1
|
da Silva Nunes BB, Dos Santos Mendonça J, de Matos LP, Guimarães ATB, Soares WR, de Lima Rodrigues AS, Govindarajan M, Gomes AR, da Luz TM, Malafaia G. Beyond the virus: ecotoxicological and reproductive impacts of SARS-CoV-2 lysate protein in C57Bl/6j female mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1805-1829. [PMID: 39745629 DOI: 10.1007/s11356-024-35840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025]
Abstract
Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations. Although we did not have evidence of hematological, mutagenic, or genotoxic effects, we noted that the ingestion of SARS-CoV-2 lysate protein-induced behavioral disorders (hypoactivity, anxiety-like behavior, and short-term memory deficit), which were associated with oxidative stress and dopaminergic and cholinesterase imbalance in the animal brain. Furthermore, the elevation of bilirubin levels and lactate dehydrogenase levels in these animals suggests the occurrence of hepatic changes, and the redox imbalance, nitrosative stress, and elevated production of IFN-γ and inflammatory infiltration in the duodenum, disrupted follicular structure, and presence of vacuoles in granulosa cells, in ovarian, indicate that the SARS-CoV-2-exposed group showed significant toxicity. Principal component analysis (PCA) and cluster analysis confirmed that the groups were clearly separated and showed that the largest changes upon SARS-CoV-2 exposure were related to ROS, MDA, nitrite, IFN-γ/IL-10 levels and SOD and catalase activity in the ovary; IFN-γ/IL-10 production and SOD activity in the duodenum; BChE activity in the brain; bilirubin levels and lactate dehydrogenase activity in the serum; number of primary follicles in the ovary. In conclusion, our study provides new insights into the toxicity of SARS-CoV-2 lysate proteins in a non-target terrestrial organism of infection and, therefore, expands our understanding of the real extent of the ecological/environmental impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Bárbara Beatriz da Silva Nunes
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, 38408144, Brazil
| | - Juliana Dos Santos Mendonça
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, 75790-000, Brazil
| | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, 75790-000, Brazil
| | - Abraão Tiago Batista Guimarães
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, 75790-000, Brazil
| | - Wesley Rodrigues Soares
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, 75790-000, Brazil
| | - Aline Sueli de Lima Rodrigues
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, 75790-000, Brazil
| | | | - Alex Rodrigues Gomes
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, 38408144, Brazil
| | - Thiarlen Marinho da Luz
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, 38408144, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, 38408144, Brazil.
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, 75790-000, Brazil.
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, 75790-000, Brazil.
| |
Collapse
|
2
|
Golden RK, Dilger RN. Determining underlying influences of data variability in the novel object recognition paradigm as used with young pigs. Front Behav Neurosci 2024; 18:1434489. [PMID: 39257566 PMCID: PMC11384571 DOI: 10.3389/fnbeh.2024.1434489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The novel object recognition (NOR) paradigm is a cognitive test that has been used with many species to detect differences in ability. Various iterations of the paradigm have been implemented, making it difficult to compare results both within and across species. Interpretations of the results are equally diverse, threatening the integrity of the paradigm. These inconsistencies have prompted a deeper dive into the variability of the resultant data. For the purposes of this meta-analysis, data originated from 12 studies involving 367 pigs that were subjected to the same NOR paradigm beginning between postnatal days 21 and 24. The main cognitive measure from the NOR paradigm is recognition index (RI), which was the focus of most of the analyses in this meta-analysis. RI was chosen as the main outcome as it determines a pig's preference for novelty, an innate behavior of cognitively intact pigs. A histogram of RI values (range 0 to 1) showed a bimodal distribution skewed to the right, suggesting that the interpretation of positive performance on the task may need to be stricter. Correlational analyses proved that the number of investigations and investigation time with both the novel and familiar objects were the strongest predictors of resultant RI values. Objective data inclusion criteria were then considered to eliminate non-compliant pigs. Results indicated that requiring at least 5 s of investigation over a minimum of 3 investigations with the novel object reduced overall variability for RI with a concomitant increase in the mean. Further analyses showed that pigs preferred to spend more time with and interact more with the novel object across the entire testing trial, especially in the first minute. Together, these findings suggest that future interpretations of NOR should consider applying stricter statistical analyses as well as additional data processing, such as binning, with emphasis on novel object and familiar object investigation. Overall, modifications to the existing iterations of the NOR paradigm are necessary to improve paradigm reliability.
Collapse
Affiliation(s)
- Rebecca K Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
3
|
Dantas DL, Alves MDC, Dantas GMS, Campos ARN, Santana RACD, Soares JKB, Freitas JCR. Supplementation with Moringa oleifera Lam leaf and seed flour during the pregnancy and lactation period of Wistar rats: Maternal evaluation of initial and adult neurobehavioral development of the rat progeny. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117904. [PMID: 38342151 DOI: 10.1016/j.jep.2024.117904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (M. oleifera) is a tree species of Indian origin popularly known as the "tree of life". In various cultures, it is used by pregnant women to increase milk production, yet studies on its effects during pregnancy and lactation are lacking. AIM OF THE STUDY To evaluate the nutraceutical aspects of flours produced from the leaves and seeds of M. oleifera, and to evaluate the effect of supplementation of pregnant Wistar rats during the gestation and lactation period, with the aim of studying the weight gain and neonatal parameters of the pregnant rats, as well as effects on the neurobehavioral development and memory in their offspring. MATERIALS AND METHODS The flour supplementation was conducted at a concentration of 100 mg per kg of animal body weight. For the memory tests, the Open Field Habituation test was performed and repeated after seven days. The Object Recognition test was conducted with the animal exposed to the open field in short and long familiarization sessions. The data obtained were analyzed using Kruskal-Wallis tests for non-parametric data and one-way and two-way ANOVA for parametric data. RESULTS Flour produced from both the leaf and seed of M. oleifera was found to contain significant amounts of nutrients (protein, fibre, carbohydrates, etc.), making them suitable for supplementation. The exposure of pregnant rats to M. oleifera leaf and seed flours did not affect weight gain, did not have harmful effects on the birth of offspring, and did not result in abortions or mutations in the offspring. Regarding the supplemented group's offspring, early maturation of the senses in the offspring compared to the control group was observed in all tests were conducted; indicating that supplementation positively impacted cognitive development. Further, the offspring of the supplemented rats presented reduced locomotion and greater exploration of new objects compared to the control group offspring, indicating positive effects on learning. CONCLUSION This study describes for the first time the beneficial effects on pregnant Wistar rats and their offspring of maternal supplementation with flour products from the leaves and seeds of M. oleifera.
Collapse
Affiliation(s)
- Danilo Lima Dantas
- Chemistry Department, Federal Rural University of Pernambuco, Zip Code: 52171-900, Recife, Pernambuco State, Brazil.
| | - Maciel da Costa Alves
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Zip Code: 59078-970, Natal, Rio Grande do Norte State, Brazil.
| | - Gabriel Magno Santos Dantas
- Chemistry Department, Organic Synthesis Laboratory, Federal University of Campina Grande, Zip Code: 58175-000, Cuité, Paraíba State, Brazil.
| | - Ana Regina Nascimento Campos
- Department of Chemical Engineering, Federal University of Campina Grande, Zip Code: 58109-970, Campina Grande, Paraíba state, Brazil.
| | - Renato Alexandre Costa de Santana
- Department of Mechanical Engineering, Federal University of Campina Grande, Zip Code: 58109-970, Campina Grande, Paraíba state, Brazil.
| | - Juliana Késsia Barbosa Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Zip Code: 58175-000, Cuité, Paraíba State, Brazil.
| | - Juliano Carlo Rufino Freitas
- Chemistry Department, Organic Synthesis Laboratory, Federal University of Campina Grande, Zip Code: 58175-000, Cuité, Paraíba State, Brazil.
| |
Collapse
|
4
|
Thöny B, Ng J, Kurian MA, Mills P, Martinez A. Mouse models for inherited monoamine neurotransmitter disorders. J Inherit Metab Dis 2024; 47:533-550. [PMID: 38168036 DOI: 10.1002/jimd.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Joanne Ng
- Genetic Therapy Accelerator Centre, University College London, Queen Square Institute of Neurology, London, UK
| | - Manju A Kurian
- Zayed Centre for Research into Rare Disease in Children, GOS Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Philippa Mills
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurora Martinez
- Department of Biomedicine and Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Mao X, Han D, Guo W, Zhang W, Wang H, Zhang G, Zhang N, Jin L, Nie B, Li H, Song Y, Wu Y, Chang L. Lateralized brunt of sleep deprivation on white matter injury in a rat model of Alzheimer's disease. GeroScience 2024; 46:2295-2315. [PMID: 37940789 PMCID: PMC10828179 DOI: 10.1007/s11357-023-01000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
Sleep disturbance is a recognized risk factor for Alzheimer's disease (AD), but the underlying micro-pathological evidence remains limited. To bridge this gap, we established an amyloid-β oligomers (AβO)-induced rat model of AD and subjected it to intermittent sleep deprivation (SD). Diffusion tensor imaging (DTI) and transmission electron microscopy were employed to assess white matter (WM) integrity and ultrastructural changes in myelin sheaths. Our findings demonstrated that SD exacerbated AβO-induced cognitive decline. Furthermore, we found SD aggravated AβO-induced asymmetrical impairments in WM, presenting with reductions in tract integrity observed in commissural fibers and association fasciculi, particularly the right anterior commissure, right corpus callosum, and left cingulum. Ultrastructural changes in myelin sheaths within the hippocampus and corpus callosum further confirmed a lateralized effect. Moreover, SD worsened AβO-induced lateralized disruption of the brain structural network, with impairments in critical nodes of the left hemisphere strongly correlated with cognitive dysfunction. This work represents the first identification of a lateralized impact of SD on the mesoscopic network and cognitive deficits in an AD rat model. These findings could deepen our understanding of the complex interplay between sleep disturbance and AD pathology, providing valuable insights into the early progression of the disease, as well as the development of neuroimaging biomarkers for screening early AD patients with self-reported sleep disturbances. Enhanced understanding of these mechanisms may pave the way for targeted interventions to alleviate cognitive decline and improve the quality of life for individuals at risk of or affected by AD.
