation Pattern, Generated in the Prelimbic Cortex, Can Control Operant Learning in Rats. J Neurosci 2017; 37:5923-5935. [PMID: 28536269 PMCID: PMC6596507 DOI: 10.1523/jneurosci.3651-16.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/25/2017] [Accepted: 04/02/2017] [Indexed: 11/21/2022] Open
Abstract
The prelimbic (PrL) cortex constitutes one of the highest levels of cortical hierarchy dedicated to the execution of adaptive behaviors. We have identified a specific local field potential (LFP) pattern generated in the PrL cortex and associated with cognition-related behaviors. We used this pattern to trigger the activation of a visual display on a touch screen as part of an operant conditioning task. Rats learned to increase the presentation rate of the selected θ to β-γ (θ/β-γ) transition pattern across training sessions. The selected LFP pattern appeared to coincide with a significant decrease in the firing of PrL pyramidal neurons and did not seem to propagate to other cortical or subcortical areas. An indication of the PrL cortex's cognitive nature is that the experimental disruption of this θ/β-γ transition pattern prevented the proper performance of the acquired task without affecting the generation of other motor responses. The use of this LFP pattern to trigger an operant task evoked only minor changes in its electrophysiological properties. Thus, the PrL cortex has the capability of generating an oscillatory pattern for dealing with environmental constraints. In addition, the selected θ/β-γ transition pattern could be a useful tool to activate the presentation of external cues or to modify the current circumstances.SIGNIFICANCE STATEMENT Brain-machine interfaces represent a solution for physically impaired people to communicate with external devices. We have identified a specific local field potential pattern generated in the prelimbic cortex and associated with goal-directed behaviors. We used the pattern to trigger the activation of a visual display on a touch screen as part of an operant conditioning task. Rats learned to increase the presentation rate of the selected field potential pattern across training. The selected pattern was not modified when used to activate the touch screen. Electrical stimulation of the recording site prevented the proper performance of the task. Our findings show that the prelimbic cortex can generate oscillatory patterns that rats can use to control their environment for achieving specific goals.
Collapse
Affiliation(s)
| | - Celia Andreu-Sánchez
- Audiovisual Communication and Advertising Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Miguel Ángel Martín-Pascual
- Audiovisual Communication and Advertising Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain, and
| | | |
Collapse
|
28
|
Moretti R, Signori R. Neural Correlates for Apathy: Frontal-Prefrontal and Parietal Cortical- Subcortical Circuits. Front Aging Neurosci 2016; 8:289. [PMID: 28018207 PMCID: PMC5145860 DOI: 10.3389/fnagi.2016.00289] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/15/2016] [Indexed: 01/10/2023] Open
Abstract
Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional involvement; it is an important and heavy-burden clinical condition which strongly impacts in everyday life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC) and basal ganglia; "emotional affective" apathy may be related to the orbitomedial PFC and ventral striatum; "cognitive apathy" may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of "autoactivation" may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to gray matter atrophy in the anterior cingulate (ACC) and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies, and a reduced speedness in action decision, major responsible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control. We will discuss the importance of these circuits in different pathologies, degenerative or vascular, acute or chronic.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medicine, Surgery and Health Sciences, University of TriesteTrieste, Italy
| | | |
Collapse
|
29
|
Fernández-Lamo I, Sánchez-Campusano R, Gruart A, Delgado-García M JM. Functional states of rat cortical circuits during the unpredictable availability of a reward-related cue. Sci Rep 2016; 6:37650. [PMID: 27869181 PMCID: PMC5116647 DOI: 10.1038/srep37650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/28/2016] [Indexed: 12/23/2022] Open
Abstract
Proper performance of acquired abilities can be disturbed by the unexpected occurrence of external changes. Rats trained with an operant conditioning task (to press a lever in order to obtain a food pellet) using a fixed-ratio (1:1) schedule were subsequently placed in a Skinner box in which the lever could be removed randomly. Field postsynaptic potentials (fPSPs) were chronically evoked in perforant pathway-hippocampal CA1 (PP-CA1), CA1-subiculum (CA1-SUB), CA1-medial prefrontal cortex (CA1-mPFC), mPFC-nucleus accumbens (mPFC-NAc), and mPFC-basolateral amygdala (mPFC-BLA) synapses during lever IN and lever OUT situations. While lever presses were accompanied by a significant increase in fPSP slopes at the five synapses, the unpredictable absence of the lever were accompanied by decreased fPSP slopes in all, except PP-CA1 synapses. Spectral analysis of local field potentials (LFPs) recorded when the animal approached the corresponding area in the lever OUT situation presented lower spectral powers than during lever IN occasions for all recording sites, apart from CA1. Thus, the unpredictable availability of a reward-related cue modified the activity of cortical and subcortical areas related with the acquisition of operant learning tasks, suggesting an immediate functional reorganization of these neural circuits to address the changed situation and to modify ongoing behaviors accordingly.
