1
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2025; 30:1089-1101. [PMID: 39333385 PMCID: PMC11835756 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Wang Y, Wei L, Tan M, Yang Z, Gao B, Li J, Liu Y, Zikereya T, Shi K, Chen W. Aerobic exercise improves motor dysfunction in Parkinson's model mice via differential regulation of striatal medium spiny neuron. Sci Rep 2024; 14:12132. [PMID: 38802497 PMCID: PMC11130133 DOI: 10.1038/s41598-024-63045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.
Collapse
Affiliation(s)
- Yinhao Wang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Longwei Wei
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Mingli Tan
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Zizheng Yang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Bo Gao
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Juan Li
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Yang Liu
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Talifu Zikereya
- Department of Physical Education, China University of Geoscience, Beijing, China
| | - Kaixuan Shi
- Department of Physical Education, China University of Geoscience, Beijing, China.
| | - Wei Chen
- School of Physical Education, Hebei Normal University, Shijiazhuang, China.
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
3
|
Longo F, Aryal S, Anastasiades PG, Maltese M, Baimel C, Albanese F, Tabor J, Zhu JD, Oliveira MM, Gastaldo D, Bagni C, Santini E, Tritsch NX, Carter AG, Klann E. Cell-type-specific disruption of cortico-striatal circuitry drives repetitive patterns of behavior in fragile X syndrome model mice. Cell Rep 2023; 42:112901. [PMID: 37505982 PMCID: PMC10552611 DOI: 10.1016/j.celrep.2023.112901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Individuals with fragile X syndrome (FXS) are frequently diagnosed with autism spectrum disorder (ASD), including increased risk for restricted and repetitive behaviors (RRBs). Consistent with observations in humans, FXS model mice display distinct RRBs and hyperactivity that are consistent with dysfunctional cortico-striatal circuits, an area relatively unexplored in FXS. Using a multidisciplinary approach, we dissect the contribution of two populations of striatal medium spiny neurons (SPNs) in the expression of RRBs in FXS model mice. Here, we report that dysregulated protein synthesis at cortico-striatal synapses is a molecular culprit of the synaptic and ASD-associated motor phenotypes displayed by FXS model mice. Cell-type-specific translational profiling of the FXS mouse striatum reveals differentially translated mRNAs, providing critical information concerning potential therapeutic targets. Our findings uncover a cell-type-specific impact of the loss of fragile X messenger ribonucleoprotein (FMRP) on translation and the sequence of neuronal events in the striatum that drive RRBs in FXS.
Collapse
Affiliation(s)
- Francesco Longo
- Center for Neural Science, New York University, New York, NY 10003, USA; Institute for Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Sameer Aryal
- Center for Neural Science, New York University, New York, NY 10003, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Marta Maltese
- Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA; Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Corey Baimel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Federica Albanese
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Joanna Tabor
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jeffrey D Zhu
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Denise Gastaldo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 1005 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 1005 Rome, Italy
| | - Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Biomedicum, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Nicolas X Tritsch
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA
| | - Adam G Carter
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
4
|
Clayman CL, Hwang C, Connaughton VP. Ethanol and caffeine age-dependently alter brain and retinal neurochemical levels without affecting morphology of juvenile and adult zebrafish (Danio rerio). PLoS One 2023; 18:e0286596. [PMID: 37405983 PMCID: PMC10321635 DOI: 10.1371/journal.pone.0286596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Adolescent alcohol exposure in humans is predictive of adult development of alcoholism. In rodents, caffeine pre-exposure enhances adult responsiveness to ethanol via a pathway targeted by both compounds. Embryonic exposure to either compound adversely affects development, and both compounds can alter zebrafish behaviors. Here, we evaluate whether co-exposure to caffeine and/or alcohol in adolescence exerts neurochemical changes in retina and brain. Zebrafish (Danio rerio) were given daily 20 min treatments to ethanol (1.5% v/v), caffeine (25-100 mg/L), or caffeine + ethanol for 1 week during mid-late adolescence (53-92 days post fertilization (dpf)) or early adulthood (93-142 dpf). Immediately after exposure, anatomical measurements were taken, including weight, heart rate, pigment density, length, girth, gill width, inner and outer eye distance. Brain and retinal tissue were subsequently collected either (1) immediately, (2) after a short interval (2-4d) following exposure, or (3) after a longer interval that included an acute 1.5% ethanol challenge. Chronic ethanol and/or caffeine exposure did not alter anatomical parameters. However, retinal and brain levels of tyrosine hydroxylase were elevated in fish sacrificed after the long interval following exposure. Protein levels of glutamic acid decarboxylase were also increased, with the highest levels observed in 70-79 dpf fish exposed to caffeine. The influence of ethanol and caffeine exposure on neurochemistry demonstrates specificity of their effects during postembryonic development. Using the zebrafish model to assess neurochemistry relevant to reward and anxiety may inform understanding of the mechanisms that reinforce co-addiction to alcohol and stimulants.
Collapse
Affiliation(s)
- Carly L. Clayman
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| | - Christina Hwang
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| | - Victoria P. Connaughton
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| |
Collapse
|
5
|
Imam A, Bhagwandin A, Ajao MS, Manger PR. The brain of the tree pangolin (Manis tricuspis). VIII. The subpallial telencephalon. J Comp Neurol 2022; 530:2611-2644. [PMID: 35708120 PMCID: PMC9543335 DOI: 10.1002/cne.25353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
The current study provides a detailed architectural analysis of the subpallial telencephalon of the tree pangolin. In the tree pangolin, the subpallial telencephalon was divided into septal and striatopallidal regions. The septal region contained the septal nuclear complex, diagonal band of Broca, and the bed nuclei of the stria terminalis. The striatopallidal region comprised of the dorsal (caudate, putamen, internal and external globus pallidus) and ventral (nucleus accumbens, olfactory tubercle, ventral pallidum, nucleus basalis, basal part of the substantia innominata, lateral stripe of the striatum, navicular nucleus, and the major island of Calleja) striatopallidal complexes. In the tree pangolin, the organization and numbers of nuclei forming these regions and complexes, their topographical relationships to each other, and the cyto‐, myelo‐, and chemoarchitecture, were found to be very similar to that observed in commonly studied mammals. Minor variations, such as less nuclear parcellation in the bed nuclei of the stria terminalis, may represent species‐specific variations, or may be the result of the limited range of stains used. Given the overall similarity across mammalian species, it appears that the subpallial telencephalon of the mammalian brain is highly conserved in terms of evolutionary changes detectable with the methods used. It is also likely that the functions associated with these nuclei in other mammals can be translated directly to the tree pangolin, albeit with the understanding that the stimuli that produce activity within these regions may be specific to the life history requirements of the tree pangolin.
Collapse
Affiliation(s)
- Aminu Imam
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| |
Collapse
|
6
|
Zhou H, Zhang J, Shi H, Li P, Sui X, Wang Y, Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol Brain 2022; 15:53. [PMID: 35701839 PMCID: PMC9195255 DOI: 10.1186/s13041-022-00939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in activity/rest behavior. Additionally, Golgi staining of neurons in the DS revealed that CDK5 deletion reduced dendrite length and the number of functional synapses, which was confirmed by significant downregulation of MAP2, PSD-95, and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decreased frequency of spontaneous inhibitory postsynaptic currents and altered excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 KD in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor functions and activity/rest associated with circadian rhythms that are perturbed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
7
|
Huang Q, Liao C, Ge F, Ao J, Liu T. Acetylcholine bidirectionally regulates learning and memory. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Krentzel AA, Proaño SB, Dorris DM, Setzer B, Meitzen J. The estrous cycle and 17β-estradiol modulate the electrophysiological properties of rat nucleus accumbens core medium spiny neurons. J Neuroendocrinol 2022; 34:e13122. [PMID: 35365910 PMCID: PMC9250601 DOI: 10.1111/jne.13122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022]
Abstract
The nucleus accumbens core is a key nexus within the mammalian brain for integrating the premotor and limbic systems and regulating important cognitive functions such as motivated behaviors. Nucleus accumbens core functions show sex differences and are sensitive to the presence of hormones such as 17β-estradiol (estradiol) in normal and pathological contexts. The primary neuron type of the nucleus accumbens core, the medium spiny neuron (MSN), exhibits sex differences in both intrinsic excitability and glutamatergic excitatory synapse electrophysiological properties. Here, we provide a review of recent literature showing how estradiol modulates rat nucleus accumbens core MSN electrophysiology within the context of the estrous cycle. We review the changes in MSN electrophysiological properties across the estrous cycle and how these changes can be mimicked in response to exogenous estradiol exposure. We discuss in detail recent findings regarding how acute estradiol exposure rapidly modulates excitatory synapse properties in nucleus accumbens core but not caudate-putamen MSNs, which mirror the natural changes seen across estrous cycle phases. These recent insights demonstrate the strong impact of sex-specific estradiol action upon nucleus accumbens core neuron electrophysiology.
