1
|
Arsham S, Mirzaei M, Domingos C. Bike-Riding Training may Improve Communication Skills and Stereotyped Behavior in Adolescents With Autism. J Autism Dev Disord 2025:10.1007/s10803-024-06694-8. [PMID: 39776107 DOI: 10.1007/s10803-024-06694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
This research aimed to establish whether 12 weeks of bicycle-riding skills exercises with massed and distributed practice frequency at low and high intensity affect communication performance and stereotyped behavior among adolescent boys with autism. Fifty autistic boys aged 13.3 ± 1.32 years participated in the study. The participants were divided into homogeneous experimental groups (N = 10) with dissimilar training frequencies and intensities, along with a control group. Pre-tests using the GARS-2 test were administered to assess stereotyped behavior and communication skills, followed by post-tests and a one-month follow-up. Non-parametric Kruskal Wallis and ANCOVA results at a significance level of 0.05 showed that there was a significant difference in the post-test of stereotyped behavior and communication skills (p = 0.001 and p = 0.002, respectively) and follow-up test one month later (p = 0.003, p = 0.048, respectively) between the intervention and control groups after performing bike riding skills exercises with low and high intensities and frequencies (one and three sessions per week). Regardless of the intensity and frequency, bike riding skills training during the critical period of adolescence can significantly reduce stereotyped behaviors and enhance communication skills, which can also support positive development in other domains for individuals with autism.
Collapse
Affiliation(s)
- Saeed Arsham
- Department of Motor Behavior, Kharazmi University, Tehran, Iran.
| | | | - Christophe Domingos
- Escola Superior de Desporto de Rio Maior, CIEQV, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, Rio Maior, 2040-413, Portugal
| |
Collapse
|
2
|
López-Ojeda W, Hurley RA. Myokines and the Brain: A Novel Neuromuscular Endocrine Loop. J Neuropsychiatry Clin Neurosci 2025; 37:A4-4. [PMID: 39812655 DOI: 10.1176/appi.neuropsych.20240173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center and the Research and Academic Affairs Service Line, W. G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center and the Research and Academic Affairs Service Line, W. G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C
| |
Collapse
|
3
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
4
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
5
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Jaykumar AB, Binns D, Taylor CA, Anselmo A, Birnbaum SG, Huber KM, Cobb MH. WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598125. [PMID: 38915673 PMCID: PMC11195145 DOI: 10.1101/2024.06.09.598125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions. In this study, we demonstrate that inhibition of WNK (With-No-lysine (K)) kinases improves learning and memory in mice. Neuronal inhibition of WNK enhances in vivo hippocampal glucose uptake. Inhibition of WNK enhances insulin signaling output and insulin-dependent GLUT4 trafficking to the plasma membrane in mice primary neuronal cultures and hippocampal slices. Therefore, we propose that the extent of neuronal WNK kinase activity has an important influence on learning, memory and anxiety-related behaviors, in part, by modulation of neuronal insulin signaling.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Clinton A. Taylor
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Anthony Anselmo
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Shari G. Birnbaum
- Departments of Peter O’Donnell Jr. Brain Institute and Psychiatry, UT Southwestern Medical Center, Dallas, USA
| | | | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
7
|
Zhu Y, Song G. Molecular origin and biological effects of exercise mimetics. J Exerc Sci Fit 2024; 22:73-85. [PMID: 38187084 PMCID: PMC10770624 DOI: 10.1016/j.jesf.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
With the rapid development of sports science and molecular biology technology, academia refers to molecules or microorganisms that mimic or enhance the beneficial effects of exercise on the body, called "exercise mimetics." This review aims to clarify the concept and development history of exercise mimetics, and to define the concept of exercise mimetics by summarizing its characteristics and functions. Candidate molecules and drug targets for exercise mimetics are summarized, and the relationship between exercise mimetics and exercise is explained, as well as the targeting system and function of exercise mimetics. The main targeting systems for exercise mimetics are the exercise system, circulatory system, endocrine system, endocrine system, and nervous system, while the immune system is potential targeting systems. Finally, future research directions for exercise mimetics are discussed.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Gupta M, Pandey S, Rumman M, Singh B, Mahdi AA. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep 2023; 14:57-63. [PMID: 36590246 PMCID: PMC9800261 DOI: 10.1016/j.ibneur.2022.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia. DM can lead to a number of secondary complications affecting multiple organs in the body including the eyes, kidney, heart, and brain. The most common effect of hyperglycemia on the brain is cognitive decline. It has been estimated that 20-70% of people with DM have cognitive deficits. High blood sugar affects key brain areas involved in learning, memory, and spatial navigation, and the structural complexity of the brain has made it prone to a variety of pathological disorders, including T2DM. Studies have reported that cognitive decline can occur in people with diabetes, which could go undetected for several years. Moreover, studies on brain imaging suggest extensive effects on different brain regions in patients with T2D. It remains unclear whether diabetes-associated cognitive decline is a consequence of hyperglycemia or a complication that co-occurs with T2D. The exact mechanism underlying cognitive impairment in diabetes is complex; however, impaired glucose metabolism and abnormal insulin function are thought to play important roles. In this review, we have tried to summarize the effect of hyperglycemia on the brain structure and functions, along with the potential mechanisms underlying T2DM-associated cognitive decline.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Reddy I, Yadav Y, Dey CS. Cellular and Molecular Regulation of Exercise-A Neuronal Perspective. Cell Mol Neurobiol 2023; 43:1551-1571. [PMID: 35986789 PMCID: PMC11412429 DOI: 10.1007/s10571-022-01272-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
The beneficial effects of exercise on the proper functioning of the body have been firmly established. Multi-systemic metabolic regulation of exercise is the consequence of multitudinous changes that occur at the cellular level. The exercise responsome comprises all molecular entities including exerkines, miRNA species, growth factors, signaling proteins that are elevated and activated by physical exercise. Exerkines are secretory molecules released by organs such as skeletal muscle, adipose tissue, liver, and gut as a function of acute/chronic exercise. Exerkines such as FNDC5/irisin, Cathepsin B, Adiponectin, and IL-6 circulate through the bloodstream, cross the blood-brain barrier, and modulate the expression of important signaling molecules such as AMPK, SIRT1, PGC1α, BDNF, IGF-1, and VEGF which further contribute to improved energy metabolism, glucose homeostasis, insulin sensitivity, neurogenesis, synaptic plasticity, and overall well-being of the body and brain. These molecules are also responsible for neuroprotective adaptations that exercise confers on the brain and potentially ameliorate neurodegeneration. This review aims to detail important cellular and molecular species that directly or indirectly mediate exercise-induced benefits in the body, with an emphasis on the central nervous system.
