1
|
Mohr A, Marques Da Costa ME, Fromigue O, Audinot B, Balde T, Droit R, Abbou S, Khneisser P, Berlanga P, Perez E, Marchais A, Gaspar N. From biology to personalized medicine: Recent knowledge in osteosarcoma. Eur J Med Genet 2024; 69:104941. [PMID: 38677541 DOI: 10.1016/j.ejmg.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
High-grade osteosarcoma is the most common paediatric bone cancer. More than one third of patients relapse and die of osteosarcoma using current chemotherapeutic and surgical strategies. To improve outcomes in osteosarcoma, two crucial challenges need to be tackled: 1-the identification of hard-to-treat disease, ideally from diagnosis; 2- choosing the best combined or novel therapies to eradicate tumor cells which are resistant to current therapies leading to disease dissemination and metastasize as well as their favorable microenvironment. Genetic chaos, tumor complexity and heterogeneity render this task difficult. The development of new technologies like next generation sequencing has led to an improvement in osteosarcoma oncogenesis knownledge. This review summarizes recent biological and therapeutical advances in osteosarcoma, as well as the challenges that must be overcome in order to develop personalized medicine and new therapeutic strategies and ultimately improve patient survival.
Collapse
Affiliation(s)
- Audrey Mohr
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | | | - Olivia Fromigue
- National Institute for Health and Medical Research (INSERM) U981, Gustave Roussy Institute, Villejuif, France
| | - Baptiste Audinot
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Thierno Balde
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Robin Droit
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Samuel Abbou
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Pierre Khneisser
- Department of medical Biology and Pathology, Gustave Roussy Institute, Villejuif, France
| | - Pablo Berlanga
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Esperanza Perez
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Antonin Marchais
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Nathalie Gaspar
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France.
| |
Collapse
|
2
|
Kraya AA, Maxwell KN, Eiva MA, Wubbenhorst B, Pluta J, Feldman M, Nayak A, Powell DJ, Domchek SM, Vonderheide RH, Nathanson KL. PTEN Loss and BRCA1 Promoter Hypermethylation Negatively Predict for Immunogenicity in BRCA-Deficient Ovarian Cancer. JCO Precis Oncol 2022; 6:e2100159. [PMID: 35201851 PMCID: PMC8982238 DOI: 10.1200/po.21.00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/10/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Ovarian cancers can exhibit a prominent immune infiltrate, but clinical trials have not demonstrated substantive response rates to immune checkpoint blockade monotherapy. We aimed to understand genomic features associated with immunogenicity in BRCA1/2 mutation-associated cancers. MATERIALS AND METHODS Using the Cancer Genome Atlas whole-exome sequencing, methylation, and expression data, we analyzed 66 ovarian cancers with either germline or somatic loss of BRCA1/2 and whole-exome sequencing, immunohistochemistry, and CyTOF in 20 ovarian cancers with germline BRCA1/2 pathogenic variants from Penn. RESULTS We found two groups of BRCA1/2 ovarian cancers differing in their immunogenicity: (1) 37 tumors significantly enriched for PTEN loss (11, 30%) and BRCA1 promoter-hypermethylated (10, 27%; P = .0016) and (2) PTEN wild-type (28 of 29 tumors) cancers, with the latter group having longer overall survival (OS; P = .0186, median OS not reached v median OS = 66.1 months). BRCA1/2-mutant PTEN loss and BRCA1 promoter-hypermethylated cancers were characterized by the decreased composition of lymphocytes estimated by gene expression (P = .0030), cytolytic index (P = .034), and cytokine expression but higher homologous recombination deficiency scores (P = .00013). Large-scale state transitions were the primary discriminating feature (P = .001); neither mutational burden nor neoantigen burden could explain differences in immunogenicity. In Penn tumors, PTEN loss and high homologous recombination deficiency cancers exhibited fewer CD3+ (P = .05), CD8+ (P = .012), and FOXP3+ (P = .0087) T cells; decreased PRF1 expression (P = .041); and lower immune costimulatory and inhibitory molecule expression. CONCLUSION Our study suggests that within ovarian cancers with genetic loss of BRCA1/2 are two subsets exhibiting differential immunogenicity, with lower levels associated with PTEN loss and BRCA hypermethylation. These genomic features of BRCA1/2-associated ovarian cancers may inform considerations around how to optimally deploy immune checkpoint inhibitors in the clinic.