Collapse
Affiliation(s)
- Iván Fernández-Lamo
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain
| | | |
Collapse
|
30
|
Bicks LK, Koike H, Akbarian S, Morishita H. Prefrontal Cortex and Social Cognition in Mouse and Man. Front Psychol 2015; 6:1805. [PMID: 26635701 PMCID: PMC4659895 DOI: 10.3389/fpsyg.2015.01805] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain.
Collapse
Affiliation(s)
- Lucy K Bicks
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Hiroyuki Koike
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
31
|
Bello-Morales R, Delgado-García JM. The social neuroscience and the theory of integrative levels. Front Integr Neurosci 2015; 9:54. [PMID: 26578909 PMCID: PMC4625076 DOI: 10.3389/fnint.2015.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/09/2015] [Indexed: 01/10/2023] Open
Abstract
The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be contemplated not as the result of mixing or summing social and biological influences, but as emergent phenomena that should be described with its own laws. Finally, following the integrative levels view, influences upward, from biology to social level, and downward, from social level to biology, might not be equivalent, since the bottom-up processes are emergent and the downward causation (DC) is not.
Collapse
|
32
|
Gruart A, Leal-Campanario R, López-Ramos JC, Delgado-García JM. Functional basis of associative learning and its relationships with long-term potentiation evoked in the involved neural circuits: Lessons from studies in behaving mammals. Neurobiol Learn Mem 2015; 124:3-18. [PMID: 25916668 DOI: 10.1016/j.nlm.2015.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/27/2022]
Abstract
While contemporary neuroscience is paying increasing attention to subcellular and molecular events and other intracellular phenomena underlying the acquisition, storage, and retrieval of newly acquired motor and cognitive abilities, parallel attention should be paid to the study of the electrophysiological phenomena taking place at selected cortical and subcortical neuronal and synaptic sites during the precise moment of learning acquisition, extinction, and recall. These in vivo approaches to the study of learning and memory processes will allow the proper integration of the important information collected from in vitro and delayed molecular studies. Here, we summarize studies in behaving mammals carried out in our laboratory during the past ten years on the relationships between experimentally evoked long-term potentiation (LTP) and activity-dependent changes in synaptic strength taking place in hippocampal, prefrontal and related cortical and subcortical circuits during the acquisition of classical eyeblink conditioning or operant learning tasks. These studies suggest that different hippocampal synapses are selectively modified in strength during the acquisition of classical, but not instrumental, learning tasks. In contrast, selected prefrontal and striatum synapses are more directly modified by operant conditioning. These studies also show that besides N-methyl-D-aspartate (NMDA) receptors, many other neurotransmitter, intracellular mediating, and transcription factors participate in these two types of associative learning. Although experimentally evoked LTP seems to prevent the acquisition of classical eyeblink conditioning when induced at selected hippocampal synapses, it proved to be ineffective in preventing the acquisition of operant conditioned tasks when induced at numerous hippocampal, prefrontal, and striatal sites. The differential roles of these cortical structures during these two types of associative learning are discussed, and a diagrammatic representation of their respective functions is presented.