Collapse
Affiliation(s)
- Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
10
|
Liu C, Wong PY, Chow SKH, Cheung WH, Wong RMY. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J Orthop Translat 2023; 38:76-83. [PMID: 36381246 PMCID: PMC9619139 DOI: 10.1016/j.jot.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cognitive impairment is a major challenge for elderlies, as it can progress in a rapid manner and effective treatments are limited. Sarcopenic elderlies have a higher risk of dementia. This scoping review aims to reveal whether muscle is a mediator of cognitive function from pre-clinical evidence. Methods PubMed, Embase, and Web of Science were searched to Feb 2nd, 2022, using the keywords (muscle) AND (cognition OR dementia OR Alzheimer) AND (mouse OR rat OR animal). The PRISMA guideline was used in this study. Results A total of 17 pre-clinical studies were selected from 7638 studies. 4 studies reported that muscle atrophy and injury harmed memory, functional factors, and neurons in the brain for rodents with or without Alzheimer's disease (AD). 3 studies observed exercise induced muscle to secrete factors, including lactate, fibronectin type III domain-containing protein 5 (FNDC5), and cathepsin B, which plays essential roles in the elevation of cognitive functions and brain-derived neurotrophic factor (BDNF) levels. Muscle-targeted treatments including electrical stimulation and intramuscular injections had effective remote effects on the hippocampus. 6 studies showed that muscle-specific overexpression of scFv59 and Neprilysin, or myostatin knockdown alleviated AD symptoms. 1 study showed that muscle insulin resistance also led to deficient hippocampal neurogenesis in MKR mice. Conclusions The skeletal muscle is involved in the mediation of cognitive function. The evidence was established by the response in the brain (altered number of neurons, functional factors, and other AD pathological characteristics) with muscle atrophy or injury, muscle secretory factors, and muscle-targeted treatments. The translational potential of this paper This study summarizes the current evidence in how muscle affects cognition in molecular levels, which supports muscle-specific treatments as potential clinical strategies to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
12
|
Eacret D, Lemchi C, Caulfield JI, Cavigelli SA, Veasey SC, Blendy JA. Chronic Sleep Deprivation Blocks Voluntary Morphine Consumption but Not Conditioned Place Preference in Mice. Front Neurosci 2022; 16:836693. [PMID: 35250468 PMCID: PMC8892254 DOI: 10.3389/fnins.2022.836693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
The opioid epidemic remains a significant healthcare problem and is attributable to over 100,000 deaths per year. Poor sleep increases sensitivity to pain, impulsivity, inattention, and negative affect, all of which might perpetuate drug use. Opioid users have disrupted sleep during drug use and withdrawal and report poor sleep as a reason for relapse. However, preclinical studies investigating the relationship between sleep loss and substance use and the associated underlying neurobiological mechanisms of potential interactions are lacking. One of the most common forms of sleep loss in modern society is chronic short sleep (CSS) (<7 h/nightly for adults). Here, we used an established model of CSS to investigate the influence of disrupted sleep on opioid reward in male mice. The CSS paradigm did not increase corticosterone levels or depressive-like behavior after a single sleep deprivation session but did increase expression of Iba1, which typically reflects microglial activation, in the hypothalamus after 4 weeks of CSS. Rested control mice developed a morphine preference in a 2-bottle choice test, while mice exposed to CSS did not develop a morphine preference. Both groups demonstrated morphine conditioned place preference (mCPP), but there were no differences in conditioned preference between rested and CSS mice. Taken together, our results show that recovery sleep after chronic sleep disruption lessens voluntary opioid intake, without impacting conditioned reward associated with morphine.
Collapse
Affiliation(s)
- Darrell Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Crystal Lemchi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasmine I. Caulfield
- Huck Institute for Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sonia A. Cavigelli
- Huck Institute for Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sigrid C. Veasey
- Department of Medicine, Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Julie A. Blendy,
| |
Collapse
|
13
|
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
14
|
Jang YJ, Byun S. Molecular targets of exercise mimetics and their natural activators. BMB Rep 2021; 54:581-591. [PMID: 34814977 PMCID: PMC8728540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/21/2025] Open
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multitargeting agent for mimicking the health-promoting effects of exercise. [BMB Reports 2021; 54(12): 581-591].
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
15
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
16
|
Lalo U, Pankratov Y. Astrocytes as Perspective Targets of Exercise- and Caloric Restriction-Mimetics. Neurochem Res 2021; 46:2746-2759. [PMID: 33677759 PMCID: PMC8437875 DOI: 10.1007/s11064-021-03277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Enhanced mental and physical activity can have positive effects on the function of aging brain, both in the experimental animals and human patients, although cellular mechanisms underlying these effects are currently unclear. There is a growing evidence that pre-clinical stage of many neurodegenerative diseases involves changes in interactions between astrocytes and neurons. Conversely, astrocytes are strategically positioned to mediate the positive influence of physical activity and diet on neuronal function. Thus, development of therapeutic agents which could improve the astroglia-neuron communications in ageing brain is of crucial importance. Recent advances in studies of cellular mechanisms of brain longevity suggest that astrocyte-neuron communications have a vital role in the beneficial effects of caloric restriction, physical exercise and their pharmacological mimetics on synaptic homeostasis and cognitive function. In particular, our recent data indicate that noradrenaline uptake inhibitor atomoxetine can enhance astrocytic Ca2+-signaling and astroglia-driven modulation of synaptic plasticity. Similar effects were exhibited by caloric restriction-mimetics metformin and resveratrol. The emerged data also suggest that astrocytes could be involved in the modulatory action of caloric restriction and its mimetics on neuronal autophagy. Still, the efficiency of astrocyte-targeting compounds in preventing age-related cognitive decline is yet to be fully explored, in particular in the animal models of neurodegenerative diseases and autophagy impairment.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Yuriy Pankratov
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
17
|
Yoo S, Stremlau M, Pinto A, Woo H, Curtis O, van Praag H. Effects of Combined Anti-Hypertensive and Statin Treatment on Memory, Fear Extinction, Adult Neurogenesis, and Angiogenesis in Adult and Middle-Aged Mice. Cells 2021; 10:1778. [PMID: 34359946 PMCID: PMC8304131 DOI: 10.3390/cells10071778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
Hyperlipidemia and hypertension are modifiable risk factors for cognitive decline. About 25% of adults over age 65 use both antihypertensives (AHTs) and statins to treat these conditions. Recent research in humans suggests that their combined use may delay or prevent dementia onset. However, it is not clear whether and how combination treatment may benefit brain function. To begin to address this question, we examined effects of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and Captopril, an angiotensin-converting enzyme inhibitor (ACEI), administration on memory function, anxiety-like behavior, adult hippocampal neurogenesis and angiogenesis in adult and middle-aged male C57Bl/6J mice. In adult mice (3-months-old) combination (combo) treatment, as well as administration of each compound individually, for six weeks, accelerated memory extinction in contextual fear conditioning. However, pattern separation in the touchscreen-based location discrimination test, a behavior linked to adult hippocampal neurogenesis, was unchanged. In addition, dentate gyrus (DG) neurogenesis and vascularization were unaffected. In middle-aged mice (10-months-old) combo treatment had no effect on spatial memory in the Morris water maze, but did reduce anxiety in the open field test. A potential underlying mechanism may be the modest increase in new hippocampal neurons (~20%) in the combo as compared to the control group. DG vascularization was not altered. Overall, our findings suggest that statin and anti-hypertensive treatment may serve as a potential pharmacotherapeutic approach for anxiety, in particular for post-traumatic stress disorder (PTSD) patients who have impairments in extinction of aversive memories.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
| | | | - Alejandro Pinto
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
| | - Hyewon Woo
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
| | - Olivia Curtis
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA; (S.Y.); (A.P.); (H.W.); (O.C.)
