1
|
Torres-García VM, Rodríguez-Nava E, Alcántara-Rivas RI, Picazo O, Roldán-Roldán G, Morin JP. Scopolamine infusion in the basolateral amygdala after saccharin intake induces conditioned taste avoidance in rats. Psychopharmacology (Berl) 2024; 241:2133-2144. [PMID: 38822849 PMCID: PMC11442510 DOI: 10.1007/s00213-024-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
RATIONALE Muscarinic receptor activity in the basolateral amygdala (BLA) is known to be involved in plasticity mechanisms that underlie emotional learning. The BLA is involved in the Attenuation of Neophobia, an incidental taste learning task in which a novel taste becomes familiar and recognized as safe. OBJECTIVE Here we assessed the role of muscarinic receptor activity in the BLA in incidental taste learning. METHODS Young adult male Wistar rats were bilaterally implanted with cannulas aimed at BLA. After recovery, rats were randomly assigned to either vehicle or muscarinic antagonist group, for each experiment. We tested the effect of specific and non-specific muscarinic antagonists administered either 1) 20 min before novel taste presentation; 2) immediately after novel taste presentation; 3) immediately after retrieval (the second taste presentation on Day 5 -S2-) or immediately after the fifth taste presentation on Day 8 (S5). RESULTS Non-specific muscarinic receptor antagonist scopolamine infused prior to novel taste, while not affecting novel taste preference, abolished AN, i.e., the increased preference observed in control animals on the second presentation. When administered after taste consumption, intra-BLA scopolamine not only prevented AN but caused a steep decrease in the taste preference on the second presentation. This scopolamine-induced taste avoidance was not dependent on taste novelty, nor did it generalize to another novel taste. Targeting putative postsynaptic muscarinic receptors with specific M1 or M3 antagonists appeared to produce a partial taste avoidance, while M2 antagonism had no effect. CONCLUSION These data suggest that if a salient gustatory experience is followed by muscarinic receptors antagonism in the BLA, it will be strongly and persistently avoided in the future. The study also shows that scopolamine is not just an amnesic drug, and its cognitive effects may be highly dependent on the task and the structure involved.
Collapse
Affiliation(s)
- Víctor Manuel Torres-García
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Emmanuel Rodríguez-Nava
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Section of Postgraduate Studies and Research, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Rosa Itzel Alcántara-Rivas
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Ofir Picazo
- Section of Postgraduate Studies and Research, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Gabriel Roldán-Roldán
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Jean-Pascal Morin
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
2
|
Osorio-Gómez D, Saldivar-Mares KS, Perera-López A, McGaugh JL, Bermúdez-Rattoni F. Early memory consolidation window enables drug induced state-dependent memory. Neuropharmacology 2018; 146:84-94. [PMID: 30485798 DOI: 10.1016/j.neuropharm.2018.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
It is well established that newly acquired information is stabilized over time by processes underlying memory consolidation, these events can be impaired by many drug treatments administered shortly after learning. The consolidation hypothesis has been challenged by a memory integration hypothesis, which suggests that the processes underlying new memories are vulnerable to incorporation of the neurobiological alterations induced by amnesic drugs generating a state-dependent memory. The present experiments investigated the effects of amnesic drugs infused into the insular cortex of male Wistar rats on memory for object recognition training. The findings provide evidence that infusions of several amnesic agents including a protein synthesis inhibitor, an RNA synthesis inhibitor, or an NMDA receptor antagonist administered both after a specific period of time and before retrieval induce state-dependent recognition memory. Additionally, when amnesic drugs were infused outside the early consolidation window, there was amnesia, but the amnesia was not state-dependent. Data suggest that amnesic agents can induce state-dependent memory when administered during the early consolidation window and only if the duration of the drug effect is long enough to become integrated to the memory trace. In consequence, there are boundary conditions in order to induce state-dependent memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico.