Collapse
Affiliation(s)
- Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain.
| | | | | | | |
Collapse
|
33
|
Almolda B, de Labra C, Barrera I, Gruart A, Delgado-Garcia JM, Villacampa N, Vilella A, Hofer MJ, Hidalgo J, Campbell IL, González B, Castellano B. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun 2015; 45:80-97. [PMID: 25449577 DOI: 10.1016/j.bbi.2014.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/24/2014] [Accepted: 10/25/2014] [Indexed: 12/31/2022] Open
Abstract
Interleukin-10 (IL-10) is a cytokine classically linked with anti-inflammatory and protective functions in the central nervous system (CNS) in different neurodegenerative and neuroinflammatory conditions. In order to study the specific role of local CNS produced IL-10, we have created a new transgenic mouse line with astrocyte-targeted production of IL-10 (GFAP-IL10Tg). In the present study, the effects of local CNS IL-10 production on microglia, astrocytes and neuronal connectivity under basal conditions were investigated using immunohistochemistry, molecular biology techniques, electrophysiology and behavioural studies. Our results showed that, in GFAP-IL10Tg animals, microglia displayed an increase in density and a specific activated phenotype characterised by morphological changes in specific areas of the brain including the hippocampus, cortex and cerebellum that correlated with the level of transgene expressed IL-10 mRNA. Distinctively, in the hippocampus, microglial cells adopted an elongated morphology following the same direction as the dendrites of pyramidal neurons. Moreover, this IL-10-induced microglial phenotype showed increased expression of certain molecules including Iba1, CD11b, CD16/32 and F4/80 markers, "de novo" expression of CD150 and no detectable levels of either CD206 or MHCII. To evaluate whether this specific activated microglial phenotype was associated with changes in neuronal activity, the electrophysiological properties of pyramidal neurons of the hippocampus (CA3-CA1) were analysed in vivo. We found a lower excitability of the CA3-CA1 synapses and absence of long-term potentiation (LTP) in GFAP-IL10Tg mice. This study is the first description of a transgenic mouse with astrocyte-targeted production of the cytokine IL-10. The findings indicate that IL-10 induces a specific activated microglial phenotype concomitant with changes in hippocampal LTP responses. This transgenic animal will be a very useful tool to study IL-10 functions in the CNS, not only under basal conditions, but also after different experimental lesions or induced diseases.
Collapse
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Carmen de Labra
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Iliana Barrera
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | | | - Nàdia Villacampa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Università degli Studi di Modena e Reggio Emilia, 41125, Italy
| | - Markus J Hofer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Juan Hidalgo
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Iain L Campbell
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
34
|
Deepeshwar S, Vinchurkar SA, Visweswaraiah NK, Nagendra HR. Hemodynamic responses on prefrontal cortex related to meditation and attentional task. Front Syst Neurosci 2015; 8:252. [PMID: 25741245 PMCID: PMC4330717 DOI: 10.3389/fnsys.2014.00252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF) in the prefrontal cortex (PFC). The present study employed functional near infrared spectroscopy (fNIRS) to evaluate the relative hemodynamic changes in PFC during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years) performed a color-word stroop task before and after 20 min of meditation and random thinking. Repeated measures ANOVA was performed followed by a post hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of “During” and “Post” with “Pre” state. During meditation there was an increased in oxy-hemoglobin (ΔHbO) and total hemoglobin (ΔTHC) concentration with reduced deoxy-hemoglobin (ΔHbR) concentration over the right prefrontal cortex (rPFC), whereas in random thinking there was increased ΔHbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time (RT) was shorter during stroop color word task with concomitant reduction in ΔTHC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with activation of the PFC.