- National Institute on Aging (NIA), Baltimore, MD 21224, USA;
| |
Collapse
|
18
|
Gupta R, Khan R, Cortes CJ. Forgot to Exercise? Exercise Derived Circulating Myokines in Alzheimer's Disease: A Perspective. Front Neurol 2021; 12:649452. [PMID: 34276532 PMCID: PMC8278015 DOI: 10.3389/fneur.2021.649452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Regular exercise plays an essential role in maintaining healthy neurocognitive function and central nervous system (CNS) immuno-metabolism in the aging CNS. Physical activity decreases the risk of developing Alzheimer's Disease (AD), is associated with better AD prognosis, and positively affects cognitive function in AD patients. Skeletal muscle is an important secretory organ, communicating proteotoxic and metabolic stress to distant tissues, including the CNS, through the secretion of bioactive molecules collectively known as myokines. Skeletal muscle undergoes significant physical and metabolic remodeling during exercise, including alterations in myokine expression profiles. This suggests that changes in myokine and myometabolite secretion may underlie the well-documented benefits of exercise in AD. However, to date, very few studies have focused on specific alterations in skeletal muscle-originating secreted factors and their potential neuroprotective effects in AD. In this review, we discuss exercise therapy for AD prevention and intervention, and propose the use of circulating myokines as novel therapeutic tools for modifying AD progression.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rizwan Khan
- Department of Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Constanza J Cortes
- Department of Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics (CNET), University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,UAB Nathan Shock Center for the Excellence in the Study of Aging, University of Alabama at Birmingman, Birmingham, AL, United States
| |
Collapse
|
19
|
Sarcopenia and Cognitive Function: Role of Myokines in Muscle Brain Cross-Talk. Life (Basel) 2021; 11:life11020173. [PMID: 33672427 PMCID: PMC7926334 DOI: 10.3390/life11020173] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia is a geriatric syndrome characterized by the progressive degeneration of muscle mass and function, and it is associated with severe complications, which are falls, functional decline, frailty, and mortality. Sarcopenia is associated with cognitive impairment, defined as a decline in one or more cognitive domains as language, memory, reasoning, social cognition, planning, making decisions, and solving problems. Although the exact mechanism relating to sarcopenia and cognitive function has not yet been defined, several studies have shown that skeletal muscle produces and secrete molecules, called myokines, that regulate brain functions, including mood, learning, locomotor activity, and neuronal injury protection, showing the existence of muscle-brain cross-talk. Moreover, studies conducted on physical exercise supported the existence of muscle-brain cross-talk, showing how physical activity, changing myokines' circulating levels, exerts beneficial effects on the brain. The review mainly focuses on describing the role of myokines on brain function and their involvement in cognitive impairment in sarcopenia.
Collapse
|
20
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021. [DOI: 10.3390/cells10020352
expr 820281011 + 880698691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α’s roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington’s Disease, Parkinson’s Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
21
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021; 10:cells10020352. [PMID: 33572179 PMCID: PMC7915819 DOI: 10.3390/cells10020352] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α's roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington's Disease, Parkinson's Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
22
|
Broadhouse KM, Singh MF, Suo C, Gates N, Wen W, Brodaty H, Jain N, Wilson GC, Meiklejohn J, Singh N, Baune BT, Baker M, Foroughi N, Wang Y, Kochan N, Ashton K, Brown M, Li Z, Mavros Y, Sachdev PS, Valenzuela MJ. Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. Neuroimage Clin 2020; 25:102182. [PMID: 31978826 PMCID: PMC6974789 DOI: 10.1016/j.nicl.2020.102182] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/15/2023]
Abstract
Dementia affects 47 million individuals worldwide, and assuming the status quo is projected to rise to 150 million by 2050. Prevention of age-related cognitive impairment in older persons with lifestyle interventions continues to garner evidence but whether this can combat underlying neurodegeneration is unknown. The Study of Mental Activity and Resistance Training (SMART) trial has previously reported within-training findings; the aim of this study was to investigate the long-term neurostructural and cognitive impact of resistance exercise in Mild Cognitive Impairment (MCI). For the first time we show that hippocampal subareas particularly susceptible to volume loss in Alzheimer's disease (AD) are protected by resistance exercise for up to one year after training. One hundred MCI participants were randomised to one of four training groups: (1) Combined high intensity progressive resistance and computerised cognitive training (PRT+CCT), (2) PRT+Sham CCT, (3) CCT+Sham PRT, (4) Sham physical+sham cognitive training (SHAM+SHAM). Physical, neuropsychological and MRI assessments were carried out at baseline, 6 months (directly after training) and 18 months from baseline (12 months after intervention cessation). Here we report neuro-structural and functional changes over the 18-month trial period and the association with global cognitive and executive function measures. PRT but not CCT or PRT+CCT led to global long-term cognitive improvements above SHAM intervention at 18-month follow-up. Furthermore, hippocampal subfields susceptible to atrophy in AD were protected by PRT revealing an elimination of long-term atrophy in the left subiculum, and attenuation of atrophy in left CA1 and dentate gyrus when compared to SHAM+SHAM (p = 0.023, p = 0.020 and p = 0.027). These neuroprotective effects mediated a significant portion of long-term cognitive benefits. By contrast, within-training posterior cingulate plasticity decayed after training cessation and was unrelated to long term cognitive benefits. Neither general physical activity levels nor fitness change over the 18-month period mediated hippocampal trajectory, demonstrating that enduring hippocampal subfield plasticity is not a simple reflection of post-training changes in fitness or physical activity participation. Notably, resting-state fMRI analysis revealed that both the hippocampus and posterior cingulate participate in a functional network that continued to be upregulated following intervention cessation. Multiple structural mechanisms may contribute to the long-term global cognitive benefit of resistance exercise, developing along different time courses but functionally linked. For the first time we show that 6 months of high intensity resistance exercise is capable of not only promoting better cognition in those with MCI, but also protecting AD-vulnerable hippocampal subfields from degeneration for at least 12 months post-intervention. These findings emphasise the therapeutic potential of resistance exercise; however, future work will need to establish just how long-lived these outcomes are and whether they are sufficient to delay dementia.