Collapse
Affiliation(s)
- Amanda A. Krentzel
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Stephanie B. Proaño
- Neurobiology LaboratoryNational Institute of Environmental Health Sciences, NIHResearch Triangle ParkNCUSA
| | - David M. Dorris
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Beverly Setzer
- Graduate Program for Neuroscience and Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | - John Meitzen
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNCUSA
- Center for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
9
|
Schizophrenia-like endurable behavioral and neuroadaptive changes induced by ketamine administration involve Angiotensin II AT 1 receptor. Behav Brain Res 2022; 425:113809. [PMID: 35218792 DOI: 10.1016/j.bbr.2022.113809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a chronic disease affecting 1% worldwide population, of which 30% are refractory to the available treatments: thus, searching for new pharmacological targets is imperative. The acute and repeated ketamine administration are validated preclinical models that recreate the behavioral and neurochemical features of this pathology, including the parvalbumin-expressing interneurons dysfunction. Angiotensin II, through AT1 receptors (AT1-R), modulates the dopaminergic and GABAergic neurotransmission. We evaluated the AT1-R role in the long-term neuronal activation and behavioral alterations induced by repeated ketamine administration. Adult male Wistar rats received AT1-R antagonist candesartan/vehicle (days 1-10) and ketamine/saline (days 6-10). After 14 days of drug-free, neuronal activation and behavioral analysis were performed. Locomotor activity, social interaction and novel object recognition tests were assessed at basal conditions or after ketamine challenge. Immunostaining for c-Fos, GAD67 and parvalbumin were assessed after ketamine challenge in cingulate, insular, piriform, perirhinal, and entorhinal cortices, striatum, and hippocampus. Additionally, to evaluate the AT1-R involvement in acute ketamine psychotomimetic effects, the same behavioral tests were performed after 6 days of daily-candesartan and a single-ketamine administration. We found that ketamine-induced long-lasting schizophrenia-like behavioral alterations, and regional-dependent neuronal activation changes, involving the GABAergic neurotransmission system and the parvalbumin-expressing interneurons, were AT1-R-dependent. The AT1-R were not involved in the acute ketamine psychotomimetic effects. These results add new evidence to the wide spectrum of action of ketamine and strengthen the AT1-R involvement in endurable alterations induced by psychostimulants administration, previously proposed by our group, as well as their preponderant role in the development of psychiatric pathologies.
Collapse
|
10
|
Kolla NJ, Boileau I, Bagby RM. Higher trait neuroticism is associated with greater fatty acid amide hydrolase binding in borderline and antisocial personality disorders. Sci Rep 2022; 12:1126. [PMID: 35064143 PMCID: PMC8782862 DOI: 10.1038/s41598-022-04789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/31/2021] [Indexed: 11/20/2022] Open
Abstract
Borderline personality disorder (BPD) and antisocial personality disorder (ASPD) are the two most frequently diagnosed and researched DSM-5 personality disorders, and both are characterized by high levels of trait neuroticism. Fatty acid amide hydrolase (FAAH), an enzyme of the endocannabinoid system (ECS), has been linked to regulation of mood through modulation of anandamide, an endocannabinoid. We hypothesized that prefrontal cortex (PFC) FAAH binding would relate to trait neuroticism in personality disorders. Thirty-one individuals with personality disorders (20 with BPD and 11 with ASPD) completed the investigation. All participants completed the revised NEO Personality Inventory, which yields standardized scores (e.g., T scores) for the traits of neuroticism, openness, conscientiousness, agreeableness, and extraversion. All participants were medication free and were not utilizing illicit substances as determined by drug urinalysis. Additionally, none of the participants had a comorbid major depressive episode, bipolar disorder, psychotic disorder, or substance use disorder. Each participant underwent one [11C]CURB PET scan. Consistent with our hypothesis, neuroticism was positively correlated with PFC FAAH binding (r = 0.42, p = 0.021), controlling for genotype. Neuroticism was also positively correlated with dorsal putamen FAAH binding (r = 0.53, p = 0.0024), controlling for genotype. Elevated brain FAAH is an endophenotype for high neuroticism in BPD and ASPD. Novel pharmacological therapeutics that inhibit FAAH could emerge as potential new treatments for BPD and ASPD with high neuroticism.
Collapse
Affiliation(s)
- Nathan J Kolla
- Centre for Addiction and Mental Health (CAMH), 250 College Street, Room 626, Toronto, ON, M5T 1R8, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada. .,Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada. .,Waypoint/University of Toronto Research Chair in Forensic Mental Health Science, Penetanguishene, ON, Canada.
| | - Isabelle Boileau
- Centre for Addiction and Mental Health (CAMH), 250 College Street, Room 626, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - R Michael Bagby
- Centre for Addiction and Mental Health (CAMH), 250 College Street, Room 626, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Sonego AB, Prado DDS, Guimarães FS. PPARγ receptors are involved in the effects of cannabidiol on orofacial dyskinesia and cognitive dysfunction induced by typical antipsychotic in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110367. [PMID: 34048863 DOI: 10.1016/j.pnpbp.2021.110367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/20/2022]
Abstract
Tardive dyskinesia (TD) is a movement disorder that appears after chronic use of drugs that block dopaminergic receptors such as antipsychotics. Besides the motor symptoms, patients with TD also present cognitive deficits. Neuroinflammatory mechanisms could be involved in the development of these symptoms. A previous study showed that cannabidiol (CBD), the major non-psychotomimetic compound of Cannabis sativa plant, prevents orofacial dyskinesia induced by typical antipsychotics by activating peroxisome proliferator-activated receptors gamma (PPARγ). Here, we investigated if CBD would also reverse haloperidol-induced orofacial dyskinesia and associated cognitive deficits. We also verified if these effects depend on PPARγ receptor activation. Daily treatment with haloperidol (3 mg/kg, 21 days) increased the frequency of vacuous chewing movements (VCM) and decreased the discrimination index in the novel object recognition test in male Swiss mice. CBD (60 mg/kg/daily) administered in the last 7 days of haloperidol treatment attenuated both behavioral effects. Furthermore, haloperidol increased IL-1β and TNF-α levels in the striatum and hippocampus while CBD reverted these effects. The striatal and hippocampal levels of proinflammatory cytokines correlated with VCM frequency and discrimination index, respectively. Pretreatment with the PPARγ antagonist GW9662 (2 mg/kg/daily) blocked the behavioral effects of CBD. In conclusion, these results indicated that CBD could attenuate haloperidol-induced orofacial dyskinesia and improve non-motor symptoms associated with TD by activating PPARγ receptors.
Collapse
Affiliation(s)
- Andreza Buzolin Sonego
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| | - Douglas da Silva Prado
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
12
|
Abdel-Naby DH, Deghiedy NM, Rashed RR, El-Ghazaly MA. Tailoring of chitosan/diacrylated pluronic system as a versatile nanoplatform for the amelioration of radiation-induced cognitive dysfunction. Int J Biol Macromol 2021; 193:1507-1521. [PMID: 34740686 DOI: 10.1016/j.ijbiomac.2021.10.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022]
Abstract
Rutin (RUT) is a biologically active flavonoid that is reported to modulate radiation-induced brain dysfunctions. However, RUT's poor water solubility and low brain bioavailability limit its clinical use. To increase its brain bioavailability, RUT was loaded onto nanoplatforms based on chitosan/diacrylated pluronic (CS/DA-PLUR) nanogels synthesized by gamma radiation. The optimized formulation was investigated as a carrier system for RUT. Based on pilot experiments' results, the cranial radiation (CR) dose that induced cognitive dysfunction was selected. In the main experiment, rats were pre-treated orally with either free RUT or RUT-CS/DA-PLUR. Rats' cognitive and motor functions were assessed; 24 h later, rats were sacrificed, and the whole brain was separated for histopathological examination and biochemical estimation of brain content of acetylcholine esterase (AChE), neurotransmitters, oxidative stress markers, and interleukin-1β. CR produced prominent impairment in spatial and non-spatial learning memory, motor coordination, and muscular strength. Moreover, histopathological and biochemical alterations in brain contents of neurotransmitters, oxidative stress, and interleukin-1β were induced by CR. Conversely, RUT-CS/DA-PLUR, but not free RUT, successfully guarded against all the detrimental effects induced by CR. Based on the current findings, loading of RUT enhanced its bioavailability and therapeutic effectiveness by restoring the cognitive functions impaired by CR.
Collapse
Affiliation(s)
- Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, Cairo, Egypt.
| | - Noha M Deghiedy
- Department of Polymers Chemistry, NCRRT, Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, Cairo, Egypt
| | - Rasha R Rashed
- Department of Drug Radiation Research, NCRRT, Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, NCRRT, Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, Cairo, Egypt
| |
Collapse
|
13
|
Prathipati B, Rohini P, Kola PK, Reddy Danduga RCS. Neuroprotective effects of curcumin loaded solid lipid nanoparticles on homocysteine induced oxidative stress in vascular dementia. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2021. [DOI: 10.1016/j.crbeha.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
14
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
15
|
Wu CL, Chan YC, Chen HC. Neurocognitive Mechanism of Remote and Close Associations: An fMRI Study. AMERICAN JOURNAL OF PSYCHOLOGY 2021. [DOI: 10.5406/amerjpsyc.134.3.0333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Remote association is the ability to combine seemingly unrelated components into new concepts and is evaluated via the Remote Associates Test (RAT). The RAT has generally been used to examine brain activation during insight problem solving but not remote association. Moreover, little is known about the neural correlates of remote association and close association. To address this issue, we used the associative distance in the development of the RAT and designed remote associated items and close associated items. We collected brain images during observation of remote and close associated items from 30 adult participants and analyzed the activation of brain regions involved in remote and close associations. The results showed that processing of remote and close association occurred in the posterior cingulate cortex. After controlling for the influence of other associations, we found that the rostromedial prefrontal cortex, precuneus, and middle temporal gyrus were involved exclusively in remote association. These results showed that remote association has conjunctive and disjunctive neurocognitive mechanisms. Our results contribute to the understanding of the neurocognitive mechanisms of different associations and provide empirical support for the associative theory of creativity.