Collapse
Affiliation(s)
- Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ding Han
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wensheng Guo
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wanning Zhang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, 100069, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Wiersielis K, Yasrebi A, Degroat TJ, Knox N, Rojas C, Feltri S, Roepke TA. Intermittent fasting disrupts hippocampal-dependent memory and norepinephrine content in aged male and female mice. Physiol Behav 2024; 275:114431. [PMID: 38072036 PMCID: PMC11740021 DOI: 10.1016/j.physbeh.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024]
Abstract
Intermittent fasting (IMF) is associated with many health benefits in animals and humans. Yet, little is known if an IMF diet affects mood and cognitive processing. We have previously identified that IMF in diet-induced obese males increases norepinephrine and dopamine content in the hypothalamus and increases arcuate neuropeptide Y (NPY) gene expression more than in ad libitum control males. This suggests that IMF may improve cognition through activation of the hindbrain norepinephrine neuronal network and reverse the age-dependent decline in NPY expression. Less is known about the association between anxiety and IMF. Although, in humans, IMF during Ramadan may alleviate anxiety. Here, we address the impact of IMF on anxiety-like behavior using the open field test, hippocampal-dependent memory using the Y-maze and spatial object recognition, and hippocampal-independent memory using novel object recognition in middle-aged male and female (12 mo) and aged male and female (18 mo) mice. Using ELISA, we determined norepinephrine (NE) content in the dorsal hippocampus (DH) and prefrontal cortex (PFC). We also investigated gene expression in the arcuate nucleus (ARC), the lateral hypothalamus (LH), and the locus coeruleus (LC). In IMF-treated females at both ages, we observed an improvement in spatial navigation although an impairment in spatial object orientation. IMF-treated females (12 mo) had a reduction and IMF-treated males (12 mo) displayed an improvement in novel object recognition memory. IMF-treated females (18 mo) exhibited anxiolytic-like behavior and increased locomotion. In the DH, IMF-treated males (12 mo) had a greater amount of NE content and IMF-treated males (18 mo) had a reduction. In the ARC, IMF-treated males (12 mo) exhibited an increase in Agrp and Npy and a decrease in Adr1a. In the ARC, IMF-treated males (18 mo) exhibited an increase in Npy and a decrease in Adr1a; females had a trending decrease in Cart. In the LH at 12 months, IMF-treated males had a decrease in Npy5r, Adr1a, and Adr1b; both males and females had a reduction in Npy1r. In the LH, IMF-treated females (18 mo) had a decrease in Hcrt. In the LC at both ages, mice largely exhibited sex effects. Our findings indicate that IMF produces alterations in mood, cognition, DH NE content, and ARC, LH, and LC gene expression depending on sex and age.
Collapse
Affiliation(s)
- Kimberly Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Thomas J Degroat
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Nadja Knox
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Catherine Rojas
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Samantha Feltri
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States; Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, United States; Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| |
Collapse
|
7
|
Drulis‐Fajdasz D, Krzystyniak A, Puścian A, Pytyś A, Gostomska‐Pampuch K, Pudełko‐Malik N, Wiśniewski JŁ, Młynarz P, Miazek A, Wójtowicz T, Włodarczyk J, Duś‐Szachniewicz K, Gizak A, Wiśniewski JR, Rakus D. Glycogen phosphorylase inhibition improves cognitive function of aged mice. Aging Cell 2023; 22:e13928. [PMID: 37522798 PMCID: PMC10497847 DOI: 10.1111/acel.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/31/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Inhibition of glycogen breakdown blocks memory formation in young animals, but it stimulates the maintenance of the long-term potentiation, a cellular mechanism of memory formation, in hippocampal slices of old animals. Here, we report that a 2-week treatment with glycogen phosphorylase inhibitor BAY U6751 alleviated memory deficits and stimulated neuroplasticity in old mice. Using the 2-Novel Object Recognition and Novel Object Location tests, we discovered that the prolonged intraperitoneal administration of BAY U6751 improved memory formation in old mice. This was accompanied by changes in morphology of dendritic spines in hippocampal neurons, and by "rejuvenation" of hippocampal proteome. In contrast, in young animals, inhibition of glycogen degradation impaired memory formation; however, as in old mice, it did not alter significantly the morphology and density of cortical dendritic spines. Our findings provide evidence that prolonged inhibition of glycogen phosphorolysis improves memory formation of old animals. This could lead to the development of new strategies for treatment of age-related memory deficits.
Collapse
Affiliation(s)
| | - Adam Krzystyniak
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Alicja Puścian
- Nencki‐EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITYNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Agata Pytyś
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kinga Gostomska‐Pampuch
- Department of Biochemistry and ImmunochemistryWroclaw Medical UniversityWroclawPoland
- Biochemical Proteomics Group, Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Natalia Pudełko‐Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Jerzy Ł. Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Arkadiusz Miazek
- Laboratory of Tumor ImmunologyHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - Tomasz Wójtowicz
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Jakub Włodarczyk
- Laboratory of Cell BiophysicsNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kamila Duś‐Szachniewicz
- Department of Clinical and Experimental PathologyInstitute of General and Experimental Pathology, Wroclaw Medical UniversityWroclawPoland
| | - Agnieszka Gizak
- Department of Molecular Physiology and NeurobiologyUniversity of WroclawWroclawPoland
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Dariusz Rakus
- Department of Molecular Physiology and NeurobiologyUniversity of WroclawWroclawPoland
| |
Collapse
|
8
|
Wencel PL, Blecharz-Klin K, Piechal A, Pyrzanowska J, Mirowska-Guzel D, Strosznajder RP. Fingolimod Modulates the Gene Expression of Proteins Engaged in Inflammation and Amyloid-Beta Metabolism and Improves Exploratory and Anxiety-Like Behavior in Obese Mice. Neurotherapeutics 2023; 20:1388-1404. [PMID: 37432552 PMCID: PMC10480137 DOI: 10.1007/s13311-023-01403-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity is considered a risk factor for type 2 diabetes mellitus, which has become one of the most important health problems, and is also linked with memory and executive function decline. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that regulates cell death/survival and the inflammatory response via its specific receptors (S1PRs). Since the role of S1P and S1PRs in obesity is rather obscure, we examined the effect of fingolimod (an S1PR modulator) on the expression profile of genes encoding S1PRs, sphingosine kinase 1 (Sphk1), proteins engaged in amyloid-beta (Aβ) generation (ADAM10, BACE1, PSEN2), GSK3β, proapoptotic Bax, and proinflammatory cytokines in the cortex and hippocampus of obese/prediabetic mouse brains. In addition, we observed behavioral changes. Our results revealed significantly elevated mRNA levels of Bace1, Psen2, Gsk3b, Sphk1, Bax, and proinflammatory cytokines, which were accompanied by downregulation of S1pr1 and sirtuin 1 in obese mice. Moreover, locomotor activity, spatially guided exploratory behavior, and object recognition were impaired. Simultaneously, fingolimod reversed alterations in the expressions of the cytokines, Bace1, Psen2, and Gsk3b that occurred in the brain, elevated S1pr3 mRNA levels, restored normal cognition-related behavior patterns, and exerted anxiolytic effects. The improvement in episodic and recognition memory observed in this animal model of obesity may suggest a beneficial effect of fingolimod on central nervous system function.
Collapse
Affiliation(s)
- P L Wencel
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02106, Warsaw, Poland.
| | - K Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - A Piechal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - J Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - D Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - R P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02106, Warsaw, Poland
| |
Collapse
|
9
|
Raven F, Riemersma IW, Olthuis MF, Rybakovaite I, Meijer EL, Meerlo P, Van der Zee EA, Havekes R. Cofilin overactivation improves hippocampus-dependent short-term memory. Front Behav Neurosci 2023; 17:1243524. [PMID: 37638111 PMCID: PMC10448394 DOI: 10.3389/fnbeh.2023.1243524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Many living organisms of the animal kingdom have the fundamental ability to form and retrieve memories. Most information is initially stored as short-term memory, which is then converted to a more stable long-term memory through a process called memory consolidation. At the neuronal level, synaptic plasticity is crucial for memory storage. It includes the formation of new spines, as well as the modification of existing spines, thereby tuning and shaping synaptic efficacy. Cofilin critically contributes to memory processes as upon activation, it regulates the shape of dendritic spines by targeting actin filaments. We previously found that prolonged activation of cofilin in hippocampal neurons attenuated the formation of long-term object-location memories. Because the modification of spine shape and structure is also essential for short-term memory formation, we determined whether overactivation of hippocampal cofilin also influences the formation of short-term memories. To this end, mice were either injected with an adeno-associated virus expressing catalytically active cofilin, or an eGFP control, in the hippocampus. We show for the first time that cofilin overactivation improves short-term memory formation in the object-location memory task, without affecting anxiety-like behavior. Surprisingly, we found no effect of cofilin overactivation on AMPA receptor expression levels. Altogether, while cofilin overactivation might negatively impact the formation of long-lasting memories, it may benefit short-term plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Santariová M, Zadinová K, Vostrá-Vydrová H, Kolářová MF, Kurhan S, Chaloupková H. Effect of Environmental Concentration of Carbamazepine on the Behaviour and Gene Expression of Laboratory Rats. Animals (Basel) 2023; 13:2097. [PMID: 37443892 DOI: 10.3390/ani13132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Carbamazepine (CBZ), an effective drug for epilepsy and other neurological diseases, and its metabolites are one of the most frequently detected substances in the aquatic environment. Although these are doses of very low concentrations, chronic exposure to them can affect the physiological processes of living organisms. This experiment may clarify if carbamazepine, under an environmental and a therapeutic concentration, can affect the behaviour of higher vertebrates, especially mammals, and gene expressions of Ugt1a6 and Ugt1a7 in the brain compared to the control group without exposure to CBZ. Three groups of thirteen rats were randomly formed, and each group was treated either with carbamazepine 12 mg/kg (therapeutic), carbamazepine 0.1 mg/kg (environmental), or by 10% DMSO solution (control). The memory, anxiety, and social behaviour of the rats were assessed by the test Elevated Plus Maze, the novel object recognition test, and the social chamber paradigm. After testing, they were euthanised and brain tissue samples were collected and analysed for mRNA expression of Ugt1a6 and Ugt1a7 genes. The tests did not show significant differences in the behaviour of the rats between the groups. However, there were significant changes at the gene expression level of Ugt1a7.