Collapse
Affiliation(s)
- Kathryn M Broadhouse
- Nola Thompson Centre for Advanced Imaging, Sunshine Coast Mind and Neuroscience Thompson Institute, University of the Sunshine Coast, QLD, Australia; Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Maria Fiatarone Singh
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences and Sydney Medical School, The University of Sydney, Lidcombe, NSW, Australia; Hebrew SeniorLife and Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Chao Suo
- Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Nicola Gates
- Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Wei Wen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Dementia Collaborative Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Nidhi Jain
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Guy C Wilson
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Jacinda Meiklejohn
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Nalin Singh
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Bernhard T Baune
- Department of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Michael Baker
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences and Sydney Medical School, The University of Sydney, Lidcombe, NSW, Australia; School of Exercise Science, Australian Catholic University, Strathfield, NSW, Australia
| | - Nasim Foroughi
- Clinical and Rehabilitation Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Yi Wang
- Clinical and Rehabilitation Research Group, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia; Department of Medicine and the Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Kevin Ashton
- Biomedical Sciences, Faculty of Health Sciences and Medicine, Bond University, QLD, Australia
| | - Matt Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia; King's College London National Institutes of Health Biomedical Research Centre, UK
| | - Zhixiu Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| | - Yorgi Mavros
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Health Sciences and Sydney Medical School, The University of Sydney, Lidcombe, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Valenzuela
- Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
24
|
Frame G, Bretland KA, Dengler-Crish CM. Mechanistic complexities of bone loss in Alzheimer's disease: a review. Connect Tissue Res 2020; 61:4-18. [PMID: 31184223 DOI: 10.1080/03008207.2019.1624734] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Alzheimer's disease (AD), the primary cause of dementia in the elderly, is one of the leading age-related neurodegenerative diseases worldwide. While AD is notorious for destroying memory and cognition, dementia patients also experience greater incidence of bone loss and skeletal fracture than age-matched neurotypical individuals, greatly impacting their quality of life. Despite the significance of this comorbidity, there is no solid understanding of the mechanisms driving early bone loss in AD. Here, we review studies that have evaluated many of the obvious risk factors shared by dementia and osteoporosis, and illuminate emerging work investigating covert pathophysiological mechanisms shared between the disorders that may have potential as new risk biomarkers or therapeutic targets in AD.Conclusions: Skeletal deficits emerge very early in clinical Alzheimer's progression, and cannot be explained by coincident factors such as aging, female sex, mobility status, falls, or genetics. While research in this area is still in its infancy, studies implicate several potential mechanisms in disrupting skeletal homeostasis that include direct effects of amyloid-beta pathology on bone cells, neurofibrillary tau-induced damage to neural centers regulating skeletal remodeling, and/or systemic Wnt/Beta-catenin signaling deficits. Data from an increasing number of studies substantiate a role for the newly discovered "exercise hormone" irisin and its protein precursor FNDC5 in bone loss and AD-associated neurodegeneration. We conclude that the current status of research on bone loss in AD is insufficient and merits critical attention because this work could uncover novel diagnostic and therapeutic opportunities desperately needed to address AD.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Biomedical Sciences Program, Kent State University, Kent, OH, USA
| | - Katie A Bretland
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Integrated Pharmaceutical Medicine Program, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
25
|
Kronman CA, Kern KL, Nauer RK, Dunne MF, Storer TW, Schon K. Cardiorespiratory fitness predicts effective connectivity between the hippocampus and default mode network nodes in young adults. Hippocampus 2019; 30:526-541. [PMID: 31647603 DOI: 10.1002/hipo.23169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/27/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023]
Abstract
Rodent and human studies examining the relationship between aerobic exercise, brain structure, and brain function indicate that the hippocampus (HC), a brain region critical for episodic memory, demonstrates striking plasticity in response to exercise. Beyond the hippocampal memory system, human studies also indicate that aerobic exercise and cardiorespiratory fitness (CRF) are associated with individual differences in large-scale brain networks responsible for broad cognitive domains. Examining network activity in large-scale resting-state brain networks may provide a link connecting the observed relationships between aerobic exercise, hippocampal plasticity, and cognitive enhancement within broad cognitive domains. Previously, CRF has been associated with increased functional connectivity of the default mode network (DMN), specifically in older adults. However, how CRF relates to the magnitude and directionality of connectivity, or effective connectivity, between the HC and other DMN nodes remains unknown. We used resting-state fMRI and conditional Granger causality analysis (CGCA) to test the hypothesis that CRF positively predicts effective connectivity between the HC and other DMN nodes in healthy young adults. Twenty-six participants (ages 18-35 years) underwent a treadmill test to determine CRF by estimating its primary determinant, maximal oxygen uptake (V. O2max ), and a 10-min resting-state fMRI scan to examine DMN effective connectivity. We identified the DMN using group independent component analysis and examined effective connectivity between nodes using CGCA. Linear regression analyses demonstrated that CRF significantly predicts causal influence from the HC to the ventromedial prefrontal cortex, posterior cingulate cortex, and lateral temporal cortex and to the HC from the dorsomedial prefrontal cortex. The observed relationship between CRF and hippocampal effective connectivity provides a link between the rodent literature, which demonstrates a relationship between aerobic exercise and hippocampal plasticity, and the human literature, which demonstrates a relationship between aerobic exercise and CRF and the enhancement of broad cognitive domains including, but not limited to, memory.
Collapse
Affiliation(s)
- Corey A Kronman
- Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts
| | - Kathryn L Kern
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Rachel K Nauer
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts.,Center for Memory and Brain, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Matthew F Dunne
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Thomas W Storer
- Men's Health, Aging, and Metabolism Unit, Brigham and Women's Hospital, Boston, Massachusetts
| | - Karin Schon
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts.,Center for Memory and Brain, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
26
|
Abstract
There are vast literatures on the neural effects of alcohol and the neural effects of exercise. Simply put, exercise is associated with brain health, alcohol is not, and the mechanisms by which exercise benefits the brain directly counteract the mechanisms by which alcohol damages it. Although a degree of brain recovery naturally occurs upon cessation of alcohol consumption, effective treatments for alcohol-induced brain damage are badly needed, and exercise is an excellent candidate from a mechanistic standpoint. In this chapter, we cover the small but growing literature on the interactive neural effects of alcohol and exercise, and the capacity of exercise to repair alcohol-induced brain damage. Increasingly, exercise is being used as a component of treatment for alcohol use disorders (AUD), not because it reverses alcohol-induced brain damage, but because it represents a rewarding, alcohol-free activity that could reduce alcohol cravings and improve comorbid conditions such as anxiety and depression. It is important to bear in mind, however, that multiple studies attest to a counterintuitive positive relationship between alcohol intake and exercise. We therefore conclude with cautionary notes regarding the use of exercise to repair the brain after alcohol damage.