Collapse
|
16
|
Wu C, Bendriem RM, Freed WJ, Lee CT. Transcriptome analysis of human dorsal striatum implicates attenuated canonical WNT signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity. Restor Neurol Neurosci 2021; 39:247-266. [PMID: 34275915 DOI: 10.3233/rnn-211161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor and cognitive decline as part of the normal aging process is linked to alterations in synaptic plasticity and reduction of adult neurogenesis in the dorsal striatum. Neuroinflammation, particularly in the form of microglial activation, is suggested to contribute to these age-associated changes. OBJECTIVE AND METHODS To explore the molecular basis of alterations in striatal function during aging we analyzed RNA-Seq data for 117 postmortem human dorsal caudate samples and 97 putamen samples acquired through GTEx. RESULTS Increased expression of neuroinflammatory transcripts including TREM2, MHC II molecules HLA-DMB, HLA-DQA2, HLA-DPA1, HLA-DPB1, HLA-DMA and HLA-DRA, complement genes C1QA, C1QB, CIQC and C3AR1, and MHCI molecules HLA-B and HLA-F was identified. We also identified down-regulation of transcripts involved in neurogenesis, synaptogenesis, and synaptic pruning, including DCX, CX3CL1, and CD200, and the canonical WNTs WNT7A, WNT7B, and WNT8A. The canonical WNT signaling pathway has previously been shown to mediate adult neurogenesis and synapse formation and growth. Recent findings also highlight the link between WNT/β-catenin signaling and inflammation pathways. CONCLUSIONS These findings suggest that age-dependent attenuation of canonical WNT signaling plays a pivotal role in regulating striatal plasticity during aging. Dysregulation of WNT/β-catenin signaling via astrocyte-microglial interactions is suggested to be a novel mechanism that drives the decline of striatal neurogenesis and altered synaptic connectivity and plasticity, leading to a subsequent decrease in motor and cognitive performance with age. These findings may aid in the development of therapies targeting WNT/β-catenin signaling to combat cognitive and motor impairments associated with aging.
Collapse
Affiliation(s)
- Chun Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raphael M Bendriem
- Brain and Mind Research Institute, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William J Freed
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | - Chun-Ting Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
17
|
Poddar MK, Banerjee S, Chakraborty A, Dutta D. Metabolic disorder in Alzheimer's disease. Metab Brain Dis 2021; 36:781-813. [PMID: 33638805 DOI: 10.1007/s11011-021-00673-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), a well known aging-induced neurodegenerative disease is related to amyloid proteinopathy. This proteinopathy occurs due to abnormalities in protein folding, structure and thereby its function in cells. The root cause of such kind of proteinopathy and its related neurodegeneration is a disorder in metabolism, rather metabolomics of the major as well as minor nutrients. Metabolomics is the most relevant "omics" platform that offers a great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual's metabolome. In recent years, the research on such kinds of neurodegenerative diseases, especially aging-related disorders is broadened its scope towards metabolic function. Different neurotransmitter metabolisms are also involved with AD and its associated neurodegeneration. The genetic and epigenetic backgrounds are also noteworthy. In this review, the physiological changes of AD in relation to its corresponding biochemical, genetic and epigenetic involvements including its (AD) therapeutic aspects are discussed.
Collapse
Affiliation(s)
- Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India.
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Departrment of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
18
|
Dempsey LM, Kavanagh JJ. Muscarinic receptor blockade causes postcontraction enhancement in corticospinal excitability following maximal contractions. J Neurophysiol 2021; 125:1269-1278. [PMID: 33625939 DOI: 10.1152/jn.00673.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although synaptic transmission in motor pathways can be regulated by neuromodulators, such as acetylcholine, few studies have examined how cholinergic activity affects cortical and spinal motor circuits following muscle contractions of varying intensities. This was a human, double-blinded, placebo-controlled, crossover study. Participants attended two sessions where they were administered either a placebo or 25 mg of promethazine. Electromyography of the abductor digiti minimi (ADM) was measured for all conditions. Motor evoked potentials (MEPs) were obtained via motor cortical transcranial magnetic stimulation (TMS), and F waves were obtained via ulnar nerve electrical stimulation. MEPs and F waves were examined: 1) when the muscle was at rest; 2) after the muscle had been active; and 3) after the muscle had been fatigued. MEPs were unaffected by muscarinic receptor blockade when measurements were recorded from resting muscle or following a 50% isometric maximal voluntary contraction (MVC). However, muscarinic receptor blockade increased MEP area following a 10-s MVC (P = 0.019) and following a fatiguing 60-s MVC (P = 0.040). F wave area and persistence were not affected by promethazine for any muscle contraction condition. Corticospinal excitability was influenced by cholinergic effects when voluntary drive to the muscle was high. Given that spinal motoneurone excitability remained unaffected, it is likely that cholinergic effects are influential within the motor cortex during strong muscle contractions. Future research should evaluate how cholinergic effects alter the relationship between subcortical structures and the motor cortex, as well as brainstem neuromodulatory pathways and spinal motoneurons.NEW & NOTEWORTHY The relationship between motor function and cholinergic circuitry in the central nervous system is complex. Although many studies have approached this issue at the cellular level, few studies have examined cholinergic mechanisms in humans performing muscle contractions. This study demonstrates that blockade of muscarinic acetylcholine receptors enhances motor evoked potentials (elicited with transcranial magnetic stimulation) following strong muscle contractions, but not weak muscle contractions.
Collapse
Affiliation(s)
- Lisa M Dempsey
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
19
|
Ferrazzoli D, Ortelli P, Volpe D, Cucca A, Versace V, Nardone R, Saltuari L, Sebastianelli L. The Ties That Bind: Aberrant Plasticity and Networks Dysfunction in Movement Disorders-Implications for Rehabilitation. Brain Connect 2021; 11:278-296. [PMID: 33403893 DOI: 10.1089/brain.2020.0971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Movement disorders encompass various conditions affecting the nervous system. The pathological processes underlying movement disorders lead to aberrant synaptic plastic changes, which in turn alter the functioning of large-scale brain networks. Therefore, clinical phenomenology does not only entail motor symptoms but also cognitive and motivational disturbances. The result is the disruption of motor learning and motor behavior. Due to this complexity, the responsiveness to standard therapies could be disappointing. Specific forms of rehabilitation entailing goal-based practice, aerobic training, and the use of noninvasive brain stimulation techniques could "restore" neuroplasticity at motor-cognitive circuitries, leading to clinical gains. This is probably associated with modulations occurring at both molecular (synaptic) and circuitry levels (networks). Several gaps remain in our understanding of the relationships among plasticity and neural networks and how neurorehabilitation could promote clinical gains is still unclear. Purposes: In this review, we outline first the networks involved in motor learning and behavior and analyze which mechanisms link the pathological synaptic plastic changes with these networks' disruption in movement disorders. Therefore, we provide theoretical and practical bases to be applied for treatment in rehabilitation.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Daniele Volpe
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy
| | - Alberto Cucca
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy.,Department of Neurology, The Marlene & Paolo Fresco Institute for Parkinson's & Movement Disorders, NYU School of Medicine, New York, New York, USA.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital (SABES-ASDAA), Merano-Meran, Italy.,Department of Neurology, Christian Doppler Medical Center, Paracelsus University Salzburg, Salzburg, Austria
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| |
Collapse
|
20
|
Lim SAO, Surmeier DJ. Enhanced GABAergic Inhibition of Cholinergic Interneurons in the zQ175 +/- Mouse Model of Huntington's Disease. Front Syst Neurosci 2021; 14:626412. [PMID: 33551760 PMCID: PMC7854471 DOI: 10.3389/fnsys.2020.626412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that initially manifests itself in the striatum. How intrastriatal circuitry is altered by the disease is poorly understood. To help fill this gap, the circuitry linking spiny projection neurons (SPNs) to cholinergic interneurons (ChIs) was examined using electrophysiological and optogenetic approaches in ex vivo brain slices from wildtype mice and zQ175+/− models of HD. These studies revealed a severalfold enhancement of GABAergic inhibition of ChIs mediated by collaterals of indirect pathway SPNs (iSPNs), but not direct pathway SPNs (dSPNs). This cell-specific alteration in synaptic transmission appeared in parallel with the emergence of motor symptoms in the zQ175+/− model. The adaptation had a presynaptic locus, as it was accompanied by a reduction in paired-pulse ratio but not in the postsynaptic response to GABA. The alterations in striatal GABAergic signaling disrupted spontaneous ChI activity, potentially contributing to the network dysfunction underlying the hyperkinetic phase of HD.