Collapse
Affiliation(s)
- Milena Santariová
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Kateřina Zadinová
- Department of Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Hana Vostrá-Vydrová
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Martina Frühauf Kolářová
- Department of Veterinary Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Sebnem Kurhan
- Department of Food Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Helena Chaloupková
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
11
|
Bolsius YG, Heckman PRA, Paraciani C, Wilhelm S, Raven F, Meijer EL, Kas MJH, Ramirez S, Meerlo P, Havekes R. Recovering object-location memories after sleep deprivation-induced amnesia. Curr Biol 2023; 33:298-308.e5. [PMID: 36577400 DOI: 10.1016/j.cub.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/19/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
It is well established that sleep deprivation after learning impairs hippocampal memory processes and can cause amnesia. It is unknown, however, whether sleep deprivation leads to the loss of information or merely the suboptimal storage of information that is difficult to retrieve. Here, we show that hippocampal object-location memories formed under sleep deprivation conditions can be successfully retrieved multiple days following training, using optogenetic dentate gyrus (DG) memory engram activation or treatment with the clinically approved phosphodiesterase 4 (PDE4) inhibitor roflumilast. Moreover, the combination of optogenetic DG memory engram activation and roflumilast treatment, 2 days following training and sleep deprivation, made the memory more persistently accessible for retrieval even several days later (i.e., without further optogenetic or pharmacological manipulation). Altogether, our studies in mice demonstrate that sleep deprivation does not necessarily cause memory loss but instead leads to the suboptimal storage of information that cannot be retrieved without drug treatment or optogenetic stimulation. Furthermore, our findings suggest that object-location memories, consolidated under sleep deprivation conditions and thought to be lost, can be made accessible again several days after the learning and sleep deprivation episode, using the clinically approved PDE4 inhibitor roflumilast.
Collapse
Affiliation(s)
- Youri G Bolsius
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Camilla Paraciani
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sophia Wilhelm
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Frank Raven
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Elroy L Meijer
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Martien J H Kas
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Peter Meerlo
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
12
|
Wu DD, Cheng J, Zheng YN, Liu YT, Hou SX, Liu LF, Huang L, Yuan QL. Neuroplastin 65 deficiency reduces amyloid plaque formation and cognitive deficits in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:1129773. [PMID: 37213217 PMCID: PMC10196121 DOI: 10.3389/fncel.2023.1129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is characterized by increasing cognitive dysfunction, progressive cerebral amyloid beta (Aβ) deposition, and neurofibrillary tangle aggregation. However, the molecular mechanisms of AD pathologies have not been completely understood. As synaptic glycoprotein neuroplastin 65 (NP65) is related with synaptic plasticity and complex molecular events underlying learning and memory, we hypothesized that NP65 would be involved in cognitive dysfunction and Aβ plaque formation of AD. For this purpose, we examined the role of NP65 in the transgenic amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD. Methods Neuroplastin 65-knockout (NP65-/-) mice crossed with APP/PS1 mice to get the NP65-deficient APP/PS1 mice. In the present study, a separate cohort of NP65-deficient APP/PS1 mice were used. First, the cognitive behaviors of NP65-deficient APP/PS1 mice were assessed. Then, Aβ plaque burden and Aβ levels in NP65-deficient APP/PS1 mice were measured by immunostaining and western blot as well as ELISA. Thirdly, immunostaining and western blot were used to evaluate the glial response and neuroinflammation. Finally, protein levels of 5-hydroxytryptamin (serotonin) receptor 3A and synaptic proteins and neurons were measured. Results We found that loss of NP65 alleviated the cognitive deficits of APP/PS1 mice. In addition, Aβ plaque burden and Aβ levels were significantly reduced in NP65-deficient APP/PS1 mice compared with control animals. NP65-loss in APP/PS1 mice resulted in a decrease in glial activation and the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, and IL-4) as well as protective matrix YM-1 and Arg-1, but had no effect on microglial phenotype. Moreover, NP65 deficiency significantly reversed the increase in 5-hydroxytryptamine (serotonin) receptor 3A (Htr3A) expression levels in the hippocampus of APP/PS1 mice. Discussion These findings identify a previously unrecognized role of NP65 in cognitive deficits and Aβ formation of APP/PS1 mice, and suggest that NP65 may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya-Ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Tong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shuang-Xin Hou
- Department of Neurobiology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Li-Fen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qiong-Lan Yuan,
| |
Collapse
|
13
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Sharma G, Banerjee S. Activity-regulated E3 ubiquitin ligase TRIM47 modulates excitatory synapse development. Front Mol Neurosci 2022; 15:943980. [PMID: 36211980 PMCID: PMC9532517 DOI: 10.3389/fnmol.2022.943980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) has been shown to regulate neuronal development and synapse formation. Activity-dependent regulation of E3 ligase, a component of the UPS that targets specific proteins for proteasome-mediated degradation, is emerging as a pivotal player for the establishment of functional synapses. Here, we identified TRIM47 as a developmentally regulated E3 ligase that is expressed in rat hippocampus during the temporal window of synapse formation. We have demonstrated that the expression of TRIM47 is regulated by the glutamate-induced synaptic activity of hippocampal neurons in culture. In addition, the activity-dependent enhancement of TRIM47 expression is recapitulated following the object location test, a hippocampus-dependent spatial memory paradigm. We observed that this enhancement of TRIM47 expression requires NMDA receptor activation. The knockdown of TRIM47 leads to an enhancement of spine density without affecting dendritic complexity. Furthermore, we observed an increase in excitatory synapse development upon loss of TRIM47 function. Comprehensively, our study identified an activity-regulated E3 ligase that drives excitatory synapse formation in hippocampal neurons.
Collapse
|
15
|
Maurer JJ, Wimmer ME, Turner CA, Herman RJ, Zhang Y, Ragnini K, Ferrante J, Kimmey BA, Crist RC, Christopher Pierce R, Schmidt HD. Paternal nicotine taking elicits heritable sex-specific phenotypes that are mediated by hippocampal Satb2. Mol Psychiatry 2022; 27:3864-3874. [PMID: 35595980 PMCID: PMC9675874 DOI: 10.1038/s41380-022-01622-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Nicotine intake, whether through tobacco smoking or e-cigarettes, remains a global health concern. An emerging preclinical literature indicates that parental nicotine exposure produces behavioral, physiological, and molecular changes in subsequent generations. However, the heritable effects of voluntary parental nicotine taking are unknown. Here, we show increased acquisition of nicotine taking in male and female offspring of sires that self-administered nicotine. In contrast, self-administration of sucrose and cocaine were unaltered in male and female offspring suggesting that the intergenerational effects of paternal nicotine taking may be reinforcer specific. Further characterization revealed memory deficits and increased anxiety-like behaviors in drug-naive male, but not female, offspring of nicotine-experienced sires. Using an unbiased, genome-wide approach, we discovered that these phenotypes were associated with decreased expression of Satb2, a transcription factor known to play important roles in synaptic plasticity and memory formation, in the hippocampus of nicotine-sired male offspring. This effect was sex-specific as no changes in Satb2 expression were found in nicotine-sired female offspring. Finally, increasing Satb2 levels in the hippocampus prevented the escalation of nicotine intake and rescued the memory deficits associated with paternal nicotine taking in male offspring. Collectively, these findings indicate that paternal nicotine taking produces heritable sex-specific molecular changes that promote addiction-like phenotypes and memory impairments in male offspring.
Collapse
Affiliation(s)
- John J Maurer
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, PA, 19122, USA
| | - Christopher A Turner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rae J Herman
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kael Ragnini
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Ferrante
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Blake A Kimmey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Two distinct ways to form long-term object recognition memory during sleep and wakefulness. Proc Natl Acad Sci U S A 2022; 119:e2203165119. [PMID: 35969775 PMCID: PMC9407643 DOI: 10.1073/pnas.2203165119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory consolidation is promoted by sleep. However, there is also evidence for consolidation into long-term memory during wakefulness via processes that preferentially affect nonhippocampal representations. We compared, in rats, the effects of 2-h postencoding periods of sleep and wakefulness on the formation of long-term memory for objects and their associated environmental contexts. We employed a novel-object recognition (NOR) task, using object exploration and exploratory rearing as behavioral indicators of these memories. Remote recall testing (after 1 wk) confirmed significant long-term NOR memory under both conditions, with NOR memory after sleep predicted by the occurrence of EEG spindle-slow oscillation coupling. Rats in the sleep group decreased their exploratory rearing at recall testing, revealing successful recall of the environmental context. By contrast, rats that stayed awake after encoding showed equally high levels of rearing upon remote testing as during encoding, indicating that context memory was lost. Disruption of hippocampal function during the postencoding interval (by muscimol administration) suppressed long-term NOR memory together with context memory formation when animals slept, but enhanced NOR memory when they were awake during this interval. Testing remote recall in a context different from that during encoding impaired NOR memory in the sleep condition, while exploratory rearing was increased. By contrast, NOR memory in the wake rats was preserved and actually superior to that after sleep. Our findings indicate two distinct modes of long-term memory formation: Sleep consolidation is hippocampus dependent and implicates event-context binding, whereas wake consolidation is impaired by hippocampal activation and strengthens context-independent representations.
Collapse
|
17
|
Parent MB. Using Postmeal Measures and Manipulations to Investigate Hippocampal Mnemonic Control of Eating Behavior. Neuroscience 2022; 497:228-238. [PMID: 34998891 PMCID: PMC9256844 DOI: 10.1016/j.neuroscience.2021.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Episodic meal-related memories provide the brain with a powerful mechanism for tracking and controlling eating behavior because they contain a detailed record of recent energy intake that likely outlasts the physiological signals generated by feeding bouts. This review briefly summarizes evidence from human participants showing that episodic meal-related memory limits later eating behavior and then describes our research aimed at investigating whether hippocampal neurons mediate the inhibitory effects of meal-related memory on subsequent feeding. Our approach has been inspired by pioneering work conducted by Ivan Izquierdo and others who used posttraining manipulations to investigate memory consolidation. This review describes the rationale and value of posttraining manipulations, how Izquierdo used them to demonstrate that dorsal hippocampal (dHC) neurons are critical for memory consolidation, and how we have adapted this strategy to investigate whether dHC neurons are necessary for mnemonic control of energy intake. I describe our evidence showing that ingestion activates the molecular processes necessary for synaptic plasticity and memory during the early postprandial period, when the memory of the meal would be undergoing consolidation, and then summarize our findings showing that neural activity in dHC neurons is critical during the early postprandial period for limiting future intake. Collectively, our evidence supports the hypothesis that dHC neurons mediate the inhibitory effects of ingestion-related memory on future intake and demonstrates that post-experience memory modulation is not confined to artificial laboratory memory tasks.