Collapse
Affiliation(s)
- Adam A. Kraya
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Monika A. Eiva
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Michael Feldman
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Anupma Nayak
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Daniel J. Powell
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Susan M. Domchek
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert H. Vonderheide
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Katherine L. Nathanson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Marchais A, Marques Da Costa ME, Job B, Abbas R, Drubay D, Piperno-Neumann S, Fromigué O, Gomez-Brouchet A, Françoise R, Droit R, Lervat C, ENTZ-WERLE N, Pacquement H, Devoldere C, Cupissol D, Bodet D, GANDEMER V, Berger MG, Bérard PM, Jimenez M, Vassal G, Geoerger B, Brugieres L, Gaspar N. Immune infiltrate and tumor microenvironment transcriptional programs stratify pediatric osteosarcoma into prognostic groups at diagnosis. Cancer Res 2022; 82:974-985. [DOI: 10.1158/0008-5472.can-20-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/26/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
|
4
|
Gambera S, Patiño-Garcia A, Alfranca A, Garcia-Castro J. RGB-Marking to Identify Patterns of Selection and Neutral Evolution in Human Osteosarcoma Models. Cancers (Basel) 2021; 13:2003. [PMID: 33919355 PMCID: PMC8122697 DOI: 10.3390/cancers13092003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma (OS) is a highly aggressive tumor characterized by malignant cells producing pathologic bone; the disease presents a natural tendency to metastasize. Genetic studies indicate that the OS genome is extremely complex, presenting signs of macro-evolution, and linear and branched patterns of clonal development. However, those studies were based on the phylogenetic reconstruction of next-generation sequencing (NGS) data, which present important limitations. Thus, testing clonal evolution in experimental models could be useful for validating this hypothesis. In the present study, lentiviral LeGO-vectors were employed to generate colorimetric red, green, blue (RGB)-marking in murine, canine, and human OS. With this strategy, we studied tumor heterogeneity and the clonal dynamics occurring in vivo in immunodeficient NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ (NSG) mice. Based on colorimetric label, tumor clonal composition was analyzed by confocal microscopy, flow cytometry, and different types of supervised and unsupervised clonal analyses. With this approach, we observed a consistent reduction in the clonal composition of RGB-marked tumors and identified evident clonal selection at the first passage in immunodeficient mice. Furthermore, we also demonstrated that OS could follow a neutral model of growth, where the disease is defined by the coexistence of different tumor sub-clones. Our study demonstrates the importance of rigorous testing of the selective forces in commonly used experimental models.
Collapse
Affiliation(s)
- Stefano Gambera
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.G.); (A.A.)
| | - Ana Patiño-Garcia
- Department of Pediatrics, Laboratory of Advanced Therapies for Pediatric Solid Tumors, Solid Tumor Area, CIMA and Instituto de Investigación Sanitaria de Navarra, University Clinic of Navarra, IdiSNA, 31008 Pamplona, Spain;
| | - Arantzazu Alfranca
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.G.); (A.A.)
- Immunology Department, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.G.); (A.A.)
| |
Collapse
|
5
|
de Azevedo JWV, de Medeiros Fernandes TAA, Fernandes JV, de Azevedo JCV, Lanza DCF, Bezerra CM, Andrade VS, de Araújo JMG, Fernandes JV. Biology and pathogenesis of human osteosarcoma. Oncol Lett 2019; 19:1099-1116. [PMID: 31966039 PMCID: PMC6955653 DOI: 10.3892/ol.2019.11229] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a bone tumor of mesenchymal origin, most frequently occurring during the rapid growth phase of long bones, and usually located in the epiphyseal growth plates of the femur or the tibia. Its most common feature is genome disorganization, aneuploidy with chromosomal alterations, deregulation of tumor suppressor genes and of the cell cycle, and an absence of DNA repair. This suggests the involvement of surveillance failures, DNA repair or apoptosis control during osteogenesis, allowing the survival of cells which have undergone alterations during differentiation. Epigenetic events, including DNA methylation, histone modifications, nucleosome remodeling and expression of non-coding RNAs have been identified as possible risk factors for the tumor. It has been reported that p53 target genes or those genes that have their activity modulated by