Collapse
Affiliation(s)
- Sean Austin O Lim
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Neuroscience Program, College of Science and Health, DePaul University, Chicago, IL, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
21
|
Noda S, Sato S, Fukuda T, Tada N, Hattori N. Aging-related motor function and dopaminergic neuronal loss in C57BL/6 mice. Mol Brain 2020; 13:46. [PMID: 32293495 PMCID: PMC7092461 DOI: 10.1186/s13041-020-00585-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Aging-related dopaminergic neuronal loss and its motor phenotypes are well known. Excessive loss of dopaminergic neurons leads to Parkinson's disease (PD), the most common neurodegenerative disorder characterized by the loss of nigrostriatal dopamine-producing neurons. In mice, however, aging-related dopaminergic neuronal loss and its consequences for motor function are poorly understood. We observed the phenotype of wild-type C57BL/6 mice over an extended period of time. C57BL/6 mice exhibited age-dependent locomotor impairments, including hindlimb defects and the number of dopaminergic neurons decreased in aged mice, contributing to locomotor dysfunction. We observed a reduction in striatal dopamine levels in aged mice using high-performance liquid chromatography (HPLC). Thus, dopamine levels are affected by the loss of dopaminergic neurons. Furthermore, fragmented mitochondria were observed in dopaminergic neurons of aged mice but not in those of young mice. Aging-related dopaminergic neuronal loss and accumulation of damaged mitochondria may underlie the pathophysiology of aging.
Collapse
Affiliation(s)
- Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Neuropathology, The Jikei University, School of Medicine, Tokyo, 105-8461, Japan
| | - Norihiro Tada
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
22
|
Kudo Y, Wada E. Ratio of naturally retained 15N to 13C in rat brain regions as a marker of brain function and activity. Neurosci Res 2020; 160:32-42. [PMID: 31931028 DOI: 10.1016/j.neures.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022]
Abstract
Our aim in the present study was to clarify the activity-dependent and function-associated retention of stable isotopes (SIs) in rat brain regions. We measured regional distributions of the natural stable isotopes 15N and 13C in brain using a mass spectrometer with a dual inlet system and a double collector for ratiometry, and compared them with distributions obtained from internal organs and skeletal muscle. Although levels of 15N and 13C were very high in brain regions of prenatal rats, and robustly decreased after birth, developmental changes in brain regions became obvious when the ratio of 15N to 13C (abbreviated as 15N/13C) in each brain region was compared. A high correlation was observed between free motor activity and 15N/13C in the hippocampus, cerebrum, and striatum. A significantly higher 15N/13C was also observed in the hippocampus and striatum of rats with higher intelligence, which was evaluated by radial maze learning. Furthermore, 15N/13C in brain regions of trained rats were significantly higher than those of untrained age-matched rats. Our study suggests that the 15N/13C in a specific brain region may reflect the physiological feature of the region. This ratio may hence be applicable as a maker for pathological research on undiagnosed brain diseases.
Collapse
Affiliation(s)
- Yoshihisa Kudo
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan.
| | - Eitaro Wada
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-31-1 Sugesengoku, Tama-ku, Kawasaki, Kanagawa, 214-0006, Japan.
| |
Collapse
|
23
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Zuniga A, Cunningham CL. Rewarding and aversive doses of caffeine alter activity but not conditioned place preference induced by ethanol in DBA/2J mice. Pharmacol Biochem Behav 2019; 187:172799. [PMID: 31678181 DOI: 10.1016/j.pbb.2019.172799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
Abstract
Increases in the consumption of ethanol and caffeine have been attributed to increased subjective feelings of intoxication and pleasure from the combination. Previous studies have shown that caffeine can be rewarding at low doses and aversive at high doses, although these findings are at times inconsistent between studies using comparable doses. Similarly, studies investigating the rewarding effects of ethanol and caffeine combinations have yielded mixed results. To address this issue, the present experiments were designed to investigate the rewarding effects of caffeine, as well as of caffeine + ethanol combinations. Male DBA/2J mice were exposed to an unbiased conditioned place preference (CPP) procedure with various doses of caffeine (1, 3, 10, 30 mg/kg) and ethanol (1, 2 g/kg), as well as various conditioning trial durations (5, 30, 60 min). Caffeine dose-dependently increased locomotor activity during conditioning, and produced a biphasic effect on place conditioning. Specifically, a low dose of caffeine (3 mg/kg) produced place preference, while a high dose (30 mg/kg) produced place aversion. When combined with alcohol, caffeine dose-dependently increased ethanol's stimulatory effect. However, the addition of caffeine had no effect on ethanol place preference, as there were no differences in the strength of place preference between mice conditioned with ethanol alone, and mice conditioned with any combination of ethanol and caffeine. These studies add evidence for caffeine's biphasic effects while also emphasizing the importance of considering temporal and methodological parameters when using Pavlovian conditioning procedures to study drug combinations.
Collapse
Affiliation(s)
- Alfredo Zuniga
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | - Christopher L Cunningham
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
25
|
Ingallinesi M, Galet B, Pegon J, Faucon Biguet N, Do Thi A, Millan MJ, Mannoury la Cour C, Meloni R. Knock-Down of GPR88 in the Dorsal Striatum Alters the Response of Medium Spiny Neurons to the Loss of Dopamine Input and L-3-4-Dyhydroxyphenylalanine. Front Pharmacol 2019; 10:1233. [PMID: 31708775 PMCID: PMC6823866 DOI: 10.3389/fphar.2019.01233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/27/2019] [Indexed: 11/14/2022] Open
Abstract
The effects of L-3-4-dyhydroxyphenylalanine (L-DOPA) treatment for replacing the dopamine (DA) loss in Parkinson’s disease (PD) progressively wear off and are hindered by the development of dyskinesia, prompting the search for new treatments. The orphan G protein-coupled receptor 88 (Gpr88) represents a potential new target, as it is highly and almost exclusively expressed in the projecting gamma-Aminobutyric Acid-ergic (GABAergic) medium spiny neurons of the striatum, is implicated in motor activity, and is downregulated by 6-hydroxydopamine (6-OHDA) lesions, an effect that is reversed by L-DOPA. Thus, to evaluate Gpr88 as a potential target for the management of PD and L-DOPA–induced dyskinesia (LID), we inactivated Gpr88 by lentiviral-mediated knock-down with a specifically designed microRNA (miR) (KD-Gpr88) in a 6-OHDA rat model of hemiparkinsonism. Then, we investigated the effects of the KD-Gpr88 in the DA-deprived dorsal striatum on circling behavior and LID as well as on specific markers of striatal neuron activity. The KD-Gpr88 reduced the acute amphetamine-induced and increased L-DOPA–induced turning behavior. Moreover, it normalized the upregulated expression of striatal Gad67 and proenkephalin provoked by the 6-OHDA lesion. Finally, despite promoting ΔFosB accumulation, the KD-Gpr88 was associated neither with the upregulation of prodynorphin, which is causally linked to the severity of LID, nor with the aggravation of LID following chronic L-DOPA treatment in 6-OHDA–lesioned rats. These results thus justify further evaluation of Gpr88 as a potentially novel target for the management of PD as an alternative to L-DOPA therapy.
Collapse
Affiliation(s)
- Manuela Ingallinesi
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Benjamin Galet
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Jonathan Pegon
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Nicole Faucon Biguet
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Anh Do Thi
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Mark J Millan
- Center for Innovation in Neuropsychiatry, Institut de Recherches Servier, Croissy sur Seine, France
| | | | - Rolando Meloni
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| |
Collapse
|
26
|
Cross-tolerance between nitric oxide synthase inhibition and atypical antipsychotics modify nicotinamide-adenine-dinucleotide phosphate-diaphorase activity in mouse lateral striatum. Behav Pharmacol 2019; 30:67-78. [PMID: 29664745 DOI: 10.1097/fbp.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous research indicates that the subchronic administration of NG-nitro-L-arginine (L-NOARG) produces tolerance to haloperidol-induced catalepsy in Swiss mice. The present study aimed to further investigate whether intermittent subchronic systemic administration of L-NOARG induces tolerance to the cataleptic effects of haloperidol as well as olanzapine or clozapine (Clz) in C57Bl mice after subchronic administration for 5 consecutive days. Striatal FosB protein expression was measured in an attempt to gain further insights into striatal mechanisms in antipsychotic-induced extrapyramidal symptoms side effects. An nicotinamide-adenine-dinucleotide phosphate-diaphorase histochemical reaction was also used to investigate whether tolerance could induce changes in the number of nitric oxide synthase-active neurons. Subchronic administration of all antipsychotics produced catalepsy, but cross-tolerance was observed only between L-NOARG (15 mg/kg, intraperitoneally) and Clz (20 mg/kg, intraperitoneally). This cross-tolerance effect was accompanied by decreased FosB protein expression in the dorsal striatum and the nucleus accumbens shell region, and reduced icotinamide-adenine-dinucleotide phosphate-diaphorase activity in the dorsal and ventral lateral striatum. Overall, these results suggest that interference with the formation of nitric oxide, mainly in the dorsal and ventral lateral-striatal regions, appears to improve the cataleptic effects induced by antipsychotics acting as antagonists of low-affinity dopamine D2 receptor, such as Clz.