Collapse
Affiliation(s)
- M B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Canatelli-Mallat M, Chiavellini P, Lehmann M, Goya RG, Morel GR. AGE-RELATED LOSS OF RECOGNITION MEMORY AND ITS CORRELATION WITH HIPPOCAMPAL AND PERIRHINAL CORTEX CHANGES IN FEMALE SPRAGUE-DAWLEY RATS. Behav Brain Res 2022; 435:114026. [DOI: 10.1016/j.bbr.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
|
19
|
Brito V, Montalban E, Sancho-Balsells A, Pupak A, Flotta F, Masana M, Ginés S, Alberch J, Martin C, Girault JA, Giralt A. Hippocampal Egr1-Dependent Neuronal Ensembles Negatively Regulate Motor Learning. J Neurosci 2022; 42:5346-5360. [PMID: 35610044 PMCID: PMC9270920 DOI: 10.1523/jneurosci.2258-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
Motor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia nuclei. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here, we show that mice receiving a long-term training in the accelerating rotarod display marked hippocampal transcriptional changes and reduced pyramidal neurons activity in the CA1 region when compared with naive mice. Then, we use mice in which neural ensembles are permanently labeled in an Egr1 activity-dependent fashion. Using these mice, we identify a subpopulation of Egr1-expressing pyramidal neurons in CA1 activated in short-term (STT) and long-term (LTT) trained mice in the rotarod task. When Egr1 is downregulated in the CA1 or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, Egr1 organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning. These evidences highlight the role of the hippocampus in the control of this type of learning and we provide a possible underlying mechanism.SIGNIFICANCE STATEMENT It is a major topic in neurosciences the deciphering of the specific circuits underlying memory systems during the encoding of new information. However, the potential role of the hippocampus in the control of motor learning and the underlying mechanisms has been poorly addressed. In the present work we show how the hippocampus responds to motor learning and how the Egr1 molecule is one of the major responsible for such phenomenon controlling the rate of motor coordination performances.
Collapse
Affiliation(s)
- Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Enrica Montalban
- Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Université de Paris, Paris F-75014, France
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Francesca Flotta
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Mercè Masana
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona 08036, Spain
| | - Claire Martin
- Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Université de Paris, Paris F-75014, France
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche -S 1270, Paris 75005, France
- Science and Engineering Faculty, Sorbonne Université, Paris 75005, France
- Institut du Fer a Moulin, Paris 75005, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona 08036, Spain
| |
Collapse
|
20
|
Ahmed HA, Ismael S, Salman M, Devlin P, McDonald MP, Liao FF, Ishrat T. Direct AT2R Stimulation Slows Post-stroke Cognitive Decline in the 5XFAD Alzheimer's Disease Mice. Mol Neurobiol 2022; 59:4124-4140. [PMID: 35486224 PMCID: PMC10947502 DOI: 10.1007/s12035-022-02839-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD), currently the single leading cause of death still on the rise, almost always coexists alongside vascular cognitive impairment (VCI). In fact, the ischemic disease affects up to 90% of AD patients, with strokes and major infarctions representing over a third of vascular lesions. Studies also confirmed that amyloid plaques, typical of AD, are much more likely to cause dementia if strokes or cerebrovascular damage also exist, leading to the term "mixed pathology" cognitive impairment. Although its incidence is expected to grow, there are no satisfactory treatments. There is hence an urgent need for safe and effective therapies that preserve cognition, maintain function, and prevent the clinical deterioration that results from the progression of this irreversible, neurodegenerative disease. To our knowledge, this is the first study to investigate the effects of long-term treatment with C21, a novel angiotensin II type 2 receptor (AT2R) agonist, on the development of "mixed pathology" cognitive impairment. This was accomplished using a unique model that employs the fundamental elements of both AD and VCI. Treatment with C21/vehicle was started 1 h post-stroke and continued for 5 weeks in mice with concurrent AD pathology. Efficacy was established through a series of functional tests assessing various aspects of cognition, including spatial learning, short-term/working memory, long-term/reference memory, and cognitive flexibility, in addition to the molecular markers characteristic of AD. Our findings demonstrate that C21 treatment preserves cognitive function, maintains cerebral blood flow, and reduces Aβ accumulation and toxic tau phosphorylation in AD animals post-stroke.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Mohd Salman
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Patrick Devlin
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Michael P McDonald
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Francesca-Fang Liao
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
21
|
McCorkle TA, Romm ZL, Raghupathi R. Repeated Mild TBI in Adolescent Rats Reveals Sex Differences in Acute and Chronic Behavioral Deficits. Neuroscience 2022; 493:52-68. [PMID: 35469970 PMCID: PMC10074545 DOI: 10.1016/j.neuroscience.2022.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023]
Abstract
High school students who participate in contact sports are vulnerable to sustaining multiple concussions and exhibit deficits in cognitive function in both the acute and chronic phases and in emotional behavior in the chronic phase. Further, boys are more likely to suffer cognitive problems whereas girls tend to report depression and anxiety. The effects of repetitive mild TBI in adolescent (35-40-day old) male and female Sprague-Dawley rats on object location and spatial working memory (hippocampal-dependent) and object recognition memory (hippocampal-independent) at 1-and-4-weeks post-injury along with trait-dependent anxiety- and depressive-like behaviors at 5 weeks were examined. Compared to sham-injured rats, male brain-injured rats demonstrated significant impairment in both hippocampal-dependent and -independent memory tasks at both time points, whereas female brain-injured rats only exhibited impairment in these tests at the 4-week time point. In contrast, depressive-like behaviors were present in the forced swim test in only the female brain-injured animals at 5 weeks post-injury; anxiety-like behaviors were not evident in either male or female brain-injured animals. Histological analysis at 6 weeks after injury revealed that repeated mild TBI in male and female adolescent rats resulted in increased reactivity of astrocytes and microglia within the corpus callosum below the impact site and in the stratum oriens and stratum pyramidale of the CA2 region of the dorsal hippocampus. Together, these data are indicative of the differences in the temporal pattern of post-traumatic behavioral deficits between male and female animals and that female animals may be more likely to develop deficits in the chronic post-traumatic period.
Collapse
Affiliation(s)
- T A McCorkle
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Philadelphia, PA 19129, United States
| | - Z L Romm
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - R Raghupathi
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Philadelphia, PA 19129, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
22
|
The effect of interference, offline sleep, and wake on spatial statistical learning. Neurobiol Learn Mem 2022; 193:107650. [DOI: 10.1016/j.nlm.2022.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/22/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022]
|
23
|
Jiao Q, Dong X, Guo C, Wu T, Chen F, Zhang K, Ma Z, Sun Y, Cao H, Tian C, Hu Q, Liu N, Wang Y, Ji L, Yang S, Zhang X, Li J, Shen H. Effects of sleep deprivation of various durations on novelty-related object recognition memory and object location memory in mice. Behav Brain Res 2022; 418:113621. [PMID: 34624424 DOI: 10.1016/j.bbr.2021.113621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
Sleep is essential for important physiological functions. Impairment of learning and memory function caused by lack of sleep is a common physiological phenomenon of which underlying changes in synaptic plasticity in the hippocampus are not well understood. The possible different effects of sleep deprivation (SD) lasting for various durations on learning and memory function and hippocampal synaptic plasticity are still not completely clear. In this study, we used a modified multiple platform method (MMPM) to induce rapid eye movement SD (REM SD), lasting for 24 h, 48 h, and 72 h, separately. The novel place recognition (NPR) and novel object recognition (NOR) tasks were used to test the novelty-related object recognition memory (ORM) and object location memory (OLM) of mice. Then, hippocampal synaptic plasticity was evaluated after all behavioural experiments. The results showed that REM SD played a key role in OLM but not in ORM. Specifically, 24 h REM SD improved novelty-related OLM, accompanied by a significantly increased hippocampal synaptic plasticity, including gain of dendritic spines, increased expression of hippocampal GluA1, and enhanced long-term potentiation (LTP), whereas 48 h REM SD showed no effect on OLM or the hippocampal synaptic plasticity mentioned above; however, 72 h REM SD impaired novelty-related OLM and weakened hippocampal synaptic plasticity, including serious loss of dendritic spines, decreased expression of hippocampal GluA1, and significantly attenuated LTP. Our results suggest that REM SD of various durations has different effects on both novelty-related OLM and hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Qingyan Jiao
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Yun Sun
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Haiyan Cao
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Nannan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Yong Wang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Lijie Ji
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Shutong Yang
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Xinjun Zhang
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222.
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222.
| | - Hui Shen
- Brain Research Center of Innovation Institute of Traditional Chinese medicine, Shandong University of traditional Chinese Medicine, Jinan, Shandong, China, 250355.
| |
Collapse
|
24
|
Luo N, Zhu W, Li X, Fu M, Peng X, Yang F, Zhang Y, Yin H, Yang C, Zhao J, Yuan X, Hu G. Impact of Gut Microbiota on Radiation-Associated Cognitive Dysfunction and Neuroinflammation in Mice. Radiat Res 2022; 197:350-364. [PMID: 34982167 DOI: 10.1667/rade-21-00006.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
Radiation-induced brain injury is a common complication of brain irradiation that eventually leads to irreversible cognitive impairment. Evidence has shown that the gut microbiome may play an important role in radiation-induced cognitive function. However, the effects of gut microbiota on radiation-induced brain injury (RIBI) remain poorly understood. Here we studied the link between intestinal microbes and radiation-induced brain injury to further investigate the effects of intestinal bacteria on neuroinflammation and cognitive function. We first verified the differences in gut microbes between male and female mice and administered antibiotics to C57BL/6 male mice to deplete the gut flora and then expose mice to radiation. We found that depletion of intestinal flora after irradiation may act as a protective modulator against radiation-induced brain injury. Moreover, we found that pretreatment with depleted gut microbes in RIBI mice suppressed brain pro-inflammatory factor production, and high-throughput sequencing analysis of mouse feces at 1-month postirradiation revealed microbial differences. Interestingly, a proportion of Verrucomicrobia Akkermansia showed partial recovery. Additionally, short-chain fatty acid treatments increased neuroinflammation in the radiation-induced brain injury model. Although a further increase in cognitive function was not observed, brain injury was aggravated in whole-brain irradiated mice to some extent. The protective effects of depleted intestinal flora and the utilization of the brain-gut axis open new avenues for development of innovative therapeutic strategies for radiation-induced brain injury.