p53, in addition to other tumor suppressor genes, are silenced in OS-derived cell lines by hypermethylation of their promoters. In osteogenesis, osteoblasts are formed from pluripotent mesenchymal cells, with potential for self-renewal, proliferation and differentiation into various cell types. This involves complex signaling pathways and multiple factors. Any disturbance in this process can cause deregulation of the differentiation and proliferation of these cells, leading to the malignant phenotype. Therefore, the origin of OS seems to be multifactorial, involving the deregulation of differentiation of mesenchymal cells and tumor suppressor genes, activation of oncogenes, epigenetic events and the production of cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | - Christiane Medeiros Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Vânia Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
6
|
Amary F, Markert E, Berisha F, Ye H, Gerrand C, Cool P, Tirabosco R, Lindsay D, Pillay N, O'Donnell P, Baumhoer D, Flanagan AM. FOS Expression in Osteoid Osteoma and Osteoblastoma: A Valuable Ancillary Diagnostic Tool. Am J Surg Pathol 2019; 43:1661-1667. [PMID: 31490237 DOI: 10.1097/pas.0000000000001355] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoblastoma and osteoid osteoma together are the most frequent benign bone-forming tumor, arbitrarily separated by size. In some instances, it can be difficult to differentiate osteoblastoma from osteosarcoma. Following our recent description of FOS gene rearrangement in these tumors, the aim of this study is to evaluate the value of immunohistochemistry in osteoid osteoma, osteoblastoma, and osteosarcoma for diagnostic purposes. A total of 337 cases were tested with antibodies against c-FOS: 84 osteoblastomas, 33 osteoid osteomas, 215 osteosarcomas, and 5 samples of reactive new bone formation. In all, 83% of osteoblastomas and 73% of osteoid osteoma showed significant expression of c-FOS in the osteoblastic tumor cell component. Of the osteosarcomas, 14% showed c-FOS expression, usually focal, and in areas with severe morphologic atypia which were unequivocally malignant: 4% showed more conspicuous expression, but these were negative for FOS gene rearrangement. We conclude that c-FOS immunoreactivity is present in the vast majority of osteoblastoma/osteoid osteoma, whereas its expression is usually focal or patchy, in no more than 14% of osteosarcoma biopsies. Therefore, any bone-forming tumor cases with worrying histologic features would benefit from fluorescence in situ hybridization analysis for FOS gene rearrangement. Our findings highlight the importance of undertaking a thorough assessment of expression patterns of antibodies in the light of morphologic, clinical, and radiologic features.
Collapse
Affiliation(s)
- Fernanda Amary
- Royal National Orthopaedic Hospital, Stanmore
- Cancer Institute, University College London, London
| | - Eva Markert
- Royal National Orthopaedic Hospital, Stanmore
| | | | - Hongtao Ye
- Royal National Orthopaedic Hospital, Stanmore
| | | | - Paul Cool
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry and Keele University, Owestry, UK
| | | | | | - Nischalan Pillay
- Royal National Orthopaedic Hospital, Stanmore
- Cancer Institute, University College London, London
| | | | - Daniel Baumhoer
- Basel Bone Tumour Reference Centre (BBTRC), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Adrienne M Flanagan
- Royal National Orthopaedic Hospital, Stanmore
- Cancer Institute, University College London, London
| |
Collapse
|
7
|
Schiavone K, Garnier D, Heymann MF, Heymann D. The Heterogeneity of Osteosarcoma: The Role Played by Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:187-200. [PMID: 31134502 DOI: 10.1007/978-3-030-14366-4_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is the most common bone sarcoma and is one of the cancer entities characterized by the highest level of heterogeneity in humans. This heterogeneity takes place not only at the macroscopic and microscopic levels, with heterogeneous micro-environmental components, but also at the genomic, transcriptomic and epigenetic levels. Recent investigations have revealed the existence in osteosarcoma of cancer cells with stemness properties. Cancer stem cells are characterized by their specific phenotype and low cycling capacity, and are linked to drug resistance, tumour growth and the metastatic process. In addition, cancer stem cells contribute to the enrichment of tumour heterogeneity. The present manuscript will describe the main characteristic features of cancer stem cells in osteosarcoma and will discuss their impact on maintaining tumour heterogeneity. Their clinical implications will also be briefly addressed.