Collapse
Affiliation(s)
- Singh Deepeshwar
- ANVESANA Research Laboratory, Department of Yoga and Life Sciences, Swami Vivekananda Yoga Research Foundation Bangalore, Karnataka, India
| | - Suhas Ashok Vinchurkar
- ANVESANA Research Laboratory, Department of Yoga and Life Sciences, Swami Vivekananda Yoga Research Foundation Bangalore, Karnataka, India
| | - Naveen Kalkuni Visweswaraiah
- ANVESANA Research Laboratory, Department of Yoga and Life Sciences, Swami Vivekananda Yoga Research Foundation Bangalore, Karnataka, India
| | - Hongasandra RamaRao Nagendra
- ANVESANA Research Laboratory, Department of Yoga and Life Sciences, Swami Vivekananda Yoga Research Foundation Bangalore, Karnataka, India
| |
Collapse
|
35
|
Abstract
The contexts for action may be only transiently visible, accessible, and relevant. The corticobasal ganglia (BG) circuit addresses these demands by allowing the right motor plans to drive action at the right times, via a BG-mediated gate on motor representations. A long-standing hypothesis posits these same circuits are replicated in more rostral brain regions to support gating of cognitive representations. Key evidence now supports the prediction that BG can act as a gate on the input to working memory, as a gate on its output, and as a means of reallocating working memory representations rendered irrelevant by recent events. These discoveries validate key tenets of many computational models, circumscribe motor and cognitive models of recurrent cortical dynamics alone, and identify novel directions for research on the mechanisms of higher-level cognition.
Collapse
Affiliation(s)
- Christopher H Chatham
- Cognitive, Linguistic, and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - David Badre
- Cognitive, Linguistic, and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
36
|
López-Ramos JC, Guerra-Narbona R, Delgado-García JM. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex. Front Behav Neurosci 2015; 9:7. [PMID: 25688195 PMCID: PMC4311640 DOI: 10.3389/fnbeh.2015.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/08/2015] [Indexed: 01/18/2023] Open
Abstract
Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex (mPFC) is identified in rodents by its dense connectivity with the mediodorsal (MD) thalamus, and because of its inputs from other sites, such as hippocampus and amygdala (Amyg). The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials (fPSPs) evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the MD thalamus, the hippocampal CA1 area, or the basolateral amygdala (BLA), and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. FPSPs evoked at the mPFC from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals' avoidance of the reward. FPSPs collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation) when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations.
Collapse
|
37
|
Daniel R, Pollmann S. A universal role of the ventral striatum in reward-based learning: evidence from human studies. Neurobiol Learn Mem 2014; 114:90-100. [PMID: 24825620 DOI: 10.1016/j.nlm.2014.05.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Electrophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to optimize behavior. However, in human daily life rewards are diverse and often only indirect feedback is available. Here we explore the range of rewards that are processed by the dopaminergic system in human participants, and examine whether it is also involved in learning in the absence of explicit rewards. While results from electrophysiological recordings in humans are sparse, evidence linking dopaminergic activity to the metabolic signal recorded from the midbrain and striatum with functional magnetic resonance imaging (fMRI) is available. Results from fMRI studies suggest that the human ventral striatum (VS) receives valuation information for a diverse set of rewarding stimuli. These range from simple primary reinforcers such as juice rewards over abstract social rewards to internally generated signals on perceived correctness, suggesting that the VS is involved in learning from trial-and-error irrespective of the specific nature of provided rewards. In addition, we summarize evidence that the VS can also be implicated when learning from observing others, and in tasks that go beyond simple stimulus-action-outcome learning, indicating that the reward system is also recruited in more complex learning tasks.
Collapse
Affiliation(s)
- Reka Daniel
- Department of Experimental Psychology, Otto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg, Germany; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | - Stefan Pollmann
- Department of Experimental Psychology, Otto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg, Germany; Center for Behavioral Brain Sciences, D-39016 Magdeburg, Germany
| |
Collapse
|
38
|
Gale JT, Shields DC, Ishizawa Y, Eskandar EN. Reward and reinforcement activity in the nucleus accumbens during learning. Front Behav Neurosci 2014; 8:114. [PMID: 24765069 PMCID: PMC3982058 DOI: 10.3389/fnbeh.2014.00114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/18/2014] [Indexed: 11/17/2022] Open
Abstract
The nucleus accumbens core (NAcc) has been implicated in learning associations between sensory cues and profitable motor responses. However, the precise mechanisms that underlie these functions remain unclear. We recorded single-neuron activity from the NAcc of primates trained to perform a visual-motor associative learning task. During learning, we found two distinct classes of NAcc neurons. The first class demonstrated progressive increases in firing rates at the go-cue, feedback/tone and reward epochs of the task, as novel associations were learned. This suggests that these neurons may play a role in the exploitation of rewarding behaviors. In contrast, the second class exhibited attenuated firing rates, but only at the reward epoch of the task. These findings suggest that some NAcc neurons play a role in reward-based reinforcement during learning.