Collapse
Affiliation(s)
- Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Han Yin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunlei Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
25
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
26
|
Tropea MR, Sanfilippo G, Giannino F, Davì V, Gulisano W, Puzzo D. Innate Preferences Affect Results of Object Recognition Task in Wild Type and Alzheimer's Disease Mouse Models. J Alzheimers Dis 2021; 85:1343-1356. [PMID: 34924388 PMCID: PMC8925114 DOI: 10.3233/jad-215209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Object recognition task (ORT) is a widely used behavioral paradigm to assess memory in rodent models, due to its easy technical execution, the lack of aversive stressful stimuli, and the possibility to repeat the test on the same animals. However, mouse exploration might be strongly influenced by a variety of variables. OBJECTIVE To study whether innate preferences influenced exploration in male and female wild type mice and the Alzheimer's disease (AD) model 3xTg. METHODS We first evaluated how object characteristics (material, size, and shape) influence exploration levels, latency, and exploration modality. Based on these findings, we evaluated whether these innate preferences biased the results of ORT performed in wild type mice and AD models. RESULTS Assessment of Exploration levels, i.e., the time spent in exploring a certain object in respect to the total exploration time, revealed an innate preference for objects made in shiny materials, such as metal and glass. A preference for bigger objects characterized by higher affordance was also evident, especially in male mice. When performing ORT, exploration was highly influenced by these innate preferences. Indeed, both wild type and AD mice spent more time in exploring the metal object, regardless of its novelty. Furthermore, the use of objects with higher affordance such as the cube was a confounding factor leading to "false" results that distorted ORT interpretation. CONCLUSION When designing exploration-based behavioral experiments aimed at assessing memory in healthy and AD mice, object characteristics should be carefully evaluated to improve scientific outcomes and minimize possible biases.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giulia Sanfilippo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Federico Giannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Valentina Davì
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
27
|
Finnie PSB, Komorowski RW, Bear MF. The spatiotemporal organization of experience dictates hippocampal involvement in primary visual cortical plasticity. Curr Biol 2021; 31:3996-4008.e6. [PMID: 34314678 PMCID: PMC8524775 DOI: 10.1016/j.cub.2021.06.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
The hippocampus and neocortex are theorized to be crucial partners in the formation of long-term memories. Here, we assess hippocampal involvement in two related forms of experience-dependent plasticity in the primary visual cortex (V1) of mice. Like control animals, those with hippocampal lesions exhibit potentiation of visually evoked potentials after passive daily exposure to a phase-reversing oriented grating stimulus, which is accompanied by long-term habituation of a reflexive behavioral response. Thus, low-level recognition memory is formed independently of the hippocampus. However, response potentiation resulting from daily exposure to a fixed sequence of four oriented gratings is severely impaired in mice with hippocampal damage. A feature of sequence plasticity in V1 of controls, which is absent in lesioned mice, is the generation of predictive responses to an anticipated stimulus element when it is withheld or delayed. Thus, the hippocampus is involved in encoding temporally structured experience, even within the primary sensory cortex.
Collapse
Affiliation(s)
- Peter S B Finnie
- Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert W Komorowski
- Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mark F Bear
- Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Lissner LJ, Wartchow KM, Toniazzo AP, Gonçalves CA, Rodrigues L. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol Biochem Behav 2021; 210:173273. [PMID: 34536480 DOI: 10.1016/j.pbb.2021.173273] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Object recognition (OR) and the Morris water maze (MWM) are classical tasks widely used to assess memory parameters and deficits in rodents. Learning processes in both tasks involve integrity of the hippocampus and associated regions, and prefrontal cortex connections. Here, we highlight the idea that these classical tests can be used to indicate memory deficits caused by models of disease that affect hippocampal function in rats, and identify some practical issues of OR and MWM, based on the literature and our experience. Additionally, we have shown that the performance of both tasks does not alter blood levels of corticosterone, considering exposure to a single task. Hence, taking into consideration the difficulties and care required during task execution, the infrastructure needed and the training of the experimenter, we suggest that OR and its variations offer minimal manageable stressful conditions, representing an effective and practical tool for hippocampal-related memory assessment of rats. Thus, OR may provide similar information to that of the MWM, despite controversy regarding hippocampus participation in OR and given due differences in the types of memory evaluated and researchers' objectives. We recommend the observation of some important precautions and details, also based on the literature and our own experience.
Collapse
Affiliation(s)
- Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Ana Paula Toniazzo
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| |
Collapse
|
29
|
Loss of APP in mice increases thigmotaxis and is associated with elevated brain expression of IL-13 and IP-10/CXCL10. Physiol Behav 2021; 240:113533. [PMID: 34293404 DOI: 10.1016/j.physbeh.2021.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to memory loss and is often accompanied by increased anxiety. Although AD is a heterogeneous disease, dysregulation of inflammatory pathways is a consistent event. Interestingly, the amyloid precursor protein (APP), which is the source of the amyloid peptide Aβ, is also necessary for the efficient regulation of the innate immune response. Here, we hypothesize that loss of APP function in mice would lead to cognitive loss and anxiety behavior, both of which are typically present in AD, as well as changes in the expression of inflammatory mediators. To test this hypothesis, we performed open field, Y-maze and novel object recognition tests on 12-18-week-old male and female wildtype and AppKO mice to measure thigmotaxis, short-term spatial memory and long-term recognition memory. We then performed a quantitative multiplexed immunoassay to measure levels of 32 cytokines/chemokines associated with AD and anxiety. Our results showed that AppKO mice, compared to wildtype controls, experienced increased thigmotactic behavior but no memory impairments, and this phenotype correlated with increased IP-10 and IL-13 levels. Future studies will determine whether dysregulation of these inflammatory mediators contributes to pathogenesis in AD.
Collapse
|
30
|
Yuan RK, Lopez MR, Ramos-Alvarez MM, Normandin ME, Thomas AS, Uygun DS, Cerda VR, Grenier AE, Wood MT, Gagliardi CM, Guajardo H, Muzzio IA. Differential effect of sleep deprivation on place cell representations, sleep architecture, and memory in young and old mice. Cell Rep 2021; 35:109234. [PMID: 34133936 PMCID: PMC8545463 DOI: 10.1016/j.celrep.2021.109234] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023] Open
Abstract
Poor sleep quality is associated with age-related cognitive decline, and whether reversal of these alterations is possible is unknown. In this study, we report how sleep deprivation (SD) affects hippocampal representations, sleep patterns, and memory in young and old mice. After training in a hippocampus-dependent object-place recognition (OPR) task, control animals sleep ad libitum, although experimental animals undergo 5 h of SD, followed by recovery sleep. Young controls and old SD mice exhibit successful OPR memory, whereas young SD and old control mice are impaired. Successful performance is associated with two cellular phenotypes: (1) "context" cells, which remain stable throughout training and testing, and (2) "object configuration" cells, which remap when objects are introduced to the context and during testing. Additionally, effective memory correlates with spindle counts during non-rapid eye movement (NREM)/rapid eye movement (REM) sigma transitions. These results suggest SD may serve to ameliorate age-related memory deficits and allow hippocampal representations to adapt to changing environments.
Collapse
Affiliation(s)
- Robin K Yuan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA, USA
| | - Matthew R Lopez
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA
| | | | - Marc E Normandin
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA
| | - Arthur S Thomas
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - David S Uygun
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Vanessa R Cerda
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA
| | - Amandine E Grenier
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA
| | - Matthew T Wood
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA
| | - Celia M Gagliardi
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA
| | - Herminio Guajardo
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA
| | - Isabel A Muzzio
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
31
|
Briggs SB, Ware CB, Sharma K, Davis SC, Lalumiere RT, Parent MB. Postmeal optogenetic inhibition of dorsal hippocampal principal neurons increases future intake in a time-dependent manner. Neurobiol Learn Mem 2021; 183:107478. [PMID: 34116139 DOI: 10.1016/j.nlm.2021.107478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Research involving human participants indicates that memories of recently eaten meals limit how much is eaten during subsequent eating episodes; yet, the brain regions that mediate the inhibitory effects of ingestion-related memory on future intake are largely unknown. We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memories of personal experiences, mediate the inhibitory effects of ingestion-related memory on future intake. Our research program aimed at testing this hypothesis has been influenced in large part by our mentor James McGaugh and his research on posttraining manipulations. In the present study, we used an activity-guided optogenetic approach to test the prediction that if dHC glutamatergic neurons limit future intake through a process that requires memory consolidation, then inhibition should increase subsequent intake when given soon after the end of a meal but delayed inhibition should have no effect. Viral vectors containing CaMKIIα-eArchT3.0-eYFP and fiber optic probes were placed in the dHC of male Sprague-Dawley rats. Compared to intake on a day when no inhibition was given, postmeal inhibition of dHC glutamatergic neurons given for 10 min after the end of a saccharin meal increased the likelihood that rats would consume a second meal 90 min later and significantly increased the amount of saccharin solution consumed during that next meal when the neurons were no longer inhibited. Importantly, delayed inhibition given 80 min after the end of the saccharin meal did not affect subsequent intake of saccharin. Given that saccharin has minimal postingestive gastric consequences, these effects are not likely due to the timing of interoceptive visceral cues generated by the meal. These data show that dHC glutamatergic neural activity is necessary during the early postprandial period for limiting future intake and suggest that these neurons inhibit future intake by consolidating the memory of the preceding meal.