| | - Karina S Saldivar-Mares
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Aldo Perera-López
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - James L McGaugh
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| |
Collapse
|
3
|
de-la-Cruz M, Millán-Aldaco D, Soriano-Nava DM, Drucker-Colín R, Murillo-Rodríguez E. The artificial sweetener Splenda intake promotes changes in expression of c-Fos and NeuN in hypothalamus and hippocampus of rats. Brain Res 2018; 1700:181-189. [PMID: 30201258 DOI: 10.1016/j.brainres.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity is the result of the interaction of multiple variables, including the excessive increase of sugar-sweetened beverages consumption. Diets aimed to treat obesity have suggested the use of artificial sweeteners. However, recent evidence has shown several health deficits after intake of artificial sweeteners, including effects in neuronal activity. Therefore, the influence of artificial sweeteners consumption such as Splenda, on the expression of c-Fos and neuronal nuclear protein (NeuN) in hypothalamus and hippocampus remains to be determined. OBJECTIVES We investigated the effects on c-Fos or NeuN expression in hypothalamus and hippocampus of Splenda-treated rats. METHODS Splenda was diluted in water (25, 75 or 250 mg/100 mL) and orally given to rats during 2 weeks ad libitum. Next, animals were sacrificed by decapitation and brains were collected for analysis of c-Fos or NeuN immunoreactivity. RESULTS Consumption of Splenda provoked an inverted U-shaped dose-effect in c-Fos expression in ventromedial hypothalamic nucleus while similar findings were observed in dentate gyrus of hippocampus. In addition, NeuN immunoreactivity was enhanced in ventromedial hypothalamic nucleus at 25 or 75 mg/100 mL of Splenda intake whereas an opposite effect was observed at 250 mg/100 mL of artificial sweetener consumption. Lastly, NeuN positive neurons were increased in CA2/CA3 fields of hippocampus from Splenda-treated rats (25, 75 or 250 mg/100 mL). CONCLUSION Consuming Splenda induced effects in neuronal biomarkers expression. To our knowledge, this study is the first description of the impact of intake Splenda on c-Fos and NeuN immunoreactivity in hypothalamus and hippocampus in rats.
Collapse
Affiliation(s)
- Miriel de-la-Cruz
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group
| | - Diana Millán-Aldaco
- Depto. de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México, Mexico
| | - Daniela Marcia Soriano-Nava
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group
| | - René Drucker-Colín
- Depto. de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México, Mexico
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group.
| |
Collapse
|
4
|
Peterschmitt Y, Abdoul-Azize S, Murtaza B, Barbier M, Khan AS, Millot JL, Khan NA. Fatty Acid Lingual Application Activates Gustatory and Reward Brain Circuits in the Mouse. Nutrients 2018; 10:nu10091246. [PMID: 30200577 PMCID: PMC6163273 DOI: 10.3390/nu10091246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022] Open
Abstract
The origin of spontaneous preference for dietary lipids in humans and rodents is debated, though recent compelling evidence has shown the existence of fat taste that might be considered a sixth taste quality. We investigated the implication of gustatory and reward brain circuits, triggered by linoleic acid (LA), a long-chain fatty acid. The LA was applied onto the circumvallate papillae for 30 min in conscious C57BL/6J mice, and neuronal activation was assessed using c-Fos immunohistochemistry. By using real-time reverse transcription polymerase chain reaction (RT-qPCR), we also studied the expression of mRNA encoding brain-derived neurotrophic factor (BDNF), Zif-268, and Glut-1 in some brain areas of these animals. LA induced a significant increase in c-Fos expression in the nucleus of solitary tract (NST), parabrachial nucleus (PBN), and ventroposterior medialis parvocellularis (VPMPC) of the thalamus, which are the regions known to be activated by gustatory signals. LA also triggered c-Fos expression in the central amygdala and ventral tegmental area (VTA), involved in food reward, in conjunction with emotional traits. Interestingly, we noticed a high expression of BDNF, Zif-268, and Glut-1 mRNA in the arcuate nucleus (Arc) and hippocampus (Hipp), where neuronal activation leads to memory formation. Our study demonstrates that oral lipid taste perception might trigger the activation of canonical gustatory and reward pathways.