Collapse
|
27
|
Fayez AM, Elnoby AS, Bahnasawy NH, Hassan O. Neuroprotective effects of zafirlukast, piracetam and their combination on L-Methionine-induced vascular dementia in rats. Fundam Clin Pharmacol 2019; 33:634-648. [PMID: 31001898 DOI: 10.1111/fcp.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Vascular dementia is considered a vascular cognitive impairment disease caused by neuronal degeneration in the brain. Several studies have supported the hypothesis that oxidative stress and endothelial dysfunction are the main pathogenic factors in vascular dementia. This current study aims to determine the possible neuroprotective effects of zafirlukast, piracetam and the combination of piracetam and zafirlukast on L-methionine-induced vascular dementia in rats. Male Wistar albino rats were divided into five groups. Group I was the normal control, and group II received L-methionine (1700 mg/kg, P.O.) for 32 days. The remaining groups received zafirlukast (20 mg/kg, P.O.), piracetam (600 mg/kg, P.O.) or their combination (zafirlukast 20 mg/kg + piracetam 600 mg/kg, P.O.) for 32 days after L-methionine administration. Afterwards, the cognitive and memory performances of the rats were investigated using the novel object recognition (NOR) test; rats were then sacrificed for histopathological and biochemical analyses. L-methionine-induced vascular dementia altered rats' behaviours and the brain contents of different neurotransmitters and acetylcholinesterase activity while increasing levels of oxidative stress and causing notable histopathological alterations in brain tissues. The treatment of vascular dementia with zafirlukast and the combination improved neurochemical, behavioural and histological alterations to a comparable level to those of piracetam. Thus, zafirlukast, piracetam and the combination of both drugs can be considered as potential therapeutic strategies for the treatment of vascular dementia induced by L-methionine. To the best of our knowledge, this study is the first to explore the neuroprotective effects of zafirlukast and piracetam on L-methionine-induced vascular dementia.
Collapse
Affiliation(s)
- Ahmed M Fayez
- Pharmacology Department, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Ahmed S Elnoby
- Clinical Pharmacy Department, Children's Cancer Hospital Egypt, 57357, Cairo, Egypt.,Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Nada H Bahnasawy
- Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| | - Omar Hassan
- Pharmacology Department, October University for Modern Science and Arts, 11787, 6 October City, Egypt.,Faculty of Pharmacy, October University for Modern Science and Arts, 11787, 6 October City, Egypt
| |
Collapse
|
28
|
Zaccarelli-Magalhães J, Sandini TM, de Abreu GR, Petrocelli BM, Moreira N, Reis-Silva TM, Lebrun I, Flório JC, Ricci EL, Fukushima AR, Faria Waziry PA, de Souza Spinosa H. Prolonged exposure of rats to varenicline increases anxiety and alters serotonergic system, but has no effect on memory. Pharmacol Biochem Behav 2019; 181:1-8. [PMID: 30946884 DOI: 10.1016/j.pbb.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Varenicline is a drug used for smoking addiction cessation treatment and acts as a partial agonist of nicotinic cholinergic receptors. Recent clinical trial data support use of varenicline for treatment of conditions/addictions that are not related to smoking cessation. Considering the importance of this issue and the need for new studies on its effects, especially on behavior, more studies using animal models are necessary. Thus, the aim of this study was to evaluate the effects of prolonged exposure to varenicline in anxiety-like behavior and memory, as well as in cerebral neurochemistry of rats. Male rats received three different doses of varenicline: 0.03 (therapeutic dose for humans), 0.1 and 0.3 mg/kg orally (gavage) for 30 days. Animal behavior was analyzed through open field, elevated plus maze, light/dark box, social interaction, Barnes maze and novel object recognition tests. Neurotransmitter levels and their metabolites in different brain structures (hippocampus, striatum and frontal cortex) were measured. Results showed that prolonged exposure of rats to varenicline: 1) did not interfere in motor activity, but caused an anxiogenic effect on elevated plus maze, light/dark box and social interaction testes; 2) did not alter memory; and 3) promoted alterations on serotoninergic system in the striatum and frontal cortex. In conclusion, compilation of the data indicates that prolonged exposure of rats to varenicline promoted anxiogenic effects and alteration in serotonergic system, which corroborated behavioral findings.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Thaisa Meira Sandini
- Graduate Program of Toxicology and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 580, 05508-000 São Paulo, Brazil.
| | - Gabriel Ramos de Abreu
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; Health Science Institute, Presbiterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Bianca Maria Petrocelli
- Health Science Institute, Presbiterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Natalia Moreira
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Thiago Moirinho Reis-Silva
- Department of Neuroscience, Institute of Psychology, University of São Paulo, Av. Prof. Dr. Melo de Morais, 1721, 05508-030 São Paulo, Brazil.
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, 05503-900 São Paulo, Brazil.
| | - Jorge Camilo Flório
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Esther Lopes Ricci
- Health Science Institute, Presbiterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - André Rinaldi Fukushima
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; São Bento's College, Largo de São Bento s/no, 01029-010 São Paulo, Brazil.
| | - Paula A Faria Waziry
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Drive, Fort Lauderdale, Florida 33328, United States of America.
| | - Helenice de Souza Spinosa
- Graduate Program of Experimental and Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| |
Collapse
|
29
|
Qvist P, Eskildsen SF, Hansen B, Baragji M, Ringgaard S, Roovers J, Paternoster V, Molgaard S, Corydon TJ, Stødkilde-Jørgensen H, Glerup S, Mors O, Wegener G, Nyengaard JR, Børglum AD, Christensen JH. Brain volumetric alterations accompanied with loss of striatal medium-sized spiny neurons and cortical parvalbumin expressing interneurons in Brd1 +/- mice. Sci Rep 2018; 8:16486. [PMID: 30405140 PMCID: PMC6220279 DOI: 10.1038/s41598-018-34729-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a common and severe mental disorder arising from complex gene-environment interactions affecting brain development and functioning. While a consensus on the neuroanatomical correlates of schizophrenia is emerging, much of its fundamental pathobiology remains unknown. In this study, we explore brain morphometry in mice with genetic susceptibility and phenotypic relevance to schizophrenia (Brd1+/− mice) using postmortem 3D MR imaging coupled with histology, immunostaining and regional mRNA marker analysis. In agreement with recent large-scale schizophrenia neuroimaging studies, Brd1+/− mice displayed subcortical abnormalities, including volumetric reductions of amygdala and striatum. Interestingly, we demonstrate that structural alteration in striatum correlates with a general loss of striatal neurons, differentially impacting subpopulations of medium-sized spiny neurons and thus potentially striatal output. Akin to parvalbumin interneuron dysfunction in patients, a decline in parvalbumin expression was noted in the developing cortex of Brd1+/− mice, mainly driven by neuronal loss within or near cortical layer V, which is rich in corticostriatal projection neurons. Collectively, our study highlights the translational value of the Brd1+/− mouse as a pre-clinical tool for schizophrenia research and provides novel insight into its developmental, structural, and cellular pathology.
Collapse
Affiliation(s)
- Per Qvist
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Steffen Ringgaard
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jolien Roovers
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Veerle Paternoster
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Simon Molgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas Juhl Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Jane H Christensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Maroteaux G, Arefin TM, Harsan LA, Darcq E, Ben Hamida S, Kieffer BL. Lack of anticipatory behavior in Gpr88 knockout mice showed by automatized home cage phenotyping. GENES BRAIN AND BEHAVIOR 2018; 17:e12473. [PMID: 29575471 DOI: 10.1111/gbb.12473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Mouse models are widely used to understand genetic bases of behavior. Traditional testing typically requires multiple experimental settings, captures only snapshots of behavior and involves human intervention. The recent development of automated home cage monitoring offers an alternative method to study mouse behavior in their familiar and social environment, and over weeks. Here, we used the IntelliCage system to test this approach for mouse phenotyping, and studied mice lacking Gpr88 that have been extensively studied using standard testing. We monitored mouse behavior over 22 days in 4 different phases. In the free adaptation phase, Gpr88 -/- mice showed delayed habituation to the home cage, and increased frequency of same corner returns behavior in their alternation pattern. In the following nose-poke adaptation phase, non-habituation continued, however, mutant mice acquired nose-poke conditioning similar to controls. In the place learning and reversal phase, Gpr88-/- mice developed preference for the water/sucrose corner with some delay, but did not differ from controls for reversal. Finally, in a fixed schedule-drinking phase, control animals showed higher activity during the hour preceding water accessibility, and reduced activity after access to water was terminated. Mutant mice did not show this behavior, showing lack of anticipatory behavior. Our data therefore confirm hyperactivity, non-habituation and altered exploratory behaviors that were reported previously. Learning deficits described in other settings were barely detectable, and a novel phenotype was discovered. Home cage monitoring therefore extends previous findings and shows yet another facet of GPR88 function that deserves further investigation.