Collapse
Affiliation(s)
- John T Gale
- Nayef Al-Rodhan Laboratories for Cellular Neurosurgery and Neurosurgical Technology, Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital Boston, MA, USA
| | - Donald C Shields
- Nayef Al-Rodhan Laboratories for Cellular Neurosurgery and Neurosurgical Technology, Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital Boston, MA, USA
| | - Yumiko Ishizawa
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital Boston, MA, USA
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories for Cellular Neurosurgery and Neurosurgical Technology, Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital Boston, MA, USA
| |
Collapse
|
39
|
Gruart A, Sánchez-Campusano R, Fernández-Guizán A, Delgado-García JM. A Differential and Timed Contribution of Identified Hippocampal Synapses to Associative Learning in Mice. Cereb Cortex 2014; 25:2542-55. [PMID: 24654258 DOI: 10.1093/cercor/bhu054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although it is generally assumed that the hippocampus is involved in associative learning, the specific contribution of the different synapses present in its intrinsic circuit or comprising its afferents and efferents is poorly defined. We studied here activity-dependent changes in synaptic strength of 9 hippocampal synapses (corresponding to the intrinsic hippocampal circuitry and to its main inputs and outputs) during the acquisition of a trace eyeblink conditioning in behaving mice. The timing and intensity of synaptic changes across the acquisition process was determined. The evolution of these timed changes in synaptic strength indicated that their functional organization did not coincide with their sequential distribution according to anatomical criteria and connectivity. Furthermore, we explored the functional relevance of the extrinsic and intrinsic afferents to CA3 and CA1 pyramidal neurons, and evaluated the distinct input patterns to the intrinsic hippocampal circuit. Results confirm that the acquisition of a classical eyeblink conditioning is a multisynaptic process in which the contribution of each synaptic contact is different in strength, and takes place at different moments across learning. Thus, the precise and timed activation of multiple hippocampal synaptic contacts during classical eyeblink conditioning evokes a specific, dynamic map of functional synaptic states in that circuit.
Collapse
Affiliation(s)
- Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | | | | | | |
Collapse
|
40
|
Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav Brain Res 2013; 251:5-17. [DOI: 10.1016/j.bbr.2013.05.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022]
|
41
|
Chatham CH, Badre D. Working memory management and predicted utility. Front Behav Neurosci 2013; 7:83. [PMID: 23882196 PMCID: PMC3713341 DOI: 10.3389/fnbeh.2013.00083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/23/2013] [Indexed: 11/13/2022] Open
Abstract
Given the limited capacity of working memory (WM), its resources should be allocated strategically. One strategy is filtering, whereby access to WM is granted preferentially to items with the greatest utility. However, reallocation of WM resources might be required if the utility of maintained information subsequently declines. Here, we present behavioral, computational, and neuroimaging evidence that human participants track changes in the predicted utility of information in WM. First, participants demonstrated behavioral costs when the utility of items already maintained in WM declined and resources should be reallocated. An adapted Q-learning model indicated that these costs scaled with the historical utility of individual items. Finally, model-based neuroimaging demonstrated that frontal cortex tracked the utility of items to be maintained in WM, whereas ventral striatum tracked changes in the utility of items maintained in WM to the degree that these items are no longer useful. Our findings suggest that frontostriatal mechanisms track the utility of information in WM, and that these dynamics may predict delays in the removal of information from WM.