Collapse
Affiliation(s)
- S B Briggs
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - C B Ware
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - K Sharma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - S C Davis
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - R T Lalumiere
- Department of Psychological and Brain Sciences and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - M B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA; Department of Psychology, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
32
|
da Costa Alves M, Pereira DE, de Cássia de Araújo Bidô R, Rufino Freitas JC, Fernandes Dos Santos CP, Barbosa Soares JK. Effects of the aqueous extract of Phyllanthus niruri Linn during pregnancy and lactation on neurobehavioral parameters of rats' offspring. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113862. [PMID: 33484906 DOI: 10.1016/j.jep.2021.113862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus niruri L. (Phyllanthaceae) is a plant used in traditional medicine, mainly to treat kidney stones. However, the effects of maternal exposure to P. niruri remain poorly explored. AIM OF THE STUDY The objective of this study was to investigate the effects of administration of aqueous extract of P. niruri (AEPN) during pregnancy and lactation, in maternal toxicity, reflex maturation, and offspring memory. MATERIALS AND METHODS Pregnant rats were divided into three groups (n = 8/group): Control (vehicle), AEPN 75, and AEPN 150 (each respectively treated with P. niruri at a dose of 75 and 150 mg/kg/day). The animals were treated via intragastric gavage during pregnancy and lactation. Weight gain, feed intake, and reproductive performance were analyzed in the mothers. In the offspring, the following tests were performed: Neonatal Reflex Ontogeny, Open Field Habituation Test and the Object Recognition Test in adulthood. RESULTS Maternal exposure to AEPN did not influence weight gain, feed intake, or reproductive parameters. In the offspring, anticipation of reflex ontogenesis (time of completion) was observed (p < 0.05). During adulthood, the AEPN groups presented decreases in exploratory activity upon their second exposure to the Open Field Habituation Test (in a dose-dependent manner) (p < 0.05). In the Object Recognition Test, administration of the extract at 75 and 150 mg/kg induced significant dose-dependent improvements in short and long-term memory (p < 0.05). CONCLUSION Administration of the AEPN accelerated the reflex maturation in neonates, and improved offspring memory while inducing no maternal or neonatal toxicity.
Collapse
Affiliation(s)
- Maciel da Costa Alves
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil.
| | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| | - Rita de Cássia de Araújo Bidô
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| | - Juliano Carlo Rufino Freitas
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Chemistry Department, Rural Federal University of Pernambuco, University City, 50740-540, Recife, Pernambuco State, Brazil.
| | | | - Juliana Késsia Barbosa Soares
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| |
Collapse
|
33
|
Late-life intermittent fasting decreases aging-related frailty and increases renal hydrogen sulfide production in a sexually dimorphic manner. GeroScience 2021; 43:1527-1554. [PMID: 33675469 PMCID: PMC8492807 DOI: 10.1007/s11357-021-00330-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Global average life expectancy continues to rise. As aging increases the likelihood of frailty, which encompasses metabolic, musculoskeletal, and cognitive deficits, there is a need for effective anti-aging treatments. It is well established in model organisms that dietary restriction (DR), such as caloric restriction or protein restriction, enhances health and lifespan. However, DR is not widely implemented in the clinic due to patient compliance and its lack of mechanistic underpinnings. Thus, the present study tested the effects of a somewhat more clinically applicable and adoptable DR regimen, every-other-day (EOD) intermittent fasting, on frailty in 20-month-old male and female C57BL/6 mice. Frailty was determined by a series of metabolic, musculoskeletal, and cognitive tasks performed prior to and toward the end of the 2.5-month dietary intervention. Late-life EOD fasting attenuated overall energy intake, hypothalamic inflammatory gene expression, and frailty in males. However, it failed to reduce overall caloric intake and had a little positive effect in females. Given that the selected benefits of DR are dependent on augmented production of the gasotransmitter hydrogen sulfide (H2S) and that renal H2S production declines with age, we tested the effects of EOD fasting on renal H2S production capacity and its connection to frailty in males. EOD fasting boosted renal H2S production, which positively correlated with improvements in multiple components of frailty tasks. Therefore, late-life initiated EOD fasting is sufficient to reduce aging-related frailty, at least in males, and suggests that renal H2S production capacity may modulate the effects of late-life EOD fasting on frailty.
Collapse
|
34
|
Sorokina SS, Malkov AE, Shubina LV, Zaichkina SI, Pikalov VA. Low dose of carbon ion irradiation induces early delayed cognitive impairments in mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:61-71. [PMID: 33392787 DOI: 10.1007/s00411-020-00889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
People often encounter various sources of ionizing radiation, both in modern medicine and under various environmental conditions, such as space travel, nuclear power plants or in conditions of man-made disasters that may lead to long-term cognitive impairment. Whilst the effect of exposure to low and high doses of gamma and X-radiation on the central nervous system (CNS) has been well investigated, the consequences of protons and heavy ions irradiation are quite different and poorly understood. As for the assessment of long-term effects of carbon ions on cognitive abilities and neurodegeneration, very few data appeared in the literature. The main object of the research is to investigate the effects of accelerated carbon ions on the cognitive function. Experiments were performed on male SHK mice at an age of two months. Mice were irradiated with a dose of 0.7 Gy of accelerated carbon ions with an energy of 450 meV/n in spread-out Bragg peak (SOBP) on a U-70 particle accelerator (Protvino, Russia). Two months after the irradiation, mice were tested for total activity, spatial learning, as well as long- and short-term hippocampus-dependent memory. One month after the evaluation of cognitive activity, histological analysis of dorsal hippocampus was carried out to assess its morphological state and to reveal late neuronal degeneration. It was found that the mice irradiated with accelerated carbon ions develop an altered behavioral pattern characterized by anxiety and a shortage in hippocampal-dependent memory retention, but not in episodic memory. Nissl staining revealed a reduction in the number of cells in the dorsal hippocampus of irradiated mice, with the most pronounced reduction in cell density observed in the dentate gyrus (DG) hilus. Also, the length of the CA3 field of the dorsal hippocampus was significantly reduced, and the number of cells in it was moderately decreased. Experiments with the use of Fluoro-Jade B (FJB) staining revealed no FJB-positive regions in the dorsal hippocampus of irradiated and control animals 3 months after the irradiation. Thus, no morbid cells were detected in irradiated and control groups. The results obtained indicate that total irradiation with a low dose of carbon ions can produce a cognitive deficit in adult mice without evidence of neurodegenerative pathologic changes.
Collapse
Affiliation(s)
- S S Sorokina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia.
| | - A E Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - L V Shubina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - S I Zaichkina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences (ITEB RAS), Pushchino, Russia
| | - V A Pikalov
- Institute of High Energy Physics Named by A.A. Logunov of National Research Centre "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
35
|
Balasubramanian N, Sagarkar S, Choudhary AG, Kokare DM, Sakharkar AJ. Epigenetic Blockade of Hippocampal SOD2 Via DNMT3b-Mediated DNA Methylation: Implications in Mild Traumatic Brain Injury-Induced Persistent Oxidative Damage. Mol Neurobiol 2021; 58:1162-1184. [PMID: 33099744 DOI: 10.1007/s12035-020-02166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022]
Abstract
The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
36
|
Lowery RL, Mendes MS, Sanders BT, Murphy AJ, Whitelaw BS, Lamantia CE, Majewska AK. Loss of P2Y12 Has Behavioral Effects in the Adult Mouse. Int J Mol Sci 2021; 22:1868. [PMID: 33668516 PMCID: PMC7918634 DOI: 10.3390/ijms22041868] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
While microglia have been established as critical mediators of synaptic plasticity, the molecular signals underlying this process are still being uncovered. Increasing evidence suggests that microglia utilize these signals in a temporally and regionally heterogeneous manner. Subsequently, it is necessary to understand the conditions under which different molecular signals are employed by microglia to mediate the physiological process of synaptic remodeling in development and adulthood. While the microglial purinergic receptor P2Y12 is required for ocular dominance plasticity, an adolescent form of experience-dependent plasticity, it remains unknown whether P2Y12 functions in other forms of plasticity at different developmental time points or in different brain regions. Using a combination of ex vivo characterization and behavioral testing, we examined how the loss of P2Y12 affects developmental processes and behavioral performance in adulthood in mice. We found P2Y12 was not required for an early form of plasticity in the developing visual thalamus and did not affect microglial migration into barrels in the developing somatosensory cortex. In adult mice, however, the loss of P2Y12 resulted in alterations in recognition and social memory, as well as anxiety-like behaviors, suggesting that while P2Y12 is not a universal regulator of synaptic plasticity, the loss of P2Y12 is sufficient to cause functional defects.
Collapse
Affiliation(s)
- Rebecca L. Lowery
- Center for Visual Science, Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; (R.L.L.); (M.S.M.); (B.T.S.); (A.J.M.); (B.S.W.); (C.E.L.)
| | - Monique S. Mendes
- Center for Visual Science, Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; (R.L.L.); (M.S.M.); (B.T.S.); (A.J.M.); (B.S.W.); (C.E.L.)
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Brandon T. Sanders
- Center for Visual Science, Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; (R.L.L.); (M.S.M.); (B.T.S.); (A.J.M.); (B.S.W.); (C.E.L.)
| | - Allison J. Murphy
- Center for Visual Science, Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; (R.L.L.); (M.S.M.); (B.T.S.); (A.J.M.); (B.S.W.); (C.E.L.)
| | - Brendan S. Whitelaw
- Center for Visual Science, Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; (R.L.L.); (M.S.M.); (B.T.S.); (A.J.M.); (B.S.W.); (C.E.L.)
| | - Cassandra E. Lamantia
- Center for Visual Science, Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; (R.L.L.); (M.S.M.); (B.T.S.); (A.J.M.); (B.S.W.); (C.E.L.)
| | - Ania K. Majewska
- Center for Visual Science, Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; (R.L.L.); (M.S.M.); (B.T.S.); (A.J.M.); (B.S.W.); (C.E.L.)
| |
Collapse
|
37
|
Naneix F, Bakoyiannis I, Santoyo-Zedillo M, Bosch-Bouju C, Pacheco-Lopez G, Coutureau E, Ferreira G. Chemogenetic silencing of hippocampus and amygdala reveals a double dissociation in periadolescent obesogenic diet-induced memory alterations. Neurobiol Learn Mem 2020; 178:107354. [PMID: 33276069 DOI: 10.1016/j.nlm.2020.107354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
In addition to numerous metabolic comorbidities, obesity is associated with several adverse neurobiological outcomes, especially learning and memory alterations. Obesity prevalence is rising dramatically in youth and is persisting in adulthood. This is especially worrying since adolescence is a crucial period for the maturation of certain brain regions playing a central role in memory processes such as the hippocampus and the amygdala. We previously showed that periadolescent, but not adult, exposure to obesogenic high-fat diet (HFD) had opposite effects on hippocampus- and amygdala-dependent memory, impairing the former and enhancing the latter. However, the causal role of these two brain regions in periadolescent HFD-induced memory alterations remains unclear. Here, we first showed that periadolescent HFD induced long-term, but not short-term, object recognition memory deficits, specifically when rats were exposed to a novel context. Using chemogenetic approaches to inhibit targeted brain regions, we then demonstrated that recognition memory deficits are dependent on the activity of the ventral hippocampus, but not the basolateral amygdala. On the contrary, the HFD- induced enhancement of conditioned odor aversion specifically requires amygdala activity. Taken together, these findings suggest that HFD consumption throughout adolescence impairs long-term object recognition memory through alterations of ventral hippocampal activity during memory acquisition. Moreover, these results further highlight the bidirectional effects of adolescent HFD on hippocampal and amygdala functions.