Collapse
Affiliation(s)
- G Maroteaux
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - T M Arefin
- IGBMC-Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Strasbourg, France.,Departments of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| | - L-A Harsan
- Departments of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, University of Strasbourg - CNRS, Strasbourg, France.,Department of Biophysics and Nuclear Medicine, Faculty of Medicine, University Hospital Strasbourg, Strasbourg, France
| | - E Darcq
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - S Ben Hamida
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada.,IGBMC-Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Strasbourg, France
| | - B L Kieffer
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada.,IGBMC-Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Neuronal activity pattern defects in the striatum in awake mouse model of Parkinson’s disease. Behav Brain Res 2018; 341:135-145. [DOI: 10.1016/j.bbr.2017.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022]
|
32
|
Identification of metabolite biomarkers for L-DOPA-induced dyskinesia in a rat model of Parkinson's disease by metabolomic technology. Behav Brain Res 2018; 347:175-183. [PMID: 29551735 DOI: 10.1016/j.bbr.2018.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
L-DOPA-induced dyskinesia (LID) is a frequent complication of chronic L-DOPA therapy in the clinical treatment of Parkinson's disease (PD). The pathogenesis of LID involves complex molecular mechanisms in the striatum. Metabolomics can shed light on striatal metabolic alterations in LID. In the present study, we compared metabolomics profiles of striatum tissue from Parkinsonian rats with or without dyskinetic symptoms after chronic L-DOPA administration. A liquid chromatography-mass spectrometry based global metabolomics method combined with multivariate statistical analyses were used to detect candidate metabolites associated with LID. 36 dysregulated metabolites in the striatum of LID rats, including anandamide, 2-arachidonoylglycerol, adenosine, glutamate and sphingosine1-phosphate were identified. Furthermore, IMPaLA metabolite set analysis software was used to identify differentially regulated metabolic pathways. The results showed that the metabolic pathways of "Retrograde endocannabinoid signaling", "Phospholipase D signaling pathway", "Glycerophospholipid metabolism" and "Sphingolipid signaling", etc. were dysregulated in LID rats compared to non-LID controls. Moreover, integrated pathway analysis based on results from the present metabolomics and our previous gene expression data in LID rats further demonstrates that aberrant "Retrograde endocannabinoid signaling" pathway might be involved in the development of LID. The present results provide a new profile for the understanding of the pathological mechanism of LID.
Collapse
|
33
|
Dopamine D 2 receptors and the circadian clock reciprocally mediate antipsychotic drug-induced metabolic disturbances. NPJ SCHIZOPHRENIA 2017; 3:17. [PMID: 28560263 PMCID: PMC5441531 DOI: 10.1038/s41537-017-0018-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 01/11/2023]
Abstract
Antipsychotic drugs are widely prescribed medications, used for numerous psychiatric illnesses. However, antipsychotic drugs cause serious metabolic side effects that can lead to substantial weight gain and increased risk for type 2 diabetes. While individual drugs differ, all antipsychotic drugs may cause these important side effects to varying degrees. Given that the single unifying property shared by these medications is blockade of dopamine D2 and D3 receptors, these receptors likely play a role in antipsychotic drug-induced metabolic side effects. Dopamine D2 and dopamine D3 receptors are expressed in brain regions critical for metabolic regulation and appetite. Surprisingly, these receptors are also expressed peripherally in insulin-secreting pancreatic beta cells. By inhibiting glucose-stimulated insulin secretion, dopamine D2 and dopamine D3 receptors are important mediators of pancreatic insulin release. Crucially, antipsychotic drugs disrupt this peripheral metabolic regulatory mechanism. At the same time, disruptions to circadian timing have been increasingly recognized as a risk factor for metabolic disturbance. Reciprocal dopamine and circadian signaling is important for the timing of appetitive/feeding behaviors and insulin release, thereby coordinating cell metabolism with caloric intake. In particular, circadian regulation of dopamine D2 receptor/dopamine D3 receptor signaling may play a critical role in metabolism. Therefore, we propose that antipsychotic drugs’ blockade of dopamine D2 receptor and dopamine D3 receptors in pancreatic beta cells, hypothalamus, and striatum disrupts the cellular timing mechanisms that regulate metabolism. Ultimately, understanding the relationships between the dopamine system and circadian clocks may yield critical new biological insights into mechanisms of antipsychotic drug action, which can then be applied into clinical practice.
Collapse
|
34
|
Rodrigues S, Salum C, Ferreira TL. Dorsal striatum D1-expressing neurons are involved with sensorimotor gating on prepulse inhibition test. J Psychopharmacol 2017; 31:505-513. [PMID: 28114835 DOI: 10.1177/0269881116686879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prepulse inhibition (PPI) is a behavioral test in which the startle reflex response to a high-intensity stimulus (pulse) is inhibited by the prior presentation of a weak stimulus (prepulse). The classic neural circuitry that mediates startle response is localized in the brainstem; however, recent studies point to the contribution of structures involved in higher cognitive functions in regulating the sensorimotor gating, particularly forebrain regions innervated by dopaminergic nuclei. The aim of the present study was to verify the role of dorsal striatum (DS) and dopaminergic transmitting mediated by D1 and D2 receptors on PPI test in rats. DS inactivation induced by muscimol injection did not affect PPI (%PPI and startle response), although it impaired the locomotor activity and caused catalepsy. Infusion of D1-like antagonist SCH23390 impaired %PPI but did not disturb the startle response and locomotor activity evaluated immediately after PPI test. D2 antagonist microinjection (sulpiride) did not affect %PPI and startle response, but impaired motor activity. These results point to an important role of DS, probably mediated by direct basal ganglia pathway, on modulation of sensorimotor gating, in accordance with clinical studies showing PPI deficits in schizophrenia, Tourette syndrome, and compulsive disorders - pathologies related to basal ganglia dysfunctions.
Collapse
Affiliation(s)
- Samanta Rodrigues
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Cristiane Salum
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Tatiana L Ferreira
- Centro de Matemática Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
35
|
Das A, Rathour RK, Narayanan R. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites. Front Cell Neurosci 2017; 11:72. [PMID: 28348519 PMCID: PMC5346355 DOI: 10.3389/fncel.2017.00072] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.
Collapse
Affiliation(s)
- Anindita Das
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science Bangalore, India
| | - Rahul K Rathour
- Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science Bangalore, India
| |
Collapse
|
36
|
Wu JJ, Chen S, Ouyang LS, Jia Y, Liu BB, Mu SH, Ma YX, Wang WP, Wei JY, Li YL, Chen Z, Lei WL. Cortical regulation of striatal projection neurons and interneurons in a Parkinson's disease rat model. Neural Regen Res 2017; 11:1969-1975. [PMID: 28197194 PMCID: PMC5270436 DOI: 10.4103/1673-5374.197140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jia-Jia Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Periodical Center, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-Si Ouyang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yu Jia
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bing-Bing Liu
- Department of Anesthesiology, Guangdong No. 2 Provincial People's Hospital, Guangdong Provincial Emergency Hospital, Guangzhou, Guangdong Province, China
| | - Shu-Hua Mu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yu-Xin Ma
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei-Ping Wang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jia-You Wei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - You-Lan Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wan-Long Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
37
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P. Hemachandra Reddy
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
38
|
Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn LM, Scharager-Tapia C, Pascal B, Martinez-Acedo P, Khare K, Subramaniam S. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal 2016; 9:ra111. [PMID: 27902448 PMCID: PMC5142824 DOI: 10.1126/scisignal.aaf6670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The striatum of the brain coordinates motor function. Dopamine-related drugs may be therapeutic to patients with striatal neurodegeneration, such as Huntington's disease (HD) and Parkinson's disease (PD), but these drugs have unwanted side effects. In addition to stimulating the release of norepinephrine, amphetamines, which are used for narcolepsy and attention-deficit/hyperactivity disorder (ADHD), trigger dopamine release in the striatum. The guanosine triphosphatase Ras homolog enriched in the striatum (Rhes) inhibits dopaminergic signaling in the striatum, is implicated in HD and L-dopa-induced dyskinesia, and has a role in striatal motor control. We found that the guanine nucleotide exchange factor RasGRP1 inhibited Rhes-mediated control of striatal motor activity in mice. RasGRP1 stabilized Rhes, increasing its synaptic accumulation in the striatum. Whereas partially Rhes-deficient (Rhes+/-) mice had an enhanced locomotor response to amphetamine, this phenotype was attenuated by coincident depletion of RasGRP1. By proteomic analysis of striatal lysates from Rhes-heterozygous mice with wild-type or partial or complete knockout of Rasgrp1, we identified a diverse set of Rhes-interacting proteins, the "Rhesactome," and determined that RasGRP1 affected the composition of the amphetamine-induced Rhesactome, which included PDE2A (phosphodiesterase 2A; a protein associated with major depressive disorder), LRRC7 (leucine-rich repeat-containing 7; a protein associated with bipolar disorder and ADHD), and DLG2 (discs large homolog 2; a protein associated with chronic pain). Thus, this Rhes network provides insight into striatal effects of amphetamine and may aid the development of strategies to treat various neurological and psychological disorders associated with the striatal dysfunction.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Vincenzo Giovinazzo
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Bruce Pascal
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Kshitij Khare
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
39
|
Sonego AB, Gomes FV, Del Bel EA, Guimaraes FS. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice. Behav Brain Res 2016; 309:22-8. [DOI: 10.1016/j.bbr.2016.04.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 11/15/2022]
|
40
|
Unique Behavioral and Neurochemical Effects Induced by Repeated Adolescent Consumption of Caffeine-Mixed Alcohol in C57BL/6 Mice. PLoS One 2016; 11:e0158189. [PMID: 27380261 PMCID: PMC4933367 DOI: 10.1371/journal.pone.0158189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
The number of highly caffeinated products has increased dramatically in the past few years. Among these products, highly caffeinated energy drinks are the most heavily advertised and purchased, which has resulted in increased incidences of co-consumption of energy drinks with alcohol. Despite the growing number of adolescents and young adults reporting caffeine-mixed alcohol use, knowledge of the potential consequences associated with co-consumption has been limited to survey-based results and in-laboratory human behavioral testing. Here, we investigate the effect of repeated adolescent (post-natal days P35-61) exposure to caffeine-mixed alcohol in C57BL/6 mice on common drug-related behaviors such as locomotor sensitivity, drug reward and cross-sensitivity, and natural reward. To determine changes in neurological activity resulting from adolescent exposure, we monitored changes in expression of the transcription factor ΔFosB in the dopaminergic reward pathway as a sign of long-term increases in neuronal activity. Repeated adolescent exposure to caffeine-mixed alcohol exposure induced significant locomotor sensitization, desensitized cocaine conditioned place preference, decreased cocaine locomotor cross-sensitivity, and increased natural reward consumption. We also observed increased accumulation of ΔFosB in the nucleus accumbens following repeated adolescent caffeine-mixed alcohol exposure compared to alcohol or caffeine alone. Using our exposure model, we found that repeated exposure to caffeine-mixed alcohol during adolescence causes unique behavioral and neurochemical effects not observed in mice exposed to caffeine or alcohol alone. Based on similar findings for different substances of abuse, it is possible that repeated exposure to caffeine-mixed alcohol during adolescence could potentially alter or escalate future substance abuse as means to compensate for these behavioral and neurochemical alterations.