Collapse
|
27
|
Wang BZ, Yang JJ, Zhang H, Smith CA, Jin K. AMPK Signaling Regulates the Age-Related Decline of Hippocampal Neurogenesis. Aging Dis 2019; 10:1058-1074. [PMID: 31595203 PMCID: PMC6764723 DOI: 10.14336/ad.2019.0102] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022] Open
Abstract
The global incidence of age-associated neurological diseases is expected to rise with increasingly greying societies. In the aged brain, there is a dramatic decrease in the number of stem cells, which is a main cause for the decrease in brain function. Intrinsic factors, such as cell metabolism, have been studied but its role in neurogenesis is still unknown. Therefore, this study sought to establish whether AMP-activated protein kinase (AMPK) signaling does indeed regulate hippocampal neurogenesis in the aged brain. We found that i) AMPKα2 was the predominant catalytic subunit in the subgranular and subventricular zones; ii) AMPK activation was at a significantly higher level in the aged vs. young hippocampus; iii) short term (7 days) treatment with selective AMPK signaling inhibitor Compound C (10 mg/kg/day, i.p.) significantly increased the numbers of newborn (BrdU+), Type 2 (MCM2+), and Type 3 (DCX+) neural stem cells, but not Type 1 (GFAP+/Sox2+) cells, in the aged hippocampus. Taken together, our results demonstrate that AMPK signaling plays a critical role in the age-related decline of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Brian Z Wang
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Jane J Yang
- School of Interdisciplinary Studies, University of Texas at Dallas, TX 75080, USA
| | - Hongxia Zhang
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Charity A Smith
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| |
Collapse
|
28
|
Khorasani A, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid ameliorates cognitive impairments in streptozotocin-induced rat model of Alzheimer's disease through PPARβ/δ and PKA signaling. Int J Neurosci 2019; 129:1053-1065. [PMID: 31215291 DOI: 10.1080/00207454.2019.1634067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: Alzheimer's disease (AD) is characterized by oxidative stress, neuroinflammation and progressive cognitive decline. Abscisic acid (ABA) is produced in a variety of mammalian tissues, including brain. It has anti-inflammatory and antioxidant effects and elicits a positive effect on spatial learning and memory performance. Here, the possible protective effect of ABA was evaluated in streptozotocin (STZ)-induced AD rat model which were injected intracerebroventriculary (i.c.v.) with STZ (3 mg/kg). Material and Methods: The STZ-treated animals received ABA (10 μg/rat, i.c.v.), ABA plus PPARβ/δ receptor antagonist (GSK0660, 80 nM/rat) or ABA plus selective inhibitor of PKA (KT5720, 0.5 μg/rat) for 14 d. Learning and memory were determined using Morris water maze (MWM) and passive avoidance (PA) tests. Results: The data showed that STZ produced a significant learning and memory deficit in both MWM and PA tests. ABA significantly prevented the learning and memory impairment in STZ-treated rats. However, ABA effects were blocked by GSK0660 and KT5720. Conclusion: The data indicated that ABA attenuates STZ-induced learning and memory impairment and PPAR-β/δ receptors and PKA signaling are involved, at least in part, in the ABA mechanism.
Collapse
Affiliation(s)
- Ali Khorasani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran.,Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Institute of neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| |
Collapse
|
29
|
Zhang P, Pan J, Mao Z, Xu X, Lin D, Wu B, Zhou W, Liu Y. The effects of early exposure to MK-801 during environmental enrichment on spatial memory, methamphetamine self-administration and cue-induced renewal in rats. Behav Brain Res 2019; 363:83-93. [DOI: 10.1016/j.bbr.2019.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/08/2019] [Accepted: 01/20/2019] [Indexed: 01/24/2023]
|
30
|
Wang Z, Yuan Y, Zhang Z, Ding K. Inhibition of miRNA-27b enhances neurogenesis via AMPK activation in a mouse ischemic stroke model. FEBS Open Bio 2019; 9:859-869. [PMID: 30974042 PMCID: PMC6487723 DOI: 10.1002/2211-5463.12614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
Stroke is a leading cause of death and disability, but treatment options remain limited. Recent studies have suggested that cerebral ischemia‐induced neurogenesis plays a vital role in post‐stroke repair. Overactivation of AMP‐activated protein kinase (AMPK), a master sensor of energy balance, has been reported to exacerbate neuron apoptosis, but the role of chronic AMPK stimulus in post‐stroke recovery remains unclear. MicroRNAs have emerged as regulators of neurogenesis and have been reported to be involved in neurological function. In this study, we verified that miR‐27b directly targets AMPK and inhibits AMPK expression. In cultured neural stem cells, miR‐27b inhibitor improved proliferation and differentiation via the AMPK signaling pathway, but did not have an obvious effect on cell viability under oxygen and glucose deprivation conditions. In a mouse middle cerebral artery occlusion model, administration of miR‐27b inhibitor significantly enhanced behavioral function recovery and spatial memory. Up‐regulation of neurogenesis was observed both in the subventricular zone and in the hippocampal dentate gyrus. Collectively, our data suggest that miR‐27b inhibition promotes recovery after ischemic stroke by regulating AMPK activity. These findings may facilitate the development of novel therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Zhengang Wang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China
| | - Yimei Yuan
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China
| | - Zhaoguang Zhang
- Department of Ultrasonography, Affiliated Hospital of Weifang Medical University, China
| | - Kuiying Ding
- Technology Center, Weifang Entry-exit Inspection and Quarantine Bureau, China
| |
Collapse
|
31
|
Zahiri H, Rostampour M, Khakpour B, Rohampour K. The effect of ghrelin and adenosine mono phosphate kinase (AMPK) on the passive avoidance memory in male wistar rats. Neuropeptides 2019; 73:66-70. [PMID: 30553544 DOI: 10.1016/j.npep.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/25/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hamideh Zahiri
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rostampour
- Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Behrouz Khakpour
- Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Kambiz Rohampour
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
32
|
Kim S, Choi JY, Moon S, Park DH, Kwak HB, Kang JH. Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Arch 2019; 471:491-505. [PMID: 30627775 DOI: 10.1007/s00424-019-02253-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 01/28/2023]
Abstract
Exercise is a well-known non-pharmacological intervention to improve brain functions, including cognition, memory, and motor coordination. Contraction of skeletal muscles during exercise releases humoral factors that regulate the whole-body metabolism via interaction with other non-muscle organs. Myokines are muscle-derived effectors that regulate body metabolism by autocrine, paracrine, or endocrine action and were reportedly suggested as "exercise factors" that can improve the brain function. However, several aspects remain to be elucidated, namely the specific activities of myokines related to the whole-body metabolism or brain function, the mechanisms of regulation of other organs or cells, the sources of "exercise factors" that regulate brain function, and their mechanisms of interaction with non-muscle organs. In this paper, we present the physiological functions of myokines secreted by exercise, including regulation of the whole-body metabolism by interaction with other organs and adaptation of skeletal muscles to exercise. In addition, we discuss the functions of myokines that possibly contribute to exercise-induced improvement of brain function. Among several myokines, brain-derived neurotrophic factor (BDNF) is the most studied myokine that regulates adult neurogenesis and synaptic plasticity. However, the source of circulating BDNF and its upstream effector, insulin-like growth factor (IGF-1), and irisin and the effect size of peripheral BDNF, irisin, and IGF-1 released after exercise should be further investigated. Recently, cathepsin B has been reported to be secreted from skeletal muscles and upregulate BDNF following exercise, which was associated with improved cognitive function. We reviewed the level of evidence for the effect of myokine on the brain function. Level of evidence for the association of the change in circulating myokine following exercise and improvement of neuropsychiatric function is lower than the level of evidence for the benefit of exercise on the brain. Therefore, more clinical evidences for the association of myokine release after exercise and their effect on the brain function are required. Finally, we discuss the effect size of the action of myokines on cognitive benefits of exercise, in addition to other contributors, such as improvement of the cardiovascular system or the effect of "exercise factors" released from non-muscle organs, particularly in patients with sarcopenia.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ji-Young Choi