Collapse
Affiliation(s)
- Yvan Peterschmitt
- Neurosciences Intégratives et Cliniques EA481, Université de Bourgogne Franche-Comté (UBFC), 25000 Besançon, France; (Y.P.); (M.B.)
| | - Souleymane Abdoul-Azize
- Unité Inserm U1234, Université de Rouen/IRIB, Faculté de Médecine et Pharmacie, 76183 Rouen CEDEX, France;
| | - Babar Murtaza
- Physiologie de la Nutrition & Toxicologie (NUTox), Agro-Sup, UMR U1231 INSERM/Université de Bourgogne Franche-Comté (UBFC), 6, Boulevard Gabriel, 21000 Dijon, France; (B.M.); (A.S.K.)
| | - Marie Barbier
- Neurosciences Intégratives et Cliniques EA481, Université de Bourgogne Franche-Comté (UBFC), 25000 Besançon, France; (Y.P.); (M.B.)
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie (NUTox), Agro-Sup, UMR U1231 INSERM/Université de Bourgogne Franche-Comté (UBFC), 6, Boulevard Gabriel, 21000 Dijon, France; (B.M.); (A.S.K.)
| | - Jean-Louis Millot
- Neurosciences Intégratives et Cliniques EA481, Université de Bourgogne Franche-Comté (UBFC), 25000 Besançon, France; (Y.P.); (M.B.)
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie (NUTox), Agro-Sup, UMR U1231 INSERM/Université de Bourgogne Franche-Comté (UBFC), 6, Boulevard Gabriel, 21000 Dijon, France; (B.M.); (A.S.K.)
- Correspondence: ; Tel.: +33-38-039-6312; Fax: +33-38-039-6330
| |
Collapse
|
5
|
Guzmán-Ramos K, Venkataraman A, Morin JP, Osorio-Gómez D, Bermúdez-Rattoni F. Differential requirement of de novo Arc protein synthesis in the insular cortex and the amygdala for safe and aversive taste long-term memory formation. Behav Brain Res 2018; 342:89-93. [DOI: 10.1016/j.bbr.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
|
6
|
Ivanova TN, Gross C, Mappus RC, Kwon YJ, Bassell GJ, Liu RC. Familiarity with a vocal category biases the compartmental expression of Arc/Arg3.1 in core auditory cortex. Learn Mem 2017; 24:612-621. [PMID: 29142056 PMCID: PMC5688959 DOI: 10.1101/lm.046086.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/01/2017] [Indexed: 01/18/2023]
Abstract
Learning to recognize a stimulus category requires experience with its many natural variations. However, the mechanisms that allow a category's sensorineural representation to be updated after experiencing new exemplars are not well understood, particularly at the molecular level. Here we investigate how a natural vocal category induces expression in the auditory system of a key synaptic plasticity effector immediate early gene, Arc/Arg3.1, which is required for memory consolidation. We use the ultrasonic communication system between mouse pups and adult females to study whether prior familiarity with pup vocalizations alters how Arc is engaged in the core auditory cortex after playback of novel exemplars from the pup vocal category. A computerized, 3D surface-assisted cellular compartmental analysis, validated against manual cell counts, demonstrates significant changes in the recruitment of neurons expressing Arc in pup-experienced animals (mothers and virgin females "cocaring" for pups) compared with pup-inexperienced animals (pup-naïve virgins), especially when listening to more familiar, natural calls compared to less familiar but similarly recognized tonal model calls. Our data support the hypothesis that the kinetics of Arc induction to refine cortical representations of sensory categories is sensitive to the familiarity of the sensory experience.