Collapse
Affiliation(s)
- Christopher H Chatham
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence RI, USA
| | | |
Collapse
|
42
|
The rostral medial prefrontal cortex regulates the expression of conditioned eyelid responses in behaving rabbits. J Neurosci 2013; 33:4378-86. [PMID: 23467354 DOI: 10.1523/jneurosci.5560-12.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied the contribution of the rostral mPFC (rmPFC) to the acquisition and performance of classical eyeblink conditioning in rabbits using a delay paradigm. The rmPFC was determined by its afferent projections from the medial half of the mediodorsal thalamic nucleus. The rmPFC neurons were identified by their antidromic activation from the mediodorsal nucleus and/or by their firing characteristics. The rmPFC neurons increased their firing during the first conditioning sessions, but decreased it when conditioned responses (CRs) reached asymptotic values. Therefore, no significant relationships could be established between neuronal firing rates and the percentage of CRs or the electromyographic (EMG) activity of the orbicularis oculi muscle during conditioning. Electrical train stimulation of the rmPFC produced a significant inhibition of air-puff-evoked blinks and reduced the generation of CRs compared with controls. Inhibition of the rmPFC by the local injection of lidocaine produced an increase in the amplitude of evoked reflex and conditioned eyeblinks and in the percentage of CRs. The rmPFC seems to be a potent inhibitor of reflex and conditioned eyeblinks, controlling the release of newly acquired eyelid responses until advanced stages of the acquisition process--i.e., until the need for the acquired response is fully confirmed. Therefore, the rmPFC seems to act as a "flip-flop" mechanism in controlling behavior.
Collapse
|
43
|
Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 2013; 33:550-6. [PMID: 23281428 PMCID: PMC3618391 DOI: 10.1038/jcbfm.2012.200] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycogen is the only carbohydrate reserve of the brain, but its overall contribution to brain functions remains unclear. Although it has traditionally been considered as an emergency energetic reservoir, increasing evidence points to a role of glycogen in the normal activity of the brain. To address this long-standing question, we generated a brain-specific Glycogen Synthase knockout (GYS1(Nestin-KO)) mouse and studied the functional consequences of the lack of glycogen in the brain under alert behaving conditions. These animals showed a significant deficiency in the acquisition of an associative learning task and in the concomitant activity-dependent changes in hippocampal synaptic strength. Long-term potentiation (LTP) evoked in the hippocampal CA3-CA1 synapse was also decreased in behaving GYS1(Nestin-KO) mice. These results unequivocally show a key role of brain glycogen in the proper acquisition of new motor and cognitive abilities and in the underlying changes in synaptic strength.
Collapse
|
44
|
Vega-Flores G, Rubio SE, Jurado-Parras MT, Gómez-Climent MÁ, Hampe CS, Manto M, Soriano E, Pascual M, Gruart A, Delgado-García JM. The GABAergic septohippocampal pathway is directly involved in internal processes related to operant reward learning. Cereb Cortex 2013; 24:2093-107. [PMID: 23479403 DOI: 10.1093/cercor/bht060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We studied the role of γ-aminobutyric acid (GABA)ergic septohippocampal projections in medial septum (MS) self-stimulation of behaving mice. Self-stimulation was evoked in wild-type (WT) mice using instrumental conditioning procedures and in J20 mutant mice, a type of mouse with a significant deficit in GABAergic septohippocampal projections. J20 mice showed a significant modification in hippocampal activities, including a different response for input/output curves and the paired-pulse test, a larger long-term potentiation (LTP), and a delayed acquisition and lower performance in the MS self-stimulation task. LTP evoked at the CA3-CA1 synapse further decreased self-stimulation performance in J20, but not in WT, mice. MS self-stimulation evoked a decrease in the amplitude of field excitatory postsynaptic potentials (fEPSPs) at the CA3-CA1 synapse in WT, but not in J20, mice. This self-stimulation-dependent decrease in the amplitude of fEPSPs was also observed in the presence of another positive reinforcer (food collected during an operant task) and was canceled by the local administration of an antibody-inhibiting glutamate decarboxylase 65 (GAD65). LTP evoked in the GAD65Ab-treated group was also larger than in controls. The hippocampus has a different susceptibility to septal GABAergic inputs depending on ongoing cognitive processes, and the GABAergic septohippocampal pathway is involved in consummatory processes related to operant rewards.