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
33
|
Nagy S, Maurer GW, Hentze JL, Rose M, Werge TM, Rewitz K. AMPK signaling linked to the schizophrenia-associated 1q21.1 deletion is required for neuronal and sleep maintenance. PLoS Genet 2018; 14:e1007623. [PMID: 30566533 PMCID: PMC6317821 DOI: 10.1371/journal.pgen.1007623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/03/2019] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
The human 1q21.1 deletion of ten genes is associated with increased risk of schizophrenia. This deletion involves the β-subunit of the AMP-activated protein kinase (AMPK) complex, a key energy sensor in the cell. Although neurons have a high demand for energy and low capacity to store nutrients, the role of AMPK in neuronal physiology is poorly defined. Here we show that AMPK is important in the nervous system for maintaining neuronal integrity and for stress survival and longevity in Drosophila. To understand the impact of this signaling system on behavior and its potential contribution to the 1q21.1 deletion syndrome, we focused on sleep, an important role of which is proposed to be the reestablishment of neuronal energy levels that are diminished during energy-demanding wakefulness. Sleep disturbances are one of the most common problems affecting individuals with psychiatric disorders. We show that AMPK is required for maintenance of proper sleep architecture and for sleep recovery following sleep deprivation. Neuronal AMPKβ loss specifically leads to sleep fragmentation and causes dysregulation of genes believed to play a role in sleep homeostasis. Our data also suggest that AMPKβ loss may contribute to the increased risk of developing mental disorders and sleep disturbances associated with the human 1q21.1 deletion. The human 1q21.1 chromosomal deletion is associated with increased risk of schizophrenia. Because this deletion affects only a small number of genes, it provides a unique opportunity to identify the specific disease-causing gene(s) using animal models. Here, we report the use of a Drosophila model to identify the potential contribution of one gene affected by the 1q21.1 deletion–PRKAB2 –to the pathology of the 1q21.1 deletion syndrome. PRKAB2 encodes a subunit of the AMP-activated protein kinase (AMPK) complex, the main cellular energy sensor. We show that AMPK deficiency reduces lifespan and causes structural abnormalities in neuronal dendritic structures, a phenotype which has been linked to schizophrenia. Furthermore, cognitive impairment and altered sleep patterning are some of the most common symptoms of schizophrenia. Therefore, to understand the potential contribution of PRKAB2 to the 1q21.1 syndrome, we tested whether AMPK alterations might cause defects in learning and sleep. Our studies show that lack of PRKAB2 and AMPK-complex activity in the nervous system leads to reduced learning and to dramatic sleep disturbances. Thus, our data links a single 1q21.1-related gene with phenotypes that resemble common symptoms of neuropsychiatric disorders, suggesting that this gene, PRKAB2, may contribute to the risk of developing schizophrenia.
Collapse
Affiliation(s)
- Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gianna W Maurer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Hentze
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark.,Department of Pathology, Herlev Hospital, Herlev, Denmark
| | - Morten Rose
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas M Werge
- Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Natural activators of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem Toxicol 2018; 122:69-79. [DOI: 10.1016/j.fct.2018.09.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/23/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
|
36
|
Moon HY, Javadi S, Stremlau M, Yoon KJ, Becker B, Kang SU, Zhao X, van Praag H. Conditioned media from AICAR-treated skeletal muscle cells increases neuronal differentiation of adult neural progenitor cells. Neuropharmacology 2018; 145:123-130. [PMID: 30391731 DOI: 10.1016/j.neuropharm.2018.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Exercise has profound benefits for brain function in animals and humans. In rodents, voluntary wheel running increases the production of new neurons and upregulates neurotrophin levels in the hippocampus, as well as improving synaptic plasticity, memory function and mood. The underlying cellular mechanisms, however, remain unresolved. Recent research indicates that peripheral organs such as skeletal muscle, liver and adipose tissue secrete factors during physical activity that may influence neuronal function. Here we used an in vitro cell assay and proteomic analysis to investigate the effects of proteins secreted from skeletal muscle cells on adult hippocampal neural progenitor cell (aNPC) differentiation. We also sought to identify the relevant molecules driving these effects. Specifically, we treated rat L6 skeletal muscle cells with the AMP-kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or vehicle (distilled water). We then collected the conditioned media (CM) and fractionated it using high-performance liquid chromatography (HPLC). Treatment of aNPCs with a specific fraction of the AICAR-CM upregulated expression of doublecortin (DCX) and Tuj1, markers of immature neurons. Proteomic analysis of this fraction identified proteins known to be involved in energy metabolism, cell migration, adhesion and neurogenesis. Culturing differentiating aNPCs in the presence of one of the factors, glycolytic enzyme glucose-6-phosphate isomerase (GPI), or AICAR-CM, increased the proportion of neuronal (Tuj1+) and astrocytic, glial fibrillary acidic protein (GFAP+) cells. Our study provides further evidence that proteins secreted from skeletal muscle cells may serve as a critical communication link to the brain through factors that enhance neural differentiation.
Collapse
Affiliation(s)
- Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sahar Javadi
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew Stremlau
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kyeong Jin Yoon
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Benjamin Becker
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyu Zhao
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
37
|
Schlinger BA, Paul K, Monks DA. Muscle, a conduit to brain for hormonal control of behavior. Horm Behav 2018; 105:58-65. [PMID: 30040953 DOI: 10.1016/j.yhbeh.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
SBN Elsevier Lecture Investigation into mechanisms whereby hormones control behavior often starts with actions on central nervous system (CNS) motivation and motor systems and is followed by assessment of CNS drive of coordinated striated muscle contractions. Here we turn this perspective on its head by discussing ways in which hormones might first act on muscle that then secondarily drive upstream the evolution and function of the CNS. While there is a lengthy history for consideration of this perspective, newly discovered properties of muscle signaling reveal novel mechanisms that may well be captured by endocrine systems and thus of interest to behavioral endocrinologists.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States of America; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States of America; Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, United States of America; Smithsonian Tropical Research Institute, Panama City, Panama.
| | - Ketema Paul
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States of America; Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, United States of America
| | - D Ashley Monks
- Department of Psychology, University of Toronto Mississauga, Canada; Cell and Systems Biology, University of Toronto, Canada
| |
Collapse
|
38
|
Delezie J, Handschin C. Endocrine Crosstalk Between Skeletal Muscle and the Brain. Front Neurol 2018; 9:698. [PMID: 30197620 PMCID: PMC6117390 DOI: 10.3389/fneur.2018.00698] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle is an essential regulator of energy homeostasis and a potent coordinator of exercise-induced adaptations in other organs including the liver, fat or the brain. Skeletal muscle-initiated crosstalk with other tissues is accomplished though the secretion of myokines, protein hormones which can exert autocrine, paracrine and long-distance endocrine effects. In addition, the enhanced release or uptake of metabolites from and into contracting muscle cells, respectively, likewise can act as a powerful mediator of tissue interactions, in particular in regard to the central nervous system. The present review will discuss the current stage of knowledge regarding how exercise and the muscle secretome improve a broad range of brain functions related to vascularization, neuroplasticity, memory, sleep and mood. Even though the molecular and cellular mechanisms underlying the communication between muscle and brain is still poorly understood, physical activity represents one of the most effective strategies to reduce the prevalence and incidence of depression, cognitive, metabolic or degenerative neuronal disorders, and thus warrants further study.