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Christina Gross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| | - Rudolph C Mappus
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Yong Jun Kwon
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Graduate Program in Neuroscience, Laney Graduate School, Emory University, Atlanta, Georgia 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
7
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Osorio-Gómez D, Guzmán-Ramos K, Bermúdez-Rattoni F. Memory trace reactivation and behavioral response during retrieval are differentially modulated by amygdalar glutamate receptors activity: interaction between amygdala and insular cortex. ACTA ACUST UNITED AC 2016; 24:14-23. [PMID: 27980072 PMCID: PMC5159659 DOI: 10.1101/lm.042895.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/12/2016] [Indexed: 12/26/2022]
Abstract
The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the gustatory zone of the IC during CTA retrieval. Additionally, it has been reported that the amygdala–IC interaction is highly involved in CTA memory establishment. Therefore, we evaluated the effects of infusions of an AMPA receptor antagonist (CNQX) and a NMDA receptor antagonist (APV) into the amygdala on CTA retrieval and IC neurotransmitter levels. Infusion of APV into the amygdala impaired glutamate augmentation within the IC, whereas dopamine and norepinephrine levels augmentation persisted and a reliable CTA expression was observed. Conversely, CNQX infusion into the amygdala impaired the aversion response, as well as norepinephrine and dopamine augmentations in the IC. Interestingly, CNQX infusion did not affect glutamate elevation in the IC. To evaluate the functional meaning of neurotransmitters elevations within the IC on CTA response, we infused specific antagonists for the AMPA, NMDA, D1, and β-adrenergic receptor before retrieval. Results showed that activation of AMPA, D1, and β-adrenergic receptors is necessary for CTA expression, whereas NMDA receptors are not involved in the aversion response.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México City, Mexico
| | - Kioko Guzmán-Ramos
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México City, Mexico.,Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Av. Hidalgo poniente 46 Col. La estación, 52006 Lerma de Villada, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México City, Mexico
| |
Collapse
|
9
|
Henderson YO, Nalloor R, Vazdarjanova A, Parent MB. Sweet orosensation induces Arc expression in dorsal hippocampal CA1 neurons in an experience-dependent manner. Hippocampus 2015; 26:405-13. [PMID: 26386270 DOI: 10.1002/hipo.22532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
There is limited knowledge regarding how the brain controls the timing of meals. Similarly, there is a large gap in our understanding of how top-down cognitive processes, such as memory influence energy intake. We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memory, form a memory of a meal and inhibit meal onset during the postprandial period. In support, we showed previously that reversible inactivation of these neurons during the period following a sucrose meal accelerates the onset of the next meal. If dHC neurons form a memory of a meal, then consumption should induce synaptic plasticity in dHC neurons. To test this, we determined (1) whether a sucrose meal increases the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc) in dHC CA1 neurons, (2) whether previous experience with sucrose influences sucrose-induced Arc expression, and (3) whether the orosensory stimulation produced by the noncaloric sweetener saccharin is sufficient to induce Arc expression. Male Sprague-Dawley rats were trained to consume a sweetened solution at a scheduled time daily. On the experimental day, they were given a solution for 7 min, euthanized, and then fluorescence in situ hybridization procedures were used to measure meal-induced Arc mRNA. Compared to caged control rats, Arc expression was significantly higher in rats that consumed sucrose or saccharin. Interestingly, rats given additional experience with sucrose had less Arc expression than rats with less sucrose experience, even though both groups consumed similar amounts on the experimental day. Thus, this study is the first to suggest that orosensory stimulation produced by consuming a sweetened solution and possibly the hedonic value of that sweet stimulation induces synaptic plasticity in dHC CA1 neurons in an experience-dependent manner. Collectively, these findings are consistent with our hypothesis that dHC neurons form a memory of a meal.
Collapse
Affiliation(s)
- Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Rebecca Nalloor
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, United States.,VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
10
|
New Insights on Retrieval-Induced and Ongoing Memory Consolidation: Lessons from Arc. Neural Plast 2015; 2015:184083. [PMID: 26380114 PMCID: PMC4561316 DOI: 10.1155/2015/184083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
The mainstream view on the neurobiological mechanisms underlying memory formation states that memory traces reside on the network of cells activated during initial acquisition that becomes active again upon retrieval (reactivation). These activation and reactivation processes have been called "conjunctive trace." This process implies that singular molecular events must occur during acquisition, strengthening the connection between the implicated cells whose synchronous activity must underlie subsequent reactivations. The strongest experimental support for the conjunctive trace model comes from the study of immediate early genes such as c-fos, zif268, and activity-regulated cytoskeletal-associated protein. The expressions of these genes are reliably induced by behaviorally relevant neuronal activity and their products often play a central role in long-term memory formation. In this review, we propose that the peculiar characteristics of Arc protein, such as its optimal expression after ongoing experience or familiar behavior, together with its versatile and central functions in synaptic plasticity could explain how familiarization and recognition memories are stored and preserved in the mammalian brain.