Collapse
|
41
|
Meirsman A, Le Merrer J, Pellissier L, Diaz J, Clesse D, Kieffer B, Becker J. Mice Lacking GPR88 Show Motor Deficit, Improved Spatial Learning, and Low Anxiety Reversed by Delta Opioid Antagonist. Biol Psychiatry 2016; 79:917-27. [PMID: 26188600 PMCID: PMC4670823 DOI: 10.1016/j.biopsych.2015.05.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND GPR88 is an orphan G protein coupled receptor highly enriched in the striatum, and previous studies have focused on GPR88 function in striatal physiology. The receptor is also expressed in other brain areas, and here we examined whether GPR88 function extends beyond striatal-mediated responses. METHODS We created Gpr88 knockout mice and examined both striatal and extrastriatal regions at molecular and cellular levels. We also tested striatum-, hippocampus-, and amygdala-dependent behaviors in Gpr88(-/-) mice using extensive behavioral testing. RESULTS We found increased G protein coupling for delta opioid receptor (DOR) and mu opioid, but not other Gi/o coupled receptors, in the striatum of Gpr88 knockout mice. We also found modifications in gene transcription, dopamine and serotonin contents, and dendritic morphology inside and outside the striatum. Behavioral testing confirmed striatal deficits (hyperactivity, stereotypies, motor impairment in rotarod). In addition, mutant mice performed better in spatial tasks dependent on hippocampus (Y-maze, novel object recognition, dual solution cross-maze) and also showed markedly reduced levels of anxiety (elevated plus maze, marble burying, novelty suppressed feeding). Strikingly, chronic blockade of DOR using naltrindole partially improved motor coordination and normalized spatial navigation and anxiety of Gpr88(-/-) mice. CONCLUSIONS We demonstrate that GPR88 is implicated in a large repertoire of behavioral responses that engage motor activity, spatial learning, and emotional processing. Our data also reveal functional antagonism between GPR88 and DOR activities in vivo. The therapeutic potential of GPR88 therefore extends to cognitive and anxiety disorders, possibly in interaction with other receptor systems.
Collapse
Affiliation(s)
- A.C. Meirsman
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France
| | - J. Le Merrer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université François Rabelais de Tours, Nouzilly, France
| | - L.P. Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université François Rabelais de Tours, Nouzilly, France
| | - J. Diaz
- Centre de Psychiatrie et Neurosciences, INSERM UMR-894 - Université Paris Descartes, Paris, France
| | - D. Clesse
- Département de Neurobiologie des rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR-3212, Université de Strasbourg, Strasbourg, France
| | - B.L. Kieffer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France
| | - J.A.J. Becker
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université François Rabelais de Tours, Nouzilly, France
| |
Collapse
|
42
|
Alkufri F, Shaag A, Abu-Libdeh B, Elpeleg O. Deleterious mutation in GPR88 is associated with chorea, speech delay, and learning disabilities. NEUROLOGY-GENETICS 2016; 2:e64. [PMID: 27123486 PMCID: PMC4830197 DOI: 10.1212/nxg.0000000000000064] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/15/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To identify the underlying molecular basis of a familial developmental disorder characterized by chorea, marked speech delay, and learning difficulties in 4 sisters from a consanguineous family. METHODS Whole-exome analysis of DNA of the 2 older patients followed by Sanger sequencing of the mutated exon in all family members. RESULTS A homozygous deleterious mutation, p.C291X, was identified in the GPR88 gene in both exome analyses. The mutation segregated with the disease in the family and was absent from a large cohort of controls. CONCLUSIONS Homozygous deleterious mutation in GPR88 in humans is associated with marked speech delay, learning disabilities, and chorea, which manifest at 8-9 years of age. The finding is consistent with the reported abundant expression of GPR88 in the striatum and the hyperkinetic activity and learning impairment observed in GPR88 knockout mice. Although further functional characterization is needed, the finding underscores the importance of GPR88 in movement control and learning.
Collapse
Affiliation(s)
- Fadi Alkufri
- Department of Neurosciences (F.A.) and Department of Pediatrics (B.A.-L.), Al-Makassed Islamic Hospital, Jerusalem, Israel; and Monique and Jacques Roboh Department of Genetic Research (A.S., O.E.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avraham Shaag
- Department of Neurosciences (F.A.) and Department of Pediatrics (B.A.-L.), Al-Makassed Islamic Hospital, Jerusalem, Israel; and Monique and Jacques Roboh Department of Genetic Research (A.S., O.E.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bassam Abu-Libdeh
- Department of Neurosciences (F.A.) and Department of Pediatrics (B.A.-L.), Al-Makassed Islamic Hospital, Jerusalem, Israel; and Monique and Jacques Roboh Department of Genetic Research (A.S., O.E.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Elpeleg
- Department of Neurosciences (F.A.) and Department of Pediatrics (B.A.-L.), Al-Makassed Islamic Hospital, Jerusalem, Israel; and Monique and Jacques Roboh Department of Genetic Research (A.S., O.E.), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
No Evidence for Sex Differences in the Electrophysiological Properties and Excitatory Synaptic Input onto Nucleus Accumbens Shell Medium Spiny Neurons. eNeuro 2016; 3:eN-NRS-0147-15. [PMID: 27022621 PMCID: PMC4757778 DOI: 10.1523/eneuro.0147-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 02/01/2023] Open
Abstract
Sex differences exist in how the brain regulates motivated behavior and reward, both in normal and pathological contexts. Investigations into the underlying neural mechanisms have targeted the striatal brain regions, including the dorsal striatum and nucleus accumbens core and shell. Sex differences exist in how the brain regulates motivated behavior and reward, both in normal and pathological contexts. Investigations into the underlying neural mechanisms have targeted the striatal brain regions, including the dorsal striatum and nucleus accumbens core and shell. These investigations yield accumulating evidence of sexually different electrophysiological properties, excitatory synaptic input, and sensitivity to neuromodulator/hormone action in select striatal regions both before and after puberty. It is unknown whether the electrical properties of neurons in the nucleus accumbens shell differ by sex, and whether sex differences in excitatory synaptic input are present before puberty. To test the hypothesis that these properties differ by sex, we performed whole-cell patch-clamp recordings on male and female medium spiny neurons (MSNs) in acute brain slices obtained from prepubertal rat nucleus accumbens shell. We analyzed passive and active electrophysiological properties, and miniature EPSCs (mEPSCs). No sex differences were detected; this includes those properties, such as intrinsic excitability, action potential afterhyperpolarization, threshold, and mEPSC frequency, that have been found to differ by sex in other striatal regions and/or developmental periods. These findings indicate that, unlike other striatal brain regions, the electrophysiological properties of nucleus accumbens shell MSNs do not differ by sex. Overall, it appears that sex differences in striatal function, including motivated behavior and reward, are likely mediated by other factors and striatal regions.