Collapse
|
39
|
Herting MM, Chu X. Exercise, cognition, and the adolescent brain. Birth Defects Res 2018; 109:1672-1679. [PMID: 29251839 DOI: 10.1002/bdr2.1178] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Few adolescents engage in the recommended levels of physical activity, and daily exercise levels tend to drastically decrease throughout adolescence. Beyond physical health benefits, regular exercise may also have important implications for the teenage brain and cognitive and academic capabilities. METHODS This narrative review examines how physical activity and aerobic exercise relate to school performance, cognition, and brain structure and function. RESULTS A number of studies have found that habitual exercise and physical activity are associated with academic performance, cognitive function, brain structure, and brain activity in adolescents. We also discuss how additional intervention studies that examine a wide range of neurological and cognitive outcomes are necessary, as well as characterizing the type, frequency, and dose of exercise and identifying individual differences that contribute to how exercise may benefit the teen brain. CONCLUSIONS Routine exercise relates to adolescent brain structure and function as well as cognitive performance. Together, these studies suggest that physical activity and aerobic exercise may be important factors for optimal adolescent brain development.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Preventive Medicine, University of Southern California, Los Angeles, 90023
| | - Xiaofang Chu
- Department of Preventive Medicine, University of Southern California, Los Angeles, 90023
| |
Collapse
|
40
|
Abstract
Overwhelming evidence exists that lifelong exercise is associated with a longer health span, delaying the onset of 40 chronic conditions/diseases. What is beginning to be learned is the molecular mechanisms by which exercise sustains and improves quality of life. The current review begins with two short considerations. The first short presentation concerns the effects of endurance exercise training on cardiovascular fitness, and how it relates to improved health outcomes. The second short section contemplates emerging molecular connections from endurance training to mental health. Finally, approximately half of the remaining review concentrates on the relationships between type 2 diabetes, mitochondria, and endurance training. It is now clear that physical training is complex biology, invoking polygenic interactions within cells, tissues/organs, systems, with remarkable cross talk occurring among the former list.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
41
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
42
|
Alkadhi KA. Exercise as a Positive Modulator of Brain Function. Mol Neurobiol 2018; 55:3112-3130. [PMID: 28466271 DOI: 10.1007/s12035-017-0516-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
Various forms of exercise have been shown to prevent, restore, or ameliorate a variety of brain disorders including dementias, Parkinson's disease, chronic stress, thyroid disorders, and sleep deprivation, some of which are discussed here. In this review, the effects on brain function of various forms of exercise and exercise mimetics in humans and animal experiments are compared and discussed. Possible mechanisms of the beneficial effects of exercise including the role of neurotrophic factors and others are also discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
43
|
Liu PZ, Nusslock R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front Neurosci 2018; 12:52. [PMID: 29467613 PMCID: PMC5808288 DOI: 10.3389/fnins.2018.00052] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Exercise is known to have numerous neuroprotective and cognitive benefits, especially pertaining to memory and learning related processes. One potential link connecting them is exercise-mediated hippocampal neurogenesis, in which new neurons are generated and incorporated into hippocampal circuits. The present review synthesizes the extant literature detailing the relationship between exercise and hippocampal neurogenesis, and identifies a key molecule mediating this process, brain-derived neurotrophic factor (BDNF). As a member of the neurotrophin family, BDNF regulates many of the processes within neurogenesis, such as differentiation and survival. Although much more is known about the direct role that exercise and BDNF have on hippocampal neurogenesis in rodents, their corresponding cognitive benefits in humans will also be discussed. Specifically, what is known about exercise-mediated hippocampal neurogenesis will be presented as it relates to BDNF to highlight the critical role that it plays. Due to the inaccessibility of the human brain, much less is known about the role BDNF plays in human hippocampal neurogenesis. Limitations and future areas of research with regards to human neurogenesis will thus be discussed, including indirect measures of neurogenesis and single nucleotide polymorphisms within the BDNF gene.
Collapse
Affiliation(s)
- Patrick Z. Liu
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
44
|
Rosenfeld CS, Shay DA, Vieira-Potter VJ. Cognitive Effects of Aromatase and Possible Role in Memory Disorders. Front Endocrinol (Lausanne) 2018; 9:610. [PMID: 30386297 PMCID: PMC6199361 DOI: 10.3389/fendo.2018.00610] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Diverse cognitive functions in many vertebrate species are influenced by local conversion of androgens to 17β-estradiol (E2) by aromatase. This enzyme is highly expressed in various brain regions across species, with some inter-species variation in terms of regional brain expression. Since women with breast cancer and men and women with other disorders are often treated with aromatase inhibitors (AI), these populations might be especially vulnerable to cognitive deficits due to low neuroE2 synthesis, i.e., synthesis of E2 directly within the brain. Animal models have been useful in deciphering aromatase effects on cognitive functions. Consequences of AI administration at various life cycle stages have been assessed on auditory, song processing, and spatial memory in birds and various aspects of cognition in rodent models. Additionally, cognitive deficits have been described in aromatase knockout (ArKO) mice that systemically lack this gene throughout their lifespan. This review will consider evidence to date that AI treatment in male and female rodent models, birds, and humans results in cognitive impairments. How brain aromatase regulates cognitive function throughout the lifespan, and gaps in current knowledge will be considered, along with future directions to better define how aromatase might guide learning and memory from early development through the geriatric period. Better understanding the importance of E2 synthesis on neurobehavioral responses at various ages will likely aid in the discovery of therapeutic strategies to prevent potential cognitive deficits, including Alzheimer's Disease, in individuals treated with AI or those possessing CYP19 gene polymorphisms, as well as cognitive effects of normal aging that may be related to changes in brain aromatase activity.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- *Correspondence: Cheryl S. Rosenfeld
| | - Dusti A. Shay
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Victoria J. Vieira-Potter
| |
Collapse
|
45
|
Liu PZ, Nusslock R. Exercise and hippocampal neurogenesis: a dogma re-examined and lessons learned. Neural Regen Res 2018; 13:1354-1355. [PMID: 30106041 PMCID: PMC6108220 DOI: 10.4103/1673-5374.235225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Patrick Z Liu
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
46
|
Paré MF, Jasmin BJ. Chronic 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Treatment Induces Phenotypic Changes in Skeletal Muscle, but Does Not Improve Disease Outcomes in the R6/2 Mouse Model of Huntington's Disease. Front Neurol 2017; 8:516. [PMID: 29021780 PMCID: PMC5623671 DOI: 10.3389/fneur.2017.00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative genetic disorder characterized by motor, cognitive, and psychiatric symptoms. It is well established that regular physical activity supports brain health, benefiting cognitive function, mental health as well as brain structure and plasticity. Exercise mimetics (EMs) are a group of drugs and small molecules that target signaling pathways in skeletal muscle known to be activated by endurance exercise. The EM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) has been shown to induce cognitive benefits in healthy mice. Since AICAR does not readily cross the blood–brain barrier, its beneficial effect on the brain has been ascribed to its impact on skeletal muscle. Our objective, therefore, was to examine the effect of chronic AICAR treatment on the muscular and neurological pathology in a mouse model of HD. To this end, R6/2 mice were treated with AICAR for 8 weeks and underwent regular neurobehavioral testing. Under our conditions, AICAR increased expression of PGC-1α, a powerful phenotypic modifier of muscle, and induced the expected shift toward a more oxidative muscle phenotype in R6/2 mice. However, this treatment failed to induce benefits on HD progression. Indeed, neurobehavioral deficits, striatal, and muscle mutant huntingtin aggregate density, as well as muscle atrophy were not mitigated by the chronic administration of AICAR. Although the muscle adaptations seen in HD mice following AICAR treatment may still provide therapeutically relevant benefits to patients with limited mobility, our findings indicate that under our experimental conditions, AICAR had no effect on several hallmarks of HD.