Collapse
|
11
|
Bermudez-Rattoni F. The forgotten insular cortex: Its role on recognition memory formation. Neurobiol Learn Mem 2014; 109:207-16. [PMID: 24406466 DOI: 10.1016/j.nlm.2014.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/21/2013] [Accepted: 01/01/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Federico Bermudez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, A.P. 70-253, México, DF 04510, Mexico.
| |
Collapse
|
12
|
Abstract
Biochemical, electrophysiological, and imaging studies suggest that the anterior part of the insular cortex (IC) serves as primary taste cortex, whereas fMRI studies in human propose that the anterior IC is also involved in processing of general novelty or saliency information. Here, we compared activity regulated cytoskeleton associated protein (Arc)/Arg3.1 protein levels in the rat IC following administration of familiar versus novel tastes. Surprisingly, there was no correlation between novel taste and Arc/Arg3.1 levels when measured as the sum of both left and right insular cortices. However, when left and right IC were examined separately, Arc/Arg3.1 level was lateralized following novel taste learning. Moreover, Arc/Arg3.1 lateralization was inversely correlated with taste familiarity, whereas the high lateralization of Arc/Arg3.1 expression observed following novel taste learning is reduced proportionally to the increment in taste familiarity. In addition, unilateral inhibition of protein synthesis in the IC had asymmetrical effect on memory, inducing strong memory impairment similarly to bilateral inhibition or memory preservation, indicating that hemispheric lateralization is central for processing taste saliency information. These results provide indications, at the gene level of expression, for the role of IC lateralization in processing novel taste information and for the asymmetrical contribution of protein synthesis in each hemisphere during memory consolidation.
Collapse
|
13
|
Gómez-Chacón B, Gámiz F, Gallo M. Basolateral amygdala lesions attenuate safe taste memory-related c-fos expression in the rat perirhinal cortex. Behav Brain Res 2012; 230:418-22. [DOI: 10.1016/j.bbr.2012.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 01/05/2023]
|
14
|
Balderas I, Morin JP, Rodriguez-Ortiz CJ, Bermudez-Rattoni F. Muscarinic receptors activity in the perirhinal cortex and hippocampus has differential involvement in the formation of recognition memory. Neurobiol Learn Mem 2012; 97:418-24. [PMID: 22452926 DOI: 10.1016/j.nlm.2012.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 11/17/2022]
Abstract
In this work we probed the effects of post-trial infusions of the muscarinic receptor antagonist scopolamine on object recognition memory formation. Scopolamine was infused bilaterally immediately after the sample phase in the perirhinal cortex or dorsal hippocampus and animals were tested for short-term (90 min) or long-term (24 h) memory. Results showed that scopolamine impaired short-term memory when injected in either the perirhinal cortex or hippocampus. Nevertheless, scopolamine disrupted long-term memory when administrated in the perirhinal cortex but not when applied in the hippocampus. Long-term memory was unaffected when scopolamine was infused 160 min after the sample phase or 90 min before test phase. Our data indicate that short-term recognition memory requires muscarinic receptors signaling in both the perirhinal cortex and hippocampus, whereas long-term recognition memory depends on muscarinic receptors in the perirhinal cortex but not hippocampus. These results support a differential involvement of muscarinic activity in these two medial temporal lobe structures in the formation of recognition memory.
Collapse
Affiliation(s)
- Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510 México D.F., Mexico.
| | | | | | | |
Collapse
|