Collapse
Affiliation(s)
- Germán Vega-Flores
- Division of Neurosciences, Pablo de Olavide University, Seville E-41013, Spain
| | - Sara E Rubio
- Developmental Neurobiology and Regeneration Laboratory, Institute for Research in Biomedicine, Barcelona, Spain Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Spain
| | | | | | - Christiane S Hampe
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, USA
| | - Mario Manto
- Unité d'Etude du Movement, Hôpital Erasme-ULB, Bruxelles 1070, Belgium
| | - Eduardo Soriano
- Developmental Neurobiology and Regeneration Laboratory, Institute for Research in Biomedicine, Barcelona, Spain Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Spain
| | - Marta Pascual
- Developmental Neurobiology and Regeneration Laboratory, Institute for Research in Biomedicine, Barcelona, Spain Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville E-41013, Spain
| | | |
Collapse
|
45
|
Jurado-Parras MT, Sánchez-Campusano R, Castellanos NP, del-Pozo F, Gruart A, Delgado-García JM. Differential contribution of hippocampal circuits to appetitive and consummatory behaviors during operant conditioning of behaving mice. J Neurosci 2013; 33:2293-304. [PMID: 23392660 PMCID: PMC6619163 DOI: 10.1523/jneurosci.1013-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 11/02/2012] [Accepted: 11/11/2012] [Indexed: 12/21/2022] Open
Abstract
Operant conditioning is a type of associative learning involving different and complex sensorimotor and cognitive processes. Because the hippocampus has been related to some motor and cognitive functions involved in this type of learning (such as object recognition, spatial orientation, and associative learning tasks), we decided to study in behaving mice the putative changes in strength taking place at the hippocampal CA3-CA1 synapses during the acquisition and performance of an operant conditioning task. Mice were chronically implanted with stimulating electrodes in the Schaffer collaterals and with recording electrodes in the hippocampal CA1 area and trained to an operant task using a fixed-ratio (1:1) schedule. We recorded the field EPSPs (fEPSPs) evoked at the CA3-CA1 synapse during the performance of appetitive (going to the lever, lever press) and consummatory (going to the feeder, eating) behaviors. In addition, we recorded the local field potential activity of the CA1 area during similar behavioral displays. fEPSPs evoked at the CA3-CA1 synapse presented larger amplitudes for appetitive than for consummatory behaviors. This differential change in synaptic strength took place in relation to the learning process, depending mainly on the moment in which mice reached the selected criterion. Thus, selective changes in CA3-CA1 synaptic strength were dependent on both the behavior display and the learning stage. In addition, significant changes in theta band power peaks and their corresponding discrete frequencies were noticed during these behaviors across the sequence of events characterizing this type of associative learning but not during the acquisition process.
Collapse
Affiliation(s)
| | | | - Nazareth P. Castellanos
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid Technical University, 28060 Madrid, Spain
| | - Francisco del-Pozo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid Technical University, 28060 Madrid, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain, and
| | | |
Collapse
|
46
|
Synaptic plasticity studies and their applicability in mouse models of neurodegenerative diseases. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0115-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractDuring the past few years, there have been many important contributions to the better understanding of the different types of memory and the putative neural structures that generate them. Moreover, various studies on neurodegenerative diseases in human beings have added useful information about learning and memory formation, and about their loss in patients with these disabling diseases. The development of sophisticated pharmacogenetic tools applied to mouse models, reproducing different types of neurodegenerative disease or, at least, some of their main symptoms, has turned out to be extremely useful for the further development of contemporary neuroscience. In addition, ingenious behavioral and electrophysiological approaches have been developed to study the activity-dependent changes in synaptic strength during learning and memory processes in the best possible way — that is, in the alert behaving animal. Collected data from these numerous studies have enabled us to know more about the role of many different molecular components integrating the synaptic cleft, and to draw some conclusions about the concordance between in vitro and in vivo recorded data, and the generalization of the results to other types of learning and/or brain-related structures. As described here, changes in synaptic strength studied in key neural synapses during learning and memory processes in genetically manipulated mice can represent an interesting and powerful approach to the better understanding of neural processes underlying the acquisition of new motor and cognitive abilities and how they are affected by different human diseases involving the neural tissue.
Collapse
|