Collapse
Affiliation(s)
- Marie-France Paré
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
47
|
Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4. Behav Brain Res 2017; 338:32-39. [PMID: 28943428 DOI: 10.1016/j.bbr.2017.09.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 01/04/2023]
Abstract
The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin.
Collapse
|
48
|
Electromagnetic Fields for the Regulation of Neural Stem Cells. Stem Cells Int 2017; 2017:9898439. [PMID: 28932245 PMCID: PMC5592400 DOI: 10.1155/2017/9898439] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023] Open
Abstract
Localized magnetic fields (MFs) could easily penetrate the scalp, skull, and meninges, thus inducing an electrical current in both the central and peripheral nervous systems, which is primarily used in transcranial magnetic stimulation (TMS) for inducing specific effects on different regions or cells that play roles in various brain activities. Studies of repetitive transcranial magnetic stimulation (rTMS) have led to novel attractive therapeutic approaches. Neural stem cells (NSCs) in adult human brain are able to self-renew and possess multidifferential ability to maintain homeostasis and repair damage after acute central nervous system. In the present review, we summarized the electrical activity of NSCs and the fundamental mechanism of electromagnetic fields and their effects on regulating NSC proliferation, differentiation, migration, and maturation. Although it was authorized for the rTMS use in resistant depression patients by US FDA, there are still unveiling mechanism and limitations for rTMS in clinical applications of acute central nervous system injury, especially on NSC regulation as a rehabilitation strategy. More in-depth studies should be performed to provide detailed parameters and mechanisms of rTMS in further studies, making it a powerful tool to treat people who are surviving with acute central nervous system injuries.
Collapse
|
49
|
Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function. J Neurosci 2017; 36:11755-11767. [PMID: 27852782 DOI: 10.1523/jneurosci.1583-16.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022] Open
Abstract
Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5+/+ and FABP5-/- mice using a battery of memory paradigms. FABP5-/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5+/+ and FABP5-/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14C-DHA uptake into brain endothelial cells and brain capillaries of FABP5-/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5+/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5-/- mice are associated with reduced CNS access of DHA. SIGNIFICANCE STATEMENT Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5-/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5 in the maintenance of cognitive function via regulating the brain uptake of DHA, and suggests that upregulation of FABP5 in neurodegenerative diseases, where brain DHA levels are possibly diminished (e.g., Alzheimer's disease), may provide a novel therapeutic approach for restoring cognitive function.
Collapse
|
50
|
Rich B, Scadeng M, Yamaguchi M, Wagner PD, Breen EC. Skeletal myofiber vascular endothelial growth factor is required for the exercise training-induced increase in dentate gyrus neuronal precursor cells. J Physiol 2017; 595:5931-5943. [PMID: 28597506 DOI: 10.1113/jp273994] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Peripheral vascular endothelial growth factor (VEGF) is necessary for exercise to stimulate hippocampal neurogenesis. Here we report that skeletal myofiber VEGF directly or indirectly regulates exercise-signalled proliferation of neuronal precursor cells. Our results found skeletal myofiber VEGF to be necessary for maintaining blood flow through hippocampal regions independent of exercise training state. This study demonstrates that skeletal myofiber VEGF is required for the hippocampal VEGF response to acute exercise. These results help to establish the mechanisms by which exercise, through skeletal myofiber VEGF, affects the hippocampus. ABSTRACT Exercise signals neurogenesis in the dentate gyrus of the hippocampus. This phenomenon requires vascular endothelial growth factor (VEGF) originating from outside the blood-brain barrier, but no cellular source has been identified. Thus, we hypothesized that VEGF produced by skeletal myofibers plays a role in regulating hippocampal neuronal precursor cell proliferation following exercise training. This was tested in adult conditional skeletal myofiber-specific VEGF gene-ablated mice (VEGFHSA-/- ) by providing VEGFHSA-/- and non-ablated (VEGFf/f ) littermates with running wheels for 14 days. Following this training period, hippocampal cerebral blood flow (CBF) was measured by functional magnetic resonance imaging (fMRI), and neuronal precursor cells (BrdU+/Nestin+) were detected by immunofluorescence. The VEGFf/f trained group showed improvements in both speed and endurance capacity in acute treadmill running tests (P < 0.05). The VEGFHSA-/- group did not. The number of proliferating neuronal precursor cells was increased with training in VEGFf/f (P < 0.05) but not in VEGFHSA-/- mice. Endothelial cell (CD31+) number did not change in this region with exercise training or skeletal myofiber VEGF gene deletion. However, resting blood flow through the hippocampal region was lower in VEGFHSA-/- mice, both untrained and trained, than untrained VEGFf/f mice (P < 0.05). An acute hypoxic challenge decreased CBF (P < 0.05) in untrained VEGFf/f , untrained VEGFHSA-/- and trained VEGFHSA-/- mice, but not trained VEGFf/f mice. VEGFf/f , but not VEGFHSA-/- , mice were able to acutely run on a treadmill at an intensity sufficient to increase hippocampus VEGF levels. These data suggest that VEGF expressed by skeletal myofibers may directly or indirectly regulate both hippocampal blood flow and neurogenesis.
Collapse
Affiliation(s)
- Benjamin Rich
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miriam Scadeng
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Peter D Wagner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|