Collapse
Affiliation(s)
- Fabien Naneix
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France; Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33077 Bordeaux, France
| | - Ioannis Bakoyiannis
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France
| | - Marianela Santoyo-Zedillo
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France; Department of Health Sciences, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico
| | | | - Gustavo Pacheco-Lopez
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico
| | | | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France.
| | | |
Collapse
|
38
|
Kahn JB, Port RG, Anderson SA, Coulter DA. Modular, Circuit-Based Interventions Rescue Hippocampal-Dependent Social and Spatial Memory in a 22q11.2 Deletion Syndrome Mouse Model. Biol Psychiatry 2020; 88:710-718. [PMID: 32682567 PMCID: PMC7554065 DOI: 10.1016/j.biopsych.2020.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22qDS) manifests with myriad symptoms, including multiple neuropsychiatric disorders. Complications associated with the polygenic haploinsufficiency make 22qDS symptoms particularly difficult to manage with traditional therapeutic approaches. However, the varying mechanistic consequences often culminate to generate inappropriate regulation of neuronal circuit activity. We explored whether managing this aberrant activity in adults could be a therapeutically beneficial strategy. METHODS To assess and dissect hippocampal circuit function, we performed functional imaging in acute slices and targeted eloquent circuits (specific subcircuits tied to specific behavioral tasks) to provide relevant behavioral outputs. For example, the ventral and dorsal CA1 regions critically support social and spatial discrimination, respectively. We focally introduced chemogenetic constructs in 34 control and 24 22qDS model mice via adeno-associated viral vectors, driven by excitatory neuron-specific promoter elements, to manipulate circuit recruitment in an on-demand fashion. RESULTS 22qDS model mice exhibited CA1 excitatory ensemble hyperexcitability and concomitant behavioral deficits in both social and spatial memory. Remarkably, acute chemogenetic inhibition of pyramidal cells successfully corrected memory deficits and did so in a regionally specific manner: ventrally targeted constructs rescued only social behavior, while those expressed dorsally selectively affected spatial memory. Additionally, manipulating activity in control mice could recapitulate the memory deficits in a regionally specific manner. CONCLUSIONS These data suggest that retuning activity dysregulation can rescue function in disease-altered circuits, even in the face of a polygenetic haploinsufficiency with a strong developmental component. Targeting circuit excitability in a focal, modular manner may prove to be an effective therapeutic for treatment-resistant symptoms of mental illness.
Collapse
Affiliation(s)
- Julia B. Kahn
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell G. Port
- Departments of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stewart A. Anderson
- Departments of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Douglas A. Coulter
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
39
|
Heckman PR, Roig Kuhn F, Meerlo P, Havekes R. A brief period of sleep deprivation negatively impacts the acquisition, consolidation, and retrieval of object-location memories. Neurobiol Learn Mem 2020; 175:107326. [DOI: 10.1016/j.nlm.2020.107326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023]
|
40
|
Vegh C, Stokes K, Ma D, Wear D, Cohen J, Ray SD, Pandey S. A Bird's-Eye View of the Multiple Biochemical Mechanisms that Propel Pathology of Alzheimer's Disease: Recent Advances and Mechanistic Perspectives on How to Halt the Disease Progression Targeting Multiple Pathways. J Alzheimers Dis 2020; 69:631-649. [PMID: 31127770 PMCID: PMC6598003 DOI: 10.3233/jad-181230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons consume the highest amount of oxygen, depend on oxidative metabolism for energy, and survive for the lifetime of an individual. Therefore, neurons are vulnerable to death caused by oxidative-stress, accumulation of damaged and dysfunctional proteins and organelles. There is an exponential increase in the number of patients diagnosed with neurodegenerative diseases such as Alzheimer's (AD) as the number of elderly increases exponentially. Development of AD pathology is a complex phenomenon characterized by neuronal death, accumulation of extracellular amyloid-β plaques and neurofibrillary tangles, and most importantly loss of memory and cognition. These pathologies are most likely caused by mechanisms including oxidative stress, mitochondrial dysfunction/stress, accumulation of misfolded proteins, and defective organelles due to impaired proteasome and autophagy mechanisms. Currently, there are no effective treatments to halt the progression of this disease. In order to treat this complex disease with multiple biochemical pathways involved, a complex treatment regimen targeting different mechanisms should be investigated. Furthermore, as AD is a progressive disease-causing morbidity over many years, any chemo-modulator for treatment must be used over long period of time. Therefore, treatments must be safe and non-interfering with other processes. Ideally, a treatment like medicinal food or a supplement that can be taken regularly without any side effect capable of reducing oxidative stress, stabilizing mitochondria, activating autophagy or proteasome, and increasing energy levels of neurons would be the best solution. This review summarizes progress in research on different mechanisms of AD development and some of the potential therapeutic development strategies targeting the aforementioned pathologies.
Collapse
Affiliation(s)
- Caleb Vegh
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Kyle Stokes
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Dennis Ma
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Darcy Wear
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Jerome Cohen
- Department of Psychology University of Windsor, Ontario, Canada
| | - Sidhartha D Ray
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy and School of Medicine, Manhattan, NY, USA
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| |
Collapse
|
41
|
Bevan RJ, Williams PA, Waters CT, Thirgood R, Mui A, Seto S, Good M, Morgan JE, Votruba M, Erchova I. OPA1 deficiency accelerates hippocampal synaptic remodelling and age-related deficits in learning and memory. Brain Commun 2020; 2:fcaa101. [PMID: 33094281 PMCID: PMC7566495 DOI: 10.1093/braincomms/fcaa101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/09/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
A healthy mitochondrial network is essential for the maintenance of neuronal synaptic integrity. Mitochondrial and metabolic dysfunction contributes to the pathogenesis of many neurodegenerative diseases including dementia. OPA1 is the master regulator of mitochondrial fusion and fission and is likely to play an important role during neurodegenerative events. To explore this, we quantified hippocampal dendritic and synaptic integrity and the learning and memory performance of aged Opa1 haploinsufficient mice carrying the Opa1Q285X mutation (B6; C3-Opa1Q285STOP ; Opa1+/- ). We demonstrate that heterozygous loss of Opa1 results in premature age-related loss of spines in hippocampal pyramidal CA1 neurons and a reduction in synaptic density in the hippocampus. This loss is associated with subtle memory deficits in both spatial novelty and object recognition. We hypothesize that metabolic failure to maintain normal neuronal activity at the level of a single spine leads to premature age-related memory deficits. These results highlight the importance of mitochondrial homeostasis for maintenance of neuronal function during ageing.
Collapse
Affiliation(s)
- Ryan J Bevan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Polhemsgatan 50, 112 82 Stockholm, Sweden
| | - Caroline T Waters
- School of Optometry and Vision Sciences, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Rebecca Thirgood
- School of Optometry and Vision Sciences, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Amanda Mui
- School of Optometry and Vision Sciences, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Sharon Seto
- School of Optometry and Vision Sciences, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Mark Good
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Irina Erchova
- School of Optometry and Vision Sciences, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| |
Collapse
|
42
|
Mayagoitia K, Shin SD, Rubini M, Siebold L, Wilson CG, Bellinger DL, Figueroa JD, Soriano S. Short-term exposure to dietary cholesterol is associated with downregulation of interleukin-15, reduced thigmotaxis and memory impairment in mice. Behav Brain Res 2020; 393:112779. [PMID: 32585301 DOI: 10.1016/j.bbr.2020.112779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition associated with loss of memory function, depression and anxiety. The etiology of AD is poorly understood, but both cholesterol dyshomeostasis and dysregulation of the immune system are contributing factors. Current evidence is consistent with a detrimental effect of excess cholesterol on neuroinflammation, both in mouse models of memory loss and in dementia in humans. However, whether the impact of cholesterol on neuroinflammation occurs early and contributes to pathogenesis of the disease or simply reflects a pleiotropic impact at advanced stages of disease is unclear. To explore this question, we measured, in 9-13 week-old mice, cognitive status and changes in brain inflammatory mediators in response to a short-term high-cholesterol diet. We hypothesized that short-term exposure to excess dietary cholesterol would alter the early inflammatory responses associated with cognitive and/or behavioral impairment. We report that short-term exposure to a high-cholesterol diet led to decreased thigmotaxis and short-term spatial memory impairment without affecting long-term recognition memory. Furthermore, cognitive and behavioral phenotypes in these mice were associated with a reduction in interleukin-15 levels in the absence of changes in other inflammatory mediators. Our findings indicate that interleukin-15 may play a role in early stages of cognitive impairment secondary to hypercholesterolemia. Consequently, optimization of interleukin-15 signaling may be a viable effective cognitive therapy in the population susceptible to developing dementia due to risk factors associated with cholesterol dysregulation.
Collapse
Affiliation(s)
- Karina Mayagoitia
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sam D Shin
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Marsilio Rubini
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Lorraine Siebold
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christopher G Wilson
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Denise L Bellinger
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda CA, USA
| | - Salvador Soriano
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
43
|
Familiarity Detection and Memory Consolidation in Cortical Assemblies. eNeuro 2020; 7:ENEURO.0006-19.2020. [PMID: 32122957 PMCID: PMC7215585 DOI: 10.1523/eneuro.0006-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/30/2020] [Accepted: 02/20/2020] [Indexed: 01/12/2023] Open
Abstract
Humans have a large capacity of recognition memory (Dudai, 1997), a fundamental property of higher-order brain functions such as abstraction and generalization (Vogt and Magnussen, 2007). Familiarity is the first step towards recognition memory. We have previously demonstrated using unsupervised neural network simulations that familiarity detection of complex patterns emerges in generic cortical microcircuits with bidirectional synaptic plasticity. It is therefore meaningful to conduct similar experiments on biological neuronal networks to validate these results. Studies of learning and memory in dissociated rodent neuronal cultures remain inconclusive to date. Synchronized network bursts (SNBs) that occur spontaneously and periodically have been speculated to be an intervening factor. By optogenetically stimulating cultured cortical networks with random dot movies (RDMs), we were able to reduce the occurrence of SNBs, after which an ability for familiarity detection emerged: previously seen patterns elicited higher firing rates than novel ones. Differences in firing rate were distributed over the entire network, suggesting that familiarity detection is a system level property. We also studied the change in SNB patterns following familiarity encoding. Support vector machine (SVM) classification results indicate that SNBs may be facilitating memory consolidation of the learned pattern. In addition, using a novel network connectivity probing method, we were able to trace the change in synaptic efficacy induced by familiarity encoding, providing insights on the long-term impact of having SNBs in the cultures.