Collapse
|
44
|
Pellissier LP, Pujol CN, Becker JAJ, Le Merrer J. Delta Opioid Receptors: Learning and Motivation. Handb Exp Pharmacol 2016; 247:227-260. [PMID: 28035528 DOI: 10.1007/164_2016_89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Delta opioid receptor (DOR) displays a unique, highly conserved, structure and an original pattern of distribution in the central nervous system, pointing to a distinct and specific functional role among opioid peptide receptors. Over the last 15 years, in vivo pharmacology and genetic models have allowed significant advances in the understanding of this role. In this review, we will focus on the involvement of DOR in modulating different types of hippocampal- and striatal-dependent learning processes as well as motor function, motivation, and reward. Remarkably, DOR seems to play a key role in balancing hippocampal and striatal functions, with major implications for the control of cognitive performance and motor function under healthy and pathological conditions.
Collapse
Affiliation(s)
- L P Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - C N Pujol
- Département de Neurosciences, Institut de Génomique fonctionnelle, INSERM U-661, CNRS UMR-5203, 34094, Montpellier, France
| | - J A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - J Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France.
| |
Collapse
|
45
|
Ruda-Kucerova J, Amchova P, Havlickova T, Jerabek P, Babinska Z, Kacer P, Syslova K, Sulcova A, Sustkova-Fiserova M. Reward related neurotransmitter changes in a model of depression: An in vivo microdialysis study. World J Biol Psychiatry 2015; 16:521-35. [PMID: 26444572 DOI: 10.3109/15622975.2015.1077991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The self-medication hypothesis assumes that symptoms related to potential monoaminergic deficits in depression may be relieved by drug abuse. The aim of this study was to elucidate the neurotransmitter changes in a rat model of depression by measuring their levels in the nucleus accumbens shell, which is typically involved in the drug of abuse acquisition mechanism. METHODS Depression was modelled by the olfactory bulbectomy (OBX) in Wistar male rats. In vivo microdialysis was performed, starting from the baseline and following after a single methamphetamine injection and behaviour was monitored. The determination of neurotransmitters and their metabolites was performed by high-performance liquid chromatography combined with mass spectrometry. RESULTS OBX animals had lower basal levels of dopamine and serotonin and their metabolites. However, γ-aminobutyric acid (GABA) and glutamate levels were increased. The methamphetamine injection induced stronger dopamine and serotonin release in the OBX rats and lower release of glutamate in comparison with sham-operated rats; GABA levels did not differ significantly. CONCLUSIONS This study provides an evidence of mesolimbic neurotransmitter changes in the rat model of depression which may elucidate mechanisms underlying intravenous self-administration studies in which OBX rats were demonstrated to have higher drug intake in comparison to intact controls.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Petra Amchova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Tereza Havlickova
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| | - Pavel Jerabek
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| | - Zuzana Babinska
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Petr Kacer
- d Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT , Prague , Czech Republic
| | - Kamila Syslova
- d Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT , Prague , Czech Republic
| | - Alexandra Sulcova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Magdalena Sustkova-Fiserova
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| |
Collapse
|
46
|
Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci 2015; 68:234-43. [PMID: 26255006 DOI: 10.1016/j.mcn.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 01/21/2023] Open
Abstract
Calcium signaling regulates synaptic plasticity and many other functions in striatal medium spiny neurons to modulate basal ganglia function. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a major calcium-dependent signaling protein that couples calcium entry to diverse cellular changes. CaMKII activation results in autophosphorylation at Thr286 and sustained calcium-independent CaMKII activity after calcium signals dissipate. However, little is known about the mechanisms regulating striatal CaMKII. To address this, mouse brain slices were treated with pharmacological modulators of calcium channels and punches of dorsal striatum were immunoblotted for CaMKII Thr286 autophosphorylation as an index of CaMKII activation. KCl depolarization increased levels of CaMKII autophosphorylation ~2-fold; this increase was blocked by an LTCC antagonist and was mimicked by treatment with pharmacological LTCC activators. The chelation of extracellular calcium robustly decreased basal CaMKII autophosphorylation within 5min and increased levels of total CaMKII in cytosolic fractions, in addition to decreasing the phosphorylation of CaMKII sites in the GluN2B subunit of NMDA receptors and the GluA1 subunit of AMPA receptors. We also found that the maintenance of basal levels of CaMKII autophosphorylation requires low-voltage gated T-type calcium channels, but not LTCCs or R-type calcium channels. Our findings indicate that CaMKII activity is dynamically regulated by multiple calcium channels in the striatum thus coupling calcium entry to key downstream substrates.
Collapse
|
47
|
Jiao D, Liu Y, Li X, Liu J, Zhao M. The role of the GABA system in amphetamine-type stimulant use disorders. Front Cell Neurosci 2015; 9:162. [PMID: 25999814 PMCID: PMC4419710 DOI: 10.3389/fncel.2015.00162] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 11/22/2022] Open
Abstract
Abuse of amphetamine-type stimulants (ATS) has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid)-ergic system plays an important role in ATS abuse. However, the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders.
Collapse
Affiliation(s)
- Dongliang Jiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yao Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xiaohong Li
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities New York, NY, USA
| | - Jinggen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
48
|
Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J. Selective dysfunction of basal ganglia subterritories: From movement to behavioral disorders. Mov Disord 2015; 30:1155-70. [DOI: 10.1002/mds.26199] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Léon Tremblay
- Centre de Neurosciences Cognitives-UMR 5229; CNRS-Université de Lyon 1; Bron France
| | - Yulia Worbe
- UPMC Université Paris 6, UMR-S975, CRICM-Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Paris France
| | - Stéphane Thobois
- Centre de Neurosciences Cognitives-UMR 5229; CNRS-Université de Lyon 1; Bron France
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer, Neurologie C; Lyon France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux; Lyon France
| | | | - Jean Féger
- UPMC Université Paris 6, UMR-S975, CRICM-Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Paris France
| |
Collapse
|
49
|
Reddington AE, Rosser AE, Dunnett SB. Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Front Cell Neurosci 2014; 8:398. [PMID: 25520619 PMCID: PMC4251433 DOI: 10.3389/fncel.2014.00398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disorder leading to the loss inter alia of DARPP-32 positive medium spiny projection neurons ("MSNs") in the striatum. There is no known cure for HD but the relative specificity of cell loss early in the disease has made cell replacement by neural transplantation an attractive therapeutic possibility. Transplantation of human fetal striatal precursor cells has shown "proof-of-principle" in clinical trials; however, the practical and ethical difficulties associated with sourcing fetal tissues have stimulated the need to identify alternative source(s) of donor cells that are more readily available and more suitable for standardization. We now have available the first generation of protocols to generate DARPP-32 positive MSN-like neurons from pluripotent stem cells and these have been successfully grafted into animal models of HD. However, whether these grafts can provide stable functional recovery to the level that can regularly be achieved with primary fetal striatal grafts remains to be demonstrated. Of particular concern, primary fetal striatal grafts are not homogenous; they contain not only the MSN subpopulation of striatal projection neurons but also include all the different cell types that make up the mature striatum, such as the multiple populations of striatal interneurons and striatal glia, and which certainly contribute to normal striatal function. By contrast, present protocols for pluripotent stem cell differentiation are almost entirely targeted at specifying just neurons of an MSN lineage. So far, evidence for the functionality and integration of stem-cell derived grafts is correspondingly limited. Indeed, consideration of the features of full striatal reconstruction that is achieved with primary fetal striatal grafts suggests that optimal success of the next generations of stem cell-derived replacement therapy in HD will require that graft protocols be developed to allow inclusion of multiple striatal cell types, such as interneurons and/or glia. Almost certainly, therefore, more sophisticated differentiation protocols will be necessary, over and above replacement of a specific population of MSNs. A rational solution to this technical challenge requires that we re-address the underlying question-what constitutes a functional striatal graft?
Collapse
Affiliation(s)
- Amy E Reddington
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| | - Anne E Rosser
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK ; Department of Psychological Medicine and Neurology, Cardiff University Cardiff, UK
| | - Stephen B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| |
Collapse
|
50
|
Maccarinelli F, Pagani A, Cozzi A, Codazzi F, Di Giacomo G, Capoccia S, Rapino S, Finazzi D, Politi LS, Cirulli F, Giorgio M, Cremona O, Grohovaz F, Levi S. A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits. Neurobiol Dis 2014; 81:119-33. [PMID: 25447222 PMCID: PMC4642750 DOI: 10.1016/j.nbd.2014.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/05/2023] Open
Abstract
Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. We developed two new neuroferritinopathy mice models (NF). NF brains are characterized by iron/ferritin accumulation and oxidative damage. NF brains show granules of lipofuscine associated with iron. A mechanism of lipofuscine formation is proposed. NF mice show impaired motor coordination increasing with age.
Collapse
Affiliation(s)
| | - Antonella Pagani
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Anna Cozzi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Franca Codazzi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Sara Capoccia
- Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Rapino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Francesca Cirulli
- Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ottavio Cremona
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Fabio Grohovaz
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy.
| | - Sonia Levi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|