Collapse
Affiliation(s)
- Kristina Schiavone
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Delphine Garnier
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Marie-Francoise Heymann
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Dominique Heymann
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France.
| |
Collapse
|
8
|
Zhang N, Jiang H, Bai Y, Lu X, Feng M, Guo Y, Zhang S, Luo Q, Wu H, Wang L. The molecular mechanism study of insulin on proliferation and differentiation of osteoblasts under high glucose conditions. Cell Biochem Funct 2019; 37:385-394. [PMID: 31140646 DOI: 10.1002/cbf.3415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/02/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Nong Zhang
- Department of StomatologyShenzhen Longgang District Maternal and Child Health Care Hospital Shenzhen China
| | - Hua Jiang
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Yang Bai
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Xingmei Lu
- Department of Chemical Engineering and Technology, a CAS key Laboratory of Green Process and Engineering, Institute of Process Engineering, China B college of Chemical and Engineering, University of Chinese Academy of SciencesChinese Academy of Sciences Beijing China
| | - Mi Feng
- Department of Applied Chemistry, a CAS key Laboratory of Green Process and Engineering, Institute of Process Engineering, China B college of Chemical and Engineering, University of Chinese Academy of SciencesChinese Academy of Sciences Beijing China
| | - Yu Guo
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Shuo Zhang
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Qiang Luo
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Hao Wu
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| | - Lin Wang
- Department of StomatologyGeneral Hospital of Chinese People's Liberation Army Beijing China
| |
Collapse
|
9
|
Li M, Jin X, Guo F, Wu G, Wu L, Deng S. Integrative analyses of key genes and regulatory elements in fluoride-affected osteosarcoma. J Cell Biochem 2019; 120:15397-15409. [PMID: 31037778 DOI: 10.1002/jcb.28807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma is one of the most malignant tumors in adolescents with severe outcomes while fluoride is one of the most abundant elements in the environment. Epidemiological evidence has elucidated the relationship between fluoride and osteosarcoma, but the molecular mechanisms are extremely complicated. Microarray profiles were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) in the progression of fluoride-affected osteosarcoma. The functional enrichment analysis was performed, a protein-protein interaction network, a microRNA-messenger RNA (mRNA) and a transcription factors-mRNA regulatory network were constructed and performed using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. A total of 171 DEGs were identified. The functions and pathways of the DEGs were enriched in nucleolus, protein ubiquitination, protein binding, RNA transport, and the spliceosome. Eighteen hub genes were identified and functional analysis revealed that these genes are mainly enriched in protein binding, nucleoplasm, and ribosomal RNA processing. Survival analysis showed that the hub genes may be involved in the invasion or recurrence of osteosarcoma. In conclusion, the DEGs and hub genes with their regulatory elements identified in this study will help us understand the molecular mechanisms underlying fluoride-affected osteosarcoma and provide candidate targets for future research.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wu
- Geriatrics Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Baumhoer D, Amary F, Flanagan AM. An update of molecular pathology of bone tumors. Lessons learned from investigating samples by next generation sequencing. Genes Chromosomes Cancer 2018; 58:88-99. [PMID: 30582658 DOI: 10.1002/gcc.22699] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
The last decade has seen the majority of primary bone tumor subtypes become defined by molecular genetic alteration. Examples include giant cell tumour of bone (H3F3A p.G34W), chondroblastoma (H3F3B p.K36M), mesenchymal chondrosarcoma (HEY1-NCOA2), chondromyxoid fibroma (GRM1 rearrangements), aneurysmal bone cyst (USP6 rearrangements), osteoblastoma/osteoid osteoma (FOS/FOSB rearrangements), and synovial chondromatosis (FN1-ACVR2A and ACVR2A-FN1). All such alterations are mutually exclusive. Many of these have been translated into clinical service using immunohistochemistry or FISH. 60% of central chondrosarcoma is characterised by either isocitrate dehydrogenase (IDH) 1 or IDH2 mutations distinguishing them from other cartilaginous tumours. In contrast, recurrent alterations which are clinically helpful have not been found in high grade osteosarcoma. High throughput next generation sequencing has also proved valuable in identifying germ line alterations in a significant proportion of young patients with primary malignant bone tumors. These findings will play an increasing role in reaching a diagnosis and in patient management.
Collapse
Affiliation(s)
- Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fernanda Amary
- Department of Pathology, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom.,Department of Pathology, Cancer Institute, University College London, London, United Kingdom
| | - Adrienne M Flanagan
- Department of Pathology, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom.,Department of Pathology, Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
11
|
Gambera S, Abarrategi A, González-Camacho F, Morales-Molina Á, Roma J, Alfranca A, García-Castro J. Clonal dynamics in osteosarcoma defined by RGB marking. Nat Commun 2018; 9:3994. [PMID: 30266933 PMCID: PMC6162235 DOI: 10.1038/s41467-018-06401-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is a type of bone tumour characterized by considerable levels of phenotypic heterogeneity, aneuploidy, and a high mutational rate. The life expectancy of osteosarcoma patients has not changed during the last three decades and thus much remains to be learned about the disease biology. Here, we employ a RGB-based single-cell tracking system to study the clonal dynamics occurring in a de novo-induced murine osteosarcoma model. We show that osteosarcoma cells present initial polyclonal dynamics, followed by clonal dominance associated with adaptation to the microenvironment. Interestingly, the dominant clones are composed of subclones with a similar tumour generation potential when they are re-implanted in mice. Moreover, individual spontaneous metastases are clonal or oligoclonal, but they have a different cellular origin than the dominant clones present in primary tumours. In summary, we present evidence that osteosarcomagenesis can follow a neutral evolution model, in which different cancer clones coexist and propagate simultaneously.