Collapse
|
44
|
Gardner RS, Newman LA, Mohler EG, Tunur T, Gold PE, Korol DL. Aging is not equal across memory systems. Neurobiol Learn Mem 2020; 172:107232. [PMID: 32315762 DOI: 10.1016/j.nlm.2020.107232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
The present experiments compared the effects of aging on learning several hippocampus- and striatum-sensitive tasks in young (3-4 month) and old (24-28 month) male Fischer-344 rats. Across three sets of tasks, aging was accompanied not only by deficits on hippocampal tasks but also by maintained or even enhanced abilities on striatal tasks. On two novel object recognition tasks, rats showed impaired performance on a hippocampal object location task but enhanced performance on a striatal object replacement task. On a dual solution task, young rats predominately used hippocampal solutions and old rats used striatal solutions. In addition, on two maze tasks optimally solved using either hippocampus-sensitive place or striatum-sensitive response strategies, relative to young rats, old rats had impaired learning on the place version but equivalent learning on the response version. Because glucose treatments can reverse deficits in learning and memory across many tasks and contexts, levels of available glucose in the brain may have particular importance in cognitive aging observed across tasks and memory systems. During place learning, training-related rises in extracellular glucose levels were attenuated in the hippocampus of old rats compared to young rats. In contrast, glucose levels in the striatum increased comparably in young and old rats trained on either the place or response task. These extracellular brain glucose responses to training paralleled the impairment in hippocampus-sensitive learning and the sparing of striatum-sensitive learning seen as rats age, suggesting a link between age-related changes in learning and metabolic substrate availability in these brain regions.
Collapse
Affiliation(s)
- R S Gardner
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| | - L A Newman
- Department of Psychological Science, Vassar College, Poughkeepsie, NY 12604, United States
| | - E G Mohler
- Research and Development, AbbVie, North Chicago, IL 60064, United States
| | - T Tunur
- Department of Kinesiology, California State University San Marcos, San Marcos, CA 92096, United States
| | - P E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| | - D L Korol
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
45
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
46
|
Paternal morphine self-administration produces object recognition memory deficits in female, but not male offspring. Psychopharmacology (Berl) 2020; 237:1209-1221. [PMID: 31912193 PMCID: PMC7124995 DOI: 10.1007/s00213-019-05450-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/27/2019] [Indexed: 02/03/2023]
Abstract
RATIONALE Parental drug use around or before conception can have adverse consequences for offspring. Historically, this research has focused on the effects of maternal substance use on future generations but less is known about the influence of the paternal lineage. This study focused on the impact of chronic paternal morphine exposure prior to conception on behavioral outcomes in male and female progeny. OBJECTIVES This study sought to investigate the impact of paternal morphine self-administration on anxiety-like behavior, the stress response, and memory in male and female offspring. METHODS Adult, drug-naïve male and female progeny of morphine-treated sires and controls were evaluated for anxiety-like behavior using defensive probe burying and novelty-induced hypophagia paradigms. Hypothalamic-pituitary-adrenal (HPA) axis function was assessed by measuring plasma corticosterone levels following a restraint stressor in male and female progeny. Memory was probed using a battery of tests including object location memory, novel object recognition, and contextual fear conditioning. RESULTS Paternal morphine exposure did not alter anxiety-like behavior or stress-induced HPA axis activation in male or female offspring. Morphine-sired male and female offspring showed intact hippocampus-dependent memory: they performed normally on the long-term fear conditioning and object location memory tests. In contrast, paternal morphine exposure selectively disrupted novel object recognition in female, but not male, progeny. CONCLUSIONS Our findings demonstrate that paternal morphine taking produces sex-specific and selective impairments in object recognition memory while leaving hippocampal function largely intact.
Collapse
|
47
|
Hippocampal Arc Induces Decay of Object Recognition Memory in Male Mice. Neuroscience 2020; 431:193-204. [DOI: 10.1016/j.neuroscience.2020.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
|
48
|
Zhang J, Zhang L, Chang Y, Gu Q, Zhang J, Zhu Z, Qian Z, Wei C, Liu Z, Ren W, Han J. The Endocannabinoid System Contributes to Memory Deficits Induced by Rapid-eye-movement Sleep Deprivation in Adolescent Mice. Neuroscience 2020; 433:174-183. [PMID: 32198011 DOI: 10.1016/j.neuroscience.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Sleep loss or insomnia is among the contributing factors of cognitive deficit, the underlying mechanisms of which remain largely elusive. The endocannabinoid (eCB) system plays a role in sleep, while it is unknown if it is involved in the regulation of memory retrieval by sleep deprivation. In addition, it still controversial how rapid-eye-movement sleep deprivation (REMSD) affects the spatial memory of adolescent mice. Here, we found that 24-h REMSD impairs spatial memory retrieval of adolescent mice in an object-place recognition task, which was rescued by NESS0327, a neutral cannabinoid receptor 1 (CB1R) antagonist. Mechanistically, REMSD induced eCB-mediated short-term and long-term synaptic plasticity changing including depolarization-induced suppression of inhibition (DSI) in the pyramidal neurons of the hippocampus, in which long-term synaptic plasticity changing was rescued by NESS0327. REMSD downregulated monoacylglycerol lipase, a hydrolase for the endocannabinoid 2-arachidonoylglycerol (2-AG), suggesting the involvement of eCB accumulation and the consequent synaptic plasticity in REMSD-elicited memory impairment in adolescent mice. These findings shed light on the role of sleep disorders in learning and memory deficit of adolescents.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Lizi Zhang
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China; College of Life Sciences, Shaanxi Normal University, China
| | - Yuan Chang
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Qiaofen Gu
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Junmin Zhang
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Zhaoqiang Qian
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Chunling Wei
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Zhiqiang Liu
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Wei Ren
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Jing Han
- Key Lab of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China.
| |
Collapse
|
49
|
Li Y, Bao H, Luo Y, Yoan C, Sullivan HA, Quintanilla L, Wickersham I, Lazarus M, Shih YYI, Song J. Supramammillary nucleus synchronizes with dentate gyrus to regulate spatial memory retrieval through glutamate release. eLife 2020; 9:e53129. [PMID: 32167473 PMCID: PMC7069722 DOI: 10.7554/elife.53129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
The supramammillary nucleus (SuM) provides substantial innervation to the dentate gyrus (DG). It remains unknown how the SuM and DG coordinate their activities at the circuit level to regulate spatial memory. Additionally, SuM co-releases GABA and glutamate to the DG, but the relative role of GABA versus glutamate in regulating spatial memory remains unknown. Here we report that SuM-DG Ca2+ activities are highly correlated during spatial memory retrieval as compared to the moderate correlation during memory encoding when mice are performing a location discrimination task. Supporting this evidence, we demonstrate that the activity of SuM neurons or SuM-DG projections is required for spatial memory retrieval. Furthermore, we show that SuM glutamate transmission is necessary for both spatial memory retrieval and highly-correlated SuM-DG activities during spatial memory retrieval. Our studies identify a long-range SuM-DG circuit linking two highly correlated subcortical regions to regulate spatial memory retrieval through SuM glutamate release.
Collapse
Affiliation(s)
- Yadong Li
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| | - Hechen Bao
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| | - Yanjia Luo
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| | - Cherasse Yoan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaTsukubaJapan
| | - Heather Anne Sullivan
- The McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Luis Quintanilla
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
- Neurobiology Curriculum, University of North CarolinaChapel HillUnited States
| | - Ian Wickersham
- The McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaTsukubaJapan
| | - Yen-Yu Ian Shih
- Department of Neurology and Biomedical Research Imaging Center, University of North CarolinaChapel HillUnited States
| | - Juan Song
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Neuroscience Center, University of North CarolinaChapel HillUnited States
| |
Collapse
|
50
|
Ásgeirsdóttir HN, Cohen SJ, Stackman RW. Object and place information processing by CA1 hippocampal neurons of C57BL/6J mice. J Neurophysiol 2020; 123:1247-1264. [PMID: 32023149 DOI: 10.1152/jn.00278.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Medial and lateral entorhinal cortices convey spatial/contextual and item/object information to the hippocampus, respectively. Whether the distinct inputs are integrated as one cognitive map by hippocampal neurons to represent location and the objects therein, or whether they remain as parallel outputs, to be integrated in a downstream region, remains unclear. Principal, or complex spike bursting, neurons of hippocampus exhibit location-specific firing, and it is likely that the activity of "place cells" supports spatial memory/navigation in rodents. Consistent with cognitive map theory, the activity of CA1 hippocampal neurons is also critical for nonspatial memory, such as object recognition. However, the degree to which CA1 neuronal activity represents the associations of object-context or object-in-place memory is not well understood. Here, the contributions of mouse CA1 neuronal activity to object recognition memory and the emergence of object-place conjunctive representations were tested using in vivo recordings and functional inactivation. Independent of arena configuration, CA1 place fields were stable throughout testing and object-place representations were not identified in CA1, although the number of fields per cell increased during object sessions, and few object-related firing CA1 neurons (nonplace) were recorded. The results of the inactivation studies confirmed the significant contribution of CA1 neuronal activity to object recognition memory when a delay of 20 min, but not 5 min, was imposed between encoding and retrieval. Together, our results confirm the delay-dependent contribution of the CA1 region to object memory and suggest that object information is processed in parallel with the ongoing spatial mapping function that is a hallmark of hippocampal memory.NEW & NOTEWORTHY We developed variations of the object recognition task to examine the contribution of mouse CA1 neuronal activity to object memory and the degree to which object-context conjunctive representations are formed during object training. Our results indicate that, within the CA1 region, object information is processed in a parallel but delay-dependent manner, with ongoing spatial mapping.
Collapse
Affiliation(s)
- Herborg N Ásgeirsdóttir
- Department of Psychology, Florida Atlantic University, Jupiter, Florida.,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
| | - Sarah J Cohen
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida
| | - Robert W Stackman
- Department of Psychology, Florida Atlantic University, Jupiter, Florida.,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida.,Florida Atlantic University Brain Institute, Jupiter, Florida
| |
Collapse
|