Collapse
Affiliation(s)
- Stefano Gambera
- Cellular Biotechnology Unit, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Ander Abarrategi
- Cellular Biotechnology Unit, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Álvaro Morales-Molina
- Cellular Biotechnology Unit, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Josep Roma
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Hospital, Barcelona, 08035, Spain
| | - Arantzazu Alfranca
- Cellular Biotechnology Unit, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
- Immunology Department, Hospital Universitario de La Princesa, Madrid, 28006, Spain
| | - Javier García-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
| |
Collapse
|
12
|
Fittall MW, Mifsud W, Pillay N, Ye H, Strobl AC, Verfaillie A, Demeulemeester J, Zhang L, Berisha F, Tarabichi M, Young MD, Miranda E, Tarpey PS, Tirabosco R, Amary F, Grigoriadis AE, Stratton MR, Van Loo P, Antonescu CR, Campbell PJ, Flanagan AM, Behjati S. Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nat Commun 2018; 9:2150. [PMID: 29858576 PMCID: PMC5984627 DOI: 10.1038/s41467-018-04530-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
The transcription factor FOS has long been implicated in the pathogenesis of bone tumours, following the discovery that the viral homologue, v-fos, caused osteosarcoma in laboratory mice. However, mutations of FOS have not been found in human bone-forming tumours. Here, we report recurrent rearrangement of FOS and its paralogue, FOSB, in the most common benign tumours of bone, osteoblastoma and osteoid osteoma. Combining whole-genome DNA and RNA sequences, we find rearrangement of FOS in five tumours and of FOSB in one tumour. Extending our findings into a cohort of 55 cases, using FISH and immunohistochemistry, provide evidence of ubiquitous mutation of FOS or FOSB in osteoblastoma and osteoid osteoma. Overall, our findings reveal a human bone tumour defined by mutations of FOS and FOSB.
Collapse
Affiliation(s)
- Matthew W Fittall
- The Francis Crick Institute, London, NW1 1AT, UK
- University College London Cancer Institute, London, WC1E 6DD, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - William Mifsud
- University College London Cancer Institute, London, WC1E 6DD, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Nischalan Pillay
- University College London Cancer Institute, London, WC1E 6DD, UK
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Anna-Christina Strobl
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Human Genetics, University of Leuven, Leuven, 3000, Belgium
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Fitim Berisha
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, NW1 1AT, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Matthew D Young
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Elena Miranda
- University College London Cancer Institute, London, WC1E 6DD, UK
| | - Patrick S Tarpey
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Agamemnon E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | | | - Peter Van Loo
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Human Genetics, University of Leuven, Leuven, 3000, Belgium
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter J Campbell
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Adrienne M Flanagan
- University College London Cancer Institute, London, WC1E 6DD, UK.
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK.
| | - Sam Behjati
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
13
|
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, Lee DF. Osteosarcoma: Molecular Pathogenesis and iPSC Modeling. Trends Mol Med 2017; 23:737-755. [PMID: 28735817 DOI: 10.1016/j.molmed.2017.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Rare hereditary disorders provide unequivocal evidence of the importance of genes in human disease pathogenesis. Familial syndromes that predispose to osteosarcomagenesis are invaluable in understanding the underlying genetics of this malignancy. Recently, patient-derived induced pluripotent stem cells (iPSCs) have been successfully utilized to model Li-Fraumeni syndrome (LFS)-associated bone malignancy, demonstrating that iPSCs can serve as an in vitro disease model to elucidate osteosarcoma etiology. We provide here an overview of osteosarcoma predisposition syndromes and review recently established iPSC disease models for these familial syndromes. Merging molecular information gathered from these models with the current knowledge of osteosarcoma biology will help us to gain a deeper understanding of the pathological mechanisms underlying osteosarcomagenesis and will potentially aid in the development of future patient therapies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|